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Abstract. Linked Data Fragment (LDF) approach promotes a new trade-
off between performance and data availability for querying Linked Data.
If data providers’ HTTP caches plays a crucial role in LDF performances,
LDF clients are also caching data during SPARQL query processing. Un-
fortunately, as these clients do not collaborate, they cannot take advan-
tage of this large decentralized cache hosted by clients. In this paper, we
propose CyCLaDEs an overlay network based on LDF fragments simi-
larity. For each LDF client, CyCLaDEs builds a neighborhood of LDF
clients hosting related fragments in their cache. During query processing,
neighborhood cache is checked before requesting LDF server. Experimen-
tal results show that CyCLaDEs is able to handle a significant amount
of LDF query processing and provide a more specialized cache on client-
side.

1 Introduction

Following Linked Data principles, data providers made billions of triples available
on the web [4] and the number of triples is still growing [14]. A part of these data
is available through public SPARQL endpoints maintained by data providers.
However, public SPARQL endpoints have an intrinsic problem of availability as
observed in [1]. The Linked Data Fragments approach (LDF) [16] tackles this
issue by balancing the cost of query processing between data providers and data
consumers. In Linked Data Fragments, data are hosted in LDF servers providing
low-cost publication of data, at the same time, SPARQL query processing is
moved to the LDF clients side. This approach establishes a trade-off between
data availability and performances leveraging the ”pressure” on data providers.
Consequently, a data provider can provide many datasets through one LDF
server at low-cost as demonstrated in WarDrobe [2] where more than 657000
datasets are provided with few LDF servers3.

Caching plays an important role in the performance of LDF server [17].
Client-side SPARQL query processing using triple pattern fragments generates
many calls to LDF server. But as queries are decomposed into triple patterns,

3 http://lodlaundromat.org/wardrobe/



an important percentage of calls are intercepted by traditional HTTP caching
techniques and leverage the pressure on LDF servers. However, HTTP caches
are still on the charge of data providers and in the case of multiple datasets, the
cache could be useless if a query does not belong to frequently accessed datasets.

During query processing, LDF clients are also caching data, clients replicate
triple fragments in their local cache. Unfortunately, as these clients do not col-
laborate, they cannot take advantage of this large decentralized cache hosted
by clients. Building decentralized cache on the client-side has been already ad-
dressed by DHT-based approaches [9]. However, DHT-based approaches intro-
duce high latency during the lookup of a content and can slow down the perfor-
mance of the system. Behave [10] builds a behavioral cache for users browsing
the web by exploiting similarities between browsing behaviors of users. Based on
past navigation, the browser is directly connected to a fixed number of browsers
with similar navigation profile. Consequently, a new requested URL could be
checked in the neighborhood cache with a zero-latency connection. A behav-
ior approach has not been applied in the context of semantic web. Performing
SPARQL queries and navigating on the web are different in terms of the number
of HTTP calls per-second and clients profiling.

In this paper, we propose CyCLaDEs an approach that allows to build a
behavioral decentralized cache hosted by LDF clients. The main contributions
of the paper are:

– We present CyCLaDEs an approach to build a behavioral decentralized cache
on client-side. For each LDF client, CyCLaDEs builds a neighborhood of
LDF clients hosting similar fragments in their cache. Neighborhood cache is
checked before requesting LDF server.

– We present an algorithm to compute client profile. Client profile characterizes
the content of the cache of LDF client at a given moment.

– We evaluate our approach by extending LDF client with CyCLaDEs. We
experiment the extension in different setups, results show that CyCLaDEs
reduce significantly the load on LDF server.

The paper is organized as follows: section 2 summarizes related works. Sec-
tion 3 describes the general approach of CyCLaDEs. Section 4 defines CyCLaDEs
model. Section 5 reports our experimental results. Finally, conclusions and future
works are outlined in Section 6.

2 Related work

Improving SPARQL query processing with caching has been already addressed
in semantic web. Martin et al. [13] proposes to cache query results and manage
cache remplacement, Schmachtenberg [15] proposes semantic query caching re-
lying on query similarity, and Hartig [11] proposes caching to improve efficiency
and result completeness in link traversal query execution. All these approaches
relies on temporal locality where specific data are supposed to be reused again
with a relatively small time duration and caching resources are provided by



data providers. CyCLaDEs relies on behavioral locality where clients with sim-
ilar profiles are directly connected and caching resources are provided by data
consumers.

