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Abstract

This paper is about index policies for minimizing (frequentist) regret in a stochastic multi-armed
bandit model, inspired by a Bayesian view on the problem. Our main contribution is to prove that the
Bayes-UCB algorithm, which relies on quantiles of posterior distributions, is asymptotically optimal
when the reward distributions belong to a one-dimensional exponential family, for a large class of
prior distributions. We also show that the Bayesian literature gives new insight on what kind of
exploration rates could be used in frequentist, UCB-type algorithms. Indeed, approximations of the
Bayesian optimal solution or the Finite Horizon Gittins indices provide a justification for the kl-UCB™
and kl-UCB-H" algorithms, whose asymptotic optimality is also established.

1 Introduction

This paper presents new analyses of Bayesian flavored strategies for sequential resource allocation in an
unknown, stochastic environment modeled as a multi-armed bandit. A stochastic multi-armed bandit
model is a set of K probability distributions, Vi, ..., Vg, called arms, with which an agent interacts in a
sequential way. At round ¢, the agent, who does not know the arms’ distributions, chooses an arm Ay.
The draw of this arm produces an independent sample X; from the associated probability distribution
V4,, often interpreted as a reward. Indeed, the arms can be viewed as those of different slot machines,
also called one-armed bandits, generating rewards according to some underlying probability distribution.

In several applications that range from the motivating example of clinical trials [38] to the more
modern motivation of online advertisement (e.g., [16]), the goal of the agent is to adjust his strategy
A = (Ap)ien, also called a bandit algorithm, in order to maximize the rewards accumulated during his
interaction with the bandit model. The adopted strategy has to be sequential, in the sense that the
next arm to play is chosen based on past observations: letting F; = o(41, X1, ..., A, X¢) be the o-field
generated by the observations up to round ¢, A; is o(F;—1, Uy )-measurable, where U, is a uniform random
variable independent from F;_; (as algorithms may be randomized).

More precisely, the goal is to design a sequential strategy maximizing the expectation of the sum of
rewards up to some horizon T'. If ui,..., ux denote the means of the arms, and p* = max, pg, this is
equivalent to minimizing the regret, defined as the expected difference between the reward accumulated
by an oracle strategy always playing the best arm, and the reward accumulated by a strategy .A:

=E lZ(M* - MA,:)] - (1)

t=1

T

Ty — ZXt

t=1

R(T, A) :=E

The expectation is taken with respect to the randomness in the sequence of successive rewards from each
arm a, denoted by (Y, s)sen, and the possible randomization of the algorithm, (U;);. We denote by
N,(t) = 22:1 1(4,=q) the number of draws from arm a at the end of round ¢, so that Xt = Ya, n,, (1)
This paper focuses on good strategies in parametric bandit models, in which the distribution of arm
a depends on some parameter ,: we write V, = vy, . Like in every parametric model, two different views



can be adopted. In the frequentist view, 8 = (6y,...,0k) is an unknown parameter. In the Bayesian
view, 0 is a random variable, drawn from a prior distribution II. More precisely, we define Pg (resp. Eg)
the probability (resp. expectation) under the probabilistic model in which for all a, (Vg s)sen is i.i.d.
distributed under v, and P! (resp. E!) the probability (resp. expectation) under the probabilistic model
in which for all a (Y, s)sen is i.i.d. conditionally to 6, with conditional distribution vy, , and 6 ~ II. The
expectation in (1) can thus be taken under either of these two probabilistic models. In the first case this
leads to the notion of frequentist regret, which depends on 6:

Ro(T, A) :=Fg | > (u" - uAt)] = (1" = pta)Eo[Na(T)). (2)

a=1

In the second case, this leads to the notion of Bayesian regret, sometimes called Bayes risk in the literature
(see [27]), which depends on the prior distribution II:

t=1

T
R (T, A) = E" [Zw* - um] ~ [ Ro(r, a(o). 3)

The first bandit strategy was introduced by Thompson in 1933 [38] in a Bayesian framework, and a
large part of the early work on bandit models is adopting the same perspective [10, 7, 19, 8]. Indeed, as
Bayes risk minimization has an ezact—yet often intractable—solution, finding ways to efficiently compute
this solution has been an important line of research. Since 1985 and the seminal work of Lai and Robbins
[28], there is also a precise characterization of good bandit algorithms in a frequentist sense. They show
that for any uniformly efficient policy A (i.e. such that for all 8, Rg(T, A) = o(T%) for all a €]0, 1]), the
number of draws of any sub-optimal arm a (u, < p*) is asymptotically lower bounded as follows:

. . EQ[NG,(T)] 1
lim inf > 4
Thoe  logT  — KL(vp,,vp)’ @)

where KL(v, ') denotes the Kullback-Leibler divergence between the distributions v and /. From (2),
this yields a lower bound on the regret.

This result holds for simple parametric bandit models, including exponential family bandit models
presented in Section 2, that will be our main focus in this paper. It paved the way to a new line
of research, aimed at building asymptotically optimal strategies, that is, strategies matching the lower
bound (4) for some classes of distributions. Most of the algorithms proposed since then belong to the
family of index policies, that compute at each round one index per arm, depending on the history of
rewards observed from this arm only, and select the arm with largest index. More precisely, they are
UCB-type algorithms, building confidence intervals for the means of the arms and choosing as an index
for each arm the associated Upper Confidence Bound (UCB). The design of the confidence intervals has
been successively improved [27, 1, 6, 5, 4, 21, 14] so as to obtain simple index policies for which non-
asymptotic upper bound on the regret can be given. Among them, the kl-UCB algorithm [14] matches
the lower bound (4) for exponential family bandit models. As they use confidence intervals on unknown
parameters, all these index policies are based on frequentist tools. Nevertheless, it is interesting to note
that the first index policy was introduced by Gittins in 1979 [19] to solve a Bayesian multi-armed bandit
problem and is based on Bayesian tools, i.e. on exploiting the posterior distribution on the parameter of
each arm.

However, tools and objectives can be separated: one can compute the Bayes risk of an algorithm
based on frequentist tools, or the (frequentist) regret of an algorithm based on Bayesian tools. In
this paper, we focus on the latter and advocate the use of index policies inspired by Bayesian tools for
minimizing regret, in particular the Bayes-UCB algorithm [24], which is based on quantiles of the posterior
distributions on the means. Our main contribution is to prove that this algorithm is asymptotically
optimal, i.e. that it matches the lower bound (4), for any exponential bandit model and for a large
class of prior distributions. Our analysis relies on two new ingredients: tight bounds on the tail of



posterior distributions (Lemma 4), and a self-normalized deviation inequality featuring an exploration
rate that decreases with the number of observations (Lemma 5). This last tool also allows us to prove the
asymptotic optimality of two variants of kl-UCB, called kl-UCB™ and kl-UCB-H™, that display improved
empirical performance. Interestingly, the alternative exploration rate used by these two algorithms is
already suggested by asymptotic approximations of the Bayesian exact solution or the Finite-Horizon
Gittins indices.

The paper is structured as follows. Section 2 introduces the class of exponential family bandit models
that we consider in the rest of the paper, and the associated frequentist and Bayesian tools. In Sec-
tion 3, we present the Bayes-UCB algorithm, and give a proof of its asymptotic optimality. We introduce
kI-UCB™* and kI-UCB-H™ in Section 4, in which we prove their asymptotic optimality and also exhibit
connections with existing Bayesian policies. In Section 5, we illustrate numerically the good performance
of our three asymptotically optimal, Bayesian-flavored index policies in terms of regret. We also inves-
tigate their ability to attain an optimal rate in terms of Bayes risk. Some proofs are provided in the
supplemental paper [23].

Notation Recall that N,(t) = Zi:l 1 (a,=q) is the number of draws from arm a at the end of round
t. Letting fiq s = %22:1 Y, r be the empirical mean of the first s rewards from a, the empirical mean
of arm a after ¢ rounds of the bandit algorithm, fi,(t), satisfies jiq(t) = 0 if No(t) = 0, fia(t) = fla, N, (1)
otherwise.

