
HAL Id: hal-01251646
https://hal.science/hal-01251646

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bulk Forces and Interface Forces in Assemblies of
Magnetized Pieces of Matter

Alain Bossavit

To cite this version:
Alain Bossavit. Bulk Forces and Interface Forces in Assemblies of Magnetized Pieces of Matter. IEEE
Transactions on Magnetics, 2016, 52 (3), pp.1 - 4. �10.1109/TMAG.2015.2481939�. �hal-01251646�

https://hal.science/hal-01251646
https://hal.archives-ouvertes.fr


Bulk Forces and Interface Forces
in Assemblies of Magnetized Pieces of Matter
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When two magnets are stuck together, where do magnetic forces operate and which formulas should one apply to compute them?
Such frequently asked questions do not find immediate answers in the literature on forces, mainly because the force field is obtained,
by the Virtual Power Principle (VPP), as a (mathematical, vector-valued) distribution, not as a plain vector field, which would be
more convenient for practical computation. We intend to show, in a few important cases of contact (between two linear materials with
different permeabilities, between magnet and magnetizable metal, linear or not, between two hard magnets, etc.), how to represent
this single distribution by two vector fields, one of them borne by the bulk of the matter, the other one localized at material interfaces
where discontinuities of permeability, of magnetization, etc., do occur. Suitable extensions of the classical Maxwell tensor play an
important role in the computation (by the so-called ‘pillbox trick’) of this interface vector field.

Index Terms—Magnetostatics, magnetic force, contact forces, virtual power principle, Maxwell’s tensor.

I. INTRODUCTION

CONSIDER a piece of matter with reluctivity ν (indepen-
dent on the magnetic field) plunged into the field of a

DC coil that lies some distance away.1 Suppose ν insensitive
also to the local strain (this is to avoid for the moment
the difficulties of magnetostriction), but possibly non-uniform
inside the domain D occupied by the matter. One will learn,
from various sources (e.g., [1], [2], [3], etc.), that the force
field inside D, or ‘bulk force’, is 1/2 |B|2∇ν. This vanishes
for uniform ν. Yet the piece is attracted by the coil, so there
must be a force, which cannot reside elsewhere than at the
air–matter interface S, the boundary of D (Fig. 1). Indeed, it
can be shown (we do it in detail below) that this surface force
is

FS = 1/2 (|Hτ |2[µ]− |Bn|2[ν])n, (1)

where n is the outward unit normal, Hτ and Bn the tangential
part of H and normal part of B (both continuous across S),
and [µ] and [ν] the jumps of µ and ν across the surface. (Note
that [µ] > 0, as a rule, and hence [ν] < 0. Look at Fig. 1 for
the sign conventions about the jump.)

There are several ways to prove (1). One of them consists
in taking 1/2 |B|2∇ν ‘in the sense of distributions’. I shall
explain in detail what this means, but let us first see how the
Virtual Power Principle (VPP) yields the magnetic force as a
distribution, by its very nature.

Let the symbol v (letter ‘vee’, not to be confused with ν
for ‘nu’) denote the velocity of a virtual motion, in which a
particle sitting at point x in the reference configuration (the
one for which we want to compute forces) is displaced to the
point x + tv(x) at time t. We take v smooth and compactly
supported (i.e., null outside some bounded region, called the

1Compumag 2015 paper, submitted to IEEE Transactions on Magnetism,
accepted July 1, 2015. Date of current version: Jan. 4, 2016. Apart from
cosmetic edits, the main difference with the published one is the reinsertion
of Section VI, formerly cut off for lack of space.

support of v). Call Ψv(t, B) the magnetic energy the system
would contain at time t of this virtual motion, if the magnetic
induction was B at this instant. Then—a well-known result; cf.
[4] for a detailed proof—the virtual power at time 0 is minus
the partial derivative of Ψv with respect to t, for t = 0 and
B = B(0), its value at time 0. Hence a linear function of v. It
may happen that this function (which yields the virtual power
at t = 0 for the virtual motion associated with v) has the form∫
F · v, where F is a vector field, which is then, by definition,

the force field. (All integrals of this kind, where the integration
domain is left unspecified, are over all space.) But most often
the map v → −∂tΨv(0, B(0) is just that: a map, linear in v,
with the kind of continuity with respect to v that qualifies it as
a distribution. (It’s a vector-valued distribution, since the test
functions v are themselves vector-valued.)