Linked Data Fragments (LDF) [17, 16] propose to shift complex query pro-
cessing from server to client to improve availability and scalability of SPARQL
endpoints. A SPARQL query is decomposed into triple patterns, LDF server an-
swers triple patterns and sends data back to the client. Client performs joins op-
erations based on nested loop operators, triples patterns generated during query
processing are cached in the LDF client and in a traditional HTTP cache in front
of LDF Server. Although, a SPARQL query processing increases the number of
HTTP requests to the server, a large number of requests are intercepted by
the server cache reducing significantly the load on LDF server as demonstrated
in [17]. LDF relies on temporal locality, and data providers have to provide re-
sources for data caching. Compared to other caching techniques in semantic web,
LDF cache results of a triple pattern, increasing their usefulness for other queries,
i.e, the probability of cache hit is higher than caching a SPARQL query result.
CyCLaDEs aims at discovering and connecting dynamically LDF clients accord-
ing to their behaviors. CyCLaDEs makes the hypothesis that clients perform a
limited query mix, consequently, a triple pattern of a query could be answered in
a neighbor cache. To build a decentralized behavior cache, each LDF client must
have a limited number of neighbors with zero-latency access. During query pro-
cessing, for each triple pattern subquery, CyCLaDEs checks if the triple pattern
can be answered in the local cache, if not in the cache of neighbors, a request
is sent to LDF server only if the triple pattern cannot be answered neither in
the local cache nor in the neighbors cache. CyCLaDEs improves LDF approach
by hosting behavioral caching resources on clients-side. Behavior cache reduces
calls to LDF server especially when a server hosts multiple datasets, the HTTP
cache could handle frequent queries on a dataset but cannot absorb all calls. In
other words, unpopular queries will not be cached in the HTTP cache and will
be answered by the server. In CyCLaDEs, the neighborhood depends on frag-
ment similarity which means that clients are gathered in communities depending
on their past queries. By doing that unpopular or less frequent queries can be
handled in the cache of the neighbors.

Decentralized cooperative caches were proposed in many research areas. Dahlin
et al. [8] proposes a cooperative caching to improve file system read response
time. By analyzing existing large-scale Distributed File Systems (DFS) work-
loads, Blaze [6] discovers that large proportion of “cache miss” is for files that
are already copied in another client’s cache. Blaze proposes dynamic hierarchical
caching to reduce “cache miss” traffic for DFS and server’s load. Research on
peer-to-peer-oriented Content Delivery Networks (CDN) propose decentralized
web cache such as Squirrel [12], FlowerCDN [9] and Behave [10]. Squirrel and
FlowerCDN use Distributed Hash Table (DHT) for indexing all content at all
peers. If such approaches are relevant, querying the cache is expensive in term
of latency. With n participants, a DHT requires logpnq access to check the pres-
ence of a key in the DHT. As LDF query processing can generate thousands of



sub-calls, DHT latency becomes a bottleneck and querying DHT is considerably
less performant than querying directly the LDF server.

Behave [10] is a decentralized cache for browsing the web. It is based on
the Gossple approach [3]. The basic hypothesis is: if two users had visited the
same web page in the past, they will likely to exhibit more common interests in
the future. Based on this assumption, Behave relies on gossiping techniques to
build dynamically a fixed-size neighboring for clients based on their profile, i.e.,
their past http access. When requesting a new URL, Behave is able to quickly
checks if this URL is available in neighbors. Compared to DHT, the number of
items available in Behave cache is smaller, but it is available with zero-latency,
i.e., with a direct socket or web socket connection. The available items are also
personalized, they are based on behavior of the client rather than temporal
locality.

