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Nash Game Based Distributed Control Design
for Balancing of Traffic Density over Freeway
Networks

Dominik Pisarski and Carlos Canudas de Wit

Abstract—In this paper, we study the problem of optimal method was proposed in [5] to control the traffic flow in
balancing of vehicle density in the freeway traffic. The opt the airspace system. Distributed controller's architesctin
mization is performed in a distributed manner by utilizing the  freeway traffic flow control was investigated in [6], where
controllability properties of the freeway network represented th th isolated f lust d defined ila'b
by the Cell Transmission Model. By using these properties, eau prs Isolate ,reewayc%ls ers and deinned collabera
we identify the subsystems to be controlled by local ramp Mechanisms to achieve a desired performance of the overall
meters. The optimization problem is then formulated as a non system. Distributed and centralized model predictive ant
cooperative Nash game that is solved by decomposing it intoset  schemes for freeway traffic control were compared in [7].
of two-players hierarchical and competitive games. The proess g gythors demonstrated that a distributed controlleibétsh

of optimization employs the communication channels matcimig th f bl ith tralized d it
the switching structure of system interconnectivity. By déining 1€ Performance comparable with a centralized one, and |

the internal model for the boundary flows, local optimal contol IS less sensitive to model uncertainties. In this paperedbas

problems are efficiently solved by utilizing the method of Lhear on the Nash game formulation, we will design a distributed

Quadratic Regulator. The developed control strategy is teed via  gptimal controller to regulate freeway traffic flow. The majo

numerical simulations in two scenarios for uniformly congsted  ~ntributions lie within the modularity of the controller

and transient traffic. . . .
structure and the establishment of the dynamically adgptin
system division allowing for proper formulation and effeet

I. INTRODUCTION solution of the distributed game problem.

Freeway traffic management is nowadays one of the mostlhe control objective will be to balance traffic density. hi
important factors impacting on economics, environment af@lancing can be perceived as equalizing the average inter-
the quality of our daily life. A wide range of specialized sen distance between vehicles which is eligible for smooth and
ing, ramp metering and variable speed limiting instrumgota  Safety ecodriving. Naturally emerging question is for téeel
is already in use, performing optimal control policies thaif the balanced density that provides also effective flow of
result in shortened travel de|ayS, reduced po”ution’mcj the traffic volume. In our Setting, we will tend to balance the
number of accidents and many other benefits. traffic density at the level that reduces the Total Travelripe

A common objective for freeway system regulation an#/e will also investigate the impact of density balancing loa t
control is to decrease the time of travel incurred by all ey Propagation of shock waves. For our previous studies on the
while maximizing the traffic flow [1], [2]. For this purposéyg traffic state balancing in the context of the equilibriumsset
relevant metrics like Total Travel Spent, Total Travel Biate the reader is referred to the papers [10], [11].
and Total |nput Volume were introduced. In the process of For distributed ContrO”er, we will impose the fOIIOWing-re
optimization, they are combined with some additional ternflirements: functional symmetry in the controller's sture,
that penalize abrupt variations in ramp metering and spelf§ minimum computational time and information exchange
limiting signals [3]. General objectives such as congestiofor the optimization process. The symmetry will be achieved
pollution, and energy reduction are also in order. by splitting the controller into modules realizing the same

Most of the optimal freeway controllers are implementegomputational procedures. Modular type of architecture is
through the centralized architectures [4]. The optimaati convenient for system assembling and maintenance. Each of
methods used in such architecture suffer from a lack #te modules will compute its optimal decision by using local
scalability. The computational time increases exponéytiatraffic state and some supplementary information arriviogf
with the size of the system, and thus the tractable length @her controllers. To perform the optimization under the-pr
freeway is usually limited to several kilometers. Moregtbe Posed distributed architecture, the optimal control peobivill
centralized optimization solvers require permanent ard-cobe formulated as a Nash game, where each player (controller)
plete state information and this may not be attainable due Wl optimize its local subsystem with respect to decisiatfis
numerous package loses. These issues are faced by impleni8gtother players.

ing distributed optimization methods. A dual decompositio A Nash game based approach for freeway traffic optimiza-
tion was reported in [8]. The authors utilized the mecharogém
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team, Grenoble, Francearlos.canudas-de-wit@gipsa-lab.grenoble-inp.fr  plexity and slow convergence of the optimization procedure



when applied to a large scale traffic network. The conveiow r; to the celli according to a freeway architecture. Then,
gence problem may result from an arbitrary and static systehe evolution of the Cell-Transmission Model is describgd b
division assumed by the authors. As we will demonstrate, ithe following difference equations:

the case of an arbitrary system division, there is a risk of At

loss of controllability, and therefore the uniqueness af thoi(k +1) = pi(k) + —[i(k) +1;(k) = i1 (k) — si(k)] ,
optimal solution. We will also show that, due to the presence i

of the switched interfacing flows, it is forbidden to split ai(k +1) = Li(k) + At | D;(k) — r; (k)

freeway system in an arbitrary manner. In contrast to [8], (2)
we will design a dynamical partitioning scheme that will b

adapting the local subsystems according to the actualdra%

state such to provide the controllability of the inputs ilweal Friedrichs-Lewy stability condition (for details see [14]

in the game problem. The controllability analysis will also Throughout this paper, we use Daganzo's Priority Merge
allow us to.decompose the ove.rall game problem and solvgjt je| [15]. The model introduces the so called merging
by performing a sequence of simple two-player games. 5 ametey, [0, 1]. It captures the priorities between main-
stream flow¢ and on-ramp flow- when merging in a section
Il. THE CELL-TRANSMISSIONMODEL OF FREEWAY under highly congested states. In order to determine theeval
TRAFFIC of the merging parameter, one should consider geometric
Most of the freeway traffic models are based on the scalafoperties of on-ramp as well as drivers’ behavior.
vehicle conservation law. For a space interlgld] at each Let us introduce Demand; and SupplyS; functions:
time instantt the rate of change of number of vehicles is A
equal to the difference in flows at the endpoiatandb, i.e.: Di(k) = min {Bivipi(k). i}
Si(k) = min{w;(p; — pi(k)), Fi}

d [° _
&/ p(y,t)dy = ¢(a,t) — ¢(b, ). (1) Here the parametes; € (0,1] is the split ratio defined as
“ )  Bi=¢ix1/(di+1 + s;). By using (3) the mainstream and on-
Herep(y,t) and¢(y,t) stands for the space-time distributionsamp flows are computed as follows:
of vehicle density and flow, respectively. In general, the

density-flow relation is nonlinear, and therefore the ratev if Di1(k) +u;(k) < Si(k) :

here the initial state(k = 0),i(k = 0) is given. Time step
t between instantg and k£ + 1 must fulfil the Courant-