2 (Bayesian) exponential family bandit models

In the rest of the paper, we consider the important class of exponential family bandit models, in which
the arms belong to a one-parameter canonical exponential family.

2.1 Exponential family bandit model

A one-parameter canonical exponential family is a set P of probability distributions, indexed by a real
parameter 0 called the natural parameter, that is defined by

P = {vp,0 € O : vp has a density fo(z) = exp(fz — b()) w.r.t £},

where © = (7,0"7) C R is an open interval, b a twice-differentiable and convex function (called the
log-partition function) and ¢ a reference measure. Examples of such distributions include Bernoulli
distributions, Gaussian distributions with known variance, Poisson distributions, or Gamma distributions
with known shape parameter.

If X ~ v, it can be shown that E[X] = b(#) and Var[X] = b(6) > 0, where b (resp. b) is the derivative
(resp. second derivative) of b with respect to the natural parameter 6. Thus there is a one-to-one
mapping between the natural parameter # and the mean pu = 15(9), and distributions in an exponential
family can be alternatively parametrized by their mean. Letting J := B(@), for p € J we denote by v*
the distribution in P that has mean p : v* = Vi1(u)- The variance V() of the distribution v is related
to its mean in the following way:

V() = b(b~" (1) (5)

In the sequel, we fix an exponential family P and consider a bandit model v#* = (v#1 ... v*¥) where
vt belongs to P and has mean u,. When considering Bayesian bandit models, we restrict our attention
to product prior distributions on p = (u1,...,tK), such that p, is drawn from a prior distribution
on J = b(@) that has density f, with respect to the Lebesgue measure. We let 7% be the posterior
distribution on p, after the first ¢ rounds of the bandit game. With a slight abuse of notation, we will
identify 7! with its density, for which a more precise expression is provided in Section 2.3.



2.2 Kullback-Leibler divergence and confidence intervals

For distributions that belong to a one-parameter exponential family, the large deviation rate function
has a simple and explicit form, featuring the Kullback-Leibler (KL) divergence, and one can build tight
confidence intervals on their means. The KL-divergence between two distributions vy and vy in an
exponential family has a closed form expression as a function of the natural parameters § and A, given
by

K(8,)) := KL(vg,vx) = b(0)(0 — X) — b(0) + b(N). (6)

We also introduce d(u, ') as the KL-divergence between the distributions of means p and '

dp, ) = KL, o) = Kb~ (1), b~ (1))

Applying the Cramér-Chernoff method (see e.g. [9]) in an exponential family yields an explicit deviation
inequality featuring this divergence function: if ji, is the empirical mean of s samples from v* and x > u,
one has P (fis > x) < exp(—sd(z, ). This inequality can be used to build a confidence interval for p
based on a fized number of observations s. Inside a bandit algorithm, computing a confidence interval on
the mean of an arm a requires to take into account the random number of observations N,(t) available
at round ¢t. Using a self-normalized deviation inequality (see [14] and references therein), one can show
that, at any round ¢ of a bandit game, the kl-UCB index, defined as

uq(t) :=sup{g € J : Na(t)d(f1a(t),q) < log(tlog®(t))}, (7)

where ¢ > 3 is a real parameter, satisfies P (uq(t) > pa) = 1—1/(tlog® *t) and is thus an upper confidence
bound on p,. The exploration rate, which is here log(tlog®(t)), controls the coverage probability of the
interval.

Closed-form expressions for the divergence function d in the most common examples of exponential
families are available (see [14]). Using the fact that y — d(z,y) is increasing when y > z, an approxima-
tion of u4(t) can then be obtained using, for example, binary search.

2.3 Posterior distributions in Bayesian exponential family bandits

It is well-known that the posterior distribution on the mean of a distribution that belongs to an expo-
nential family depends on two sufficient statistics: the number of observations and the empirical means
of these observations. With f, the density of the prior distribution on pu,, introducing

exp (n b} (w)e = (b~ ()] ) fulw)
Jyexp (n {b_l(u):v - b(b‘l(u))D fa(u)du

the density of the posterior distribution on u, after ¢ rounds of the bandit game can be written

7Ta.,n,as(u) = for u e J,

t
Mo = ﬂ-avNa(t)vﬂa(t)'

While our analysis holds for any choice of prior distribution, in practice one may want to exploit the exis-
tence of families of conjugate priors (e.g. Beta distributions for Bernoulli rewards, Gaussian distributions
for Gaussian rewards, Gamma distributions for Poisson rewards). With a prior distribution chosen in
such a family, the associated posterior distribution is well-known and its quantiles are easy to compute,
which is of particular interest for the Bayes-UCB algorithm, described in the next section.

Finally, we give below a rewriting of the posterior distribution that will be very useful in the sequel
to obtain tight bounds on its tails.

Lemma 1.
() = (= (,w) ()
a,n,T fJ exp(—nd(xau))fa(u)

o for all weJ.



Proof Let u € J. One has

Tana(u) =

) fa(u) o~ [zb 7 (@) —b(b7 ()]
)fa(u)du o [zb (@) =b(b~ 1 ()]

using the closed form expression (6) and the fact that § = b= (y).

3 Bayes-UCB: a simple and optimal Bayesian index policy

3.1 Algorithm and main result

The Bayes-UCB algorithm is an index policy that was introduced by [24] in the context of parametric
bandit models. Given a prior distribution on the parameters of the arms, the index used for each arm is a
well-chosen quantile of the (marginal) posterior distributions of its mean. For exponential family bandit
models, given a product prior distribution on the means, the Bayes-UCB index is

1 1
(1) = l——: 7t ) = l—-——F+ 7, 7 )
2(t) == Q ( t(logt)C’W“) Q < t(logt)C’W ,Na(t),ua(t))

where Q(a;7) is the quantile of order « of the distribution 7 (that is, Px (X < Q(a;7)) = a) and ¢
is a real parameter. In the particular case of bandit models with Gaussian arms, [33] have introduced a
variant of Bayes-UCB with a slightly different tuning of the confidence level, under the name UCL (for
Upper Credible Limit).

While the efficiency of Bayes-UCB has been demonstrated even beyond bandit models with indepen-
dent arms, regret bounds are available only in very limited cases. For Bernoulli bandit models asymptotic
optimality is established by [24] when a uniform prior distribution on the mean of each arm is used. For
Gaussian bandit models [33] give a logarithmic regret bound when an uniformative prior is used. In
this section, we provide new finite-time regret bounds that hold in general exponential family bandit
models, showing that a slight variant of Bayes-UCB is asymptotically optimal for a large class of prior
distributions.

We fix an exponential family, characterized by its log-partition function b and the interval © =]0—, 67|
of possible natural parameters. We let = = b(6~) and pt = b(#) (x~ may be equal to —co and ut to
+00). We analyze Bayes-UCB for exponential bandit models satisfying the following assumption.

Assumption 2. There exists g, > p~ and uar < pt such thatVa € {1,..., K}, pug < g < uar.

For Poisson or Exponential distributions, this assumption requires that the means of all arms are
different from zero, while they should be included in ]0, 1] for Bernoulli distributions. We now introduce
a regularized version of the Bayes-UCB index that relies on the knowledge of 1, and ua' , as

_ 1
7,(t) == Q <1 - W;ﬂ'a,NQ(t),ua(t)) ; (8)

where [iq(t) = min (max(fiq(t), ug ), g )- Note that pg and g can be chosen arbitrarily close to 4~ and
u™ respectively, in which case g, (t) often coincides with the original Bayes-UCB index g, (t).