In CyCLaDEs, we want to apply the general approach of Behave for LDF
clients. However, compared to human browsing, LDF client could process a large
number of queries per second and the local cache of the client could change
quickly. We make the hypothesis that clients processed same queries in the past
will likely process similar queries in the future. We build a similarity metric by
counting the number of predicates in triple patterns on a sliding window. We
demonstrate that this metric is efficient for building a decentralized cache for
LDF clients.
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Fig. 2.1: c1-c9 represents LDF clients executing queries on LDF server 1. The
Random Peer Sampling (RPS) network connects clients in a random graph. Clus-
tering Overlay Network (CON) connects the same clients (red link) according
to their queries. c1-c4 performs queries on DrugBank. c6-c9 perform queries on
DBpedia. c5 performs queries on both. The total number of LDF servers is N .



3 CyCLaDEs Motivation and Approach

In CyCLaDEs, we make the hypothesis that clients processed same queries in
the past will likely process similar queries in the future. This is the case of a
web applications proposing forms to end-users and then executes parametrized
SPARQL queries. The Berlin SPARQL Benchmark (BSBM) is built like that [5].
BSBM supposes a realistic web application where users can browse products and
reviews. It generates a query mix based on 12 queries template. BSBM query
mix involves 40 predicates.

CyCLaDEs aims to build a behavioral decentralized cache for LDF query pro-
cessing based on similarities of LDF clients profiles. For each client, CyCLaDEs
selects a fixed number of best similar clients called neighbors and establishes
a direct network connections with them. During a query processing on a given
client, each triple pattern subquery is checked first on local cache, next in the
cache of the neighbors, before contacting the LDF server, if necessary. Because
CyCLaDEs adds a new verification in the neighborhood, checking the cache of
neighbors quickly is essential for the performance of CyCLaDEs. We expect that
the orthogonality of behavioral cache hosted by the data consumers, and tempo-
ral cache hosted by the data providers will reduce significantly the load on the
LDF servers.

In order to build neighborhood and handle the dynamicity of clients, we follow
the general approach of Gossple [3]. CyCLaDEs builds two overlay networks on
client-side:

1. a Random Peer Sampling (RPS) overlay network that maintains membership
among connected clients. We rely on the Cyclon protocol [18] to maintain
the network. Each client maintains a partial view on the entire network. The
view contains a random subset of network nodes. Periodically, the client
selects the oldest node from its view and they exchange parts of their views.
This view is used to bootstrap and maintain the clustering network.

2. a Clustering Overlay Network (CON) builds on top of RPS, it clusters clients
according to their profile. Each client maintains a second view, this view
contains the k best neighbors according to the similarity of their profile
with the client profile. The maintenance of k-best neighbors is performed at
RPS exchange time. To minimize the overhead of shuffling: (1) the profile
informations have to be as small as possible, (2) the similarity metric has to
be computed quickly in order to prevent slowing down the query engine.

Figure 2.1 shows LDF clients, clients c1´ c4 performs queries on DrugBank,
c6´ c9 performs queries on DBPedia and c5 performs queries on both. The RPS
network ensures that all clients are connected through a random graph, clients
profiles make the clustered network converging towards two communities. c1´c4
will be highly connected because they access data over DrugBank, while c6´ c9
will be grouped together due their interest in DBPedia. c5 could be connected
to both communities because it performs query on DrugBank and DBPedia.

Thanks to the clustered overlay network, a client is now able to check avail-
ability of triple patterns in its neighborhood before sending the request to HTTP



cache. Under the hypothesis of profiled clients, the behavioral cache should be
able to handle a significant number of triple pattern queries and to scale with
the number of clients without requesting new resources from data providers.

Of course, the behavioral cache is efficient if the neighborhood of each client
is pertinent and the overhead of the networks maintenance is still low.

4 CyCLaDEs model

In this section, we detail the model of the overlay networks built by CyCLaDEs
on client-side.

4.1 Random Peer Sampling

Random Peer Sampling (RPS) protocols [18] allow each client to maintain a
view of a random subset of the network called neighbors. A view is a fixed-size
table, associating a client ID to an IP address. The size of this view can be set to
logpNq, where N is the total number of the node in the network. RPS protocols
ensure that the network converges quickly to a random graph with no partitions.