®3)

numerical methods for solving (1) need to be applied. ¢i(k) = D;_1(k),
In this paper, we utilize the Cell-Transmission Model [12].1; (k) = u; (k)
The model can be perceived as the Godunov’s [13] diﬁerenc&herwise: (4)

scheme for (1) under the assumption that the density-flcav rel ,

tion, called the fundamental diagram, is given in a triaagul ?¢(k) = mMid{Di_1(k), Si(k) — u;(k), (1 = p;) Si(k)} ,

form. A freeway is represented as a sequence aells as (k) = mid{u;(k), Si(k) — D;_1(k),p; Si(k)} .
demonstrated in Fig. 1. Each cell is assumed to have at Mpshe the function mid-} returns the middle value, i.e.:
one on-ramp and one off-ramp. The total number of ON-TAMARG (4 b.c} = aif b < a < c or ¢ < a < b. For the
is m. We adopt the following notatiop — vehicle density] Tmes -
— queue lengthg — mainstream flowy — on-ramp flow,s — _
off-ramp flow, 3 — split ratio,u — controlled on-ramp demand, si(k) = 1-5 diir (k). (5)

off-ramp flows we assume:

D — external on-ramp demand) — boundary demand$ — Bi

boundary supplyy — free flow velocity,w — congestion wave Throughout this paper, a cellwill be said to be in the free
speed,F’ — mainstream flow capacity)” — critical density flow state if p; < p$". Otherwise, it will be said to be in the
(p°" = F/v), p — jam density/ — on-ramp storage capacity,congested state.

L — cell length. Throughout this paper, we assume the saméror convenience of the further studies we will rewrite the

number of lanes for each cell. governing equation of CTM in a compact form. By introducing
the state vector:
|-' I:'\ |-> f\\\\ T=1[D1,02 s Pn 5 1,02yl |7 (6)
ly.m ZVUQ 51 ZW.um N5 and assuming the following controlled input vector:
/'/ % /// on-ramp demands
Dl DQ D'm u=| m |7 (7)

we can represent the governing equation (2) in the form of a
Figure 1. Freeway divided into n cells. Each cell can be agamied with  gwitched system:

at most one on-ramp and one off-ramp.
z(k+1) = x(k) + At (Ag) (k) + By u(k) + Csy (k)

Leti=1,2,..,n andj = 1,2,...,m be the index for the s(k) = f(z(k),u(k)).
cells and on-ramps, respectively. We associate each op-ram (8)



The variables switches the system mode according to the a b
laws given in (3) and (4). The boundary condition¥k), CF ] C | [ c | F |
S(k), Di(k), Dy(K), ..., D, (k) appear in the vecto€’,. An
illustrative example on how to build ud, B andC' can be / / 74 74
found in [10].

The state Spac&’ C R i _n_on-negatlve a.nd Itis UpperFi ure 3. Mixed state links under their control inputs. Tleks are
bounded by the storage capacities of the mainstream and Qi qiiaple by the inputs denoted by the bold arrows.
ramp lanes, i.e. for the states representing vehicle dessit
the bound is equal to the jam density while the states
corresponding to the queue lengths must not exceed th@storg function of vehicle density, i.e.d(y,t) = ¢(p(y,t)). Then,

capacities of the on-ramgs (1) can be written as follows:
0<z;<p,i=1,2,...,n, dp ,, L O0p
— 9 — +¢(p)5 =0. (11
0<z; <lj,i=n+1ln+2,.,n+m,j=i—n. © ot (p)ay

To determine the set of the admissible conttéls R™, we Depending on the internal state of the link, we can have eithe

need to take a closer look on its physical constraints. The d# () > 0 (for a section in the free flow state) of(p) < 0 (for
ramp vehicle flow in only one direction, and thus the conell & Section in the congested state). Respecting the fundament
on-ramp demand must not be negative. For the upper bouf#9ram (given by (p) = vp if p < p, and¢(p) = w(p -
the requirement is that the controlled demand at each tiege s¢) Otherwise), for a section in the free flow state we have
can not exceed the so called virtual demand that equals to fhe?) = v- Similarly, for the congested sectiati(p) = —w.

sum of the external on-ramp demand and the flow producB@"W Suppose we are given the initial conditipfy, 0). Then,
by the queueing vehicles (see [16]): the solution to (11) is represented as follows:

ply,t) = p(y — vt,0) for free flow state section
ply,t) = p(y + wt,0) for congested state section

. 1
0<u; <Dj+—1l;,j=12..,m. (10) (12)

At

The solution (12) represents the wave propagating dovwarstre

or upstream under the free flow or the congested state, respec
In this section, we recall the fundamental facts on thely. As a consequence, in order to control a link in thesfre

controllability of the freeway state. These facts will kdieter-  flow state, we need to place a controller at the upstream bound

mine the scheme for system partitioning and the methodologsig. 2a). For a congested link, a controller is supposedeto b

for solving distributed game problem. located at the downstream bound (Fig. 2b). In the case of the
Let us first introduce the notion of the freeway links. Byink containing successively located free flow and congkste

a link we will mean any freeway section, composed of gection (Fig. 3a), the state dynamics is under control oh bot

group of cells, that is separated by two successive on-ramipguts. In the situation with the reverse state (Fig. 3bjnk |

Throughout this paper, we will consider only four types & thstays uncontrollable.

links, each with different state structure. The first twodygf The controllability results presented here are also valichf

the links consist of the cells being in the same mode, free flanide class of discrete representations of the conservéion

(F) or congested (C), as depicted in Fig. 2. These links véill For the Cell Transmission Model, the analogous results may

referred later as the homogeneous state links. The rengainige easily verified by means of the controllability matrix.

