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Nash Game Based Distributed Control Design
for Balancing of Traffic Density over Freeway

Networks
Dominik Pisarski and Carlos Canudas de Wit

Abstract—In this paper, we study the problem of optimal
balancing of vehicle density in the freeway traffic. The opti-
mization is performed in a distributed manner by utilizing t he
controllability properties of the freeway network represented
by the Cell Transmission Model. By using these properties,
we identify the subsystems to be controlled by local ramp
meters. The optimization problem is then formulated as a non-
cooperative Nash game that is solved by decomposing it into aset
of two-players hierarchical and competitive games. The process
of optimization employs the communication channels matching
the switching structure of system interconnectivity. By defining
the internal model for the boundary flows, local optimal control
problems are efficiently solved by utilizing the method of Linear
Quadratic Regulator. The developed control strategy is tested via
numerical simulations in two scenarios for uniformly congested
and transient traffic.

I. I NTRODUCTION

Freeway traffic management is nowadays one of the most
important factors impacting on economics, environment and
the quality of our daily life. A wide range of specialized sens-
ing, ramp metering and variable speed limiting instrumentation
is already in use, performing optimal control policies that
result in shortened travel delays, reduced pollution, decreased
number of accidents and many other benefits.

A common objective for freeway system regulation and
control is to decrease the time of travel incurred by all drivers
while maximizing the traffic flow [1], [2]. For this purpose, the
relevant metrics like Total Travel Spent, Total Travel Distance
and Total Input Volume were introduced. In the process of
optimization, they are combined with some additional terms
that penalize abrupt variations in ramp metering and speed
limiting signals [3]. General objectives such as congestion,
pollution, and energy reduction are also in order.

Most of the optimal freeway controllers are implemented
through the centralized architectures [4]. The optimization
methods used in such architecture suffer from a lack of
scalability. The computational time increases exponentially
with the size of the system, and thus the tractable length of
freeway is usually limited to several kilometers. Moreover, the
centralized optimization solvers require permanent and com-
plete state information and this may not be attainable due to
numerous package loses. These issues are faced by implement-
ing distributed optimization methods. A dual decomposition
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method was proposed in [5] to control the traffic flow in
the airspace system. Distributed controller’s architecture in
freeway traffic flow control was investigated in [6], where
the authors isolated freeway clusters and defined collaborative
mechanisms to achieve a desired performance of the overall
system. Distributed and centralized model predictive control
schemes for freeway traffic control were compared in [7].
The authors demonstrated that a distributed controller exhibits
the performance comparable with a centralized one, and it
is less sensitive to model uncertainties. In this paper, based
on the Nash game formulation, we will design a distributed
optimal controller to regulate freeway traffic flow. The major
contributions lie within the modularity of the controller’s
structure and the establishment of the dynamically adapting
system division allowing for proper formulation and effective
solution of the distributed game problem.

The control objective will be to balance traffic density. This
balancing can be perceived as equalizing the average inter-
distance between vehicles which is eligible for smooth and
safety ecodriving. Naturally emerging question is for the level
of the balanced density that provides also effective flow of
the traffic volume. In our setting, we will tend to balance the
traffic density at the level that reduces the Total Travel Spent.
We will also investigate the impact of density balancing on the
propagation of shock waves. For our previous studies on the
traffic state balancing in the context of the equilibrium sets,
the reader is referred to the papers [10], [11].

For distributed controller, we will impose the following re-
quirements: functional symmetry in the controller’s structure,
the minimum computational time and information exchange
for the optimization process. The symmetry will be achieved
by splitting the controller into modules realizing the same
computational procedures. Modular type of architecture is
convenient for system assembling and maintenance. Each of
the modules will compute its optimal decision by using local
traffic state and some supplementary information arriving from
other controllers. To perform the optimization under the pro-
posed distributed architecture, the optimal control problem will
be formulated as a Nash game, where each player (controller)
will optimize its local subsystem with respect to decisionsof
the other players.

A Nash game based approach for freeway traffic optimiza-
tion was reported in [8]. The authors utilized the mechanismof
the distributed predictive control based on game theory (GT-
DMPC, introduced in [9]) pointing on computational com-
plexity and slow convergence of the optimization procedure
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when applied to a large scale traffic network. The conver-
gence problem may result from an arbitrary and static system
division assumed by the authors. As we will demonstrate, in
the case of an arbitrary system division, there is a risk of
loss of controllability, and therefore the uniqueness of the
optimal solution. We will also show that, due to the presence
of the switched interfacing flows, it is forbidden to split a
freeway system in an arbitrary manner. In contrast to [8],
we will design a dynamical partitioning scheme that will be
adapting the local subsystems according to the actual traffic
state such to provide the controllability of the inputs involved
in the game problem. The controllability analysis will also
allow us to decompose the overall game problem and solve it
by performing a sequence of simple two-player games.

II. T HE CELL-TRANSMISSIONMODEL OF FREEWAY

TRAFFIC

Most of the freeway traffic models are based on the scalar
vehicle conservation law. For a space interval[a, b] at each
time instantt the rate of change of number of vehicles is
equal to the difference in flows at the endpointsa andb, i.e.:

d
dt

∫ b

a

ρ(y, t)dy = φ(a, t)− φ(b, t) . (1)

Hereρ(y, t) andφ(y, t) stands for the space-time distributions
of vehicle density and flow, respectively. In general, the
density-flow relation is nonlinear, and therefore the relevant
numerical methods for solving (1) need to be applied.

In this paper, we utilize the Cell-Transmission Model [12].
The model can be perceived as the Godunov’s [13] difference
scheme for (1) under the assumption that the density-flow rela-
tion, called the fundamental diagram, is given in a triangular
form. A freeway is represented as a sequence ofn cells as
demonstrated in Fig. 1. Each cell is assumed to have at most
one on-ramp and one off-ramp. The total number of on-ramps
is m. We adopt the following notation:ρ – vehicle density,l
– queue length,φ – mainstream flow,r – on-ramp flow,s –
off-ramp flow,β̄ – split ratio,u – controlled on-ramp demand,
D̂ – external on-ramp demand,̄D – boundary demand,̄S –
boundary supply,v – free flow velocity,w – congestion wave
speed,F – mainstream flow capacity,ρcr – critical density
(ρcr = F/v), ρ̄ – jam density,̄l – on-ramp storage capacity,
L – cell length. Throughout this paper, we assume the same
number of lanes for each cell.
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Figure 1. Freeway divided into n cells. Each cell can be accompanied with
at most one on-ramp and one off-ramp.

