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, comes down to the calculation of the scaled entropy of (µn) n 0 in the case when µn is the normalised truncation to {0, . . . , n} of an unbounded measure µ on N, and we especially study this case. We provide some results involving the reversed hazard rate of µ, which is useful to investigate the asymptotics of H(Xn).

INTRODUCTION

The original motivation of the present paper is the problem of the calculation of the scaled entropy of the next-jump time filtrations, which is exposed in [START_REF] Laurent | Uniform entropy scalings of filtrations[END_REF]. It is shown in [START_REF] Laurent | Uniform entropy scalings of filtrations[END_REF] that this problem exactly comes down to the problem of the calculation of the scaled entropy h c (µ) of a discrete measure µ on N, which is introduced and studied in the present paper. The problem of the calculation of h c (µ) is interesting in itself, and the present paper is totally independent of [START_REF] Laurent | Uniform entropy scalings of filtrations[END_REF]. This problem is related to the following one. Consider a sequence (X n ) n 0 of random variables (not necessarily defined on the same probability space) taking only finitely many values. When (F n ) n 0 is a sequence of random variables satisfying (i) F n is a measurable function of

X n ; (ii) Pr(X n = F n ) ---→ n→∞ 0;
then does (iii) H(Fn) H(Xn) ---→ n→∞ 1 necessarily hold true? It is not difficult to construct some examples of two sequences of random variables (X n ) n 0 and (F n ) n 0 taking only finitely many values and such that (i) and (ii) hold but not (iii). The above problem is to find some criteria on (X n ) n 0 ensuring that (iii) holds for every sequence (F n ) n 0 satisfying (i) and (ii). This problem is related to the interplay between conditional entropy and error probability, because H(Fn) H(Xn) → 1 follows from (i) and (ii) under conditions like

H(X n | F n ) H(X n ) = O Pr(X n = F n ) , (1.1) 
as we will note in Section 2 (Lemma 2.6). The present paper especially addresses this problem in the case when X n is distributed on {0, . . . , n} according to µ(• | 0 : n), the normalised truncation to {0, . . . , n} of a given measure µ on N, because this is the situation appearing in the problem of the calculation of the scaled entropy of the next-jump time filtrations. For example, condition (1.1) holds when X n has the uniform distribution on {0, . . . , n}, that is to say, when µ is the counting measure on N. This is a consequence of Fano's inequality. The generalization of Fano's inequality in a way that would imply property (1.1) is for example addressed in [START_REF] Han | Generalizing the Fano inequality[END_REF]. However the authors of [START_REF] Han | Generalizing the Fano inequality[END_REF] only noted that in Fano's inequality

H(X n | F n ) h Pr(X n = F n ) + Pr(X n = F n ) log(n + 1),
it is not possible in general to replace log(n + 1) (the entropy of X n in the case of the counting measure) with H(X n ), and this is more than desired in order to get (1.1).

The possible failure of (iii) under (i) and (ii) even shows that there is no universal constant C > 0 such that one could replace log(n + 1) with C × H(X n ) in Fano's inequality.

While related to the interplay between conditional entropy and error probability, the present paper is not oriented towards the derivation of conditions such as (1.1). Denoting by µ n the law of X n , we introduce the scaled entropy h c (µ n ) n 0 ) and the lower scaled entropy h - c (µ n ) n 0 ) of the sequence of probability measures (µ n ) n 0 . The index c in this notation is a function c : N → (0, +∞) called an entropy scaling (for short, a scaling). Roughly speaking, the two equalities h c (µ n ) n 0 ) = h - c (µ n ) n 0 ) = 1 occur when it is possible to approximate X n by a random variable F n having entropy H(F n ) ≈ c(n), and this is the optimal approximation in the sense that it is not possible to have an approximation with lower entropy. This property in the case of the scaling c(n) = H(X n ) characterizes the introductory problem: it holds if and only if conditions (i) and (ii) always imply condition (iii) (Proposition 2.5). Our investigations about the scaled entropies h c (µ n ) n 0 ) and h - c (µ n ) n 0 ) for a general sequence (µ n ) n 0 of finitely supported probability measures are the contents of Section 2. In Section 3, we introduce the reversed hazard rate (for short, the RHR) of a measure µ on N. The asymptotic behaviour of the RHR of µ is related to the asymptotic behaviour of the entropy of µ n = µ(• | 0 : n). Section 4 deals with the scaled entropies h c (µ n ) n 0 ) and h - c (µ n ) n 0 ) , shorter denoted by h c (µ) and h - c (µ), in the case when µ n = µ(• | 0 : n) for a measure µ on N. The RHR of µ will be involved in this section: we will give a condition involving the RHR of µ and ensuring the property h - c (µ) = h c (µ) = 1 for the scaling c(n) = H(X n ). We also provide some non-trivial examples for which the property

h - c (µ) = h c (µ) = 1 holds for a scaling c(n) ∼ H(X n ).
Section 5 is not related to the scaled entropy. It provides some complements about the RHR. In particular we show how the monotonicities of the RHR and the (direct) hazard rate of a N-valued random variable X are related to the monotonicities in n of the conditional entropies H(X | X n) and H(X | X n).

SCALED ENTROPY OF A SEQUENCE OF FINITELY

SUPPORTED PROBABILITIES

Throughout this section, we consider a sequence (µ n ) n 0 of probability measures on N. We denote by E n ⊂ N the support of µ n and by X n a random variable distributed on E n according to µ n . We assume that E n is finite and µ n is not degenerate for every n 1, that is to say, #E n 2.

Definitions

Define the ǫ-entropy of a discrete random variable Y by

H ǫ (Y ) = inf H(F ) | Pr(F = Y ) ǫ ,
where the infimum is taken over σ(Y )-measurable (hence discrete) random variables F . When Y takes its values in N, one can restrict the random variables F to those taking their values in N ∪ {∞}. Indeed, if F takes more than one value not belonging to N, one obtains a random variable F ′ having lower entropy than F by grouping these values into a single one 1 , and the probability Pr(F = Y ) does not increase when one replaces F with F ′ . Of course, for the same reason, one can restrict the random variables F to the N-valued random variables, but taking N ∪ {∞} as the state space of F is convenient, as we will see in the examples of Section 4.3. As a consequence, since one can fix the state space of the random variables F , one can replace the infimum with the minimum in H ǫ (Y ) in the case when Y takes only finitely many values. Now, let c : N → [0, +∞) be a function such that c(n) > 0 for n large enough. We say that c is an entropy scaling or, for short, a scaling, and we define the scaled entropy of

(µ n ) n 0 by h c ((µ n ) n 0 ) := lim ǫ→0 lim sup n→∞ H ǫ (X n ) c(n) ,
and the lower scaled entropy of (µ n ) n 0 by

h - c ((µ n ) n 0 ) := lim ǫ→0 lim inf n→∞ H ǫ (X n ) c(n) .
These limits as ǫ goes to 0 exist because H ǫ (X n ) increases as ǫ decreases, hence these are increasing limits. Note the obvious inequality

h - c ((µ n ) n 0 ) h c ((µ n ) n 0 ), and the inequality h c ((µ n ) n 0 ) 1 for the scaling c(n) = log #E n . Also note that h - c ((µ n ) n 0 ) = h - c ′ ((µ n ) n 0 ) and h c ((µ n ) n 0 ) = h c ′ ((µ n ) n 0 ) when c ′ is a scaling equivalent to c, that is to say, when c(n) c ′ (n) → 1 (we denote that by c(n) ∼ c ′ (n)).
The following lemma provides an alternative ǫ-entropy Hǫ that can be used instead of H ǫ in the definition of the scaled entropies. The ǫ-entropy H ǫ is appropriate to derive an upper bound of

h - c ((µ n ) n 0 ) or h c ((µ n ) n 0 ) (Lemma 2.
3). The alternative ǫ-entropy Hǫ is useful to derive a lower bound, which is more difficult. For instance we will prove Lemma 2.9 and Proposition 2.12 with the help of Hǫ .