I1l. CONTROLLABILITY OF THE FREEWAY LINKS

a b IV. SYSTEM PARTITIONING AND STATE INFORMATION
| [ C | PATTERN
/ 74 74 / In the section V, we will pose a Nash problem, where
each of the control input will tend to optimize its local

subsystem. Here, we will establish a method for selection of
Figure 2. Homogeneous state links under their control mplhe links are these subsystems by defining an input-state assignment. We
controllable by the inputs denoted by the bold arrows. assume that each of the inputs receives a full state inféomat

) ~of the two surrounding links as demonstrated in Fig. 4.
two types of the links, referred as the mixed state links|, bl

composed of the cells of both modes, assuming that the sta = I C I C |
is structured according to the two cases presented in Fig. 3.
More complex internal state structures are very rarely ofese \O/ \ / ~
through the real traffic data. U U

To verify the controllability of the considered links, les u
rewrite the vehicle conservation law (1) in the form of a [@rt Figure 4. State information pattern. Each of the contrsllezceives the

differential equation. We assume here that for every frgewgensity information of two neighbouring links.
position at every time instant the flow can be represented as

5
&
3
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— — Figure 6. System partitioning in the case of the mixed state |
/"-1:-:1 \: SemTTTT :L-‘ ----- BREN 3 )t
T c ] C [ c | _ . . :
N the last cell of the link. This assumption will later become
significant for the method of solving optimal control pratle
Uj—1 u

I where we will use an autonomous form of the dynamical
equations. Note that this assumption meets most of therexist
Figure 5.  System partitioning in the cases of the homogenéme flow freeway architectures, where off-ramps are located jufsirbe
state link (2) and the congested state link (b). on-ramps. By introducing the inverted cell lengths matrix:
Li,, = diag(1/L4,1/L, ..., 1/L},,1) and the matrices:

muv

Let us definex’ as a part of the state vectar that is

assigned to the input;: -1 0
1 -1 0
) = pJ17péa"'ap£Ljalj . (13) Af :UJL"va . ,
The assignment of the subsyster to u; is made based L-10
on the following rule:z7 is composed of the cells of the o0 - 0 0 (14)
closest downstream/upstream link foy, if it is in the free 1 1 0
flow/congested state. The assignment in the case of the homo- 0 0 0
geneous state links is pre;ented in Fig. 5a,b. The total Bumbe = | il ep=1 || D=0 1],
of cells assigned to the inpui; is denoted byn;. Note 0 0 0
that besides the controllability af, the assumed partitioning 1 0 )

provides that:
Each of the boundary flows for the link; is uniquely

h ical ion of the free fl link i
determined by only one subsyster ¢r its neighbour) (The the dynamical equation of the free flow state link is représgn

statement will be later refereed as the separation pria}:iplby:

Indeed, in the free flow case, we havg = D(a/71), 2k +1) = 29 (k) + At(Arzd (k) + Brus (k) +

$;+1 = D(27). For the congested case, we have= S(27), ( _ ) ( )A (A2’ (k) + Bru; (k) (15)
¢jr1 = S(a/t1) (Here the notatiorD(z7) and S(z7) stands +CyDj(k) + Dy Dj(k)) .-

for the demand and the supply corresponding to the difik
The uniqueness of the boundary condition is crucial foiirsgtt
the distributed game problem. We will be able to decouple tll,
dynamics of the subsystems and solve the local optimizatim{E
problems, where the controllers will optimize their sulieyss

with respect to given boundary conditions.

In the case of the mixed state links, the separation priacipl
results in the subsystem selection as depicted in Fig. 6e Nﬁf\?
that ¢;11 may be switched between demand of the free flo
section and supply of the congested section according to the
model of the interfacing flowp, 1 = min{D(z7), S(z/+1)}.

In this case, the dynamics for these sections must be solved .

jointly. The subsystem selection for the mixed state linkié w Ac = wj L, TR I
be denoted byx/7*! and will be meant to be optimized -1 0
by both inputsw; and u;11. The presence of switching o --- 0
interfacing flows follows the statement that the structufe o 0 0 0
system division can not be fixed. 0 0 0

We will now give the explicit dynamical representations ;
of the subsystems discussed above. We assume that insidfe = Lino
each of the links, the cell parametarsw and p are equal.

We also assume that in each of the links, there is only one —
off-ramp (with associated split rati6;), and it is placed in a7

Here byD; (k) we will denote the mainstream demand for the
Qk j. Note that according to the assumed merging model (4),
system (15) is valid only if:

u](k) < Fj — D](k) for all k, (16)

ereF; stands for the flow capacity of the link Similarly,
introducing:

|
—_
—_
o

o

D.=1’

inv . ’

,C.=1L]

inv M

—_ =
o
_ o



the dynamics of the congested state link is governed by: a@ O . __________ _‘

2 (k+1) = 27 (k) + At(Aca? (k) + Beouj(k)+

+ ol = 5-5,(0k) + Doy (8)). @ b@—F—=0——0 0

where S;(k) stands for the mainstream supply for the link 4 .u2 C ‘“3 __________ LU
j. Respecting the merging model (4) the system (18) is valid ‘ -‘
under the condition: "

! F W e W Upy
u;(k) <pS;(k) forall k. (19) d ‘4>‘<—|—>‘ .......... )

He_rep Sj is the supply_avallable_for the on-ramp demand_' Tlggure 7. Channels used for information exchange duringotitémization
write down the dynamical equation of the controllable mixeglocess. The general topology (a), channels used for eliffestate combina-

state link, we introduce the following matrices: tions (b)—(d).

et = (Mo = [§] =[]
Ak N 0]’ of the other controllers through the boundary conditiohgs(t
D [Df] B — [0] o — {0] D — { 0 ] will be specified in the following section). Let_; be the set
f 0| ¢ B.|’ ¢ C.|’ ¢ D.|" of the decision of the controllers that may influence theestat
20) 27, excluding the decision ofi;. The objective function can
be now represented by;(u;,u_;). Throughout this paper,
we consider the optimization problem stated as the follgwin
Bon-cooperative game;:

Here the system matrixls. is composed of the switching
matrices A¢(k) and A.(k) preserving the structures ofy
and A. except for the rows corresponding to the interfacin
flow ¢;11(k) = min{D(a?(k)), S(z?*(k))}. The sizes of Problem 1 (non-cooperative Nash game)

As(k) and A.(k) are being adjusted according to the position _ ‘ )

of the congestion wave. The controlled mixed state links are Find {uj} such thatvj : uj = argminJ;(u;, u” ;).