Theorem 3. Let v* be an exponential bandit model satisfying Assumption 2. Assume that for all a, 70

has a density f, with respect to the Lebesgue measure such that fo(u) > 0 for allu € J =0b(0). Letc > 7.
The algorithm that draws each arm once and for t > K selects at time t + 1

Apy1 = argmax G, (1),
a

with G, (t) defined in (8) satisfies, for all € > 0,

y 1+e
Vo o', BINA(T)] € o log(T) + o (loB(T)).

From Theorem 3, taking the lim sup and letting € go to zero show that (this slight variant of) Bayes-

UCB satisfies E[N, (T)] )
Va # a*, limsup 2 < .
T—oo  10g(T) d(pa, p*)
Thus this index policy is asymptotically optimal, as it matches Lai and Robbins’ lower bound (4). As
we shall see in Section 5, from a practical point of view Bayes-UCB outperforms kl-UCB and performs

similarly (sometimes slightly better, sometimes slightly worse) as Thompson Sampling, another popular
Bayesian algorithm that we now discuss.

3.2 Posterior quantiles versus posterior samples

Over the past few years, another Bayesian algorithm, Thompson Sampling, has become increasingly
popular for its good empirical performance, and we explain how Bayes-UCB is related to this alternative,
randomized, Bayesian approach.

The Thompson Sampling algorithm, that draws each arm according to its posterior probability of
being optimal, was introduced in 1933 as the very first bandit algorithm [38] and re-discovered recently
for its good empirical performance [36, 16]. Thompson Sampling can be implemented in virtually any
Bayesian bandit model in which one can sample the posterior distribution, by drawing one sample from
the posterior on each arm and selecting the arm that yields the largest sample. In any such case, Bayes-
UCB can be implemented as well and may appear as a more robust alternative as the quantiles can be
estimated based on several samples in case there is no efficient algorithm to compute them.

Our experiments of Section 5 show that Bayes-UCB as well as the other Bayesian-flavored index
policies presented in Section 4 are competitive with Thompson Sampling in general one-dimensional
exponential families. Compared to Bayes-UCB, the theoretical understanding of Thompson Sampling is
more limited: this algorithm is known to be asymptotically optimal in exponential family bandit models,
yet only for specific choices of prior distributions [25, 3, 26].

In more complex bandit models, there are situations in which Bayes-UCB is indeed used over Thomp-
son Sampling. When there is a potentially infinite number of arms and the mean reward function is
assumed to be drawn from a Gaussian Process, the GP-UCB of [37], that coincides with Bayes-UCB, is
very popular in the Bayesian optimization community [11].

3.3 Tail bounds for posterior distributions

Just like the analysis of [24], the analysis of Bayes-UCB that we give in the next section relies on tight
bounds on the tails of posterior distributions that permit to control quantiles. These bounds are expressed
with the Kullback-Leibler divergence function d. Therefore, an additional tool in the proof is the control
of the deviations of the empirical mean rewards from the true mean reward, measured with this divergence
function, which follows from the work of [14].

In the particular case of Bernoulli bandit models, Bayes-UCB uses quantiles of Beta posterior distri-
butions. In that case a specific argument, namely the fact that Beta(a, b) is the distribution of the a-th
order statistic among a + b — 1 uniform random variables, relates a Beta distribution (and its tails) to a



Binomial distribution (and its tails). This ‘Beta-Binomial trick’ is also used extensively in the analysis
of Thompson Sampling for Bernoulli bandits proposed by [2, 25, 3]. Note that this argument can only be
used for Beta distributions with integer parameters, which rules out many possible prior distributions.
The analysis of [33] in the Gaussian case also relies on specific tails bounds for the Gaussian posterior dis-
tributions. For exponential family bandit models, an upper bound on the tail of the posterior distribution
was obtained by [26] using the Jeffrey’s prior.

Lemma 4 below present more general results that hold for any class of exponential family bandit
models and any prior distribution with a density that is positive on J = b(@) For such (proper) prior
distributions, we give deterministic upper and lower bounds on the corresponding posterior probabilities
Tan.z([v, uT]). Compared to the result of [26], which is not presented in this deterministic way, Lemma 4
is based on a different rewriting of the posterior distribution, given in Lemma 1.

Lemma 4. Let g, ,uar be defined in Assumption 2.

1. There exist two positive constants A and B such that for all z,v that satisfy py <z <v < ug, for
allm > 1, forallae{l,...,K},

An—le—nd(w,v) < ﬂ-a,n,m([vaﬂ—i_ D < B\/ﬁe—nd(m,v)'
2. There ezists a constant C such that for all z,v that satisfy py <v <z < g, for all n > 1, for all
ae{l,...,K},

e v + —.
ana (V17 2 =

The constants A, B,C depend on ua,uar, b and the prior densities.

This result permits in particular to show that the quantile g, (¢) defined in (8) satisfies U, (t) < q,(t) <
U,(t), with

()
=}
P
~
=

sup {q < g+ Na(D)d(T, (1), q) < log ((Atlog®(t))/Na()) }
Ua(t) = suwp{a<ug s Nat)d(,(0),0) < log (Btlog" () /Na(D)) }

Hence, despite their Bayesian nature, the indices used in Bayes-UCB are strongly related to frequentist kl-
UCB type indices. However, compared to the index u,(t) defined in (7), the exploration rate that appears
in U,(t) and U,(t) also features the current number of draws N,(¢). Lai gives in [27] an asymptotic
analysis of any index strategy of the above form with an exploration function g(7'/N,(t)), where g(t) ~
log(t) when t goes to infinity. Yet neither U, (¢) nor U,(t) are not exactly of that form, and we propose
below a finite-time analysis that relies on new, non-asymptotic, tools.

3.4 Finite-time analysis

We give here the proof of Theorem 3. To ease the notation, assume that arm 1 is an optimal arm, and
let a be a suboptimal arm.

E[N.(T)] = E

T—1 T—1
z%_a)] 1as|Y <>] .
t=0 t=K

We introduce a truncated version of the KL-divergence, d* (z,y) := d(z,y)1 (<, and let g, be a decreas-
ing sequence to be specified later.

Using that, by definition of the algorithm, if a is played at round ¢ 4 1, it holds in particular that
7,(t) > q,(t), one has

(At41=a)

N

(1 —g9c >, (1)) U (1 =g < q1(t), Aryr = a)

(11 —9c > (1)) U (11— gt < Ga(t), Ary1 = a).

N



This yields

T-1 T—1
EN(T) <1+ P(un—g0 > @a(t) + > P — g0 < Ga(t), Aryr = a).
t=K t=K

The posterior bounds established in Lemma 4 permit to further upper bound the two sums in the
right-hand side of the above inequality. With C defined in Lemma 4, we introduce ty, defined by

t>tg = (ul — gt > py and C*tlog(t)* > 1) .

On the one hand, for ¢t > ¢y,

_ 1
(1 — g1 > @u(t)) = (m,wwt)([ul gt < )

= <7T1,N1<t>,m<t>([u1 — g6, 7)) < TTog ,m( ) < — gt) ;
since by the lower bound in the second statement of Lemma 4,

1

<771,N1(t),u1(t)([,u1 - gtv,u—i_D = tlog ,Ml( ) > 1 — gt)

C L 2c .
C ( A0 < tlogct> C (Ni(t) > C%%1og t) C (N1(t) > t) = 0.