Lemma 2.1. Define the alternative ǫ-entropy of a discrete random variable Y by

Hǫ (Y ) = inf - i∈B ν(i) log ν(i) -ν(B c ) log ν(B c )
where ν is the law of Y and the infimum is taken over all subsets B of the state space of Y satisfying ν(B c ) ǫ. Then,

for ǫ < 1/2, Hǫ (Y ) -h(ǫ) H ǫ (Y ) Hǫ (Y )
where h is the binary entropy function, defined by

h(ǫ) = -ǫ log ǫ -(1 -ǫ) log(1 -ǫ).
Proof: We denote by H(P ) the right member in the definition of Hǫ (Y ), where it is understood that P is the partition of the state space of Y made of the subset B c and the singletons {i} for i ∈ B. Let P be a such a partition. Define f (y) = y if y ∈ B and f (y) = ∞ if y ∈ B (where ∞ denotes a value outside the support of the law of Y ), and set

F = f (Y ). Then Pr(F = Y ) = ν(B c
) and H(F ) = H(P ). That shows the inequality Hǫ (Y ) H ǫ (Y ). Conversely, take a random variable F having form F = f (Y ) for some function f , and such that Pr(F = Y ) < ǫ. Define the set B = y | f (y) = y}. The law ν of Y can be written as the convex combination

ν = ν(B)ν(• | B) + ν(B c )ν(• | B c ).
Therefore the law of F is the same convex combination of the two image measures

(f * ν)(• | B) = ν(• | B) and (f * ν)(• | B c
), and as a consequence of the concavity of the entropy,

H(F ) ν(B)H ν(• | B) = - i∈B ν(i) log ν(i) + ν(B) log ν(B) = H(P ) -h ν(B) H(P ) -h(ǫ)
as long as ǫ < 1/2. That shows the inequality

H ǫ (Y ) Hǫ (Y ) -h(ǫ).
Note that, obviously, one can replace the infimum with the minimum in the definition of Hǫ (Y ) when Y takes only finitely many values.

Properties

We firstly note a property of the scaled entropy in the case when the sequence of measures converges. In Section 4, where we focus on the case when µ n = µ(• | 0 : n) for a measure µ, this lemma will assist us in arguing that the scaled entropy has no interest in the case when µ is bounded.

Lemma 2.2. Assume that µ n converges to a probability measure µ ∞ as n → ∞. Then h c (µ n ) n 0 = 0 for any scaling c satisfying c(n) → ∞.

Proof: To prove the lemma, we use the ǫ-entropy Hǫ (X n ) defined in Lemma 2.1. Take ǫ > 0 and an integer n 1. Define

G n (ǫ) = min k 0 | µ n (0 : k) 1 -ǫ . For ǫ < exp(-1), Hǫ (X n ) - Gn(ǫ) i=0 µ n (i) log µ n (i) -ǫ log ǫ.

Now, define

G(ǫ) = min k 0 | µ ∞ (0 : k) 1 -ǫ .
One has G n (ǫ) ---→ n→∞ G(ǫ) as long as ǫ is a continuity point of G. Therefore, for such an ǫ, -

Gn(ǫ) i=0 µ n (i) log µ n (i) ---→ n→∞ - G(ǫ) i=0 µ ∞ (i) log µ ∞ (i)
and

Hǫ (Xn) c(n) → 0 whenever c(n) → ∞.
Since there exists a sequence of continuity points of G going to 0, one gets

h c (µ n ) n 0 = 0.
Therefore, with the notations of the previous lemma,

h c (µ n ) n 0 = 0 for the scaling c(n) = H(X n ) when H(µ ∞ ) = ∞, because H(µ n ) → ∞ in this case 2 . In the situation µ n = µ(• | 0 : n) studied in Section 4, we will see that h - c (µ n ) n 0 = 1 for the scaling c(n) = H(X n ) when H(µ ∞ ) < ∞ (Lemma 4.1
), but this is not always true in the general situation. The rest of this section is devoted to giving some properties of the scaled entropies, mainly oriented towards the situation when

h - c (µ n ) n 0 = h c (µ n ) n 0 = 1 for the scaling c(n) = H(X n ). Note that h - c (µ n ) n 0 = h c (µ n ) n 0 = 1 is equivalent to h - c (µ n ) n 0 = 1 for this scaling.
Hereafter, we will say that a sequence (F n ) n 0 of random variables is a lower approximation of (X n ) n 0 if F n is σ(X n )-measurable for every n 0 and Pr(X n = F n ) → 0.

The following lemma provides a way to get upper bounds of the scaled entropies.

Lemma 2.3. Let c be a scaling.

1) For every lower approximation

(F n ) n 0 of (X n ) n 0 , h c (µ n ) n 0 lim sup n→∞ H(F n ) c(n) .
2) Let (n k ) k 1 be a strictly increasing sequence in N. and let (F n k ) k 1 be a sequence of random variables such that

σ(F n k ) ⊂ σ(X n k ) and Pr(X n k = F n k ) → 0 as k → ∞. Then h - c (µ n ) n 0 lim inf k→∞ H(F n k ) c(n k ) .
Proof: Let ǫ ∈ (0, 1). Take an integer N 0 sufficiently large in order that Pr(X n = F n ) < ǫ for every n N . Then H ǫ (X n ) H(F n ) for every n N . The first assertion follows from this inequality. To prove the second assertion, take an integer K 0 sufficiently large in order that Pr(X

n k = F n k ) < ǫ for every k K. Then H ǫ (X n k )
H(F n k ) for every k K, and the second assertion follows from this inequality. The following lemma will help us in the proof of the next proposition.

Lemma 2.4. Assume h

- c (µ n ) n 0 < ∞.
For every δ > 0, there exists a strictly increasing sequence (n k ) k 1 in N, and a sequence

(F n k ) k 1 of random variables such that σ(F n k ) ⊂ σ(X n k ) and Pr(X n k = F n k ) → 0 as k → ∞, such that lim sup k→∞ H(F n k ) c(n k ) h - c (µ n ) n 0 + δ.
Proof: Take a sequence (ǫ k ) k 1 in (0, 1) that goes to 0 as k → ∞, and such that

h - c (µ n ) n 0 = lim k→∞ lim inf n→∞ H ǫ k (X n ) c(n) .
Take δ > 0 and an integer K 1 such that

lim inf n→∞ H ǫ k (X n ) c(n) h - c (µ n ) n 0 + δ 2
for every k K. Now, take a strictly increasing sequence of integers (n k ) k 1 such that

H ǫ k (X n k ) c(n k ) lim inf n→∞ H ǫ k (X n ) c(n) + δ 2
for every k 1. Finally take a random variable

F n k such that H ǫ k (X n k ) = H(F n k ).
The following proposition shows that the introductory problem of Section 1 comes down to the equality

h - c (µ n ) n 0 = 1 for the scaling c(n) = H(X n ).
Proposition 2.5. Let c be the scaling defined by c

(n) = H(X n ). 1) If h c (µ n ) n 0 = 1, then lim sup n→∞ H(F n ) H(X n ) = 1
for every lower approximation

(F n ) n 0 of (X n ) n 0 . 2) If h - c (µ n ) n 0 = 1, then H(F n ) H(X n ) ---→ n→∞ 1
for every lower approximation

(F n ) n 0 of (X n ) n 0 . 3) If H(Fn) H(Xn) ---→ n→∞ 1 for every lower approximation (F n ) n 0 of (X n ) n 0 , then h - c (µ n ) n 0 = h c (µ n ) n 0 = 1.
Proof: Take a lower approximation

(F n ) n 0 of (X n ) n 0 . Given ǫ > 0, the inequality H ǫ (X n ) H(F n ) holds for n large enough, therefore lim sup n→∞ H ǫ (X n ) H(X n ) lim sup n→∞ H(F n ) H(X n ) 1.
The first assertion follows by passing to the limit in ǫ. One also has

lim inf n→∞ H ǫ (X n ) H(X n ) lim inf n→∞ H(F n ) H(X n ) lim sup n→∞ H(F n ) H(X n ) 1.
Assuming h - c (µ n ) n 0 = 1, one gets H(Fn) H(Xn) → 1 by passing to the limit in ǫ, thereby showing the second assertion. Now, in order to prove the third assertion, take δ > 0. Since h - c (µ n ) n 0 1, one can apply Lemma 2.4. One has a strictly increasing sequence

(n k ) k 1 in N and a sequence (F n k ) k 1 of random variables such that σ(F n k ) ⊂ σ(X n k ) and Pr(X n k = F n k ) → 0 as k → ∞, and such that lim sup k→∞ H(F n k ) H(X n k ) h - c (µ n ) n 0 + δ.
For every n 0 that does not belong to the sequence

(n k ) k 1 , set F n = X n . Then (F n ) n 0 is a lower ap- proximation of (X n ) n 0 . By the assumption of the third assertion, H(Fn) H(Xn) ---→ n→∞ 1. Therefore H(Fn k ) H(Xn k ) ---→ k→∞ 1. Thus, h - c (µ n ) n 0 1 -δ. A first sufficient condition for h - c (µ n ) n 0 = 1 in the case of the scaling c(n) = H(X n ),
relating the conditional entropy to the error probability, is given in the following lemma.