governed by the following dynamical equation: The set of decision$u}} is called the Nash Equilibrium and

2 It (k4 1) = 27 3T (k) + At Ape(k)2? 7 (k) + this is the strategy such that no unilateral deviation insien
- - by any single player is profitable for that player. For exiems
’, 'y M.
+At (Bfuj (k) + €3 D; (k) + DfD](k)) + studies on the Nash equilibrium solution concept a reader is
LAt (Bgujﬂ(k) + Cl(wipy — S (k) + DngH(k)) . refereed to [17]. To guarantee that the Nash equilibriuratexi
every objective function/; needs to be continuous in all its

(21) arguments and strictly convex ;. Both conditions will be
For (21), we assume: fulfilled in our setting.
Observe that in general, to solve the Problem 1, each
(k)< F; — D, , <pS; ) ; o i - '
uj(k) < By = Dj(k), uja(k) < pSjpa(k) for al k(22) of the players requires information of the decisions of all

other players that may affect its objective function. Wel wil
demonstrate that, for the freeway traffic, the problem ofifigd
the Nash Equilibrium can be solved under the communication
z(k+1) = x(k) + At Acp(k)x(k), (23) channels represented by the graph shown in Fig. 7a. The key is
. L . . that the identical line graph represents system interactivi
with the switching matrixA.; = diag(Ac(k), Ay (k))- for CTM. In that casge (F))f C1PM, the ar¥ows would imate
the directions in which a decision propagates affecting the
V. OPTIMIZATION PROBLEM system. Now assume that a subsystgis affected by more
A freeway partitioned according to the scheme presentedtiran one decision from each of the directions. For examete, |
the previous section is now ready for optimization. The @®al u_; = {u;_2,u;j_1,u;1+1,u;1+2}. In practice, for a subsystem
to formulate an optimal control problem that can be solved by the decisionsu;_» and u;_; will be embedded into its
following the state information pattern presented in the-prupstream boundary flow. Similarly; ;1 and u;,o will be
vious section. For the solution procedure, we allow thaheaembedded intg’s downstream boundary flow. Thus, to solve
of the controllers communicates under the topology presenthe game problem, there is no need to transfer all optimal de-
in Fig. 7a. As it will be found later, this topology capturdk a cisions, but instead the neighbouring controllers will leedege
information channels involved during the solution for difint their optimal demand/supply informations. The Problemehth
state combinations 7b—d. The optimization problem will bwill be decomposed and solved by performing a sequence of
formulated as a non-cooperative game. two-player games. The games will be either hierarchical or
For each of the controllable inpuis; (referred later also competitive depending on the state (homogeneous or mixed)
as the players), we define local objective functifiu;, 27) inside the link between the players. Each of these games will
that explicitly depends on the contre} and its assigned the be executed by solving the local optimal control problems
state vector:’. Note thatz? may be also influenced by somediscussed in the section VI.

The uncontrollable links, as depicted in Fig. 3b, evolveoade
ing to the following dynamics:



A. Non-Cooperative Game for the homogeneous state link8. Non-Cooperative Game for the mixed state links

Let us consider the homogeneous state links in the freeNow we will consider the case of the mixed state link (see
flow and the congested state as depicted in Fig.8a ahig.9). Here, the two neighbouring inputs compete with each
Fig. 8b, respectively. A decision taken by any of the inpugther in optimizing a dynamically coupled link. Decision of
propagates in accordance to the direction of travel of trafihe playerj may influence the value of objective function of
wave (downstream for the free flow state case and upstretira player;j+1 and vice versa. The Nash Equilibrium for such
for the congested state case). It therefore follows that for

Direction of the control

the homogeneous state links, among two of the neighbouring ~ -—--—--—-= decision propagation

inputs there is only one that can affect the state of the other

The Nash game for such pair of inputs has the controllability | = ] c |
imposed hierarchy. This sort of game is referred as hieigaith / ,,,,,,, - - /
or the Stackelberg game. The local objective functionssake

Direction of the control

——————— > .. .
decision propagation

Figure 9. Propagation of the control decisions in the cast®mixed state

links.
a b
a game is written as follows:
I F | F | e 1] C | _ )
7777777 - . - uj =argming;(uj, ujy ), wjyq = argmin; i (uj, uji1).
/ /[ e
u; Uji u; Ui We can solve (28) by executing the following procedure:

Procedure 3(mixed state links)
Figure 8. Propagation of the control decisions in the caskeohomogeneous Step 1 |nitia|izeu;§ = Ujni, ASSUMEE, €3 as small positive
state links. numbers,
Step 2 Findu},, = argminJ; 1 (u}, u;+1),
Step 3 Findu; = argminJ;(u;, v}, ),
Ji(uj, 29 (ug)), Jipr(ujrn, 22 (uj,u1))  (24)  Step 4 Repeat Steps 2, 3 unfl|J;|| < er, AflJja]| < e
(A|lJ;]| stands for the incremental change of the norm of
in the case of the free flow state links and: the objective function;).

the following forms:

Ji(uj, 2’ (uj ujen)) s Jira(ujn, 2/ (ujmn))  (25) a

in the case of the congested state links. In the sequel, we wil
use the explicit notations, i.6; (u;) instead ofJ; (u;, z7 (u;))

and Jj (u]', ujJrl) instead Oij (Uj, ) (Uj, ujJrl)).

.
'
.

T

Uiy - Ujy Uy

The Stackelberg game enables to reach the Nash Equilibl b / l 1__‘{_“_’-7_’”_"-7}}}. ]

rium by executing only one local optimization for each of the E \ 5
players. Formally, the Nash equilibrium for the Stackedper : :
two-player game in the free flow state case is written as uj u; uj Uini

follows:

" . " . « Figure 10. Best response curves and the Nash Equilibria. arhevs
u; = argmin;(u;), uj,; =argmingji(uj,ujr1). (26)  represent the procedure steps for finding the Nash Eqailiorithe case of
the free flow state Stackelberg game (a), the congested3ttatkelberg game
Here the playey is the leader and playgr1 is the follower. (b) and the mixed state competitive game (c).