To maintain the connectivity of the overlay network, a client periodically
selects the oldest node from its view and they exchange parts of theirs views.
These periodic shuffling of views of clients ensures that each client view always
contains a random subset of the network nodes and consequently maintains
clients connected through a random graph.

In CyCLaDEs, to ease the joining of the network, LDF server maintains a
list of three last connected clients, i.e, called bootstrap clients. Each time a new
client joins the network, i.e. contacts the LDF server, the client receives a list
of the three last connected clients and add randomly one of them in its view.
Periodic shuffling quickly re-establish the random graph property on the network
including the new client.

4.2 LDF client Profiles

The clustering overlay network relies on the LDF client profile. A client profile
has to characterize the content of the local cache of a client. At a given instant,
the content of the cache is determined by the result of recent past processed
queries.

The cache of a LDF client is a list of pkey, valueq fixed-size LRU cache.
The key of the cache is a triple pattern fragment, and the value is the set of
triples that matches the fragment [16]. Each fragment matching a triple pattern
fragment is divided into pages, each page contains 100 triples. The fragment is
filled asynchronously and can be “incomplete”, e.g., a fragment f1 matches 1000
triples, but currently only the first 100 triples has been retrieved from the server.

To illustrate, suppose that a LDF client is processing the following SPARQL
query:



Table 1: LDF client cache after execution of Query in Listing 1.1
key triples

0 ?book http:.../ontology/author ?author []

1

’?book’
http://www.w3.org/1999/02/22-rdf-syntax-
ns#type
http:.../ontology/Book

http:.../resource/%22...And Ladies of the Club%22
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http:.../ontology/Book
...
http:.../resource/%22K%22 Is for Killer
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http:.../ontology/Book

2
http:.../resource/%22...And Ladies of the Club%22
http:.../ontology/author ?author

http:.../resource/%22...And Ladies of the Club%22,
http:.../ontology/author,
http:.../resource/Helen Hooven Santmyer

3
http:.../resource/%22A%22 Is for Alibi
http:.../ontology/author
?author

http:.../resource/%22A%22 Is for Alibi,
http:.../ontology/author,
http:.../resource/Sue Grafton

4
http:.../resource/%22B%22 Is for Burglar,
http:.../ontology/author, ?author

http:.../resource/%22B%22 Is for Burglar,
http:.../ontology/author, http:.../resource/Sue Grafton

5
http:.../resource/%22C%22 Is for Corpse,
http:.../ontology/author, ?author

http:.../resource/%22C%22 Is for Corpse,
http:.../ontology/author,
http:.../resource/Sue Grafton

6
http:.../resource/%22D%22 Is for Deadbeat,
http:.../ontology/author, ?author

http:.../resource/%22D%22 Is for Deadbeat,
http:.../ontology/author,
http:.../resource/Sue Grafton

7 http:.../resource/%22E%22 Is for Evidence,
http:.../ontology/author, ?author

[]

8 http:.../resource/%22F%22 Is for Fugitive,
http:.../ontology/author, ?author

[]

9 http:.../resource/%22G%22 Is for Gumshoe,
http:.../ontology/author, ?author

[]

SELECT DISTINCT ?book ? author
WHERE {

?book rd f : type dbpedia´owl : Book ; tp1
dbpedia´owl : author ? author . tp2

}
LIMIT 5

Listing 1.1: Q: Authors of books

The query is decomposed into triple pattern tp1 and tp2. The local cache
will be asynchronously populated as described in table 1. Because the number of
matches of books (31172) is smaller than those of authors (39935), LDF client
starts by retrieving books. Entry 0 contains tp1 with empty data, entry 1 contains
tp2 with some data. LDF client starts by retrieving books and starts the nested
loop to retrieve authors for a given book. Entries 2-9 contain all one triple as
answer, but only the first five are needed to be retrieved to answer the query
with Limit5. Several strategies are possible to compute a profile of a LDF client:

– Cache key : we can consider a vector of keys of the cache as in Behave [10]
and we reduce the dimension of the vector with a bloom filter. However,
nested loop processing makes LDF quickly override the whole cache with
the next query. If a new query searching for french authors is executed,
then the nested loop will iterate on french authors instead of books and will
completely rewrite the cache given in table 1. Consequently, the state of the
cache at a given time, do not reflect the near past.