Lemma 2.6. If there exists an increasing function g on [0, 1] such that g(0 + ) = 0 and such that for n large enough, the inequality

H(X n | F n ) H(X n ) g Pr(X n = F n ) holds for every σ(X n )-measurable random variable F n , then h - c (µ n ) n 0 = 1 for the scaling c(n) = H(X n ).
Proof: Let ǫ ∈ (0, 1). For every n 0, one has

H ǫ (X n ) = H(F n ) where F n is a σ(X n )-measurable ran- dom variable achieving the minimum in the definition of H ǫ (X n ). By the conditional entropy formula H(X n ) = H(F n )+H(X n | F n )
and by the assumption of the lemma,

1 -g(ǫ) H ǫ (X n ) H(X n ) 1,
for n large enough. The lemma follows by passing to the limits.

The following proposition follows from the previous lemma and Fano's inequality.

Proposition 2.7. If H(X n ) = Ω(log #E n ), then the equality h - c (µ n ) n 0 = 1 holds for the scaling c(n) = H(X n ).
Proof: By Fano's inequality (see [START_REF] Gray | Entropy and Information Theory[END_REF]),

H(X n | F n ) h Pr(X n = F n ) + Pr(X n = F n ) log(#E n ).
Therefore the hypothesis of Lemma 2.6 holds under the hypothesis

H(X n ) = Ω(log #E n ).
Example 2.8 (Uniform probabilities). Let µ n be the uniform probability on {0, . . . , n} for every n 0. Then the previous proposition shows that

h - c (µ n ) n 0 = 1 for the scaling c(n) = H(X n ).
One can also derive Proposition 2.7 from the following lemma. We will not use this lemma, but it provides an interesting sufficient condition for the equality

h - c (µ n ) n 0 = 1 in the case of the scaling c(n) = H(X n ).
Lemma 2.9. Assume that

sup n 1 max Cn⊂En Cn =∅ H µ n (• | C n ) H(µ n ) < ∞. Then h - c (µ n ) n 0 = 1 for the scaling c(n) = H(X n ). Proof: Let n 1 and ǫ ∈ (0, 1). Let B n ⊂ E n achieving the minimum in the definition of the ǫ-entropy Hǫ (X n ) defined in Lemma 2.1. We denote by B c n the complement of B n in E n . One has H(X n ) = - i∈Bn µ n (i) log µ n (i) - i∈B c n µ n (i) log µ n (i), Hǫ (X n ) = - i∈Bn µ n (i) log µ n (i) -µ n (B c n ) log µ n (B c n ),
and

- i∈B c n µ n (i) log µ n (i) = µ n (B c n )H µ n (• | B c n ) -µ n (B c n ) log µ n (B c n ) ǫH µ n (• | B c n ) -µ n (B c n ) log µ n (B c n ). Therefore H(X n ) Hǫ (X n ) + ǫH µ n (• | B c n )
. This implies, denoting by K 0 the finite number of the lemma,

H(X n ) Hǫ (X n ) 1 -Kǫ when ǫ < 1/K. Finally, for ǫ small enough, Hǫ (X n ) H(X n ) 1 1 1 -Kǫ Hǫ (X n ) H(X n ) ,
and the lemma follows by passing to the limits. Remark 2.10. The condition of Lemma 2.9 actually pertain to the ratios

H µn(•|Cn) H(µn)
for the "small" subsets C n ⊂ E n . That is to say, this condition holds whenever the condition

sup n 1 max Cn⊂En Cn =∅ µn(Cn)<ǫ 0 H µ n (• | C n ) H(X n ) < ∞
holds for some ǫ 0 ∈ (0, 1). Indeed, the concavity of the entropy gives the inequality

H(µ n ) µ n (C n )H µ n (• | C n ) .
Therefore the ratios

H µn(•|Cn) H(µn)
are lower than 1 ǫ 0 for the subsets C n such that µ n (C n ) ǫ 0 . The following elementary lemma will help us to prove Proposition 2.12. Both this lemma and this proposition will be used in Section 4.3 to derive some nontrivial examples for which the equality h

- c (µ n ) n 0 = h c (µ n ) n 0 = 1 holds for a scaling c(n) ∼ H(X n ) and to get the values of h - c (µ n ) n 0 and h c (µ n ) n 0 for the scaling c(n) = H(X n ). Lemma 2.11. Let B n be a subset of E n for every n 0 and assume that Pr(X n ∈ B n ) → 1. Define the lower approxima- tion (F n ) n 0 of (X n ) n 0 by setting F n = X n if X n ∈ B n and F n = ∞ otherwise. If lim inf n→∞ H µ n (• | B n ) > 0, then H(F n ) ∼ H µ n (• | B n ) .
Proof: The entropy of F n is

H(F n ) = - i∈Bn Pr(X n = i) log Pr(X n = i) -µ n (B c n ) log µ n (B c n ) = -µ n (B n ) i∈Bn Pr(X n = i) µ n (B n ) log Pr(X n = i) µ n (B n ) -µ n (B n ) log µ n (B n ) -µ n (B c n ) log µ n (B c n ) = µ n (B n )H µ n (• | B n ) + h µ n (B n ) .
The entropies H µ n (• | B n ) are bounded from below by a positive number for all integers n large enough, because of the assumption

lim inf n→∞ H µ n (• | B n ) > 0. Hence H(F n ) H µ n (• | B n ) = µ n (B n ) + h µ n (B n ) H µ n (• | B n ) n→∞ ---→ 1 because µ n (B n ) → 1.
Proposition 2.12. Let B n be a subset of E n for every n 0 and such that Pr(

X n ∈ B n ) → 1. Assume that #B n → ∞ and H µ n (• | B n ) ∼ log #B n . Then h - c (µ n ) n 0 = h c (µ n ) n 0 = 1 for the scaling c(n) = log #B n . Proof: We firstly check the inequality h c (µ n ) n 0 1. Define the lower approximation (F n ) n 0 of (X n ) n 0 by setting F n = X n if X n ∈ B n and F n = ∞ otherwise. By Lemma 2.11, H(F n ) ∼ H µ n (• | B n ) ∼ log #B n , and this implies h c (µ n ) n 0 1 by Lemma 2.3. To show that h - c (µ n ) n 0 1,
we use the ǫ-entropy Hǫ (X n ) defined in Lemma 2.1. Given ǫ ∈ (0, 1), we denote by C n ⊂ E n the subset achieving Hǫ (X n ). One has

Hǫ (X n ) - i∈Cn µ n (i) log µ n (i) - i∈Cn∩Bn µ n (i) log µ n (i).
To estimate the right-hand side, we split the sum:

- i∈Cn∩Bn µ n (i) log µ n (i) = - i∈Bn µ n (i) log µ n (i) + i∈Bn∩C c n µ n (i) log µ n (i).
We transform the first term:

- i∈Bn µ n (i) log µ n (i) = -µ n (B n ) i∈Bn µ n (i) µ n (B n ) log µ n (i) µ n (B n ) -µ n (B n ) log µ n (B n ) = µ n (B n )H µ n (• | B n ) -µ n (B n ) log µ n (B n ).
Therefore, since

H µ n (• | B n ) ∼ log #B n , lim n→∞ -i∈Bn µ n (i) log µ n (i) log #B n = 1.