Similarly, for the congested state case the Stackelbergegam
is: Solution of both types of games can be visualized in
simplified 2D representation. The curves depicted in Fig—10
u; = argmin;(uj, ui 1), ujq =argmind;q(u;i1), c represent the best responses to the decision of the other
(27)  player (the curves stretched along the horizontal linerdsta
with j +1 as the leader anglas the follower. The proceduresfor the best responses of the players,; to the decisions
to solve (26) and (27) are straightforward: of the playersu;). The crossing points of the curves represent
Procedure 1 (free flow state links) the Nash Equilibria. The procedure steps for solving theggam
(a,b—Stackelberg games, c—competitive game) are exeasted

Step 1 Findu; = argmin/; (u; ), indicated by the arrows.

Step 2 Finduj,; = argminJ;i1(uj,u;+1),
Procedure 2 (congested state links)

Step 1 Findu},, = argminJ;1(u;41),
Step 2 Findu; = argminJ;(u;, v}, ),

C. An lllustrative Example

Here we present an example on how the game is meant to
be executed along several links of a freeway. We consider six



Link Nr. . .
) 4 5 g Procedure 5(receding horizon control)

1 3
L F T F T FIFLe T ¢ i Step 1 At time samplé estimate the state(k) and predict
/‘ x‘/‘ 12/‘ 8 :1:4='3/‘ 16/ the evolution of the boundary conditiod®, S, {D,} in
the time periodk, k + 7.
S By U Step 2 Solve the Problem 1 in a distributed manner over the
Hie Hie Hie Com Hie time period[k, k + T).
Step 3 Apply the optimal decision* (k).
Figure 11. A section of a freeway used in the example of thisted search Step 4 Increment time sample= k + 1 and continue with

of the Nash equilibriumHie and Comstands for hierarchical and competitive
game, respectively. the Step 1.

e
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VI. LOCAL OPTIMAL CONTROL PROBLEM
controlled on-ramps located as shown in Fig. 11. The firgethr |\ ;s section, we provide a solution for the Nash opti-
upstream links are fully in the free flow state. The congestiq,;; ation problem as formulated in the section V. Namely, we
begins inside the fourth link, and it strgtches downstrelam twill focus of the following problems: Find:; = argminJ;
rest of a freeway. For such a state, the inputsus, us andus a4 appear in the Procedures 1-3 (the problem of finding
will optlm_lze the links 1,2,3 a_nd 5, respchyer. T_he inpug ui,, = argminJ;;, in the mixed state case is treated
andus will compete for the link 4. The optimization processd#]alogousw)_
is performed through the following steps:
Procedure 4 (illustrative example) o
Step 1 u; optimizesJ; with respect to the given boundarya" Control objectives
demandD. Next, u; sends tous the information of the  As stated in the introduction, our primal objective is to
optimal boundary demand flow for the subsystefh balance vehicle density. Since we use a non-cooperative gam
This demand corresponds to the optimal decision of tfiermulation, the balancing will be performed at the level of
u; and is denoted by;. Similarly, ug optimizesJs with  individual subsystems (freeway links). We will not utilizey
respect to the boundary supply and sends ta:; the predefined reference values. Instead, we will require that t
information of the corresponding optimal supply fl&§ resulting balanced density reduces travelling time aequioy

for the subsystem?. the drivers associated to a subsystem. Therefore, for tted lo
Step 2 uy optimizes.J, with respect toD3 and sendsD; to objective functions we will weight two metrics that correspl
us. to the density balancing and the travelling time.
Step 3 uz optimizes.J; with respect toD} and sendsD; to Let us introduce the Laplacian matrix associated to the
Ug. subsysterm;:
Step 4 Firstu, guesses the optimal solutiarf and sends it -
to us with the information of D;. Next, us optimizes Lap, (i,3) = nj—1 if =5 (29)
Js with respect touj, D}, Si. The optimal solution ’ —1  otherwise

uf together with S3 is then sent tou, that similarly
optimizes.J, with respect tou}, D}, S and sends:} to

us. The procedure is terminated when andus reaches
the Nash equilibrium.

For the assumed structure of the state vecter =
[p{, Pys - Ph5 1|, the total dispersion of the vehicle density
over the time interval0, T'] can be measured by the following

metric:
. . T
D. Recfedmg horizon c_on_trol.sche_me _ 1127 ap = Z Z(/’g (F) — 1 () =
In this work, the optimization will be performed by using k=0 i#3
the receding horizon control (often referred also as theehod . (30)
predictive control) scheme that is formulated as a finitézoor (xj(k))-r |:Lapj 0} :Cj(k)'
optimization to be repeated on-line. Based on the measured P 0 0

(or estimated) current state and the predicted evolution of o ) .
I-gihe travelling time in freeway traffic is commonly computed

the exogenous signals (in our setting the boundary con ) he Total T IS TTs ic defined
tions), the controller determines the optimal input ovee t fo);lol\J/\?:g the Total Travel Spent (TTS) metric defined as

control/prediction horizon. From the sequence of the ogkim

decisions, only the first one is applied to a system, while for T o[ .

the next time sample the procedure is repeated. The method TTS = At <Z pi(k)L; + lj(’@) - (31)

is particularly useful in the traffic optimization. A preeis k=0 \i=1

prediction of both, the state and the boundary conditiofihie goal in minimizing TTS is to reduce the number of

can be made only few minutes ahead. Thus, the idea whicles in both, the mainstream and in the queues. Reduced

optimization that allows on a permanent information updateimber of vehicles in the mainstream results in increased

is naturally adopted into traffic systems. travel velocity, and thus shortened travelling time. Rextlic
The receding horizon control scheme in our optimizatiomumber of vehicles in the queue directly results in shodene

problem is executed with the following steps: gueuing time. Note that TTS is a trade-off. Decreased queue



lengths increase the mainstream density and vice versa. Fo autonomous form (with the right hand side independent
the sake of the adopted solution method, discussed bel@wplicitly on time). For that purpose, we will utilize a sifep
we will use the quadratic objective function. By using thautoregressive (AR) model that allows to build up a linear
cell lengths matrixL’ = diag(L{, L3, ...,L{Lj) the quadratic dynamical representation of the evolution of the boundary a
function corresponding to TTS can be written in the follogvinthe interfacing flows:

form: = 5 A — A
- . D7 57 {Dj}7 {Dj}a {SJ} (33)
|27 [|rrs At 3 ((l‘j(kj))T [(L(J))2 8] (k) + ij(k)) _ By using this representation and an extended state vehtor, t
2 governing equations will take a required autonomous form.