Let i = 1, 2, ..., n and j = 1, 2, ...,m be the index for the
cells and on-ramps, respectively. We associate each on-ramp

flow rj to the celli according to a freeway architecture. Then,
the evolution of the Cell-Transmission Model is described by
the following difference equations:

ρi(k + 1) = ρi(k) +
∆t

Li

[φi(k) + rj(k)− φi+1(k)− si(k)] ,

lj(k + 1) = lj(k) + ∆t
[

D̂j(k)− rj(k)
]

.

(2)

where the initial stateρ(k = 0), l(k = 0) is given. Time step
∆t between instantsk and k + 1 must fulfil the Courant-
Friedrichs-Lewy stability condition (for details see [14]).

Throughout this paper, we use Daganzo’s Priority Merge
Model [15]. The model introduces the so called merging
parameterp ∈ [0, 1]. It captures the priorities between main-
stream flowφ and on-ramp flowr when merging in a section
under highly congested states. In order to determine the value
of the merging parameterp, one should consider geometric
properties of on-ramp as well as drivers’ behavior.

Let us introduce DemandDi and SupplySi functions:

Di(k) = min
{
β̄iviρi(k), Fi

}
,

Si(k) = min{wi(ρ̄i − ρi(k)), Fi} ,
(3)

Here the parameter̄βi ∈ (0, 1] is the split ratio defined as
β̄i = φi+1/(φi+1 + si). By using (3) the mainstream and on-
ramp flows are computed as follows:

if Di−1(k) + uj(k) ≤ Si(k) :

φi(k) = Di−1(k) ,

rj(k) = uj(k)

otherwise:

φi(k) = mid{Di−1(k), Si(k)− uj(k), (1 − pj)Si(k)} ,

ri(k) = mid{uj(k), Si(k)−Di−1(k), pj Si(k)} .

(4)

Here the function mid{·} returns the middle value, i.e.:
mid{a, b, c} = a if b ≤ a ≤ c or c ≤ a ≤ b . For the
off-ramp flows we assume:

si(k) =
1− β̄i

β̄i

φi+1(k) . (5)

Throughout this paper, a celli will be said to be in the free
flow state ifρi ≤ ρcri . Otherwise, it will be said to be in the
congested state.

For convenience of the further studies we will rewrite the
governing equation of CTM in a compact form. By introducing
the state vector:

x = [

CTM densities
︷ ︸︸ ︷
ρ1, ρ2, ..., ρn ,

on-ramp queues
︷ ︸︸ ︷

l1, l2, ..., lm ]⊺ (6)

and assuming the following controlled input vector:

u = [

on-ramp demands
︷ ︸︸ ︷
u1, u2, ..., um ]⊺ (7)

we can represent the governing equation (2) in the form of a
switched system:

x(k + 1) = x(k) + ∆t
(
As(k) x(k) +Bs(k) u(k) + Cs(k)(k)

)
,

s(k) = f(x(k), u(k)) .
(8)
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The variables switches the system mode according to the
laws given in (3) and (4). The boundary conditions̄D(k),
S̄(k), D̂1(k), D̂2(k), ..., D̂m(k) appear in the vectorCs. An
illustrative example on how to build upA, B andC can be
found in [10].

The state spaceX ⊂ Rn+m is non-negative and it is upper
bounded by the storage capacities of the mainstream and on-
ramp lanes, i.e. for the states representing vehicle densities
the bound is equal to the jam densitȳρ while the states
corresponding to the queue lengths must not exceed the storage
capacities of the on-ramps̄l:

0 ≤ xi ≤ ρ̄ , i = 1, 2, ..., n ,

0 ≤ xi ≤ l̄j , i = n+ 1, n+ 2, ..., n+m, j = i− n .
(9)

To determine the set of the admissible controlsU ⊂ Rm, we
need to take a closer look on its physical constraints. The on-
ramp vehicle flow in only one direction, and thus the controlled
on-ramp demand must not be negative. For the upper bound,
the requirement is that the controlled demand at each time step
can not exceed the so called virtual demand that equals to the
sum of the external on-ramp demand and the flow produced
by the queueing vehicles (see [16]):

0 ≤ uj ≤ D̂j +
1

∆t
lj , j = 1, 2, ...,m . (10)

III. C ONTROLLABILITY OF THE FREEWAY LINKS

In this section, we recall the fundamental facts on the
controllability of the freeway state. These facts will later deter-
mine the scheme for system partitioning and the methodology
for solving distributed game problem.

Let us first introduce the notion of the freeway links. By
a link we will mean any freeway section, composed of a
group of cells, that is separated by two successive on-ramps.
Throughout this paper, we will consider only four types of the
links, each with different state structure. The first two types of
the links consist of the cells being in the same mode, free flow
(F) or congested (C), as depicted in Fig. 2. These links will be
referred later as the homogeneous state links. The remaining

F C

a b

Figure 2. Homogeneous state links under their control inputs. The links are
controllable by the inputs denoted by the bold arrows.

two types of the links, referred as the mixed state links, will be
composed of the cells of both modes, assuming that the state
is structured according to the two cases presented in Fig. 3.
More complex internal state structures are very rarely observed
through the real traffic data.