Now the second term equals

0 if B n ∩ C c n = ∅, otherwise - i∈Bn∩C c n µ n (i) log µ n (i) = -µ n (B n ∩ C c n ) i∈Bn∩C c n µ n (i) µ n (B n ∩ C c n ) log µ n (i) µ n (B n ∩ C c n ) -µ n (B n ∩ C c n ) log µ n (B n ∩ C c n ) = µ n (B n ∩ C c n )H µ n (• | B n ∩ C c n ) -µ n (B n ∩ C c n ) log µ n (B n ∩ C c n ) ǫH µ n (• | B n ∩ C c n ) -ǫ log ǫ for ǫ < exp(-1). Consequently, since H µ n (• | B n ∩C c n ) log #B n , lim sup n→∞ -i∈Bn∩C c n µ n (i) log µ n (i) log #B n ǫ.
Finally,

lim inf n→∞ Hǫ (X n ) log #B n 1 -ǫ,
and taking the limit in ǫ, we get

h - c (µ n ) n 0 1.

REVERSED HAZARD RATE OF A DISCRETE MEA-

SURE

Let µ be a possibly unbounded measure on N = {0, 1, . . .}. In the next section, we will investigate the scaled entropies h - c (µ n ) n 0 and h c (µ n ) n 0 in the case when µ n = µ(• | 0 : n), the normalized truncation of µ to {0, . . . , n}. Our results will involve the reversed hazard rate of µ, which is the object of the present section. We assume that the measure µ is finite in the sense that µ(B) < ∞ for every finite set B ⊂ N, but µ(N) is possibly infinite. Unless we mention something else, we will always assume that the support of µ is {0, . . . , N } for an integer N 1, or the whole set of integers N, which agrees with N = ∞. We will mainly deal with the case N = ∞. When B ⊂ {0, . . . N } is a set such that µ(B) < ∞, we denote by µ(• | B) the probability measure on B obtained by truncating µ to B, and then by normalizing in order to assign a total mass of 1 to B.

The reversed hazard rate

Throughout the paper, when the measure µ is understood, we set

ρ k = µ(k) µ(0 : k) .
for every integer k 0. We say that the sequence (ρ k ) k 0 is the reversed hazard rate of µ (for short, the RHR). There are several papers about the RHR, mainly for continuous distributions (see [START_REF] Di Crescenzo | Extensions of the past lifetime and its connections to the cumulative entropy[END_REF] and references given therein).

Note that ρ 0 = 1 and 0 < ρ k < 1 for every integer k 1, except for integers k > N when µ has a finite support (case N < ∞), because ρ k = 0 when k > N in this case.

The RHR ρ only determines µ up to proportionality. Indeed, it is not difficult to get the equality

µ(k) µ(0) = ρ k (1 -ρ 1 ) • • • (1 -ρ k ) , (3.1) 
for k 1, showing that µ is entirely determined by ρ once the value of µ(0) is known. The RHR entirely characterizes µ in the case when µ(N) is finite and known, for example in the probability case µ(N) = 1. Indeed, it is also easy to derive the equality

µ(0 : k) µ(0) = 1 (1 -ρ 1 ) • • • (1 -ρ k ) . (3.2)
Therefore, assuming µ(N) < ∞, letting k → ∞ in the previous equality provides the equality

µ(0) = µ(N) N k=1 (1 -ρ k ), (3.3) 
where the product is a convergent infinite product in the case N = ∞. Thus µ(0) and consequently µ are uniquely determined once both the RHR and the finite total mass µ(N) are known.

An appealing convenience of the RHR is its ability to provide all the probability measures µ n = µ(• | 0 : n) by simple formulas. This is shown by the following theorem, which is derived from the previous formulas and by simply noting that the RHR of µ(• | 0 : n) coincides with the RHR of µ for every integer in {0, . . . , n}. Recall that we denote by X n a random variable distributed according to µ n .

Theorem 3.1.

1) The probability masses of X n are given by

Pr(X n = k) = (1 -ρ n ) • • • (1 -ρ k+1 )ρ k ,
and the cumulative probability masses of X n are given by

Pr(X n k) = (1 -ρ n ) • • • (1 -ρ k+1 )
for every k ∈ {0, . . . , n}. 2) In the case N = ∞, there is an equivalence between µ(N) < ∞ and the convergence (non-zero limit) of the product (1 -ρ n ), or equivalently the convergence of the series ρ n . In this case, the above formulas also hold for a random variable X ∞ distributed on N according to µ(• | N), the normalized version of µ.

Proof: The expression of Pr(X n = k) is obtained from equality (3.1) and equality (3.3), and the expression of Pr(X n k) is obtained from equality (3.2) and equality (3.3). The second assertion stems from the expression of Pr(X n k).

In the case when ρ n → 0 and ρ n = ∞, we will pay attention to the convergence of the series ρ 2 n , because of the relation between the present paper and the scaled entropy of the next-jump time filtrations ( [START_REF] Laurent | Uniform entropy scalings of filtrations[END_REF]). The nextjump time filtration F corresponding to the RHR (ρ n ) n 0 is the one defined in [START_REF] Laurent | Standardness and nonstandardness of next-jump time filtrations[END_REF] and [START_REF] Laurent | Uniform entropy scalings of filtrations[END_REF] by the sequence of jumping probabilities (p n ) n 0 given by p n = ρ -n . The divergence ρ n = ∞ is a necessary and sufficient condition for the filtration F to be Kolmogorovian. The case when F is Kolmogorovian and non-standard corresponds to the situation when the two conditions ρ n = ∞ and ρ 2 n < ∞ hold. In this case, as shown in [START_REF] Laurent | Uniform entropy scalings of filtrations[END_REF], the scaled entropy h c (F) of F coincides with the scaled entropy h c (µ) of µ (Section 4). This is why we will pay attention to the convergence of the series ρ 2 n . The following lemma shows that the asymptotic behaviour of the RHR pertains to the tail of µ in the case when µ is not normalisable (hence N = ∞). Given an integer M 1, the measure µ |(M :∞) , in other words the restriction of µ to the tail set (M : ∞), has support {M, M + 1, . . .} and we previously defined the RHR only for measures whose support is an interval of N starting at 0. But it is understood we similarly define the RHR of µ |(M :∞) starting at k = M . Lemma 3.2. When µ(N) = ∞, the RHR of µ and the RHR of its restriction µ |(M :∞) are equivalent at ∞ for any integer M 1.

Proof: The value of the RHR of

µ |(M :∞) at k M is µ(k) µ(M : k) = ρ k 1 1 -µ([0,M [) µ([0,k]) ∼ k→∞ ρ k .
The formula in the above proof also provides the following bounds around the value of the RHR of µ |(M :∞) at k M :

ρ k µ(k) µ(M : k) ρ k 1 1 -µ([0,M [) µ([0,M ]) = ρ k ρ M . ( 3.4) 
Below we give some examples when µ is given, and some examples when the RHR is given.

Example 3.3 (Counting measure).

Let µ be the uniform measure on {0, . . . , N }, or the counting measure on N.

Then ρ n = 1 n+1 for every n ∈ {0, . . . , N }. Example 3.4 (Power measure). Let µ be the measure on N defined by µ(n) = (n + 1) a for a > -1. Then ρ n ∼ a+1 n . Example 3.5 (Geometric measure). Let µ be the geometric measure on N given by µ(n) = a n where a > 0 and a = 1. Then

ρ n = (1 -a)a n 1 -a n+1
. The ρ n are decreasing in n and ρ n ∼ (1 -a)a n → 0 when a < 1, whereas ρ n → a-1 a when a > 1. It could be clearer to write ρ n = θ 1-(1-θ) n+1 when a > 1, where θ = a-1 a = lim ρ n . In the case a < 1, the measure µ is proportional to the usual geometric distribution on N with probability of success 1 -a, and then (ρ n ) n 0 is the RHR of the geometric distribution.

Example 3.6 (Constant RHR).

Let ρ n ≡ θ ∈ (0, 1) for every n 1. Then, because of formula (3.1), the corresponding measures µ are the ones satisfying µ(n) = µ(0)θ(1 -θ) -n for n 1. Up to a correction at n = 0, this is the geometric measure of the previous example with a = 1/(1 -θ) > 1.