k=0
Ar Iy (L2 0] Let us consider the following AR model:
7 (xJ (k))T |: 0 1:| xJ(k;) . n

k=0 sk+1)=> aizk+1-i), k=0,1,.., (34)

(32) i=1

Finally, by introducing a weighting number;, we can pose where the initial values(0), z(—1),..., (1 — n) are assumed
the local optimal control problem, where the goal is t&0 be given as current and past measurements and the set
minimize the weighted sum of the metrics (30) and (32): is estimated mostly based in historical data. By evaluating
the AR model, we obtain a short-term forecasting. In our

Problem 2 (local imal control problem . .
oble (local optimal control problem) setting, we consider reverse problem. We assume that at each

Find v} = argminJ; time instant the prediction of the boundary flows are given
T ; over the time horizoril’. By using this information and the
At . , 7)2 . - . .
J; = 7Z(x](k))T [Lapj +(’)yl (L) 0 27 (k) the set of initial values, we calibrate AR models by using
k=0 m the method of least squares. The prediction of the boundary

Subject to(15), (16), (10) for the free flow state link flows D, S, {D;} may be obtained by using, for instance,
(18), (19), (10) for the congested state link non-parametric regression or neural network based methods
I : . The interfacing flows{D;}, {S;} are evaluated by using the
(21), (22), (10) for the mixed state link dynamical equations (15), (18) and (21).
In order to represent AR model in the standard dynamical

Note that in the case of the mixed state links, each of tfi@'m of z(k+1) = f(z(k)), we introduce the following state
controllers tends to optimize only its controllable sesfioe. Vector:
for the link z77+1, u; minimizes.J;(27) andw,;1 minimizes 2= [21, 22,00 7] (35)
Jj (@) defined aszy (k) = 2(k), zo(k) = 2(k — 1),...,

The receding horizon scheme (Procedure 5) requires solvi@gk) = z(k+1—n). Then, by introducing:
of the Problem 1 at each time step which in practice is assumed
to be less than 15 seconds. During this time, the Procedures 1
3 may demand for the solution of the Problem 2 up to several
dozen times, depending on the freeway length and number of . .
the mixed state links. Therefore, the algorithm for solvang 1 -1
single Problem 2 has to enable us to terminate the computat'tg4) can be written as follows:
in less than 0.1 of a second. This fact supports the idea of
quadratic formulation of the Problem 2. Regarding the size o 2(k+1) = z(k) + At A, 2(k) . (37)
our problem, the most efficient quadratic programming (QR)ith the initial condition: 21 (0) = 2(0), 22(0) = 2(—1),...,
solvers enable to find a solution within few miIIisecondsr(foZﬁ( ) = (1 — @). The form of (37) will now enable us to
detailed study see, for example, [18]). This time may Vaperge the flows into the dynamics of our local systems. Let us
depending on the initial values and the termination cooditi st consider the free flow state link. We introduce AR model
In some cases, due to limited time, it might be necessaf¥ctors ,0s, 0 representingD; and Dj, respectively. The

to terminate the computation before the optimal solution i§ended state vector of the free flow state link will be define
found. In this work, instead of adopting QP solvers, we will.

present a solution method based on the finite horizon Linear gl = |:xj .D; Z[;J}T . (38)
Quadratic Regulator (LQR). To solve LQR problem, only 7

the backward integration of the Riccati difference equatiorhe dynamical equation of the free flow state link (15) is
needs to be performed. Regarding the size of our problefapresented as follows:

:]heeglcg%;r;%utatlonal time required for such a procedure can be i (k+1) =y (k) + At (A (k) + Bpui(k)) . (39)

l—a; as -+ an
1 1 -1
A= o (36)

Here A; has a block diagonal structure composedigf and
two matricesA.. The vectorB; is build uponB;. Similarly,
by introducing:

In order to reformulate the Problem 2 as LQR problem, at ) T
first we will transform the dynamical equations (15), (1&1) y = [CUJ,ZS%ZDJ} ; (40)

B. Internal model of the boundary flows



where nowz*i refers toS;, we can represent the governingvhere K (k) is the solution to the Riccati difference equation:
equations for the congested state link (18): 1 o
4 ‘ o ~ — (K(k+1)— K(k)) =K(k)A+ ATK (k)+
Yk +1) =y (k) + At (Ag/ (k) + Bowy(k)) . (4) AL~ (46)
— —K(k)BBTK(k)+Q, K(T)=0.

In the case of the mixed state link, we introduce the extended V2
state vector as: In (45) and (46), depending on the state of the link, the

appropriate matrices fod (i.e. Ay or A. or A;.) and B (i.e.
(42) By or B, or B} (B})) are supposed to be inserted. In the case
_ X , R . of the mixed state link, it is assumed that the matdix. is
where 273, 2P, z5i+1 and 2P+t corresponds taD;, Dj, constant over the time peridd, 7.
S;+1 and Djy;, respectively. The dynamics (21) is now
represented by:

a A aq q D . > . 7Y » . T
it = |:xJ7J+17 2Di D5 Zsﬁl,zpm}

VIl. STubYy CASES

Y I (k1) = P TR + At Apo(k)yh I (k) + The developed control method will be tested on the CTM
+ At (Byuj(k) + Beujia (k) - (43) model of the south ring of Grenoble — a two lane highway that
connects the city of Grenoble in the north-east to southt-wes
A practical advantage arising from the use of AR modéihking the highways A41 and A480. At the present moment,
is that of significantly reduced amount of data needed to ktiee ring is equipped with data collection system based on
exchanged by the controllers during the optimization pgece magnetic sensors. Ramp metering technology is planned to be
The full information of the interfacing flow$D,} and{S;} installed by the end of 2014. For the optimization, we chose
is now stored within the set of parametdks;}. In practice,

it is sufficient to use 4-5 parameters to represent flow time | link 1 link 2 link 3 s
D= S

series of 30-50 values. _— - :
uy uy RN us BN uy BN
Ill Ilz I[.% I’;
Du Dot Dyf D

C. LQR problem

Having the autonomous representation of the dynamical
equations we are ready to reformulate the Problem 2 into L igure 12. A three link section of the south ring of Grenob#ediin the
. . . Imulations.
problem. Let us first introduce the matrix:

Q= diaqLapj +m (Lj>2a’717 O) : (44)