To verify the controllability of the considered links, let us
rewrite the vehicle conservation law (1) in the form of a partial
differential equation. We assume here that for every freeway
position at every time instant the flow can be represented as

F C C F

a b

Figure 3. Mixed state links under their control inputs. The links are
controllable by the inputs denoted by the bold arrows.

a function of vehicle density, i.e. :φ(y, t) = φ(ρ(y, t)). Then,
(1) can be written as follows:

∂ρ

∂t
+ φ′(ρ)

∂ρ

∂y
= 0 . (11)

Depending on the internal state of the link, we can have either
φ′(ρ) > 0 (for a section in the free flow state) orφ′(ρ) < 0 (for
a section in the congested state). Respecting the fundamental
diagram (given by:φ(ρ) = vρ if ρ ≤ ρcr, andφ(ρ) = w(ρ̄−
ρ) otherwise), for a section in the free flow state we have
φ′(ρ) = v. Similarly, for the congested sectionφ′(ρ) = −w.
Now suppose we are given the initial conditionρ(y, 0). Then,
the solution to (11) is represented as follows:

ρ(y, t) = ρ(y − vt, 0) for free flow state section,

ρ(y, t) = ρ(y + wt, 0) for congested state section.
(12)

The solution (12) represents the wave propagating downstream
or upstream under the free flow or the congested state, respec-
tively. As a consequence, in order to control a link in the free
flow state, we need to place a controller at the upstream bound
(Fig. 2a). For a congested link, a controller is supposed to be
located at the downstream bound (Fig. 2b). In the case of the
link containing successively located free flow and congested
section (Fig. 3a), the state dynamics is under control of both
inputs. In the situation with the reverse state (Fig. 3b), a link
stays uncontrollable.

The controllability results presented here are also valid for a
wide class of discrete representations of the conservationlaw.
For the Cell Transmission Model, the analogous results may
be easily verified by means of the controllability matrix.

IV. SYSTEM PARTITIONING AND STATE INFORMATION

PATTERN

In the section V, we will pose a Nash problem, where
each of the control input will tend to optimize its local
subsystem. Here, we will establish a method for selection of
these subsystems by defining an input-state assignment. We
assume that each of the inputs receives a full state information
of the two surrounding links as demonstrated in Fig. 4.

F C C

u1 u2 um

Figure 4. State information pattern. Each of the controllers receives the
density information of two neighbouring links.
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Figure 5. System partitioning in the cases of the homogeneous free flow
state link (a) and the congested state link (b).

Let us definexj as a part of the state vectorx that is
assigned to the inputuj:

xj =
[

ρj1, ρ
j
2, ..., ρ

j
nj
, lj

]⊺

. (13)

The assignment of the subsystemxj to uj is made based
on the following rule:xj is composed of the cells of the
closest downstream/upstream link foruj, if it is in the free
flow/congested state. The assignment in the case of the homo-
geneous state links is presented in Fig. 5a,b. The total number
of cells assigned to the inputuj is denoted bynj . Note
that besides the controllability ofxj , the assumed partitioning
provides that:
Each of the boundary flows for the linkxj is uniquely
determined by only one subsystem (xj or its neighbour).(The
statement will be later refereed as the separation principle).
Indeed, in the free flow case, we haveφj = D(xj−1),
φj+1 = D(xj). For the congested case, we haveφj = S(xj),
φj+1 = S(xj+1) (Here the notationD(xj) andS(xj) stands
for the demand and the supply corresponding to the linkxj ).
The uniqueness of the boundary condition is crucial for setting
the distributed game problem. We will be able to decouple the
dynamics of the subsystems and solve the local optimization
problems, where the controllers will optimize their subsystems
with respect to given boundary conditions.

In the case of the mixed state links, the separation principle
results in the subsystem selection as depicted in Fig. 6. Note
that φj+1 may be switched between demand of the free flow
section and supply of the congested section according to the
model of the interfacing flow:φj+1 = min{D(xj), S(xj+1)}.
In this case, the dynamics for these sections must be solved
jointly. The subsystem selection for the mixed state links will
be denoted byxj, j+1 and will be meant to be optimized
by both inputsuj and uj+1. The presence of switching
interfacing flows follows the statement that the structure of
system division can not be fixed.

We will now give the explicit dynamical representations
of the subsystems discussed above. We assume that inside
each of the links, the cell parametersv, w and ρ̄ are equal.
We also assume that in each of the links, there is only one
off-ramp (with associated split ratiōβj), and it is placed in

F CF C

uj uj+1

φj φj+1 φj+2

xj, j+1

xj
xj+1

Figure 6. System partitioning in the case of the mixed state link.

the last cell of the link. This assumption will later become
significant for the method of solving optimal control problem,
where we will use an autonomous form of the dynamical
equations. Note that this assumption meets most of the existing
freeway architectures, where off-ramps are located just before
on-ramps. By introducing the inverted cell lengths matrix:
Lj
inv = diag(1/Lj

1, 1/L
j
2, ..., 1/L

j
nj
, 1) and the matrices:

Af = vjL
j
inv










−1 0
1 −1 0

. . .
. . .

...
1 −1 0

0 · · · 0 0 0










,

Bf = Lj
inv










1
0
...
0

−1










, Cf = Lj
inv










1
0
...
0
0










, Df = Lj
inv










0
0
...
0
1










,

(14)

the dynamical equation of the free flow state link is represented
by:

xj(k + 1) = xj(k) + ∆t(Afx
j(k) +Bfuj(k)+

+ Cf D̄j(k) +Df D̂j(k)) .
(15)

Here byD̄j(k) we will denote the mainstream demand for the
link j. Note that according to the assumed merging model (4),
the system (15) is valid only if:

uj(k) ≤ Fj − D̄j(k) for all k , (16)

whereFj stands for the flow capacity of the linkj. Similarly,
by introducing:

Ac = wj L
j
inv










−1 1 0
−1 1 0

. . .
. . .