Expectation representation of the entropy

Throughout this section, it is understood that the X n are the random variables appearing in Theorem 3.1, and, for convenience, we agree with X n = X N for n N in the case N < ∞. The conditional entropy formula gives

H(X n+1 ) = H(X n+1 | 1 X n+1 =n+1 ) + H 1 X n+1 =n+1 = H(X n+1 | X n+1 = n + 1) Pr(X n+1 = n + 1) + H 1 X n+1 =n+1 ,
and since the law of X n is the conditional law of X n+1 given the event {X n+1 = n + 1}, we get the recurrence relation

H(X n+1 ) = (1 -ρ n+1 )H(X n ) + h(ρ n+1 ), (3.5) 
where

h(θ) = -θ log θ -(1 -θ) log(1 -θ)
is the entropy of a Bernoulli trial with probability of success θ. It is interesting to view the recurrence formula (3.5) as a weighted average of H(X n ) and h(ρ n+1 ) ρ n+1 :

H(X n+1 ) = (1 -ρ n+1 )H(X n ) + ρ n+1 h(ρ n+1 ) ρ n+1 .
This recurrence relation yields the following proposition, which concerns only measures µ having infinite total mass because ρ n → 0 when µ has a finite total mass.

Proposition 3.7. If ρ n → ρ ∞ > 0 in the case N = ∞, then H(X n ) → h(ρ ∞ ) ρ ∞ .
Proof: Starting with relation (3.5), one gets

lim sup H(X n ) = lim sup ((1 -ρ n+1 )H(X n )) + h(ρ ∞ ) = (1 -ρ ∞ ) lim sup H(X n ) + h(ρ ∞ ),
therefore lim sup H(X n ) = h(ρ∞) ρ∞ , and in the same way one gets the same equality for lim inf H(X n ).

Example 3.8 (Geometric measure). Take the geometric measure of Example 3.5. When a > 1, as we said in this example,

ρ n → θ = a-1 a > 0, therefore we get lim H(X n ) = h(θ)
θ by applying the proposition. We will derive lim n→∞ H(X n ) in the case a < 1 in the next example, with the help of the expectation represen-tation (3.6) we derive now. The recurrence relation (3.5) provides the equality

H(X n ) = h(ρ n ) + (1 -ρ n )h(ρ n-1 ) +(1 -ρ n )(1 -ρ n-1 )h(ρ n-2 ) + • • • + (1 -ρ n ) • • • (1 -ρ 2 )h(ρ 1 )
which can be written

H(X n ) = E h(ρ Xn ) ρ Xn (3.6)
by virtue of the expression of Pr(X n = k) given in Theorem 3.1. Also note that

H(X n ) → H(X ∞ ) in the case when µ is normalisable, just because of H(X n ) = H(X ∞ | X ∞ n) and Pr(X ∞ n) → 1.
For the same reason, the expectation representation (3.6) also holds for n = ∞ in the case of a normalisable measure µ. The function x → h(x)/x is shown on Figure 1. Clearly, it is a continuous function on (0, 1] satisfying h(0 + ) = +∞ and h(1) = 0. In this section we will use the obvious inequality h(x)/x -log x. Also note that this function is decreasing; we will use this fact in Section 5 (to prove Theorem 5.1). Example 3.9 (Geometric measure). Here we derive the entropy of the geometric distribution with the help of the constant RHR measure µ seen in Example 3.6. For this measure, the expectation representation (3.6) straightforwardly provides H(X n ) = h(θ) θ Pr(X n = 0). Now, the distribution of X n conditioned to {1, . . . , n} has the same list of probability masses than the geometric measure of Example 3.5 with a = 1/(1 -θ) normalised to {0, . . . , n -1} as well as the geometric distribution Geom(1 -θ) normalised to {0, . . . , n -1}. Therefore these three distributions have the same entropy, namely H(µ • | 1 : n) , and this entropy goes to the one of Geom(1 -θ) when n → ∞. Using the equality

H(X n ) = Pr(X n = 0)H µ(• | 1 : n) + h Pr(X n = 0)
we get

H(µ • | 1 : n) = h(θ) θ - h Pr(X n = 0) Pr(X n = 0) .
Formula (3.1) gives Pr(X n = 0) = 1 -(1 -θ) n , and we finally get

H(µ • | 1 : n) → h(θ)
θ , the desired entropy of Geom(1 -θ).

Example 3.10 (Geometric measure). The calculations of the previous example give the entropy H(X n ) for the geometric measure of Example 3.5:

H(X n ) = h(θ) θ - h 1 -(1 -θ) n+1 1 -(1 -θ) n+1
where θ = 1-a when a < 1, or θ = (a-1)/a when a > 1.

The following theorem just encapsulates our previous results about H(X n ). Theorem 3.11. The entropy H(X n ) satisfies the recurrence relation

H(X n+1 ) = h(ρ n+1 ) + (1 -ρ n+1 )H(X n )
and enjoys the expectation representation

H(X n ) = E h(ρ Xn ) ρ Xn
for every n 0. The expectation representation also holds for n = ∞ in the case when µ is normalisable.

Asymptotic estimation of H(X n )

In this section we consider only the case N = ∞. In the previous section, we gave a result about the asymptotics of H(X n ) when ρ n has a positive limit (Proposition 3.7).

The results we give in this section concern the case when ρ n → 0.

For non-normalisable measures µ, the following lemma provides a friendly sufficient condition in order to have

H(X n ) → ∞.
Lemma 3.12. For a measure µ with infinite total mass, that is to say, when ρ n = ∞ (Theorem 3.1), the condition

ρ n → 0 implies H(X n ) → ∞ and H(X n ) ∼ H(X n+1 ).
Proof: It is easy to see that X n w -→ ∞ when µ has infinite total mass. Therefore, since we are assuming ρ n → 0, one has The following lemma, useful in the case when ρ n → 0, is derived from an elementary application of the expectation representation (3.6). Lemma 3.13. Let (K n ) n 0 be a sequence of integers such that 0 K n n for every n 0 and lim n→∞ K n = ∞. Assume that log ρ n ∼ log ρ ′ n where (ρ ′ n ) n 0 is a decreasing (0, 1)valued sequence. Then, for any δ ∈ (0, 1), the inequality

h(ρ Xn ) ρ Xn w -→ ∞ because h(x)/x → ∞ when x → 0 + . This implies H(X n ) → ∞
H(X n ) (1 -δ) -log ρ ′
Kn Pr(X n K n ) holds for n large enough.

Proof: By the expectation representation (3.6) and the inequality h(x)/x -log x,

H(X n ) = E h(ρ Xn ) ρ Xn E [-log ρ Xn ] .
Therefore

H(X n ) E [-log ρ Xn 1 Xn Kn ] .
Let δ > 0. Because of the asymptotic equivalence log ρ n ∼ log ρ ′ n , the inequality log ρ k (1 -δ) log ρ ′ k holds when k K n for every n large enough. Therefore

H(X n ) (1 -δ)E -log ρ ′
Xn 1 Xn Kn for n large enough, and consequently

H(X n ) (1 -δ) -log ρ ′ Kn Pr(X n K n ) because it is assumed that ρ ′ k is decreasing in k.
The following proposition is an easy consequence of the previous lemma. Proposition 3.14. Assume the hypotheses of Lemma 3.13.

1) If lim inf n→∞ Pr(X n K n ) > 0, then H(X n ) = Ω(-log ρ Kn ). 2) If Pr(X n K n ) → 1, then lim inf n→∞ H(Xn) -log ρ Kn 1. 3) If Pr(X n K n ) → 1 and -log ρ Kn ∼ log n, then H(X n ) ∼ log n.
Proof: Lemma 3.13 straightforwardly implies the first assertion. If Pr(X n K n ) → 1 and ǫ ∈ (0, 1), it is easy to prove with the help of this lemma that H(Xn) log ρ ′ Kn 1-ǫ for n large enough. That shows the second assertion. Since H(X n ) log(n + 1), the third assertion follows from the second one.