For instance, in the case just evoked of a piece with
reluctivity ν, the linear map one finds cannot be written as∫
F · v, where F would be 1/2 |B|2∇ν at all points where

this vector field is well defined. This would exclude S, across
which both ν and |B|2 are discontinuous, and thus would make
us miss the surface force. The convenient notation 1/2 |B|2∇ν
will be used nonetheless for the force distribution, but it will
denote a different object than F . Which object, exactly, is what
we need to make clear, and the proof of (1) will come as a
by-product.

This exercise will be followed by a more difficult one,
the case of hard magnets with B = µ0(H + M) as B–H
law. Several possibilities exist for how M depends on the
deformation of matter. One of them (the simplest, according
to which M rotates with matter, but does not depend on local
strain) was addressed in [4], where the force field ‘in the sense
of distributions’ was found to be

F = −∇M ·B − 1/2 rot(H ×B), (2)

where the meaning of∇M ·B will soon be made precise. There
is again, hidden in (2), a system of forces borne by S (the air-



magnet interface, or the magnet-magnet interface where M can
be discontinuous), a part of which is normal to S and the other
part tangential. We shall generalize all that to a large category
of non-linear B–H laws.

On notations: Given vector fields X and Y , we define X ·∇Y
as the vector field with components Xj ∂jY

i in an orthonormal
frame, using Einstein’s convention. In contrast, ∇Y · X is
∂iY

j Xj , as in (2). One will check that ∇Y · X−X · ∇Y
= X × rotY. The ‘dyadic product’ X ⊗ Y is the 2-tensor T
with components T ij = XiY j . Other examples of 2-tensors
are the above ∇Y and the Kronecker δ. The classical Maxwell
tensor is then MT = H ⊗B − 1/2 (H ·B) δ. We shall have use
for the right-side divergence div T , in components ∂jT ij , of a
2-tensor T , and for its product T ·X , in components T ijXj ,
with a vector X . Note that div δ = 0 and div(fδ) = ∇f if f
is a scalar field.

II. DISTRIBUTIONS 101

What follows is an elementary introduction to aspects of
distribution theory relevant here. Let us for a moment distance
ourselves from electromagnetism and deal with two scalar
functions f and g. (Later, they will become ν and |B|2.) The
test functions, smooth and compactly supported, are called ϕ
when scalar-valued, v when vector-valued.

If f is just integrable, without more regularity, the map ϕ→∫
f ϕ does qualify as a distribution. But for a distribution such

as the ‘Dirac mass’ ϕ → ϕ(a), where a is a given spatial
point, there is no function δa such that ϕ(a) =

∫
δa ϕ. Thus,

distributions encompass functions and generalize them [7].
When f is not differentiable, its gradient ‘in the sense

of distributions’ exists nonetheless. It’s the distribution v →
−
∫
f div v, to which one extends the notation ∇f . Then one

understands
∫
∇f · v as −

∫
f div v. A notational abuse, of

course, but which makes sense: if f were differentiable all
over space, one would have −

∫
f div v =

∫
∇f · v, indeed.

Now suppose f smooth inside both D and the outer region
D′, but discontinuous across their common boundary S, with
a jump [f ]. Then, integrating by parts on D and D′,∫
∇f ·v =̂−

∫
f div v = −

∫
S

[f ]n·v+

∫
D∪D′

(∇sf)·v, (3)

where ∇sf denotes the ‘strong’ gradient of f , well-defined in
D and D′, but not on S. The capped equal sign means that the
integral expression to its left is defined as the one to its right.

So the vector-valued distribution denoted by ∇f in (3)
can be represented by two ordinary vector fields, the almost
everywhere defined ∇sf , living on 3D space, and [f ]n, living
on S only. We find them, as a rule, in the roles of body force
and interface force, in all situations evoked here.

Now, let’s try and interpret in the sense of distributions
the product g∇f . If both f and g are smooth all over and
compactly supported, one has

∫
g∇f · v = −

∫
f div(gv). So

we may take that as a definition of g∇f, provided
∫
f div(gv)

makes sense, which requires [g] = 0. Then,∫
(g∇f) · v =̂−

∫
S

g [f ]n · v +

∫
D∪D′

g (∇sf) · v. (4)
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Fig. 1. The jump [g] of a scalar quantity g across S is its value on the
‘upstream’ side of S minus its value on the ‘downstream’ side, as both defined
by the direction of the normal field n. By convention, n goes from D to D′

here. Also shown, one of the surfaces Sα of the foliation described in the text
(S is S0) and suggested, the orthogonal decomposition of the field B into
normal and tangential parts.