...
−1 0

0 · · · 0 0 0










,

Bc = Lj
inv










0
0
...
1
β̄j

−1










, Cc = Lj
inv










0
0
...
1
0










, Dc = Lj
inv










0
0
...
0
1










,

(17)
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the dynamics of the congested state link is governed by:

xj(k + 1) = xj(k) + ∆t(Acx
j(k) +Bcuj(k)+

+ Cc(wj ρ̄j −
1

β̄j

S̄j(k)) +DcD̂j(k)) ,
(18)

where S̄j(k) stands for the mainstream supply for the link
j. Respecting the merging model (4) the system (18) is valid
under the condition:

uj(k) ≤ p S̄j(k) for all k . (19)

Herep S̄j is the supply available for the on-ramp demand. To
write down the dynamical equation of the controllable mixed
state link, we introduce the following matrices:

Afc(k) =

[
Af (k)

Ac(k)

]

, B′
f =

[
Bf

0

]

, C′
f =

[
Cf

0

]

,

D′
f =

[
Df

0

]

, B′
c =

[
0
Bc

]

, C′
c =

[
0
Cc

]

, D′
c =

[
0
Dc

]

.

(20)

Here the system matrixAfc is composed of the switching
matricesAf (k) and Ac(k) preserving the structures ofAf

andAc except for the rows corresponding to the interfacing
flow φj+1(k) = min{D(xj(k)), S(xj+1(k))}. The sizes of
Af (k) andAc(k) are being adjusted according to the position
of the congestion wave. The controlled mixed state links are
governed by the following dynamical equation:

xj, j+1(k + 1) = xj, j+1(k) + ∆t Afc(k)x
j, j+1(k)+

+∆t
(

B′
fuj(k) + C′

f D̄j(k) +D′
fD̂j(k)

)

+

+∆t
(

B′
cuj+1(k) + C′

c(wj ρ̄j − S̄j+1(k)) +D′
cD̂j+1(k)

)

.

(21)

For (21), we assume:

uj(k) ≤ Fj −Dj(k) , uj+1(k) ≤ p Sj+1(k) for all k .
(22)

The uncontrollable links, as depicted in Fig. 3b, evolve accord-
ing to the following dynamics:

x(k + 1) = x(k) + ∆t Acf (k)x(k) , (23)

with the switching matrixAcf = diag(Ac(k), Af (k)).

V. OPTIMIZATION PROBLEM

A freeway partitioned according to the scheme presented in
the previous section is now ready for optimization. The goalis
to formulate an optimal control problem that can be solved by
following the state information pattern presented in the pre-
vious section. For the solution procedure, we allow that each
of the controllers communicates under the topology presented
in Fig. 7a. As it will be found later, this topology captures all
information channels involved during the solution for different
state combinations 7b–d. The optimization problem will be
formulated as a non-cooperative game.

For each of the controllable inputsuj (referred later also
as the players), we define local objective functionJj(uj , x

j)
that explicitly depends on the controluj and its assigned the
state vectorxj . Note thatxj may be also influenced by some

F F

F

C C

F|C

a

b

c

d
u1 u2 u3 um

u1 u2 u3 um

u1 u2 u3 um

u1 u2 u3 um

Figure 7. Channels used for information exchange during theoptimization
process. The general topology (a), channels used for different state combina-
tions (b)–(d).

of the other controllers through the boundary conditions (this
will be specified in the following section). Letu−j be the set
of the decision of the controllers that may influence the state
xj , excluding the decision ofuj. The objective function can
be now represented byJj(uj , u−j). Throughout this paper,
we consider the optimization problem stated as the following
non-cooperative game:

Problem 1 (non-cooperative Nash game)

Find {u∗
j} such that∀j : u∗

j = argminJj(uj , u
∗
−j) .

The set of decisions{u∗
j} is called the Nash Equilibrium and

this is the strategy such that no unilateral deviation in decision
by any single player is profitable for that player. For extensive
studies on the Nash equilibrium solution concept a reader is
refereed to [17]. To guarantee that the Nash equilibrium exists,
every objective functionJj needs to be continuous in all its
arguments and strictly convex inuj . Both conditions will be
fulfilled in our setting.

Observe that in general, to solve the Problem 1, each
of the players requires information of the decisions of all
other players that may affect its objective function. We will
demonstrate that, for the freeway traffic, the problem of finding
the Nash Equilibrium can be solved under the communication
channels represented by the graph shown in Fig. 7a. The key is
that the identical line graph represents system interconnectivity
for CTM. In that case of CTM, the arrows would indicate
the directions in which a decision propagates affecting the
system. Now assume that a subsystemj is affected by more
than one decision from each of the directions. For example, let
u−j = {uj−2, uj−1, uj+1, uj+2}. In practice, for a subsystem
j, the decisionsuj−2 and uj−1 will be embedded into its
upstream boundary flow. Similarly,uj+1 and uj+2 will be
embedded intoj’s downstream boundary flow. Thus, to solve
the game problem, there is no need to transfer all optimal de-
cisions, but instead the neighbouring controllers will exchange
their optimal demand/supply informations. The Problem 1 then
will be decomposed and solved by performing a sequence of
two-player games. The games will be either hierarchical or
competitive depending on the state (homogeneous or mixed)
inside the link between the players. Each of these games will
be executed by solving the local optimal control problems
discussed in the section VI.
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A. Non-Cooperative Game for the homogeneous state links

Let us consider the homogeneous state links in the free
flow and the congested state as depicted in Fig. 8a and
Fig. 8b, respectively. A decision taken by any of the inputs
propagates in accordance to the direction of travel of traffic
wave (downstream for the free flow state case and upstream
for the congested state case). It therefore follows that for
the homogeneous state links, among two of the neighbouring
inputs there is only one that can affect the state of the other.
The Nash game for such pair of inputs has the controllability
imposed hierarchy. This sort of game is referred as hierarchical
or the Stackelberg game. The local objective functions takes

C C

Direction of the control

decision propagation

a b

F F

uj uj+1uj uj+1

Figure 8. Propagation of the control decisions in the case ofthe homogeneous
state links.

the following forms:

Jj(uj, x
j(uj)) , Jj+1(uj+1, x

j+1(uj, uj+1)) (24)

in the case of the free flow state links and:

Jj(uj , x
j(uj, uj+1)) , Jj+1(uj+1, x

j+1(uj+1)) (25)

in the case of the congested state links. In the sequel, we will
use the explicit notations, i.e.Jj(uj) instead ofJj(uj, x

j(uj))
andJj(uj , uj+1) instead ofJj(uj , x

j(uj , uj+1)).
The Stackelberg game enables to reach the Nash Equilib-

rium by executing only one local optimization for each of the
players. Formally, the Nash equilibrium for the Stackelberg
two-player game in the free flow state case is written as
follows:

u∗
j = argminJj(uj) , u∗

j+1 = argminJj+1(u
∗
j , uj+1) . (26)

Here the playerj is the leader and playerj+1 is the follower.
Similarly, for the congested state case the Stackelberg game
is:

u∗
j = argminJj(uj , u

∗
j+1) , u∗

j+1 = argminJj+1(uj+1) ,
(27)

with j+1 as the leader andj as the follower. The procedures
to solve (26) and (27) are straightforward:

Procedure 1 (free flow state links)

Step 1 Findu∗
j = argminJj(uj),

Step 2 Findu∗
j+1 = argminJj+1(u

∗
j , uj+1),

Procedure 2 (congested state links)

Step 1 Findu∗
j+1 = argminJj+1(uj+1),

Step 2 Findu∗
j = argminJj(uj , u

∗
j+1),

B. Non-Cooperative Game for the mixed state links

Now we will consider the case of the mixed state link (see
Fig. 9). Here, the two neighbouring inputs compete with each
other in optimizing a dynamically coupled link. Decision of
the playerj may influence the value of objective function of
the playerj+1 and vice versa. The Nash Equilibrium for such

F C

Direction of the control

decision propagation

uj uj+1

Figure 9. Propagation of the control decisions in the case ofthe mixed state
links.

a game is written as follows:

u∗
j = argminJj(uj, u

∗
j+1) , u∗

j+1 = argminJj+1(u
∗
j , uj+1) .

(28)
We can solve (28) by executing the following procedure:

Procedure 3 (mixed state links)

Step 1 Initializeu∗
j = uini, assumeǫ1, ǫ2 as small positive

numbers,
Step 2 Findu∗

j+1 = argminJj+1(u
∗
j , uj+1),

Step 3 Findu∗
j = argminJj(uj , u

∗
j+1),

Step 4 Repeat Steps 2, 3 until∆‖Jj‖ < ǫ1, ∆‖Jj+1‖ < ǫ2
(∆‖Jj‖ stands for the incremental change of the norm of
the objective functionJj).

a b c

uiniuj

{u∗
j , u

∗
j+1}

{u∗
j , u

∗
j+1}

uj

uj+1 uj+1

uj

uj+1
{u∗

j , u
∗
j+1}

Figure 10. Best response curves and the Nash Equilibria. Thearrows
represent the procedure steps for finding the Nash Equilibria in the case of
the free flow state Stackelberg game (a), the congested stateStackelberg game
(b) and the mixed state competitive game (c).

Solution of both types of games can be visualized in
simplified 2D representation. The curves depicted in Fig. 10a–
c represent the best responses to the decision of the other
player (the curves stretched along the horizontal lines stand
for the best responses of the playersuj+1 to the decisions
of the playersuj). The crossing points of the curves represent
the Nash Equilibria. The procedure steps for solving the games
(a,b–Stackelberg games, c–competitive game) are executedas
indicated by the arrows.

C. An Illustrative Example

Here we present an example on how the game is meant to
be executed along several links of a freeway. We consider six
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F C CF F F
1 2 3 5

Link Nr.

4

Hie Hie Com HieHie

S̄D̄

u1 u2 u3 u5 u6u4

x1 x3 x4,5x2 x6

Figure 11. A section of a freeway used in the example of distributed search
of the Nash equilibrium.Hie andComstands for hierarchical and competitive
game, respectively.

controlled on-ramps located as shown in Fig. 11. The first three
upstream links are fully in the free flow state. The congestion
begins inside the fourth link, and it stretches downstream the
rest of a freeway. For such a state, the inputsu1, u2, u3 andu6

will optimize the links 1,2,3 and 5, respectively. The inputsu4

andu5 will compete for the link 4. The optimization process
is performed through the following steps:

Procedure 4 (illustrative example)

Step 1 u1 optimizesJ1 with respect to the given boundary
demandD̄. Next, u1 sends tou2 the information of the
optimal boundary demand flow for the subsystemx2.
This demand corresponds to the optimal decision of the
u1 and is denoted bȳD∗

2 . Similarly,u6 optimizesJ6 with
respect to the boundary supplȳS and sends tou5 the
information of the corresponding optimal supply flow̄S∗

5

for the subsystemx5.
Step 2 u2 optimizesJ2 with respect toD̄∗

2 and sends̄D∗
3 to

u3.
Step 3 u3 optimizesJ3 with respect toD̄∗

3 and sends̄D∗
4 to

u4.
Step 4 Firstu4 guesses the optimal solutionu∗

4 and sends it
to u5 with the information ofD̄∗

4 . Next, u5 optimizes
J5 with respect tou∗

4, D̄∗
4 , S̄∗

5 . The optimal solution
u∗
5 together with S̄∗

5 is then sent tou4 that similarly
optimizesJ4 with respect tou∗

5, D̄∗
4 , S̄∗

5 and sendsu∗
4 to

u5. The procedure is terminated whenu4 andu5 reaches
the Nash equilibrium.

D. Receding horizon control scheme

In this work, the optimization will be performed by using
the receding horizon control (often referred also as the model
predictive control) scheme that is formulated as a finite horizon
optimization to be repeated on-line. Based on the measured
(or estimated) current state and the predicted evolution of
the exogenous signals (in our setting the boundary condi-
tions), the controller determines the optimal input over the
control/prediction horizon. From the sequence of the optimal
decisions, only the first one is applied to a system, while for
the next time sample the procedure is repeated. The method
is particularly useful in the traffic optimization. A precise
prediction of both, the state and the boundary conditions
can be made only few minutes ahead. Thus, the idea of
optimization that allows on a permanent information update
is naturally adopted into traffic systems.