– Past queries: we can analyze statically the past executed queries and extract
processed predicates. Unfortunately, this does reflect the join ordering de-
cided at run-time by LDF client and cannot take into account nested loops.



Algorithm 1 ComputeProfile(s,w,t)

Require: : w: Window size, s: Stream of triples, t: timestamp
Ensure: : Pr : set of (predicate, frequency, timestamp) of size w
1: Pr Ñ ∅
2: while data stream continues do
3: Receive the next streaming triple tp “ ps p oq
4: if (tp.p,fp, ) P Pr then
5: Pr Y (tp.p, fp ` 1,t) {accumulate the frequency of the predicate p and update time}
6: else
7: Pr Y (tp.p,1,t) {add the new predicate p to the profile}
8: if |Pr| ą w then
9: Pr z pp1, fp1 , t1q : pp1, fp1 , t1q P Pr ^ E pp2, fp2 , t2q P Pr : t2 ă t1} {delete the oldest

predicate from the profile}

– min-count sketch: we can use the count-min sketch [7] to analyze the fre-
quency of processed predicates from the beginning of the session. However,
count-min sketch does not forget and will not capture the recent past.

In CyCLaDEs, we want to define the profile in spirit of count-min sketch but
with a short time memory, i.e., a memory of the recent past. We denote the
profile of a client c by Prpcq “ tpp, fp, dqu, where Pr is a view of a fixed-size on
the stream of the triple patterns processed by the client, p is a predicate in the
triple pattern in the stream, fq is the frequency and d is the timestamp of the
last update of p. To avoid to mix predicates retrieved from different data sources,
we concat to the predicate the provenance of predicate. For example, the general
predicate rdfs:label retrieved from DBpedia should not be used with the same
predicate retrieved from DrugBank. In order to simplify notation, we just keep
predicate that should be expanded to the couple (provenance,predicate).

The algorithm 1 presents CyCLaDEs profiling procedure. CyCLaDEs inter-
cepts the stream of the processed triple patterns and extracts the predicates. If
the predicate belongs to the profile, the frequency of this predicate is incremented
by one and the timestamp associated to this entry is updated. Otherwise, Cy-
CLaDEs just insert a new entry in the profile. If the structure exceeds w entries,
then CyCLaDEs removes the entry with the oldest timestamp. This profiling
algorithm is designed to tolerate nested loops and forget predicates which are
not used frequently. For the client whose cache is detailed in table 1, after the
entry 4 in the cache, the profile will be:

{(http://www.w3.org/1999/02/22-rdf-syntax-ns#type , 1 ) ,
(http://dbpedia.org/ontology/author , 3)}

4.3 Clustered Network and Similarity Metric

CyCLaDEs relies on a random peer sampling overlay network for managing
memberships and on a clustered overlay network to manage the k-best neigh-
bors. Concretely, the clustered network is just a second view on the network
hosted by each client. This view is composed of the list of k best neighbors with
similar profiles. The view is updated during shuffling phase, when a client starts
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Fig. 4.1: Partial CyCLaDEs network centred on C5, C6. Solid lines represent
clients in RPS view (2) . Dashed lines represent clients in CON view (4). Each
client has a profile size of 3 defined as predicate : frequency.

shuffling, it selects the oldest neighbor in its RPS view and they exchange profile
informations, if the remote client has better neighbors in its view, then the local
view is updated in order to keep the k-best neighbors.

To determine if a profile is better than another one, we use the generalized
Jaccard similarity coefficient defined as:

Jpx, yq “

ř

i minpxi, yiq
ř

i maxpxi, yiq

Where x and y are two multi-sets and the natural numbers xi ě 0 and yi ě are
the multiplicity of the set.