Now using the lower bound in the first statement of Lemma 4,

Ae~N1(t)d(B1(t),p1—gt) 1
— gy > q1(t - < n(t) < —
m-gzam) o (P <m0 < - a)
Atlog®t
Ny(t)dt (g (¢ —q) >log | —>— ).
c (M0 (0 - 90 = o (L))
On the other hand,
T-1
Z P(p1 — gt < qa(t), At41 = a)
t=K

1
Z P (WaN .ia (1 — g6, ) > Tlog’t At+1 )

T
1
< P (,Ua( ) < M1 — G¢, W@,Na(t),ﬂa(t)([,ul — gt ,U+D > Fg(:t’AtJrl = CL> (9)
t=K
T—1
+ Z P(fa(t) > 1 — gt Arp1 = a) .
t=K



Using Lemma 4, the first sum in (9) is upper bounded by

Z P (B /N (e~ Na ®)dt (fa(t),p1—gt) >

t=K

A =
tlogt i a)

T—1 t
_Sd+(7a,s; _.t) 1 — —
< Z ZP (B\/Ee fia,s:t1=9t) > tlogct’Na(t) =s5,A41 = a)
t=K s=1
T—1 t 1
< P sdt fla s, 11 — gs) < log(Tlog®T log(B -1 ,
NI (50 (e = 02 < 08T log"T) + Iog() + 3 1o

Na(t) =8, Arp1 = a)

B

1
P (sd+(ua7s, w1 — gs) <logT + cloglogT + log(B) + 3 log s)

Il
-

S

[M]=

1
P (3d+(ﬂa,5, w1 — gs) <logT + cloglogT + log(B) + 3 log s)
1

S

T

+ Z]P)(,aa,s < ,Ua)

s=1

To third inequality follows from exchanging the sums over s and ¢ and using that Zfl 1 LN, ()=9)n(Ars1=a)
is smaller than 1 for all s. The last inequality uses that if fiq s > po, i, s < fla,s and dr (ﬁa_’s, 1

- gs) 2
d* (fia,s, 11 — gs). Then by Chernoff inequality,

T

S Bl < ) < D expl=silyiy o) = ——

—d(pg, :
s=1 s=1 I—e (o e

Still using Chernoff inequality, the second sum in (9) is upper bounded by

T-1 T—1
D P (fa(t) > 1 — g1 Avir = @) < Y P (fla(t) 2 1 — g, () Arpr = a)
t=K t=K

T-1 t

< ZZ Mas_ gsuNa(t):SvAt-i-l:a’)

< P (flas > p1 —gs) < Y exp(—sd(i1 — gs, ra)) := No < +00.
s=1

s=1

Putting things together, we showed that there exists some constant N = max(to, No+(1—e~ %o »#a))=1) 4
1 such that

E[N, <N+Z( O (0. — a0 1o (5L ) )

Ny (t)

T
T

N 1
+ Z]P’ <sd+(ua_’s, w1 — gs) <logT + cloglog T + log(B) + 3 log s>

s=1

T>



Term T3 is shown below to be of order o(log(T)), as fi1(t) cannot be too far from u; — g:. Note
however that the deviation is expressed with log(t/N1(¢)) in place of the traditional log(t), which makes
the proof of Lemma 5 more intricate. In particular, Lemma 5 applies to a specific sequence (g;) defined
therein, and a similar result could not be obtained for the choice g; = 0, unlike Lemma 6 below.

Lemma 5. Let g, be such that d(ur — g, 1) = logl(t)' If ¢ > 7, for all A, if t is larger than
exp(max(v/3, A7/7)),
Atlog®t
P Ny(t)dt (i (t), p1 — g¢) > 1
( 1(#)d™ (1 (), 1 — gt) > log N1 (t) )
< < 1 3loglogt + log A 1 > 1
e —.
— \Atlogt Atlog? t Atlog®t t?
From Lemma 5, one has
= log? t + 3(log t) loglog(t) + log Alogt + 1 =1
(T1)§ez At(] Bt) + t_2
=K 08 =K

e 3 logAd) «— 1 w2
Zlo42 L
A< +e+10gK)t_ZKtlog(t)+ 6

3 logA 2
<—12+- loglogT + —.
_A<+e+1ogK)OgOg +6

IN

gy

The following lemma permits to give an upper bound on Term T2.

Lemma 6. Let f,g,h be three functions such that

f(s) — o0, g(s) — 0 and @ — 0,

S—00 S—00 S s—oo

with g and s — h(s)/s non-increasing for s large enough.
For all e > 0 there exists a (problem-dependent) constant N,(e) such that for all T > N4(¢),

T

> P (sd* (a5 — 9(s)) < f(T) + h(s))

s=1

1+s) I+ f(T)\/svgw(l+g)sd/(ua,u1)z

= d(pa, 1 d(pa, p1)?
' (fas 1) ? 1
+ 8(1+¢)*V? < ’ +1,
(L+e7Ve d(ftas 1) ) 1 — e=lg pa)

with Vo = sup,ep,,, u1) V1), where the variance function is defined in (5).

Let € > 0. Using Lemma 6, with f(s) = log(s) + cloglog(s) + log(B), g(s) = gs defined in Lemma 5

and h(s) = 1 log(s), there exists problem dependent constants Cy and Dg(e) such that

< 1+e¢
d(ﬂauﬂl)

Putting together the upper bounds on (T1) and (T2) yields the conclusion: for all € > 0,

(T) (log T + cloglog T) + Co\/log T + cloglog T + Dy(e).

1+4+¢
E[No(T)] < Wlog(T) + O:(/10g(T)).
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4 A Bayesian insight on alternative exploration rates

The kI-UCB index of an arm, u,(t), introduced in (7), uses the exploration rate log(¢log®(t)), that does
not depend on arm a. Some alternatives to this universal exploration rate have been suggested in the
literature, and we formally introduce two variants of kl-UCB, called kl-UCB™ and kl-UCB-H' using
an exploration rate that decreases with the number of draws of arm a. The tools developed for the
analysis of Bayes-UCB allow us to prove the asymptotic optimality of both algorithms. We then show
that the Bayesian literature on the multi-armed bandit problem provides a natural justification for these
algorithms, that are related to approximations of the Bayesian optimal optimal solution or the Gittins
indices.

4.1 The kI-UCB™" and kl-UCB-H" algorithms

We introduce in Definition 7 two new index policies, and prove their asymptotic optimality. The indices
indices ul*(t) and u] (t) both rely on an exploration rate that decreases with the number of plays of

arm a. kl-UCB-HT additionally requires the knowledge of the horizon T. In practice, both algorithms
outperform kl-UCB, as can be seen in Section 5.

Definition 7. Let ¢ > 0. We define kl-UCB-H" and kl-UCB" with parameter ¢ > 0 as the index policies
respectively based on the indices

a0 = swp{a NG00 < tog () | (10)

ug (t)

sup {q - Nad(a(t),q) < log (?V—g(tf)} . (11)

A key step in the analysis of Bayes-UCB is the control of the probability of the event

(3000 1), — 90 2 1og (L) )

in which an exploration rate of order log(¢/N1(t)) appears. This control is obtained in Lemma 5 which
can also be used to analyze the kl-UCB-HT and kl-UCB™ algorithms, that are based on such alternative
exploration rates. The following theorem proves the asymptotic optimality of these two index policies.
The proof is provided in Appendix B.

Theorem 8. Let ¢ > 7. Each of the index policy associated to the indices defined by (11) and (10)
satisfies, for all € > 0,

1+¢
BIN(T)] < o5 108(T) + O.(/loa(T)).

The use of alternative exploration rates in UCB-type algorithms has appeared before in the bandit
literature. For example the MOSS algorithm [4], based on the index

falt) + \/ ee (TR0,

is designed to be optimal in a minimax sense for bandit models with sub-gaussian rewards: the algorithm
achieves a O(v KT) distribution-independent upper bound on the regret. Besides, it was already noted
by [17] that the use of the exploration rate log(t/N,(t)) in place of log(t) in the kl-UCB algorithm leads
to better empirical performance. In this paper, additionally to proving the asymptotic optimality of these
approaches, we now provide a new insight on the use of such alternative exploration rates by relating the
kl-UCB-HT algorithm to other Bayesian policies.
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4.2 Bayesian optimal solution and Gittins indices

The alternative exploration rate discussed in Section 4.1 happens to be related to two other Bayesian
strategies for the multi-armed bandit problem: the Bayesian optimal solution and the Finite-Horizon
Gittins index policy, that we present here.