The constraint [g] = 0 is not a surprise, since the product of
two distributions (here g and ∇f ) does not exist uncondition-
ally. But our goal, to find an interpretation of |B|2∇ν as a
distribution, is thwarted, since [|B|2] 6= 0 as a rule. Neither
can we handle −|H|2∇µ that way, since [|H|2] 6= 0 as well.
Fortunately, a suitable combination of these two expressions
will work.

III. PROVING (1)

Suppose the interface S presented as the locus of points x for
which s(x) = 0, for some smooth real function s. (Having that
locally is enough.) Then, the surfaces Sα = {x : s(x) = α}, for
α in a neighborhood of zero, say −δ < α < δ, make a foliation
of a neighborhood of S, call it Dδ . Call d the function on Dδ

defined by d(x) = α when x belongs to Sα. To each such point
x, assign the unit vector (∇d)(x)/|(∇d)(x)|, hence a field n
which extends the field of unit normals to S considered so
far. Pick also two unit vectors, anchored at x, tangent to Sd(x),
mutually orthogonal, both smoothly depending on x. This way,
we have a smooth system of orthonormal frames, ‘adapted’ to
S in an obvious sense. Any smooth vector field X will have
(when restricted to Dδ) an orthogonal decomposition of the
form X = Xn n+Xτ , normal part plus tangential part. When
X is smooth in D and D′ separately, but discontinuous across
S, one may talk of the jumps [Xn]n and [Xτ ] across S of
these two parts.

Now, let’s apply this to the physical fields H and B, for
which [Hτ ] = 0 and [Bn] = 0. Over Dδ , except on S where
discontinuities occur, we have

|B|2∇ν = B2
n∇ν + |Bτ |2∇ν

= B2
n∇ν + |µHτ |2∇ν = B2

n∇ν + |Hτ |2µ2∇ν

= B2
n∇ν − |Hτ |2∇µ, (5)

since µ∇ν = −ν∇µ as entailed by νµ = 1. Thus, |B|2∇ν
appears as the difference of two terms, B2

n∇ν and |Hτ |2∇µ,
both of the form g∇f with [g] = 0 on which we worked
previously. Applying (4) to both terms yields (1).
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Fig. 2. Surface Σ here is astride a part of the material interface S. Integrating
TMn over Σ gives the magnetic force on this part. The top and bottom surfaces
of the pillbox need not coincide with surfaces of the foliation Sα of Fig. 1 (but
should be close to S on the side of νi in case νi, i = 1, 2, is not uniform).

IV. MAXWELL’S TENSOR AND THE ‘PILLBOX’ METHOD

There is another approach to the previous result, by using
the identity, valid when H = νB and divB = 0,

div(MT ) = (rotH)×B + 1/2 |B|2∇ν. (6)

This is just algebra when ν, H and B are smooth, and we
allow discontinuities by taking (6) in the sense of distributions.
Consider now the vector field MT · nΣ, i.e., (MT )ijnjΣ in
coordinates, where nΣ is the normal field living on the surface
Σ of Fig. 2. Integrate it over the pillbox surface Σ. The result
is a vector. According to Gauss’s theorem and our previously
acquired knowledge (cf., e.g., [4]) that (rotH)×B+1/2 |B|2∇ν
is the bulk force, this vector is the total force upon the matter
inside Σ, and it converges towards the force on the part of
the interface within Σ when the top and bottom surfaces of
the pillbox are moved towards S. (Piecewise smoothness is
enough for proving this convergence.)

The passage to the limit thus suggested leads to (1) by a
computation one may find more intuitive than the previous
one. The reason for that is visible in (6): As a distribution,
MT is more regular (it’s an ordinary tensor field, actually,
almost everywhere defined) than its divergence (rotH) × B
+ 1/2 |B|2∇ν. This is an example of the general and well
known fact that integration has a smoothing effect, contrary to
differentiation. (Think of the vector potential A, more regular
than the field B that derives from it: Here, MT is a ‘tensor
potential’ from which the right-hand side of (6) derives. The
analogy is apt in many respects.)

It thus appears that the knowledge of a 2-tensor from which
the force, as a distribution, derives, is desirable. Hence our
working programme from this point on: In more and more
complex situations (non-linearity of the B–H law, anisotropy,
magnetostrictive behavior), find the force F as a distribution
by applying the VPP, then find a 2-tensor T such that div T =
F (clearly, T need not be unique), then integrate T · nΣ over
the surface of a suitable pillbox to reveal the interface forces.