Here, for the extended state vecigr, the sub-matrix Lap+
71 (L7)? and the scalaf; will correspond to the state vector
27, while 0 will refer to uncontrollable states”s, zPi, (25i+1,
zPi+1), Consider then the problem:

the western section of the ring of the lengdil®7 [km]. On

the considered direction, i.e. from east to west, this eacti

is equipped with 4 on-ramps and 3 off-ramps (all of them
are one lane) as demonstrated in Fig. 12. The estimated model
parameters are summarized in the table I. For the splitgatio
we assume3; = 0.82, 3, = 0.80, B2 = 0.80. The merging
parametere = 0.3 are assumed to be identical for each of

Problem 3 (local LQR problem) the links.
Find v} = argminJ; Table |
T THE CELL-TRANSMISSIONMODEL PARAMETERS USED IN THE
At . . SIMULATIONS.
Ty =S5 > (W) Q o/ (k) + 2(u;(k))?)
k=0 .
. . , km/h km/h] | 5 [veh/k ink Tength [k
Subject to(39) in the case of the free flow state link KT - [;21 1w [2?,1 NN [Vzeso mj { n ef_%7 L]
; ; link 2 78 21 280 1.66
(41) in the case of the congested state link link 3 80 %0 580 >8a
(43) in the case of the mixed state link

Note that@ is positive semi-definite. To assure the convexity | this study, we will consider two scenarios: one for
of the problem, we introduced the strictly positive termiwit nitormly congested traffic, and the other for transienffiza
the weighting numbery;. The reader can easily observg, ihe first case, be means of previously defined metrics, we
that the Problems 2 and 3 are equivalent, except for @ examine the performance of the control method under
set of constraints (16), (19), (22), (10) that were omit®d ite4qy congested boundary conditions. In the second case, w
LQR formulation. In the implementation, the solution to th¢| pegin the simulation of the free flow traffic with drop
Problem 3 will be saturated with the bounds determined by qownstream capacity. The goal will be to investigate the
these constraints. By using the necessary optimality ¢mdi 55¢t of state balancing on the propagation of the shock
the solution to the Problem 3 is as follows: wave. Both cases will be evaluated with the time step of 5
. 1 - ; seconds. We assume 20 time steps for the control/prediction
uj(k) = *%BT K(k)y’ (k) , (45) horizon in the receding horizon scheme. Control decisidh wi
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closed-loop
open-loop

closed-loop) with the evolution of the open-loop systera, i.
when the on-ramp demand stays uncontrolled.

A. Uniformly congested traffic 100 time step 150 200 250

In this case, the initial values for density were randomly

selected from the intervaﬂ170,210] [veh/km]. The initial Figure 15._ Evolu_tion of the balancing metric for the link TeTclosed-loop
. system evidently improves the convergence rate.

queue lengths were settp= 10 [veh] for all j. In accordance
to the information pattern introduced in the section IV, th~
controllers us, us and uy under the congested state will
optimize the links 1, 2 and 3, respectively. The simulatior
will be carried over the time interval of 20 minutes unde
the following steady boundary conditionS: = 3100 [veh/h],
Dj = 800 [veh/h] for all j. The state plots will be given only
for the link 1. Trajectories for the other links do not exhibi
any qualitative differences. Each of the links was splibibt
cells of the same length.

i
o

closed-loop
open-loop

4]
T
I

queue length [veh]

OO

50 100 150 260 250
time step
Figure 16. Evolution of the queue length in the entrance 2.

=220 T

1]

< closed-loop . i i i .

@210’ open-loop. 7 impact on the travelling time. However, to justify the Total
=2, 1 Travel Time, we need to check also the states in the queues.
£ 190 ] The controlled on-ramp flow (see Fig. 14) is lower than in the

= 180 ] open-loop case, and thus the queue is being released slower
[ . . . .

> 170! = 0 5 250 50 as depicted in Fig.16. As a result, in the steady state, there

time step is still 4 vehicles queuing. Nevertheless, the overalldhavy

time computed by the noriiz’||rrs (as defined in (32)) is
decreased by 2—3 percent for each of the links. The weighted
sum of the balancing and the travelling time metrics was
reduced by 7-8 percent.

Figure 13. Evolution of the mainstream state in the link Tkeaf the curves
represent one cell).

— 1300 T

E closed-loop Table Il
g 1200 open-loop 1 METRIC COMPARISON EACH VALUE REPRESENTS THE QUOTIENT
s 1100 J (METRIC FOR CLOSEBLOOP CASE)/(METRIC FOR OPENLOOP CASH.
S
g1000 1
g 900 | 2/ ]lLap | [12?]lrrs | [[2’]lLap + n1ll2 778
£ 800 ] kT | 0.58 0.97 0.92

0 50 100 150 200 250 link 2 0.56 0.98 0.93

time step link 3 0.45 0.98 0.92

Figure 14. Comparison of the on-ramp flows in the entrance 2.

The on-ramp flow in the entrance 2 and the correspondiBg Transient traffic

gvoll_Jtlons of the vehicle dequues in the link 1 are depicte Transient traffic refers to the situations in which we observ
in Figs.14 and 13, re_spectwely. We can observe that t% congestion either expanding or contracting. In pagicu
closed-loop system rapidly converges to a common value. can encounter the shock waves caused by the instantaneous
demonstrate better the convergence rfate, Fig. 15 CoW”mmastutrops of capacity. To test the designed control method under
evolutions of the balancing metric defined as: the presence of shock wave, we consider the following sce-
nario. We initialize the simulation with some free flow state
and on-ramp boundary flowéj = 600 [veh/h] for all j. For
the first 150 time steps we reproduce the capacity drop by
The comparison of the balancing mettie?||.., (as de- settingS = 2800 [veh/h]. During this time, we will observe a
fined in (30)) is presented in the table Il. Each value reprisse shock wave propagating upstream. For the time steps 15,1-400
the metric computed in the closed-loop case divided by thee will set.S = 3800 [veh/h] that will bring the system back to
metric in the case of open-loop system. For each of the linkhg free flow state. In this setting, the controller 1 will iogize
the balancing metric was decreased more than 40 percentthe free flow section 1 by solving the hierarchical game. The
From Fig. 13, we can observe that the closed loop systarther controllers will be involved into both, the hierarcii
keeps lower mainstream density values which has a positaed the competitive games, since the sections 2 and 3 will be