In a Bayesian framework, the interaction of an agent with a multi-armed bandit can be modeled by
a Markov Decision Process (MDP) in which the state II; is the current posterior distribution over the
parameter of the arms. In exponential bandit models, the posterior over p is I, = @n’. There are K
possible actions and when action A; is chosen in state II;, the observed reward X, is a sample from arm
Ay, that satisfies, conditionally to the past, X; ~ v* and u ~ II;(A;). The new state is II'*! = @mit!
with 7t = 7! for all a # A; and the density of 7rf4t1 gets updated according to

it () oc exp(— (0" (w) Xy — b(b™ (u))))rhy, (u).

Bayes risk minimization, or reward maximization under the Bayesian probabilistic model, is equivalent
to solving this MDP for the finite-horizon criterion, which boils down to finding a strategy of the form
A; = g(I1;) for some deterministic function g, that maximizes

T
ZXf] | (12)
t=1

where (X7); is the sequence of rewards obtained under policy g. From the theory of MDPs (see e.g., [32]),
the optimal policy is solution of dynamic programming equations and can be computed by induction.
However, due to the very large, if not infinite, state space (the set of possible posterior distributions over
w), the computation is often intractable.

In a slightly different setting, Gittins proved in 1979 [19] that the apparently intractable optimal policy
reduces to an index policy, with corresponding indices later called the Gittins indices. He considers the
discounted Bayesian multi-armed bandit problem, in which the goal is to find a policy g that minimizes

o0

t—1vyvg
E o XY,
t=1

for some discount parameter a €]0, 1[. Interestingly, it was proved in [8] that the discount is necessary
for this reduction to hold: in particular, the policy maximizing (12) is not an index policy. However, the
notion of Gittins indices is a powerful concept that can also be defined in a finite horizon multi-armed
bandit. The Finite-Horizon Gittins index of an arm depends on the current posterior distribution on its
mean (7 = 7)) and on the remaining time to play (r = T — t). It can be interpreted as the price worth
paying for playing an arm with posterior m at most r times. Indeed, for A > 0 consider the following
game, called Cy, in which a player can either pay A and draw the arm to receive a sample Y;, which results
in a reward Y; — A, or stop playing, which yields no reward. As precisely defined below, the Gittins index
is the critical value of X\ for which the optimal policy in C, is to stop playing the arm from the beginning.
This definition transposes to the non-discounted case one of the equivalent definitions of the discounted
Gittins index that can be found in [20].

EH

EH

Definition 9. The Finite-Horizon Gittins index for a current posterior m and remaining time r is

G(ﬂ',?‘) = inf{)\ eR: V;(W,r) = 0}, with

Vi(m,r)= sup E_ ...

~ M
o<r<r M4V

> i A)] ,

t=1

where the supremum is taken over all stopping time T smaller than r a.s., with the convention 28:1 -=0.
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Computing the FH-Gittins indices requires to compute Vy¥(m,r) for several values of A in order to
find the critical value (using, e.g., binary search). Each computation requires solving a MDP, but on a
smaller state space: the possible posterior distributions on the mean of a single arm. Hence the FH-Gittins
algorithm, that is the index policy based on the Finite-Horizon Gittins indices,

Ay = argmax G(r!, T —t),
a=1,...,K

is a more practical algorithm than the Bayesian optimal solution. Although FH-Gittins does not coincide
with the Bayesian optimal solution, we believe it is a good approximation. This is supported by simu-
lations performed in a two-armed Bernoulli bandit problem, for which we compute the Bayes risk of the
optimal strategy and that of the FH-Gittins algorithm up to horizon T' = 70, as presented in Figure 1.
For small horizons, [18] propose a comparison of different algorithms with the Bayesian optimal solution
and similarly notice that the Bayes risk of FH-Gittins (called A-strategy) is very close to the optimal
value, for various choices of prior and horizons.

Bayes Risk

—— Dynamic Programming solution||
- - - FH-Gittins algorithm

L L L L L L
0 10 20 30 40 50 60 70
t

Figure 1: Bayes risk of the optimal strategy (blue) and FH-Gittins (dashed red) estimated using N = 10°
replications of a bandit game, for which the means are drawn from ([0, 1])

Compared to a simple index policy like Bayes-UCB, the computational cost of the FH-Gittins al-
gorithm (not to mention that of the Bayesian optimal strategy) is still very high. In particular, the
complexity of these two approaches grows dramatically when the horizon T increases, which motivates
some approximations that have been proposed for large horizons, described in the next sections.

However, when the FH-Gittins algorithm is efficiently implementable (that is, for relatively small
horizons), we would like to advocate its use for minimizing the frequentist regret. Indeed our experiments
of Section 5 report good empirical performance in Bernoulli bandit models. In this particular case, using
a uniform prior on the means, the set of (Beta) posterior is parametrized by two integers (the number
of zeros and ones observed so far), and we could implement FH-Gittins up to horizon T' = 1000. An
efficient implementation of FH-Gittins for Gaussian bandits, up to horizon 7' = 10000, has been recently
given by [29]. More generally, finding efficient methods to compute Finite-Horizon Gittins indices is still
an area of investigation [31]. Interestingly, [29] provides the first theoretical elements supporting the
use of FH-Gittins for regret minimization, by giving the first logarithmic upper bound on its regret in
the particular case of Gaussian bandit models. However, the asymptotic optimality of this algorithm for
Gaussian bandits and more general models remains a conjecture.

4.3 Approximation of the Bayesian optimal solution

In the paper [27], Lai shows that, in exponential family bandit models, the Bayes risk of any strategy
is asymptotically lower bounded by Co(7)log?(T'), when Cy(7) is a prior-dependent constant. He also
provides matching strategies, which implies in particular that the Bayes risk of the Bayesian optimal
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solution is of order log? (T'). Any strategy matching this lower bound can be viewed as an asymptotic
approximation of the Bayesian optimal solution.

In the particular case of product prior distributions, we provide in Theorem 10 a Bayes risk lower
bound that is slightly more general than Lai’s result in the sense that it does not require the prior
distribution on the natural parameter of each arm to have a compact support. The proof of this result,
provided in Appendix D, follows however closely that of [27]. The lower bound is expressed in terms of the
prior distribution on the natural parameters 8 = (61,...,60x) of the arms, with the following notation.
Fora=1,...,K,welet 0_4 = (01,...,04_1,0441,...,0K) be the vector of @K1 that consists of all
components of 8 except component number a. We let 87 = max;-, 0;, so that 8} only depends on 0_,.

Theorem 10. Let H be a prior distribution on ©F that has a product form, such that each marginal has
a density h, with respect to the Lebesque measure A that satisfies hq(0) > 0 for all 0 € ©. Letting H_,, be
the marginal distribution of 0_,, that has density H#a hi(6;) with respect to A*K =1 one assumes that

Va=1,..., K, / ha(02)dH_4(0_,) < oo.
oK-1

Under the prior distribution H, the Bayes risk of any strategy A satisfies

H (T,
Jim inf oL A) A Z / _a(0_2).
T—o0 log OK-1

For exponential family bandit models with a product prior, Lai provides the first (asymptotic) prior-
dependent Bayes risk upper bounds, when © is compact. Letting [ug , 1] = b(©), he shows in particular
that the index policy based on

L(t) = sup {q € o]« Na(t)d(ia(t), ) < log <Ni(t)) } , (13)

where d(z,y) = d (max(ua,min(ug,x)),y)), has a Bayes risk that asymptotically matches the lower
bound of Theorem 10. This index policy is very similar to kl-UCB-H* and differs only from the use of a
regularized version of the divergence function d.