The receding horizon control scheme in our optimization
problem is executed with the following steps:

Procedure 5 (receding horizon control)

Step 1 At time samplek estimate the statex(k) and predict
the evolution of the boundary conditions̄D, S̄, {D̂j} in
the time period[k, k + T ].

Step 2 Solve the Problem 1 in a distributed manner over the
time period[k, k + T ].

Step 3 Apply the optimal decisionu∗(k).
Step 4 Increment time samplek = k + 1 and continue with

the Step 1.

VI. L OCAL OPTIMAL CONTROL PROBLEM

In this section, we provide a solution for the Nash opti-
mization problem as formulated in the section V. Namely, we
will focus of the following problems: Findu∗

j = argminJj
that appear in the Procedures 1–3 (the problem of finding
u∗
j+1 = argminJj+1 in the mixed state case is treated

analogously).

A. Control objectives

As stated in the introduction, our primal objective is to
balance vehicle density. Since we use a non-cooperative game
formulation, the balancing will be performed at the level of
individual subsystems (freeway links). We will not utilizeany
predefined reference values. Instead, we will require that the
resulting balanced density reduces travelling time acquired by
the drivers associated to a subsystem. Therefore, for the local
objective functions we will weight two metrics that correspond
to the density balancing and the travelling time.

Let us introduce the Laplacian matrix associated to the
subsystemxj :

Lapj(i, ī) =

{

nj − 1 if i = ī ,

−1 otherwise.
(29)

For the assumed structure of the state vectorxj =[

ρj1, ρ
j
2, ..., ρ

j
nj
, lj

]⊺

, the total dispersion of the vehicle density

over the time interval[0, T ] can be measured by the following
metric:

||xj ||Lap =

T∑

k=0

∑

i6=ī

(ρji (k)− ρj
ī
(k))2 =

T∑

k=0

(xj(k))⊺
[
Lapj 0
0 0

]

xj(k) .

(30)

The travelling time in freeway traffic is commonly computed
by using the Total Travel Spent (TTS) metric defined as
follows:

TTS = ∆t

T∑

k=0

(
nj∑

i=1

ρji (k)L
j
i + lj(k)

)

. (31)

The goal in minimizing TTS is to reduce the number of
vehicles in both, the mainstream and in the queues. Reduced
number of vehicles in the mainstream results in increased
travel velocity, and thus shortened travelling time. Reduced
number of vehicles in the queue directly results in shortened
queuing time. Note that TTS is a trade-off. Decreased queue
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lengths increase the mainstream density and vice versa. For
the sake of the adopted solution method, discussed below,
we will use the quadratic objective function. By using the
cell lengths matrixLj = diag(Lj

1, L
j
2, ..., L

j
nj
) the quadratic

function corresponding to TTS can be written in the following
form:

||xj ||TTS =
∆t

2

T∑

k=0

(

(xj(k))⊺
[
(Lj)2 0
0 0

]

xj(k) + l2j (k)

)

=

∆t

2

T∑

k=0

(xj(k))⊺
[
(Lj)2 0
0 1

]

xj(k) .

(32)

Finally, by introducing a weighting numberγ1, we can pose
the local optimal control problem, where the goal is to
minimize the weighted sum of the metrics (30) and (32):

Problem 2 (local optimal control problem)

Find u∗
j = argminJj

Jj =
∆t

2

T∑

k=0

(xj(k))⊺
[
Lapj + γ1 (L

j)2 0
0 γ1

]

xj(k)

Subject to(15), (16), (10) for the free flow state link

(18), (19), (10) for the congested state link

(21), (22), (10) for the mixed state link.

Note that in the case of the mixed state links, each of the
controllers tends to optimize only its controllable section, i.e.
for the link xj,j+1, uj minimizesJj(xj) anduj+1 minimizes
Jj(x

j+1).
The receding horizon scheme (Procedure 5) requires solving

of the Problem 1 at each time step which in practice is assumed
to be less than 15 seconds. During this time, the Procedures 1–
3 may demand for the solution of the Problem 2 up to several
dozen times, depending on the freeway length and number of
the mixed state links. Therefore, the algorithm for solvinga
single Problem 2 has to enable us to terminate the computation
in less than 0.1 of a second. This fact supports the idea of
quadratic formulation of the Problem 2. Regarding the size of
our problem, the most efficient quadratic programming (QP)
solvers enable to find a solution within few milliseconds (for
detailed study see, for example, [18]). This time may vary
depending on the initial values and the termination condition.
In some cases, due to limited time, it might be necessary
to terminate the computation before the optimal solution is
found. In this work, instead of adopting QP solvers, we will
present a solution method based on the finite horizon Linear
Quadratic Regulator (LQR). To solve LQR problem, only
the backward integration of the Riccati difference equation
needs to be performed. Regarding the size of our problem,
the computational time required for such a procedure can be
neglected.

B. Internal model of the boundary flows

In order to reformulate the Problem 2 as LQR problem, at
first we will transform the dynamical equations (15), (18), (21)

into autonomous form (with the right hand side independent
explicitly on time). For that purpose, we will utilize a simple
autoregressive (AR) model that allows to build up a linear
dynamical representation of the evolution of the boundary and
the interfacing flows:

D̄ , S̄ , {D̂j} , {D̄j} , {Ŝj} . (33)

By using this representation and an extended state vector, the
governing equations will take a required autonomous form.

Let us consider the following AR model:

z(k + 1) =

n̄∑

i=1

αi z(k + 1− i) , k = 0, 1, ... , (34)

where the initial valuesz(0), z(−1),..., z(1− n̄) are assumed
to be given as current and past measurements and the setα
is estimated mostly based in historical data. By evaluating
the AR model, we obtain a short-term forecasting. In our
setting, we consider reverse problem. We assume that at each
time instant the prediction of the boundary flows are given
over the time horizonT . By using this information and the
the set of initial values, we calibrate AR models by using
the method of least squares. The prediction of the boundary
flows D̄, S̄, {D̂j} may be obtained by using, for instance,
non-parametric regression or neural network based methods.
The interfacing flows{D̄j}, {S̄j} are evaluated by using the
dynamical equations (15), (18) and (21).