V. MAGNETIC ENERGY DURING A VIRTUAL MOTION

Let us assume that we face a problem in magnetoelasticity
in which the magnetic energy density of a piece of matter
depends on its state of deformation β and of the ambient
magnetic field b. (This excludes magnetic hysteresis and a lot
of complex mechanical behaviors, such as those of ferrofluids
and other so-called polar materials.) So we have a function

ψ(x, β, b) where β is a linear map (the one that sends a material
vector ξ anchored at point x to its new value β(ξ) in the
deformed state), and b a vector. This function, we assume, is
convex with respect to b, and the B–H law is simply expressed
by H(x) = ∂bψ(x, β(x), B(x)). The magnetic energy density
(later denoted by ψ̂) is then ψ̂(x) = ψ(x, β(x), B(x))dx, and
the total magnetic energy is ∫ ψ̂(x)dx, an integral over all
space, with dx as volume element.

Note that β can be considered as a 2-tensor, but not a
symmetric one. By polar decomposition, one can write β = rs,
where r is a rotation and s a symmetric map, the one known
as strain in Mechanics. As a very general rule, constitutive
laws are not affected by rotations, which in our case implies
that ψ(x, rs, rb) = ψ(x, s, b) whatever the rotation r. It is
therefore enough to know ψ(x, s, b), where s is a symmetric
2-tensor. We shall have use for the three partial derivatives
of ψ, also as functions of x, s and b, denoted by ∂xψ, ∂sψ,
∂bψ. (Occasionally, we may write ∇ψ instead of ∂xψ, since
∇ connotes spatial derivation usually.) We note that ∂sψ has
the dimension of a stress, which justifies calling σM , with M
for ‘magnetostriction’, its value in the reference state.

During a virtual motion x→ x+tv(x), the magnetic energy
changes, even though B is frozen at its reference value, because
the material configuration changes. So we call ψv(t, x,B(x))
the value of the magnetic energy density at time t and point
x in the ambient field B(x) during such a virtual motion. (No
mention of β: it is determined by v. Beware that ψ and ψv are
very different objects.) Recall (cf. [4]) that the virtual power
we aim at is the partial derivative in t, at t = 0, of (minus) the
total magnetic energy Ψv(t, B) = ∫ ψv(t, x,B(x))dx, with B
frozen in all space at its value at t = 0.

We start from

ψv(t, x+ tv(x), b) = ψ(x, sv(t, x), [rv(t, x)]−1b), (7)

where sv and rv are the elements of the deformation (strain
and rotation) all over. What (7) says is this: “The particle that
was at point x at time 0 has reached the point x + tv(x) at
time t, and because of the deformation rv(t)sv(t) that it has
sustained, the magnetic energy density it bears in field b is
what it would have been at x under the strain sv in the field
[rv(t, x)]−1b.”

Next, we obtain the time-derivative of −ψv at time 0 by
differentiating both sides of (7) in t, using the chain rule.
(Hence the virtual power, by summing up −∂t=0ψv over
all space.) One makes use of the approximations sv(t, x)
' 1+t∇symv and rv(t, x)b ' 1+t/2 (rotv)×b, where ∇symv
is the symmetrized 2-tensor (∂iv

j + ∂jv
i)/2. This amounts to

neglecting terms in t2 and higher order in the Taylor expansion
of −ψv about t = 0, which doesn’t affect the result:

−∂tψv |t=0
= v · [∇ψ + div(σM )− 1/2 rot(H ×B)], (8)

as obtained when one substitutes B(x) for b. The appearance
of H there is due to the fact that H = ∂bψ. The operators rot
and −div come from standard integration by parts, as adjuncts
of the rot in “rot v” and of the ∇sym in “∇symv”.

Remarkably, the result is generic: Whatever the B–H law,
one has the same three terms in the expression of the magnetic



force (in addition to the (rotH)×B force): An inhomogeneity
term ∇ψ (generalizing the |B|2/2∇ν we had when ψ was
ψ(x, s, b) = 1/2 ν(x)|b|2 whatever s), a magnetostrictive term
div(σM ), and an anisotropy term −1/2 rot(H × B). All of
these, of course, to be interpreted as distributions, so we aim
now at a Maxwell-like tensor2 whose divergence would be the
term between square brackets in (8).