While a recent line of research on Bayesian randomized algorithms (e.g. Thompson Sampling) has
provided Bayes risk upper bounds in quite general settings ([35, 34]), to the best of our knowledge, no
upper bound scaling in logz(T) has been obtained for exponential family bandit models since the work
of Lai. [12, 30] give the first prior-dependent upper bounds on the Bayes risk of Thompson Sampling,
in a particular case quite different from our setting: a two-armed bandit model in which the means of
the arms are known up to a permutation. The joint prior distribution is thus supported on (1, 2) and
(2, p1). In Section 5.2, we investigate numerically the optimality of the Bayesian index policies discussed
in the paper with respect to the lower bound of Theorem 10.

4.4 Approximation of the Finite-Horizon Gittins indices
As discussed Section 4.2, the FH-Gittins algorithm, that is the index policy associated to
Jo(t) = G(7t, T —t),

is conjectured to be a good approximation of the Bayesian optimal policy, yet the above indices remain
difficult to compute. Building on approximations of the Finite-Horizon Gittins indices that can be
extracted from the literature permits to obtain a related efficient index policy.

Recall from Definition 9 that the Finite-Horizon Gittins index takes the form

G(m,r) =inf {A e R: V(m,r) =0},
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where V¥ (7, ) corresponds to the optimal value function associated to a calibration game Cy. In the paper
[13], Burnetas and Katehakis propose tight bounds on the value function Vi (74 p4,7) for exponential
family bandits. These bounds permit to derive asymptotic approximations of the FH-Gittins indices,
when r is large, and to show that, for large values of the remaining time 7" — ¢,

Ja(t) =~ sup {q & 5, 1%] = Na(O)d(1a(t),0) < log (ﬁ—‘é) } . (14)

This approximation is valid under the assumption that © is compact: [p~, ut] = b(@) and d is another
regularization of the divergence function d, such that, for any y, d(z,y) = d(z,y) for z > p~ and for
TS, . : :
d(z,y) = d(p™y) + (b (y) = b () (u™ — ).

In the particular case of Gaussian bandit models, the work of Chang and Lai [15] on the approximation
of discounted Gittins indices can also be adapted to obtain approximations of the Finite-Horizon Gittins
indices, showing the same tendency as in (14): compared to the corresponding kl-UCB index, here the log ¢
is replaced by log((T — t)/N,(t)). This alternative exploration rate also appears in the non-asymptotic
lower bound on the Gaussian Gittins index obtained by [29].

These approximations of the Finite-Horizon Gittins indices provide another justification for explo-
ration rates of the form log(h(¢,T)/N,(t)), with some function h, which are also used by the kl-UCB-H™
and kl-UCBT™ algorithms. These two algorithms can thus be viewed as Bayesian (inspired) index policies.

5 Numerical experiments

5.1 Regret minimization

We first perform experiments with a moderate horizon T' = 1000, which permits to include the Finite-
Horizon Gittins algorithm discussed in Section 4.2. Figure 2 displays the regret of kl-UCB, Thompson
Sampling and the four Bayesian (or Bayesian inspired) index policies discussed in this paper, in two
instances of two-armed Bernoulli bandit problems. The Bayesian index policies display comparable, if
not better, performance than kl-UCB and Thompson Sampling. In particular, FH-Gittins appears to be
significantly better than the other algorithms on the instance with small rewards.

—— KLUCB

e KLUCB
- = = Kwes” 4r $° - - - KLUCB*

KLUCB-H* / KLUCB-H*

Bayes UCB / Bayes UCB

Thompson Sampling 2 Thompson Sampling
FH-Gittins {/ FH-Gittins

L L L L L L L L L Il 0 L L L L L L L L L Il
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure 2: Regret on two-armed Bernoulli bandits (p = [0.05 0.15] (left) g = [0.75 0.8] (right)) up to
horizon T' = 1000, averaged over N = 10000 simulations

For a larger horizon T = 20000, we then run experiments on a bandit model in which rewards follow
an exponential distribution (which is a particular Gamma distribution). Bayes-UCB and Thompson
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Figure 3: Regret on a five-armed bandit with Exponential distributions with means g = [1 1.5 2 2.5 3]
up to horizon T' = 20000, averaged over N = 50000 simulations

Sampling are implemented using a conjugate InvGamma(1, 1) prior on the means. Results are displayed
in Figure 3. In this setting, Bayes-UCB, kl-UCB* and kI-UCB-H™ improve over kl-UCB, and are also
competitive with Thompson Sampling. As already noted in several works (e.g. [14]), the Lai and Robbins
lower bound, that is asymptotic, is quite pessimistic for finite (even large) horizons.

5.2 Bayes risk minimization

In this paper, Bayes risk minimization and its exact solution is mostly presented as a justification for
improved algorithms for regret minimization. However, it is also interesting to understand whether the
proposed algorithm are good approximations of the Bayesian solution, i.e. whether they match the
asymptotic lower bound of Theorem 10.

We report here results of experiments in Bernoulli bandit models with a uniform prior on the means.
In this setting, some computations (that are detailled in Appendix D.4) show that the lower bound
rewrites
R(T, A) S K-1
T—00 10g2(T) - K+ 1

In particular, we see that the asymptotic rate of the Bayesian regret is (almost) independent of the
number of arms. For several values of K, we display on Figure 4 the Bayes risk Ry (A(r) of several
algorithms, together with the theoretical lower bound, as a function of log? (7).

For each value of K, we observe that all the algorithms have a Bayes risk that seems to be affine
in log?(T'). For Thompson Sampling, kl-UCB* and kl-UCB-H" the slope is close to (K —1)/(K + 1),
whereas for kl-UCB and Bayes-UCB it is strictly larger. This leads to the conjecture that the first three
algorithms are asymptotically optimal in a Bayesian sense. It is to be noted that, while the Bayes risk
of these algorithms seems to be of order (K — 1)/(K + 1)log*(T) + C(K) for large values of T, the
second-order term C(K') appears to be increasing significantly with the number of arms. Compared to
Lai and Robbins’ lower bound on the regret, this lower bound does not appear to be over-pessimistic in
finite time.
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Figure 4: Bayes risk up to 7" = 20000 on a Bernoulli bandit model with a uniform prior on the K arms,
for K =5,10,15, 20, averaged over N = 50000 simulations.

6 Conclusion

This paper provides an analysis of the Bayes-UCB algorithm that does not rely on arguments specific to
Bernoulli or Gaussian distributions, and is valid in any exponential family bandit model. It also brings
theoretical justifications for the use of the kl-UCB-H' and kl-UCBT™ algorithms together with a new
insight on the alternative exploration rate used by these algorithms. Finally, the proposed analysis holds
for a wide class of prior distributions, namely all distributions that have positive density with respect to
the Lebesgue measure. This shows that the choice of prior has no impact on the asymptotic optimality of
Bayes-UCB, unlike what happens for Thompson Sampling in Gaussian bandit with unknown mean and
variance [22]. Beyond asymptotic optimality, an interesting direction of future work would be to quantify
the impact of the prior on second-order terms in the regret. Another important research direction is
to better understand the Finite-Horizon Gittins strategy, which performs well in practice, but whose
asymptotic optimality is still to be established.
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The appendix is structured as follows. Appendix A presents Pinsker-like inequalities, that is quadratic
approximations of the Kullback-Leibler divergence functions, when the natural parameters of the distri-
butions belong to some compact interval. These inequalities will be useful at several places of this
supplementary material. Appendix B gathers the proof of Theorem 8 and the proofs of the lemmas intro-
duced in the finite-time analysis of Bayes-UCB. Appendix C and Appendix D are respectively dedicated
to establishing the posterior tail bounds of Lemma 4 and proving the asymptotic lower bound on the
Bayes risk stated in Theorem 10.