Figure 4.1 describes a CyCLaDEs network focused on C5, C6. The RPS view
size is fixed to 2 and represented as solid lines. The CON view size is fixed to
4 and is represented as dashed lines. Each client has a profile of size 3 that
contains the last 3 mostly used predicates in the recent past. pi represents a
predicate and the associated integer indicates the frequency of this predicate in
the recent past. Figure 4.1a illustrates the state of C5, C6 before C5 triggered
a shuffling with C6. C6 is chosen because it is the oldest client in RPS view of
C5. Figure 4.1b describes the state of C5, C6 after completion of shuffling. As
we can see, only one RPS neighbor is changed for both C5 and C6. This is the
result of exchanging half of RPS view between C5 and C6 as in Cyclon [18].
For CON views, C5 integrated C9 in its cluster while C6 integrated C8. During
shuffling, C5 retrieves the profiles of the CON view of C6 including C6. Next,
it ranks all profiles according to the generalized Jaccard coefficient and keeps
only the top-4. C9 is more similar to C5 than C8 because JpC5, C9q “ 0, 3, and



(a) Original LDF client (b) LDF client with CyCLaDEs

Fig. 4.2: Impacts of clients number on hit-rate : (10 clients, RPSview “ 4,
CONview “ 9), (50 clients, RPSview “ 6, CONview “ 15) and (100 clients,
RPSview “ 7, CONview “ 20).

JpC5, C8q “ 0, 25 therefore, C5 drops C8 and integrates C9. C6 follows the same
procedure by dropping C9 and integrating C8.

5 Experimental Study

The goal of the experimental study is to evaluate the effectiveness of CyCLaDEs.
We measure mainly the hit-ratio; the fraction of queries answered by the decen-
tralized cache.

5.1 Experimental setup

We extended the LDF client4 with the CyCLaDEs model presented in section 4.
CyCLaDEs source code is available at : https://github.com/pfolz/cyclades.
The current implementation does not handle fragment transfer.

The setup environment is composed of one LDF server, one reverse proxy and
different number of clients. Nginx is the reverse proxy with a cache set to 1GB.
We used Berlin SPARQL Benchmark (BSBM) [5] as in [16] with two datasets:
1M and 10M. We generated 2500 queries for running different experiments.

Table 2 presents the different parameters used in the experimentation. We
vary the value of parameters according to the objective of the experimentations
as explained in the following sections. The shuffle time is fixed to 10s for all
experiments.

For all experimentation, we first run a warm-up round where each client
executes its query mix composed of 25 queries and start real round, after a
synchronization barrier. Hit-ratio is measure during real round.

4 https://github.com/LinkedDataFragments/Client.js



(a) Data sets size (b) Local cache size

Fig. 4.3: Impacts of data sets size and local cache size on hit-rate. For 10 LDF
clients with RPSview “ 4, CONview “ 9 and Profileview “ 10

Table 2: Experimental Parameters
Parameter Values

Number of Clients 10 - 50 - 100

RPS view 4 - 6 - 7

CON view 9 - 15 - 20

Local cache 100 - 1000 - 10000

Profile size 5 - 10 - 30

Shuffle Time 10s

Data sets BSBM 1M - BSBM 10M

Queries 25 over BSBM

Impact of the number of the clients on the behavioral cache To study
the impact of the number of clients on the behavior cache, we used BSBM dataset
with 1M with a local cache of size 1000 on each client. The RPS view size and
CON view size are fixed to (4,9) for 10 clients, (6,15) for 50 clients, and (7,20)
for 100 clients.

Figure 4.2a presents results of the LDF clients without CyCLaDEs. As we
can see, 40% of calls are handled by the local cache. The flow of BSBM queries
simulates a real user interacting with a web application. This behavior promotes
the local cache.

Figure 4.2b describes the results obtained with CyCLaDEs activated. We
observe that performances of local cache is nearly the same. The neighbor cache
is handling 22% of total calls. It increases from 19% with 10 clients to 25% with
100 clients. This improvement is explained by a larger CON view size with 100
clients.



Fig. 5.1: Impacts of profile size on hit-rate for two datasets with 50 clients per
dataset. RPSview “ 6 and CONview “ 15. Profilesize “ 5, 10 and 30

Fig. 5.2: Query load as the number of request received by node

If we compare the number of calls to the server with 100 clients with and
without CyCLaDEs, we observe that CyCLaDEs reduced the calls to server from
65% to 22%.