VI. AN AUGMENTED MAXWELL TENSOR

Let’s recall a few identities: For H and B not necessarily
the physical fields by this name,

(rotH)×B = B · ∇H −∇H ·B. (9)

One remarks that

div(H ⊗B) = H divB +B · ∇H, (10)

div[H ⊗B −B ⊗H] = rot(H ×B). (11)

Let now B and H be the physical fields, linked by the law
ψ(B(x)) + ϕ(H(x)) = B(x) ·H(x), where ϕ is the coenergy
density dual to ψ, with divB = 0. (We’ll say that B and H
make a ‘magnetic pair’.) To avoid confusion, we denote the∇ψ
of (8), that is to say the partial derivative of ψ with respect to
position in presence of the ambient field B, by ∇ψ(·, B). Same
convention for ∇ϕ(·, H). Recall that ∇ψ(·, B) = −∇ϕ(·, H)
for such a magnetic pair. Let us denote by ϕ̂(H) the coenergy
density ϕ(x,H(x)), a function of x only (the H is just a label).
By the chain rule,

∇ϕ̂(H) = ∇ϕ( · , H) +∇H ·B. (12)

We may now assert:

Proposition 1. If B and H form a magnetic pair, then

div[1/2 (H ⊗B +B ⊗H)− ϕ̂(H) δ] = (13)

(rotH)×B −∇ϕ( · , H)− 1/2 rot(H ×B).

Proof of (13): Thanks to (9), (rotH)×B−∇ϕ( · , H) = B·∇H
− (∇ϕ( · , H) + ∇H · B) = B · ∇H − ∇ϕ̂(H), taking (12)
into account. But this is div(H ⊗B− ϕ̂(H) δ), thanks to (10)
and to the fact that div(g δ) = ∇g. So one has

div(H ⊗B − ϕ̂(H) δ) = (rotH)×B −∇ϕ( · , H). (14)

Subtracting from (14), on both sides, half of (11), one does
find (13). �

Hence a Maxwell tensor that generalizes Sanchez et al.’s
proposal in [5] and [6] (which was H ⊗ B − ϕ̂(H) δ, if
expressed in our notation) by accounting for the anisotropy
forces (whose omission may make observable difference, as
shown in [8]). By adding σM to it, we obtain the following
augmented Maxwell tensor,

AT = 1/2 (H ⊗B +B ⊗H)− ϕ̂(H) δ + σM , (15)

which also accounts for magnetostriction.

2For lack of space, Section VI that follows had to be excised from the
published version, in which the expression (15) for the augmented Maxwell
tensor was given without proof.

VII. INTERFACE TERMS

Let us conclude by giving the results of some pillbox
computations. In the nonlinear but isotropic case, we find FS
= ([ϕ̂(H)]− [Hn]Bn)n by using the adapted system of frames
of Fig. 1 ([ ] denotes the jump). There is an equivalent ‘B-
oriented’ formula, FS = (−[ψ̂(B)] + [Bτ ] · Hτ )n, showing
that there is no “preference for the coenergy” in the whole
approach. (Details on this will appear in [9].)

In case of anisotropy, the term −1/2 rot(H × B) in (2)
stands for a distribution represented by two fields. One is
−1/2 rots(H × B), with the strong form of the curl, the bulk
force. The other one, borne by S, is expressed by one half the
jump [n× (H×B)]. By the double cross product formula, this
jump is [(n ·B)H− (n ·H)B], which equals n× [n ·H n×B].
This can be seen to reduce to −1/2 [BτHn], a tangential field
living on S, by using the S-adapted system of frames.

Especially interesting is the case B = µ0(H + M). In the
adapted frame system, M = Mnn + Mτ , both Mn and Mτ

smooth in D and D′, but discontinuous, with jumps [Mn] and
[Mτ ] across S. Substituting ν0B −M for H and µ0(H +M)
for B, one finds, after a short calculation,

[n× (H ×B)] = µ0[Mn]Hτ −Bn[Mτ ] + µ0[MnMτ ], (16)

to be multiplied by 1/2 to get the tangential part of the interface
force FS . Last, the term −∇M · B of (2) is found, by the
technique of Section II, to contribute to FS the normal field

{[Mn]Bn + µ0[Mτ ] ·Hτ + 1/2 µ0[|Mτ |2]}n. (17)

It would remain to explore the large realm of magnetostric-
tion by using (15). For example, assume B = µ0(H +M(s)).
Then σM = −∂s(M(s) ·B). One finds the same surface forces
as above, with M = M(1), plus a term in [σM · n]. There
is also a bulk force div(σM ), even if M is uniform (because
B is not, as a rule). Knowing only M(1), the magnetization
in the reference configuration, would not give access to these
terms, thus leaving the question “What is the force inside a
permanent magnet?” ill-posed.

To sum up: Interface forces can be obtained by the VPP,
but as distributions, and these are a delicate tool. More robust
(and fully equivalent) is the use of Maxwell-like tensors allied
with the pillbox trick. But such tensors, built from the VPP-
computed forces, not the other way round, may differ from the
classical Maxwell tensor, which should not be construed as a
primary concept in the question of forces, but as just a helpful
analytical tool.
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