A Pinsker-like inequalities

For on any compact C C O, one can obtain quadratic approximations of the KL-divergence as a function
of either the natural parameters or the means. These useful inequalities are stated in Proposition 11

Proposition 11. Let C be a compact subset of ©. Introducing

cr:=1inf b() >0 and ¢ :=sup b(F) < oo, (15)
oeC feC
one has
V0.0) €0 FO-07< K@O.0)< F0-9) (16)
. 1 1
Y(z,v) € (b(C))? —@x-v)?< dz,v)< —(x—-v)% (17)
2co 2cq

If (z,v) € (b(C))? are such that x < v, one has

l(U — ). (18)

C1

b~ (w) — b~ ()

IN

Proof These three statements follow from Lagrange formulas. For example to derive (17), given that
d(z,y) = K(b=(z),b=1(y)), it can be shown, using the close form expression (6), that

d? 1
%d(l',’l)) = M

From the second-order Lagrange formula applied to « — d(z,v), there exists ¢ €]x, v[ (or v, z[) such that

d - _ -
Ed(m,v):b Yz) = b1 (v) and

1 1
im(fﬂ —’U)2 S 2—01(.%' —’U)2.

The other inequalities are obtained using similar arguments.
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B Finite-time analysis

B.1 Proof of Theorem 8
We first give an analysis of the index policy associated to u} (¢). Introducing g; defined by d(u1 — g, 1) =

—1og1( 7> one can write a decomposition similar to that used in the proof of Theorem 3:
T-1
E[NT)] <1+ Y P(u — g >uf (1))
t=K
T-1
+ > P — ge < uf(t), A1 = a)
t=K
T-1
. tlog®(t)
<1 P Ni(t)d" (g (t —g1) > 1 19
< +;{ < 1(B)dT (f (1), gt)_Og<Na(t) (19)
+ Z P (Na(t)d* (fia(t), p1 — g¢) < log (T1og®(T)), Ary1 = a) (20)

using the definition of u} (¢) and the fact that ¢log®t/N,(t) < T'log®T. Lemma 5 can be applied (with
A = 1) to show that the sum in (19) is of order o(log(7T')), while the sum in (20) can be rewritten and
upper bounded using Lemma 6: for all € > 0, the result follows from

T—1 t
E Z Z ]]'(5d+ (fa,s,p1—gt)<log(T log® T))]]'(At+1:a,Na(t):s)
t=K s=1
T-1
< S P (sd" (flas, i1 — g1) < log (Tlog"(T))
s=1
1+e¢
< ———log(T1og®(T)) + o (log(T)).
i) ( (T)) + 0c(log(T))

For the index policy associated to uZ'*(t), using a similar decomposition,

T-1

E[No(T)] <1+ > P (Ml — gt > u{“(t))
T-1 =
+ Z P(p1 — ge < ug (), Apsr = a)
t=K
= . Tlog®(T)
+ _ oo [ 1208 1)
§1+;P<N1(t)d (i (1), — g2) > 1 g< o )) (21)
+ Z P (Na(t)d* (f1a(t), 1 — g¢) < log (T'log(T)), As+1 = a) . (22)

The sums in (22) and (20) are the same, and lower bounding T log® T by tlog®t in each term of the sum
in (21) shows that it is upper bounded by (19). Thus, this index policy is also asymptotically optimal.

B.2 Proof of Lemma 5
To upper bound

(4) =P (Nl(t)cﬁ(ﬂl(t),ul —g1) > log At10g0t> :

Ny (t)
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we consider two cases in which arm 1 has or not been drawn a lot.

() < B (MO (0).m - 00 = tog (525 ) M) < 1oe'0)

Ni(t)
Ay
B (W00 (00— 1) 2 Yog (2L ) i) > 100
Az

To upper bound term A;, we write

(3000 (0.0 — 302 10 (APEL) i) < o))

C (Ni(H)d™ (fn(t), p) > log(At) + cloglog(t) — 4loglog(t),
Ni(t) < 10g4(t))

C (N1(t)d" (fu(t), 1) > log(At) + 3loglogt)

using that ¢ > 7. The self-normalized concentration inequality proved in [14] and stated in Lemma 12
permits to further upper bound Aj:

log? t + 3(logt) loglog(t) 4 log(A)logt + 1

A <
(A) <e Atlog3t

Lemma 12.
P(3se{1,....t} s sd" (p1,5, 1) = 6) < (6log(t) + 1) exp(—d + 1).

To upper bound term As, if ¢ is such that log” ¢ > A1, we write

(3000 1), — ) 2 o (27550 ) i) 2 ')
C (Ni(B)d* () pn = g0) = 0, Ni(1) = log*(1))
C (fu(t) < = ge. Ni(t) > log*(1)) ,

Thus, if ¢ is such that ¢ > exp(v/3) (which implies log® ¢ > 3logt),

(A2) < P(fn(t) < pa— ge, Na(t) > logh(t))

< (Els € [[log(t) ] t o fns < —gt)
t

= Z P(fi1,s <p1—ge) < Z e84 —ge,1)

s=[log(t)*] s=[log(t)*]

< te_(logt)4d(ﬂl_gt7ﬂl) — te—(logt)3 < te—Slogt _
Combining this with the upper bound on A; yields the result.

B.3 Proof of Lemma 6

The quantity to be upper bounded is

T
(B) i= S"P (sd* (jias, 1 — g(s)) < F(T) +h(s)).
s=1
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The function w(q) = d* (fia,s,q) is convex. Moreover it is differentiable on the interval |fi, s, uT [ with
w'(@) = [ L <) Thus, if fias > g,

~ ~ M _/la,s ~ 12 _M_
A (fia,ss i1 — 9(8)) = d* (fiasr 1) — 9(8) =22 > d* (fig 5, 1) — g(5) oL .

V() V(p)
Therefore
- F(T) R O R
(B) < ZP( (fra,ss 1) < 5 +Q(S)W+ p )+ZP(Na,s</Lo)
s=1
T
< ZP< (fla,s, 1) < f(ST) +T(5)) +mv

using Chernoff inequality and introducing

RN e ) h(s)
T(S) _g() V(ul) + s :

Let € > 0. One also introduce ( VAT
1+¢ -‘
Kr(e) = | —————=.
r(e) { d(as 1)

From the assumptions on f,g and h, there exists sg such that r is non-increasing for s > sg and one has

Kr(e) — oo and r(s) — 0.

T—o0 §—00

For T such that K1 > s,

(B) < K7 + Z ( (Aa,s; p1) < f(ST)

(KT)> + Cl,
s=Kp+1
with Cp =1/ (1 - e*d(“a“a)). As r(Kr) — 0, there exists N,(¢) such that

19
1+¢

T>N,(e) = r(Er) < d(pa,m)

Then, if T > N,(g), one has, for all s > Kr + 1,

T 4 k) < dlpas )

and there exists p*(s) €]pq; pa| such that d(p*(s), p1) = f(T) + 7(K7). Then, using Chernoff inequality
and the inequality

V>, d(p, ') > (b —p')?,
25up e V(K

stated in [14] and that follows from Lagrange equality, one can write

(B) S KT"’ Z ,UJas>,UJ ))+O <KT—|— Z 75d (S)vl‘a)_|_0a

s=Kp+1 s=Kp+1
T 0" ) —pa)? 00 (" ()—pa)?
< Kr+ E e 2vi +C, < Kr+ e Vi ds+ Cy,
s=Kp+1 Kr
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where Vo = sup,¢j,, [ V(#). Using the convexity of x — d(, yi1), a lower bound on w*(8) — pq can be
obtained, as in Appendix 2 of [14]:

d(jias ) = |18 4 r(K) |
_d/(,uaa ,LL1)

1 (s) = pa =

[14] also provide tight upper bound on the resulting integrals, and following a similar approach allows us
to conclude the proof:

R () =pa)?
e Vi ds
Kr

<o s (- (12 )

< f(T) /OOH exp (—Wm <d(ua,u1) - (% +T(KT))>2> du

d(pra, 1)

At (14 ) (d(pa, 1) — (£ + (K1)’
= f(T) /d—ml:,il) o <_ 2ng(ﬂaaﬂl)dl(ﬂaaﬂl)2 ﬂT)) d“

> wf(T)  d(pa, pi1)?
P <_2V?zd’(ua,u1)2 A1 +e) ) du

1) |

2(14¢)

d(pa>11)
A1+¢e)? [ (L +e)?f(T)
< f(T)W/O P <_ 2V2d(ua,u1)d’(ua,u1)2) “

d' (pa u1)>2

+8(1+¢ 2v§(
Vo Tyt rm)

SVEr(L+ =) d (a1 ) s (o))
=/ m\/ e 80+ 972 (e

C Posterior tail bounds

Let o~ , it be such that J := b(©) = (u~, ut). We give here the proof of Lemma 4, that follows directly
from bounds on

S exp(—nd(z, u) fo (u)du
[y exp(—nd(z,w)) fo(u)du

for a density function fy satisfying fo(u) > 0 for all u € J. We fix p, ud: b(07) < pg < pd < b(OT).
First, we fix a compact C included in © such that [u;, u]] := b(C) satisfy

Wn,w([valﬁ_[) =

b(07) < py < py < pg < <bE").