In order to represent AR model in the standard dynamical
form of z(k+1) = f(z(k)), we introduce the following state
vector:

z = [z1, z2, ..., zn̄]
⊺ (35)

defined as:z1(k) = z(k), z2(k) = z(k − 1),...,
zn̄(k) = z(k + 1− n̄). Then, by introducing:

Az =
1

∆t








1− α1 α2 · · · αn̄

1 −1
. . .

. . .
1 −1








(36)

(34) can be written as follows:

z(k + 1) = z(k) + ∆t Az z(k) . (37)

with the initial condition:z1(0) = z(0), z2(0) = z(−1),...,
zn̄(0) = z(1 − n̄). The form of (37) will now enable us to
merge the flows into the dynamics of our local systems. Let us
first consider the free flow state link. We introduce AR model
vectorszD̄j , zD̂j representingD̄j and D̂j , respectively. The
extended state vector of the free flow state link will be defined
as:

yj =
[

xj , zD̄j , zD̂j

]⊺

. (38)

The dynamical equation of the free flow state link (15) is
represented as follows:

yj(k + 1) = yj(k) + ∆t
(
Āfy

j(k) + B̄fuj(k)
)
. (39)

Here Āf has a block diagonal structure composed ofAf and
two matricesAz . The vectorB̄f is build uponBf . Similarly,
by introducing:

yj =
[

xj , zS̄j , zD̂j

]⊺

, (40)



9

where nowzS̄j refers toS̄j, we can represent the governing
equations for the congested state link (18):

yj(k + 1) = yj(k) + ∆t
(
Ācy

j(k) + B̄cuj(k)
)
. (41)

In the case of the mixed state link, we introduce the extended
state vector as:

yj, j+1 =
[

xj, j+1, zD̄j , zD̂j , zS̄j+1 , zD̂j+1

]⊺

, (42)

where zD̄j , zD̂j , zS̄j+1 and zD̂j+1 corresponds toD̄j , D̂j,
S̄j+1 and D̂j+1, respectively. The dynamics (21) is now
represented by:

yj, j+1(k + 1) = yj, j+1(k) + ∆t Āfc(k)y
j, j+1(k)+

+∆t
(
B̄fuj(k) + B̄cuj+1(k)

)
.

(43)

A practical advantage arising from the use of AR model
is that of significantly reduced amount of data needed to be
exchanged by the controllers during the optimization process.
The full information of the interfacing flows{D̄j} and{S̄j}
is now stored within the set of parameters{αi}. In practice,
it is sufficient to use 4–5 parameters to represent flow time
series of 30-50 values.

C. LQR problem

Having the autonomous representation of the dynamical
equations we are ready to reformulate the Problem 2 into LQR
problem. Let us first introduce the matrix:

Q = diag(Lapj + γ1 (L
j)2, γ1, 0) . (44)

Here, for the extended state vectoryj, the sub-matrix Lapj +
γ1 (L

j)2 and the scalarγ1 will correspond to the state vector
xj , while 0 will refer to uncontrollable stateszD̄j , zD̂j , (zS̄j+1,
zD̂j+1 ). Consider then the problem:

Problem 3 (local LQR problem)

Find u∗
j = argminJj

Jj =
∆t

2

T∑

k=0

(
(yj(k))⊺ Q yj(k) + γ2(uj(k))

2
)

Subject to(39) in the case of the free flow state link

(41) in the case of the congested state link

(43) in the case of the mixed state link.

Note thatQ is positive semi-definite. To assure the convexity
of the problem, we introduced the strictly positive term with
the weighting numberγ2. The reader can easily observe
that the Problems 2 and 3 are equivalent, except for the
set of constraints (16), (19), (22), (10) that were omitted in
LQR formulation. In the implementation, the solution to the
Problem 3 will be saturated with the bounds determined by
these constraints. By using the necessary optimality condition,
the solution to the Problem 3 is as follows:

u∗
j(k) = −

1

γ2
B̄⊺ K(k) yj(k) , (45)

whereK(k) is the solution to the Riccati difference equation:

1

∆t
(K(k + 1)−K(k)) = K(k)Ā+ Ā⊺K(k)+

−
1

γ2
K(k)B̄B̄⊺K(k) +Q , K(T ) = 0 .

(46)

In (45) and (46), depending on the state of the link, the
appropriate matrices for̄A (i.e. Āf or Āc or Āfc) andB̄ (i.e.
B̄f or B̄c or B̄′

f (B̄′
c)) are supposed to be inserted. In the case

of the mixed state link, it is assumed that the matrixĀfc is
constant over the time period[0, T ].

VII. STUDY CASES

The developed control method will be tested on the CTM
model of the south ring of Grenoble – a two lane highway that
connects the city of Grenoble in the north-east to south-west
linking the highways A41 and A480. At the present moment,
the ring is equipped with data collection system based on
magnetic sensors. Ramp metering technology is planned to be
installed by the end of 2014. For the optimization, we chose

link 3link 2link 1

u1

l1

D̂1

u2

l2

D̂2

u3

l3

D̂3

u4

l4

D̂4

D̄ S̄

Figure 12. A three link section of the south ring of Grenoble used in the
simulations.

the western section of the ring of the length6.07 [km]. On
the considered direction, i.e. from east to west, this section
is equipped with 4 on-ramps and 3 off-ramps (all of them
are one lane) as demonstrated in Fig. 12. The estimated model
parameters are summarized in the table I. For the split ratios
we assumēβ1 = 0.82, β̄2 = 0.80, β̄2 = 0.80. The merging
parametersp = 0.3 are assumed to be identical for each of
the links.