Example 3.15 (Power measure). Take

µ(n) = (n + 1) a . We have seen that ρ n ∼ 1+a n in Example 3.4. When a 0, the mass µ(n) is increasing in n, therefore Pr(X n K n ) 1 2 with K n = ⌊n/2⌋. Thus we know that H(X n ) = Ω(log n) by Proposition 3.14. Since H(X n ) log(n + 1), we finally get H(X n ) = Θ(log n).
In Section 4, we will use the result of this example to show that µ is a full entropy measure. Deriving an asymptotic equivalent of H(X n ) in this example requires more work. We show below that H(X n ) ∼ log n, not by a direct application of Proposition 3.14, but by using Lemma 3.13. it can be shown that

⌊ n m ⌋ k=0 µ(k) n k=0 µ(k) ---→ n→∞ 1 m a+1 . Therefore, with K n = n m , one has Pr(X n > K n ) → 1 -1 m a+1 when n → ∞. Observe that log ρ ′ Kn = log n m -log(a + 1) ∼ -log n.
Take δ ∈ (0, 1). By Lemma 3.13,

H(X n ) (1 -δ) -log ρ ′ Kn Pr(X n K n )
for n large enough. Take ǫ ∈ (0, 1), then take m large enough in order that 1 m a+1 < ǫ, and take M large enough in order that Pr(X n > K n ) > 1 -2ǫ when n M as well as -log ρ ′ Kn (1 -ǫ) log n. Then, for n large enough,

log(n + 1) H(X n ) > (1 -δ)(1 -ǫ)(1 -2ǫ) log n.
Consequently, H(X n ) ∼ log n.

We treat another example below that will be used in Section 4 to derive some examples of measures which do not have full entropy. Example 3.17. For α > 0 consider the non-normalisable measure µ given by

µ(0 : k) = log(k + 2) exp log α (k + 1) ,
that is to say µ(0) = log 2 and µ(k) = log(k+2) exp log α (k+1) -log(k+1) exp log α (k) for k 1. It can be shown that the RHR of µ satisfies

ρ n ∼ α log α-1 (n) n .
Indeed,

ρ n = 1 - log(n + 1) log(n + 2) exp log α (n) -log α (n + 1) = 1 - log(n + 1) log(n + 2) + log(n + 1) log(n + 2) 1 -exp log α (n) -log α (n + 1)
and then the equivalence stems from the case B = 1 in the equivalence

log α (x + B) -log α (x) = log α (x) 1 + log(1 + B/x) log x α - 1 
∼ x→∞ α log α-1 (x) log(1 + B/x) ∼ x→∞ Bα log α-1 (x) x , (3.7) 
which holds for every B > 0 (we state this equivalence for B > 0 because we will use it for B = 2 later). Now, for α > 1, µ(0 : n) µ(0 : 2n) ∼ exp log α (n + 1) -log α (2n + 1) → 0 because log α (2n + 1) -log α (n + 1)

= log α (2n + 1) 1 -log(n + 1) log(2n + 1) α log α (2n + 1) 1 -log(n + 1) log(2n + 1) = log α-1 (2n + 1) log(2n + 1) -log(n + 1)

∼ n→∞ log 2 × log α-1 (2n + 1) ---→ n→∞ ∞.
Therefore, applying Proposition 3.14 with

K n = n 2 , one gets H(X n ) ∼ log(n) when α > 1.

SCALED ENTROPY OF A DISCRETE MEASURE

This section deals with the scaled entropies h - c ((µ n ) n 0 ) and h c ((µ n ) n 0 ) in the case when µ n = µ(• | 0 : n) for a measure µ on N as in the previous section. We use the same notations as in the previous section. We shorter denote

h - c ((µ n ) n 0 ) by h - c (µ)
and we call it the lower scaled entropy of µ, and we shorter denote h c ((µ n ) n 0 ) by h c (µ) and we call it the scaled entropy of µ. Obviously, we deal with the case when µ has an infinite support (N = ∞). More precisely, we will deal with the case when µ is unbounded, because we will see in Section 4.1 that the scaled entropies are not interesting for measures having a finite total mass (Lemma 4.1). We will also see in this section that the scaled entropy of an unbounded measure pertains to the tail of this measure. We say that the measures µ such that h - c (µ) = h c (µ) = 1 for the scaling c(n) = H(X n ) have full entropy. We will derive from Proposition 3.14 a simple sufficient condition for a measure to have full entropy (Proposition 4.4), involving the RHR.

A quantity about the tail of the measure

In this section, we point out that the scaled entropies h - c (µ) and h c (µ) pertain to the tail of the measure µ when µ is unbounded (Lemma 4.2). Before we prove this, we provide the following lemma which shows that the scaled entropies are not interesting for bounded measures. Lemma 4.1.

In the case µ(N) < ∞, 1) h c (µ) = 0 for any scaling c satisfying c(n) → ∞; 2) h - c (µ) = 1 for the scaling c(n) = H(X n ) when H(X ∞ ) < ∞. Proof: The first point is a consequence of Lemma 2.2.
To prove the second point, we use the ǫ-entropy Hǫ (X n ) defined in Lemma 2.1. We assume without loss of generality that µ(N) = 1. We introduce n 0 (ǫ) = max{n 0 | ∀k n, µ(k) < ǫ}. The integer n 0 (ǫ) is well-defined for ǫ small enough and it goes to ∞ as ǫ → 0, otherwise µ(n) would vanish for some n. In order for a set B ⊂ {0, . . . n} to satisfy Pr(X n ∈ B) ǫ, it is necessary that n > n 0 (ǫ) and B c ⊂ {n 0 (ǫ) + 1, . . . , n}. Therefore,

1 Hǫ (X n ) H(X n ) - n 0 (ǫ) i=0 Pr(X n = i) log Pr(X n = i) H(X n ) ---→ n→∞ - n 0 (ǫ) i=0 µ(i) log µ(i) H(µ) ,
the limit coming from H(X n ) → H(µ) and from the equality

- n 0 (ǫ) i=0 Pr(X n = i) log Pr(X n = i) = - n 0 (ǫ) i=0 µ(i) log µ(i) + µ 0 : n 0 (ǫ) log µ(0 : n) µ(0 : n) .
Letting ǫ → 0, one obtains, as desired,

h - c (µ) = 1 for the scaling c(n) = H(X n ).
In the case µ(N) = ∞, the following lemma says that the scaled entropies h - c (µ) and h c (µ) pertain to the tail of the measure µ. It is understood that we consider scalings starting at n = M for the restricted measure µ |(M :∞) . Lemma 4.2. Let µ be a measure with infinite total mass and let µ ′ = µ |(M :∞) be the restriction of µ to (M : ∞) for some integer M 1. Then h - c (µ) = h - c (µ ′ ) and h c (µ) = h c (µ ′ ) for any scaling c.

Proof: We denote by X n the random variables corresponding to µ as before, and we denote by X ′ n those corresponding to µ ′ . Let ǫ > 0 and take n 0 M sufficiently large in order that Pr(X n 0 M ) > 1-ǫ, and consequently Pr(X n M ) > 1 -ǫ for every n n 0 . Take such a n n 0 . Whenever f is a function whose domain is {0, . . . , n}, the inequality Pr f (

X n ) = X n > 1 -ǫ implies Pr f (X n ) = X n | X n M Pr f (X n ) = X n ∩ X n M 1 -2ǫ. That shows that H ǫ (X n ) H 2ǫ (X ′ n ).
Conversely, let f ′ be a function whose domain is {M, . . . , n} and satisfying

Pr f ′ (X ′ n ) = X ′ n > 1 -ǫ. Define f (x) = f ′ (x) if x ∈ {M, . . . , n} and f (x) = 0 otherwise. Then Pr f (X n ) = X n Pr f (X n ) = X n | X M Pr(X n M ) > (1 -ǫ)(1 -2ǫ) > 1 -3ǫ. That shows that H ǫ (X ′ n ) H 3ǫ (X n ). We finally get H ǫ (X ′ n ) H 3ǫ (X n ) H 6ǫ (X ′ n )
, and the result easily follows.

Full entropy measures

The achievement of this section is Proposition 4.4, a sufficient condition for a measure µ to have full entropy, that is to say h - c (µ) = 1 for the scaling c(n) = H(X n ). Example 4.3 (Continuation of Example 3.17). The condition of Proposition 2.7 holds for the measure µ of Example 3.17 because we have seen H(X n ) ∼ log n.

Thus µ has full entropy and h - c (µ) = 1 for the scaling c(n) = log n.