Lap; 0O

Illan(h) = )7 |2 O] w90 @)
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under the mixed states. To better capture the movement of taeise the slow down of the congestion propagation. For the
congestion wave, we divided each of the links into 8 cells. future works, the authors are planning to validate the nttho
The evolution of density over the considered freeway lengtim the real freeway system with a comparison to existing

can be represented by colormaps as depicted in Fig 17 (opeontrol strategies.
loop case) and Fig18 (closed-loop case). The green color

indicates the free flow state{" = 56 [veh/km]). The bottle-

neck, located at the right boundary, caused the shock w

REFERENCES

EH.’ G. Gomes, R. Horowitz, Optimal Freeway Ramp Metering ndsthe

propagating upstream. The shock speed corresponds to theasymmetric Cell Transmission ModeTransportation Research Part,C
slope of the congestion front (see the blue angle in Fig18). vol. 14, 2006, pp 244-262.

Lower the slope then faster the shock wave propagation.

Y. Li, E. Canepa, Ch. Claudel, Optimal Control of ScalasrServation

rLaws Using Linear/Quadratic Programming: Application t@fisporta-

comparison, in Fig18 we marked the open-loop profile with tion Networks,Control of Network Systemsol. 1, 2014, pp 28-39.
the dashed line. We can observe that in the closed-loop cd8kA. Hegyi, B. De Schutter, J. Hellendroon, T. van den Bodiptimal

the congestion propagates slower, and as a result, it ezpand

Coordination of Ramp Metering and Variable Speed Controln-MPC
Approach,lEEE American Control Conferenc2002, pp 3600-3605.

approximately 500 meters shorter than in the open-loop. cagg p. Jacquet, C. Canudas-de-Wit, D. Koenig, Optimal Calrtf Systems of

Note also that during the first 150 time steps for the closed-

loop system, the density in the link 3 keeps lower value.

vehicle density [veh/km]

time step
N w
o o
o o

o
o

Figure 17. Space-time distribution of vehicle density ia ¢ase of open-loop
system. The green area corresponds to the free flow state.

vehicle density [veh/km]

140
120
100
80
60
0 40

link 1 link 2 link 3

o EN
o o
S S

time step
N
8

100

Figure 18. Space-time distribution of vehicle density ie ttase of closed-
loop system. Dashed line stands for the open-loop profildicéted slope
corresponds to the shock wave speed (lower the slope-higbespeed).

VIIl. CONCLUSION

Conservation Laws and Application to Non-Equilibrium Tr@fControl,
Proceedings of the 13th IFAC Workshop on Control Applicaticof
Optimisation 2006.

D. Sun, A. Clinet, A.M. Bayen, A Dual Decomposition Meth&or Sector

Capacity Constrained Traffic Flow Optimizatiofransportation Research

Part B, 2011, pp 880-902.

[6] A. Ferrara, A. Nai Oleari, S. Sacone, S. Siri, Freeway wéeks as
Systems of Systems: an Event-Triggered Distributed Cbr8aheme,
IEEE International Conference on System of Systems Engige012,
pp 197-202.

[7] J. R. D. Frejo, E. F. Camacho, Global Versus Local MPC Allpmns in
Freeway Traffic Control with Ramp Metering and Variable Spkanits,
IEEE Transaction on Intelligent Transportation Systerd 13, 2012, pp
1556-1565.

[8] C. Portilla, F. Valencia, J.D. Lopez, J. Espinosa, A. BgyB. De Schutter,
Non-linear Model Predictive Control Based on Game TheoryTiaffic
Control on Highways,Proceedings of the 4th IFAC Nonlinear Model
Predictive Control Conference2012, pp. 436-441.

[9] L. Giovanini, J. Balderud, Game Approach to Distributéddel Predic-
tive Control, International Control Conference2006.

[10] D. Pisarski, C. Canudas-de-Wit, Analysis and DesignEqbilibrium
Points for the Cell-Transmission Traffic ModéEEE American Control
Conference 2012, pp 5763-5768.

[11] D. Pisarski, C. Canudas-de-Wit, Optimal Balancing dcfaR Traffic
Density Distributions for the Cell Transmission Mod#EE Conference
on Decision and Contrpl2012, pp 6969-6974.

[12] C. Daganzo, The Cell Transmission Model, A Dynamic Repntation
of Highway Traffic Consistent with the Hydrodynamic Theoilyans-
portation Research Part Brol. 28, 1994, pp 269-287.

[13] S. K. Godunov, A Difference Scheme for Numerical Salatiof Dis-
continuous Solution of Hydrodynamic Equatiohdath. Shornik vol 47,
1969.

[14] R. J. LeVequeNumerical Methods for Conservation LavBirkhauser
Verlag, Basel; 1992.

[15] C. Daganzo, The Cell Transmission Model: Part II: Natwdraffic,
Transportation Research Part, Bol. 29, 1995, pp 79-93.

[16] H. Zhang, S. G. Ritchie, W. W. Recker, Some General Resuh the
Optimal Ramp Metering Control Problerfitansportation Research Part
C, vol. 4, 1996, pp 51-69.

[17] T. Basar, G. J. OlsdeBynamic Noncooperative Game ThepSIAM

(5]

In this paper, we have presented a method for distributed Classics edition, 1999.

optimal balancing of vehicle distribution over freeway vise

[18] Y. Wang, S. Boyd, Fast Model Predictive Control Usingli@a Op-
timization, IEEE Transactions on Control Systems Technalogy 18,

of ramp meters. In this method, the controllability has been 2010, pp 267-278.

taken as the principle underlying both, the system paniitiop

and the topology of the information exchange. As we have

[19] E. I. Vlahogianni, J. C. Golias, M. G. Karlaftis, Shaerm Traffic
Forecasting: Overview of Objectives and Methodsansport Reviews
vol 24, 2004, pp 533-557.

demonstrated, the selection of the controllable subsystem

strictly depends on the traffic state. This fact is often iguo

in the methods of freeway traffic optimization while the con-

trollability is a crucial factor in the convergence of numcat

procedures. To execute the optimization under the assumed
information patterns, we have formulated a non-coopegativ
Nash problem. It follows that this formulation is not only
convenient for a design of distributed optimization scheme
process, but, under the defined balancing objective, it risay a