Table I
THE CELL-TRANSMISSIONMODEL PARAMETERS USED IN THE

SIMULATIONS.

v [km/h] w [km/h] ρ̄ [veh/km] link length [km]
link 1 82 20 280 1.57
link 2 78 21 280 1.66
link 3 80 20 280 2.84

In this study, we will consider two scenarios: one for
uniformly congested traffic, and the other for transient traffic.
In the first case, be means of previously defined metrics, we
will examine the performance of the control method under
steady congested boundary conditions. In the second case, we
will begin the simulation of the free flow traffic with drop
of downstream capacity. The goal will be to investigate the
impact of state balancing on the propagation of the shock
wave. Both cases will be evaluated with the time step of 5
seconds. We assume 20 time steps for the control/prediction
horizon in the receding horizon scheme. Control decision will
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be updated every time step. We will demonstrate the results
through a comparison of the optimal solutions (referred as
closed-loop) with the evolution of the open-loop system, i.e.
when the on-ramp demand stays uncontrolled.

A. Uniformly congested traffic

In this case, the initial values for density were randomly
selected from the interval[170, 210] [veh/km]. The initial
queue lengths were set tolj = 10 [veh] for all j. In accordance
to the information pattern introduced in the section IV, the
controllers u2, u3 and u4 under the congested state will
optimize the links 1, 2 and 3, respectively. The simulations
will be carried over the time interval of 20 minutes under
the following steady boundary conditions:S̄ = 3100 [veh/h],
D̂j = 800 [veh/h] for all j. The state plots will be given only
for the link 1. Trajectories for the other links do not exhibit
any qualitative differences. Each of the links was split into 5
cells of the same length.
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Figure 13. Evolution of the mainstream state in the link 1 (each of the curves
represent one cell).
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Figure 14. Comparison of the on-ramp flows in the entrance 2.

The on-ramp flow in the entrance 2 and the corresponding
evolutions of the vehicle densities in the link 1 are depicted
in Figs. 14 and 13, respectively. We can observe that the
closed-loop system rapidly converges to a common value. To
demonstrate better the convergence rate, Fig. 15 compares the
evolutions of the balancing metric defined as:

||xj ||Lap(k) = (xj(k))⊺
[
Lapj 0
0 0

]

xj(k) . (47)

The comparison of the balancing metric||xj ||Lap (as de-
fined in (30)) is presented in the table II. Each value represents
the metric computed in the closed-loop case divided by the
metric in the case of open-loop system. For each of the links,
the balancing metric was decreased more than 40 percent.

From Fig. 13, we can observe that the closed loop system
keeps lower mainstream density values which has a positive
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Figure 15. Evolution of the balancing metric for the link 1. The closed-loop
system evidently improves the convergence rate.
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Figure 16. Evolution of the queue length in the entrance 2.

impact on the travelling time. However, to justify the Total
Travel Time, we need to check also the states in the queues.
The controlled on-ramp flow (see Fig. 14) is lower than in the
open-loop case, and thus the queue is being released slower
as depicted in Fig. 16. As a result, in the steady state, there
is still 4 vehicles queuing. Nevertheless, the overall travelling
time computed by the norm||xj ||TTS (as defined in (32)) is
decreased by 2–3 percent for each of the links. The weighted
sum of the balancing and the travelling time metrics was
reduced by 7–8 percent.

Table II
METRIC COMPARISON. EACH VALUE REPRESENTS THE QUOTIENT:

(METRIC FOR CLOSED-LOOP CASE)/(METRIC FOR OPEN-LOOP CASE).

||xj||Lap ||xj||TTS ||xj||Lap + γ1||xj ||TTS

link 1 0.58 0.97 0.92
link 2 0.56 0.98 0.93
link 3 0.45 0.98 0.92

B. Transient traffic

Transient traffic refers to the situations in which we observe
the congestion either expanding or contracting. In particular,
we can encounter the shock waves caused by the instantaneous
drops of capacity. To test the designed control method under
the presence of shock wave, we consider the following sce-
nario. We initialize the simulation with some free flow state
and on-ramp boundary flowŝDj = 600 [veh/h] for all j. For
the first 150 time steps we reproduce the capacity drop by
settingS̄ = 2800 [veh/h]. During this time, we will observe a
shock wave propagating upstream. For the time steps 151-400,
we will setS̄ = 3800 [veh/h] that will bring the system back to
the free flow state. In this setting, the controller 1 will optimize
the free flow section 1 by solving the hierarchical game. The
other controllers will be involved into both, the hierarchical
and the competitive games, since the sections 2 and 3 will be
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under the mixed states. To better capture the movement of the
congestion wave, we divided each of the links into 8 cells.

The evolution of density over the considered freeway length
can be represented by colormaps as depicted in Fig 17 (open-
loop case) and Fig 18 (closed-loop case). The green color
indicates the free flow state (ρcr = 56 [veh/km]). The bottle-
neck, located at the right boundary, caused the shock wave
propagating upstream. The shock speed corresponds to the
slope of the congestion front (see the blue angle in Fig 18).
Lower the slope then faster the shock wave propagation. For
comparison, in Fig 18 we marked the open-loop profile with
the dashed line. We can observe that in the closed-loop case,
the congestion propagates slower, and as a result, it expands
approximately 500 meters shorter than in the open-loop case.
Note also that during the first 150 time steps for the closed-
loop system, the density in the link 3 keeps lower value.

Figure 17. Space-time distribution of vehicle density in the case of open-loop
system. The green area corresponds to the free flow state.

Figure 18. Space-time distribution of vehicle density in the case of closed-
loop system. Dashed line stands for the open-loop profile. Indicated slope
corresponds to the shock wave speed (lower the slope–higherthe speed).

VIII. C ONCLUSION

In this paper, we have presented a method for distributed
optimal balancing of vehicle distribution over freeway viause
of ramp meters. In this method, the controllability has been
taken as the principle underlying both, the system partitioning
and the topology of the information exchange. As we have
demonstrated, the selection of the controllable subsystems
strictly depends on the traffic state. This fact is often ignored
in the methods of freeway traffic optimization while the con-
trollability is a crucial factor in the convergence of numerical
procedures. To execute the optimization under the assumed
information patterns, we have formulated a non-cooperative
Nash problem. It follows that this formulation is not only
convenient for a design of distributed optimization scheme
process, but, under the defined balancing objective, it may also

cause the slow down of the congestion propagation. For the
future works, the authors are planning to validate the method
on the real freeway system with a comparison to existing
control strategies.
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