One can also deduce that the measure µ of Example 3.17 has full entropy from the following proposition. Proof: By Proposition 3.14, we know that H(X n ) = Ω(-log ρ Kn ) = Ω(log n). The result follows from Proposition 2.7.

Example 4.5 (Power measure). In Example 3.15, we have seen that the condition -log ρ Kn = Ω(log n) holds for the power measure µ(n) = (n + 1) a , a > 0. Thus, this measure has full entropy. We also saw H(X n ) ∼ log n in Example 3.16, therefore h - c (µ) = h c (µ) = 1 for the scaling c(n) = log n.

Examples of non-full entropy measures

Here we treat a parametric measure providing examples of non-full entropy measures. Our results provide, for any number r ∈ [0, 1[, an example of a sequence of random variables (X n ) n 0 for which there exists a sequence of random variables

(F n ) n 0 such that Pr(X n = F n ) → 0 but H(Fn)
H(Xn) → r. They will be obtained with the help of Proposition 2.12. Figure 2 depicts the measure µ for which we will study the scaled entropy. Let (a k ) k 1 be a sequence of positive integers and (u k ) k 1 be a sequence of positive real numbers. We denote by (A k ) k 1 and (U k ) k 1 the sequences of the partial sums of (a k ) k 1 and (u k ) k 1 respectively:

A k = k i=1 a i and U k = k i=1 u i .
Setting N k = A k + (k -1), define the measure µ on N by

µ(n) = u k if n = N k for some k 1 1 otherwise . 0 5 10 15 20 • • • u 1 N 1 u 2 N 2 u 3 N 3 a 1 a 2 a 3
Fig. 2. A nonfull entropy measure

The case we treat is the following one:

A k = exp log α (k + 2) , U k = γA k log(k + 3)
with α 2 and γ > 0. For the scaling c defined by

c(n) = H(X n ), we will show that h - c (µ) = h c (µ) = 0 when α > 2 and h - c (µ) = h c (µ) = γ γ+1 when α = 2.
Firstly, let us check that A k is strictly increasing. For α > 1, the function f : x → exp log α (x) is increasing and convex for x 3, because, clearly, its derivative

f ′ : x → αe log α (x) log α-1 (x)
x is positive for x > 1 and, clearly, its second derivative

f ′′ : x → αe log α (x) log α-2 (x) α log α (x) -log(x) + α -1
x 2 is positive for x > exp(1). In order for A k to be strictly increasing, it is enough that f (x + 1) -f (x) 1 for x 3. Since f is convex, f (x + 1) -f (x) f ′ (x), and it is true that f ′ (x) 1 for x 3 because f ′ (x) log α-1 (x). That also shows A k exp log α (k + 1) for k 2. The sequence

(A k ) obviously satisfies A k → ∞ and it satisfies A k ∼ A k+1 because exp log α (k + 1) exp log α (k + 3) A k A k+1 1,
and the left member goes to 1, because

log α (k + 3) -log α (k + 1) ∼ 2α log α-1 (k) k ,
as shown by (3.7).

Consequently, since it is clear that

A k /U k → 0, U k U k + A k+1 → 1. For n N 1 , denote by k(n) the integer k such that N k n < N k+1 . Let B n = {N 1 , . . . , N k(n) } ⊂ {0, 1, . . . , n}, and ǫ n = Pr(X n ∈ B n ). Then ǫ n → 0 because 1 -ǫ n = Pr(X n ∈ B n ) = U k(n) U k(n) + A k(n) + n -N k(n) U k(n) U k(n) + A k(n)+1 ---→ n→∞ 1.
Since ǫ n = Pr(X n = F n ) where the random variable F n is defined by

F n = X n if X n ∈ B n (i.e. X n ∈ {N 1 , . . . , N k(n) }) ∞ otherwise , we get h c (µ) 1 for the scaling c(n) = log k(n) by applying Lemma 2.3, because of the obvious inequality H(F n ) log k(n) + 1 . We set ν k = µ • | {N 1 , . . . , N k } . Then ν k(n) is the conditional law of X n given B n . Now we prove that H(ν k(n) ) ∼ log k(n)
, and then we will get h - c (µ) = 1 by applying Proposition 2.12. This asymptotic equivalence is derived mainly from Example 3.17. The probability measure ν k is the normalisation on {N 1 , . . . , N k } of the measure ν assigning mass u k to N k . The masses of ν are not exactly the same as the ones of the measure µ of Example 3.17 because of the integer part in the expression of A k and because ν(i) corresponds to µ(i + 1) up to the integer part, not to µ(i). However, this latter point is transparent when one adapts the method of Example 3.17 and it is not difficult to deal with the integer part to get H(ν k ) ∼ log k for any α 1 (and whatever the value of γ because it is not involved in ν k ). Therefore, applying Proposition 2.12, we get h

- c (µ) = h c (µ) = 1 for the scaling c(n) = log k(n).
Note that one also gets, as in Example 3.17, the equivalence u k U k ∼ α log α-1 k k about the RHR of ν, which we will use later to estimate the RHR of µ. Now, let us look at the scaled entropy for the scaling c(n) = H(X n ). We will show that H(Fn) H(Xn) → 0 when α > 2, wherefrom h - c (µ) = h c (µ) = 0 by Lemma 2.3, and we will show that log k(n) H(Xn) → γ γ+1 when α = 2, wherefrom h - c (µ) = h c (µ) = γ γ+1 by the above result. We firstly derive an estimate of the conditional entropy

H(X n | F n ). The conditional law of X n given F n = i is uniform on B c n = {0, 1, . . . , n} \ B n if i = ∞ and otherwise it is degenerate, hence ǫ n log(A k(n) ) H(X n | F n ) = ǫ n log(A k(n) + n -N k(n) ) ǫ n log(A k(n)+1 ), therefore H(X n | F n ) ∼ ǫ n log(A k(n) ). Moreover ǫ n ∼ A k(n) U k(n) + A k(n) ∼ A k(n) U k(n) = 1 γ log k(n) + 3 ∼ 1 γ log k(n) and log(A k(n) ) = log α k(n) + 2 ∼ log α k(n) .
Finally,

H(X n | F n ) ∼ 1 γ log α-1 k(n) .

Now, we use the conditional entropy formula

H(X n ) = H(X n | F n ) + H(F n )
to obtain the announced limits:

• if α > 2, H(X n ) ∼ 1 γ log α-1 k(n) because H(F n ) log k(n) + 1
, and consequently

H(Fn) H(Xn) → 0; • if α = 2, H(X n ) ∼ 1 + 1 γ log k(n) because H(F n ) ∼ H(ν k(n) ) ∼ log k(n) by virtue of Lemma 2.11, hence log k(n) H(X n ) → γ γ + 1 .
This achieves our derivation of the scaled entropy.

Finally, let us show that the RHR of µ satisfies ρ n = ∞ and ρ 2 n < ∞ for any α 2. We explained below Theorem 3.1 the reason why we pay attention to the convergence of these series.

If n = N k , ρ n = u k A k + U k ∼ u k U k ∼ α log α-1 k k .
This equivalent stems from

log α (x) -log α (x + 1) ∼ x→∞ - α log α-1 (x) x ,
shown by (3.7). Thus ρ N k = ∞ and this is enough to know ρ n = ∞. Recall that this means µ(N) = ∞ and of course we already knew that. Now,

ρ 2 N k < ∞ and it remains to show n 0,n =N k ρ 2 n < ∞.
This is shown by noting that

ρ n = 1 A k(n) + U k(n) + n -N k(n) < 1 A k(n) + U k(n) when n > N 1 and n = N k , hence n>N 1 ,n =N k ρ 2 n = k 1 N k+1 -1 n=N k +1 ρ 2 n < k 1 a k+1 (A k + U k ) 2 .
Now, using twice the inequality γA k+1 U k+1 ,

a k+1 (A k + U k ) 2 ∼ a k+1 U 2 k+1 < A k+1 U 2 k+1 1 γU k+1 1 γ 2 A k+1 , therefore the sum is convergent because k 2 = o(A k ) when α > 1.