Impact of the size of the data sets on the behavioral cache For this ex-
perimentation, we used two datasets BSBM with 1M triples and BSBM with 10M
triples, a local cache of 1000, a profile view of size 10 and 10 LDF clients. We used
the same setup of the 10 clients of the previous experimentation (RPSview “ 4
and CONview “ 9). Figure 4.3a shows the percentage of calls answered in the
local cache, neighbors caches and in the LDF server using the two datasets. As
we can see, the calls to the local cache depends considerably on the size of the
data, the percentage of hit-rate is 47% in the case of BSBM with 1M, and it
decreased to 11% for BSBM with 10M. This is normal because the cache has a



(a) Profile size = 5 (b) Profile size = 30

Fig. 5.3: Impacts of data profile size on the similarity in clustering overlay net-
work. Two distinct communities are discovered for two datasets.

limited size and the temporal locality of the cache reduce its utility. However,
the behavior cache calls stay stable with a hit-rate around 19% for both data
sets.

Impact of the cache size We study the impact of the local cache size on the
hit-rate of behavioral cache. We used the following parameters: BSBM 10M, 10
LDF clients, and RPSview “ 4 and CONview “ 9. Figure 4.3b shows that the
number of calls answered by caches are proportional with the size of the cache.
For local cache with 100 entries, the hit-rate of local cache and behavioral cache
nearly equivalent 5% for the local cache and 7% for the behavioral cache. For
local cache with 1000 entries, the hit-rate behavioral cache is 18%, greater than
the hit-rate of the local cache of 11%. Behavioral cache is more efficient than
local cache. The situation changes for a local cache with 10000 entries, in this
case, the hit-rate of local cache is 59% and 28% for behavioral cache, only 13%
of calls are forwarded to the server.

Impacts of the profile size on cache-hit We run an experimentation with 2
different BSBM datasets of 1M hosted on the same LDF server with 2 different
URLs. Each dataset has its own community of 50 clients running BSBM queries.
As pointed out in section 4.2, we use provenance to differentiate predicates in
local cache of LDF clients. All clients run with RPSview “ 6, CONview “ 15
and a cache size of 1000 entries.

We vary profile size to 5, 10 and 30 predicates. Figure 5.1 shows the perfor-
mances of CyCLaDEs are quite similar. However, the performances with k=5
is less than k=10 and 30. The query mix of BSBM use often 16 predicates.



Therefore, 5 entries in the profile is sometimes not enough to compute a good
similarity.

Query load As in previous experimentation, we run an experimentation with 2
different BSBM datasets of 1M hosted on the same LDF server with 2 different
URLs.

Figure 5.2 shows the distribution of queries over clients. We want to verify
if there is hotspot, i.e., one client receiving many cache queries from the others.
As we can see, most of the clients handle 10,000 caches queries and a few handle
more than 100,000 cache queries.

Impacts of the profile size onthe communities in the clustering overlay
network As in previous experimentation, we setup 2 BSBM datasets of 1M
with 50 clients per dataset. We vary the profile size to 5, 10 and 30. Figure 5.3a
shows clearly that CyCLaDEs is able to build two clusters with both values of
profile size. As we can see in figure 5.3b, a greater value of profile size promotes
the clustering. In this case, only clients with similar profiles will receives cache
queries to retrieve fragments.

6 Conclusion and Future work

In this paper, we presented CyCLaDEs, a behavioral decentralized cache for
LDF clients. This cache is hosted by clients and completes the traditional HTTP
temporal cache hosted by data providers.

We demonstrated in experiments that a behavioral cache is able to capture
a significant part of triple pattern fragment queries generated by LDF query
processing. Consequently, it leverages the pressure on data providers resources by
spreading the cost of query processing on clients. We proposed a cheap algorithm
able to profile the subqueries processed on a client and gather the best neighbors
for a client. This profiling has been proven effective in experiments. In this
paper, we demonstrated how to bring data to queries with caching techniques,
another approach could be to bring queries to data by choosing among neighbors,
if a neighbor is able to process more than one triple pattern of a query. The
promising results we obtained during experimentations encourage us to propose
and experiment new profiling techniques that take into account the number of
transferred triples and compare with current profiling technique.
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