COMPLEMENTS ABOUT THE RHR

This section is devoted to some complements about the RHR. Recall that we assume that µ has support {0, . . . , N } or N (case N = ∞), we denote by X n a random variable following the distribution µ(• | 0 : n), and in the case N = ∞ we also consider a random variable X ∞ ∼ µ(• | N) when µ is normalisable. As before, we denote by (ρ n ) n 0 the RHR of µ. Section 5.1 deals with the monotonicity of H(X n ) as well as the monotonicity of the conditional entropy H(X | X n) in n for N-valued random variables X. The first result involves the RHR and it is new. The second result is already known for absolutely continuous random variables. Section 5.2 provides a representation theorem of the sequence of probability measures µ(• | 0 : n) as a stochastic process (X n ) n 0 with margins X n ∼ µ(• | 0 : n). It will be used in Section 5.3, where we provide a theorem showing that some properties of the RHR of µ are hereditary to the image measures of µ obtained by grouping some blocks of integers.

Monotonicity of the conditional entropy

We firstly prove that H(X n ) is increasing in n whenever the RHR of µ is decreasing in n. Then, using this result, we prove that the residual entropy H(X | X n) of a Nvalued random variable X is decreasing in n whenever its (direct) hazard rate is increasing. This is the discrete analogue of a theorem given in [START_REF] Muliere | A Note on the residual entropy function[END_REF] for absolutely continuous random variables. Theorem 5.1. If ρ n is decreasing in n, then H(X n ) is increasing in n.

Proof: Using the expectation representation (3.6), this easily follows from the fact that the function x → h(x)/x is decreasing and from the fact that X n is stochastically increasing in n. When H(X n ) is increasing, note the interesting inequality

H(X n ) h(ρ n+1 ) ρ n+1 ,
This formula is easily seen by defining the random variable

Y n = ι φ (X φ(n+1)-1 ) ∼ (ι φ * µ)(• | 0 : n),
then by noting that Y n = max k ∈ {0, . . . , n} | ǫ ′ k = 1 where ǫ ′ k = max{ǫ m , m ∈ I k }, and by finally seeing that Pr(ǫ ′ k = 1) = 1 -m∈I k (1 -ρ m ). The second point in the following proposition is obtained by applying Borel-Cantelli's lemmas to the probabilistic representation seen in Section 5.2. Recall that we use the notation µ |B to denote the restriction of µ to a subset B ⊂ N. Proposition 5.4. Say that a function g : [0, 1] → [0, ∞[ is RHR-convergent, respectively RHR-divergent, for the measure µ if g(ρ k ) < ∞, respectively g(ρ k ) = ∞. In the case when g(x) = x α where α 2 is an integer, the following properties hold. 1) The RHR-convergence of g is a tail property of µ, that is to say, it holds for µ if and only if it holds for µ |(M :∞) for every integer M 0, or equivalently for one integer M 0.

2) If g is RHR-divergent for µ, then it is RHR-divergent for every image measure of µ obtained by grouping. Proof: The first point stems from Lemma 3.2 or from the bounds given in (3.4). We check the second point. Consider the probabilistic representation given by the Bernoulli process (ǫ n ) n 0 and the definition (5.1) of the random variables X n . Consider α -1 independent copies of the process (ǫ n ) n 0 . By Borel-Cantelli's second lemma and because of the RHR-divergence of g, the α independent Bernoulli processes simultaneously take the value 1 infinitely times. Now, for each of these processes, one can construct the Bernoulli process (ǫ ′ n ) n 0 corresponding to the given grouping, as seen before. These α independent Bernoulli processes also simultaneously take the value 1 infinitely times, and this implies the RHR-divergence of g for the image measure by Borel-Cantelli's lemma. Note that assertion 1) in the above proposition also holds in the case α = 1 because of Lemma 3.2. Assertion 2) holds too in the case α = 1: it simply means that the grouped measure has an infinite total mass whenever µ has an infinite total mass. Of course, the first assertion of this proposition is more generally true for every function g satisfying

∀σ ∈ ]0, 1[ N , [σ n ∼ ρ n ] =⇒ g(σ n ) ∼ g(ρ n ) .
For instance it is true for the function g = log provided that lim sup ρ n < 1. As an application of Proposition 5.4, assume given two measures µ and ν whose respective RHR ρ and σ satisfy ρ 2 n < ∞ and σ 2 n = ∞. Then the proposition shows that it is not possible to obtain ν by grouping µ, and this even is not possible after restricting µ or ν to a tail subset of N, that is to say, a set of the form (M : ∞).

Fig. 1 .

 1 Fig. 1.x → h(x)/x (solid) and x → -log x (dashed).

  by the expectation representation (3.6), and we deduce from the recursive relation (3.5) that H(X n-1 ) H(Xn) → 1.
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 3 16 (Power measure). For every integer m 1,
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 44 If -log ρ Kn = Ω(log n) in addition to the conditions of the first assertion of Proposition 3.14, then µ has full entropy.

Proof: Take M > 0 arbitrarily high and take an integer N 0 large enough in order that -N i=0 µ∞(i) log µ∞(i) > M . Then H(µn) -N i=0 µn(i) log µn(i) > M for n large enough.

which follows from the recurrence relation (3.5). Now, in the case of a normalisable measure µ only, we denote h X (n) = H(X | X n) where X = X N (= X ∞ if N = ∞) has the normalised version of µ as law. The function h X is defined on {0, . . . , N }. It is named the residual entropy of X in [START_REF] Muliere | A Note on the residual entropy function[END_REF]. We also set r X (n) = Pr(X=n) Pr(X n) . The function r X is well-known under the name of hazard rate of X. The following theorem is shown in [START_REF] Muliere | A Note on the residual entropy function[END_REF] in the case of a continuous random variable X having a density.

is increasing because we are assuming that r X is increasing. The results follows from the equality

for any integers M 1 and n M . Hence r X M is increasing if r X is increasing, and, as we have seen, this implies that

(Geometric measure).

Consider the geometric measure as in Example 3.5. We have seen that ρ n is decreasing in n, hence H(X n ) is increasing by Theorem 5.1. When a < 1, the measure is normalisable and it is easy to check that its hazard rate is constant (it is also well-known that the geometric distribution has a constant hazard rate). The previous theorem shows that H(X | X n) is decreasing in n. In the case a > 1, it is not difficult to check that the hazard rate of X N is increasing for every integer N 1, and then H(X N | X n) is decreasing by the previous theorem.

Probabilistic representation of the X n

Given the RHR of a measure µ, there is an interesting way to construct a sequence (X n ) n 0 of random variables X n ∼ µ(• | 0 : n). This process, up to time reversal and change of signs, appears in [START_REF] Laurent | Standardness and nonstandardness of next-jump time filtrations[END_REF] and [START_REF] Laurent | Uniform entropy scalings of filtrations[END_REF] under the name next-jump time process. We introduce this process for the proof of Proposition 5.4. Take a sequence (ǫ k ) k 0 of independent Bernoulli random variables such that ρ k = Pr(ǫ k = 1). In particular, ǫ 0 = 0, and this allows to define the random variables

for every integer n 0. Obviously, X n is increasing in n.

A trajectory of the process (X n ) n 0 is shown on Figure 3. ǫ n :

The random variable X n has the distribution given in Theorem 3.1, because

for every k ∈ {0, . . . , n}. In the case when µ is normalisable, the series ρ n is convergent (Theorem 3.1). Thus, thanks to Borel-Cantelli's second lemma, it makes sense to define the random variable X ∞ by

whose distribution is the normalised version of µ. In the case when µ is not normalisable, X n almost surely goes to ∞. Indeed, X n takes the value n infinitely many times thanks to Borel-Cantelli's lemma, because the event {X n = n} equals the event {ǫ n = 1} and then it has probability ρ n .

RHR of a grouped measure and RHR-convergent functions

The result of this section is an application of Borel-Cantelli's lemmas to the stochastic process (X n ) n 0 introduced in the previous section. Take a partition of N into non-empty intervals

, where φ : N → N is a strictly increasing function starting at φ(0) = 0. Denote by ι φ (n) the index of the interval I k containing n, and denote by ι φ * µ the image measure of µ by ι φ . We will say that the image measure ι φ * µ is obtained from µ by grouping. The RHR of ι φ * µ is given for every k 0 by

(5.2)