We let Je = [u;,p]] and ¢; and cp be the upper and lower bounds on b on C, defined as (15). We
will often use the quadratic bounds on the Kullback-Leibler divergence on this compact, that are stated
in Proposition 11. Also, we will use monotonicity properties of the divergence function: for all y € J,
x +— d(x,y) is decreasing on Ju~,y[ and increasing on ]y, uT[ whereas for all x € J, y — d(z,y) is
decreasing on |u~, z[ and increasing on |z, u[.

Let z,v such that pg <z < v < pg. One has

ST e fo (u)du
s )= '
n,w([v7 M D f:f e*”d(z-r“)fo(u)du (23)
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For any V,, ., C J,

@) (B ) du e~nd(@:0)
Tna(fo, 7)< —Te— < “nd(w) '
Sy, eTrd@ fo(udu =, emnd@w) fou)du

n,x

n,x

n(z—u)?

We now choose V,, , = {u € J¢ : Ser

/ e @Y fo(w)du > e! inf fo(u)/ ldu
Vi Vi

uele

2 2
/ ldu = /\([uf,uf]ﬂlw—\/ﬂ,xﬂ/ﬂb
Voo n n
. 201 4 _
mln(\/ ot u1>.

The following inequality yields the upper bound in statement 1:

+ € 2¢1 —nd(z,v)
S — o (Vi ) e
)= et 7o i i)

As e~ "4®4) <1, the denominator in (23) is upper bounded by 1, thus

< 1}. From (17), nd(z,u) <1 on V, ;. Hence

and

Y

ut +

Hy
Tn.a ([0, wtl) > / efnd(x’“)fo(u)du > / efnd(x’“)fo(u)du.

v v
This last integral can be lower bounded in the following way:
+ +

Hq H1
/ efnd(z,u)fo(u)du _ efnd(z,v)/ efn[d(z,u)*d(z,v)]fo(u)du

:
1258 - j—
_ efnd@,v)/ e~ r[dwa T W =81 @D =2)] £ ) dy

+

m
> efnd(z,'u)/ ! 67"[2i1 (“*U)2+ﬁ(“*”)(vfz)] fo(u)du, (24)

where the last inequality follows from (17) and (18). We let

o) = — [(u—0)+2u—v)(v—a)].

201

One has ¢'(u) = (u — 2)/c1, thus ¢ is strictly increasing on [v, ] and it can be checked that ¢~1(y) =

x4+ /(v — )% 4+ 2¢1y. Thus letting y = n¢(u), one has

du = = dy,
ny/(v — )% + 2c1y/n
and
—nd(z,v) %[(pffv)2+2(,uffv)(v7x)] —y
cie 1 e
W)= — / fo(y)dy
@4 n 0 V(v —1)2+2c1y/n )

c1e~ @) ming, fo /gﬁ[(ufv)zﬂ(ﬁv)(vz)kydy
g o -2+ - 02 2t - o) - )

cle—nd(w,v) minjg. fo (1 B e‘%“‘f‘”ﬁ)
n(ui — )

25



Finally, using that py < z and v < ua' , one obtains

a1 _M) W)

call—e 2e1 minj B

Wn,x([va,quD Z 1 (lu+ ‘u_) cJO Ee nd(z,y),
1~ Ho

which yields the lower bound in statement 1.
We now prove statement 2. Let x,v such that uy <v <z < pd. As [z,u]] C [v, uT[, one has

ui
oot > / e fo )

F, : u + +/d(z,u) is a one-to-one mapping between [z,u]] and [0,4/d(z,u)]. Moreover, letting

d'(ac,u) = %d(w,u) = B(bu—zzcu)) = \7;(;90)7

Fp(u) = 2d/(xxul e W — \/
Lo —

F! is continuous on [z, ]| and strictly positive, thus the inverse mapping ¢, : [0, /d(z, u)] — [z, )]
is well defined and differentiable. Letting u = ¢, (y), one has

o dwni) 2\/d(z, ¢ (y))
(@) £ (g e~ ZV N RIS
L fo(u)d /0 Jo(éz(y)) d'(z, b (y)) dy

VAT L (w6, (L))
i [T e )

d'(z, 6. (%))

The mapping (z,u) — /d(z,u)/d (x u) is continuous and strictly positive on the compact set S =
{(z,u) € [y, pug] % [y, 1]+ @ < u < pf} therefore, one can define

d(z,u)

> inf f

uEJC

dy.

= f —=>0.
L R TR
For n > 1, one has
il i) 1 . Vd(ug uy) 2
—nd(z,u > —
/z e fo(w)du = NG 2¢ inf folu )/0 eV dy

Thus there exists a constant C' = C(uy, 17, fo) > 0 such that

c
e v + ——
naelletD =

which concludes the proof.

D Lower bound on the Bayesian regret

D.1 Proof of Theorem 10
Let A be a bandit algorithm. Introducing

Copt = Z/@K ) H_,(0-.),
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we assume that A4 satisfies the following: there exists constants C' > Cgp, and Tp > 0 such that
VT > Ty, RY(T,A) < C(logT)?. (25)

Note that if A does not satisfy the above assumption, the desired conclusion follows directly:

H
T
lim inf R A) (2  A) > Copt-
T—o00 1og (T)

In the sequel denote by 6~ and 67 the lower and upper bounds of the interval © : © =]0~,07|.
The Bayes risk of A rewrites

K

RU(T,A) = E[Re(T,A)] =E l2(5(9*)—5(9a))E9[Na(T)]

a=1

Z/eeek 0,<0%} (b(67) — b(0)) Eo[Na(T)]dH (6)

Letting 7, be the a-th term in this last sum, one has

T - / / (b(8%) — b(62))Eo[Na(T)]ha(ba)dbs dH o (8_)
OK-1 J{0,€0:0,<0:}

0,—0" i
N /@K1 /0 (b(07) — b(07 — t)Eg, . [Na(T)]ha (0 — u)du dH_4(6-a),

where Ga,u = (6‘1,... 9a 1,6‘ —u, 6‘a+17-'-79K)'
Let v €]0,1[ and let B = [b~ b*] be a compact subset of ©. For T large enough, such that

1/~ =07 )<logT <T 2",

reducing the integration domain by first letting 8_, € B¥~! and then u € [T_(l_"”/27 (logT)~1], one
has

(logT) !
T.> / / — b(0 — 1)) Eq,  [Na(T)|ha (07 — u)dudH_o(6_,)
BK-1, (1— w)/2
(log 7)™ K(0* —u. 6* E N(T
2(1_7)/ / 02K (0 — w05+ B, [N o
BK-1 a-v)/2 u

The last inequality follows from the technical lemma stated below, in which the constant ( is defined.
Lemma 13. Let v > 0. There exists ¢ €]0,1[ and ug > 0 such that for all 0_, € BE~1 and 0 < u < uy,

(b(8) — b(8 — u))ha(8 —u)

feB
v6 < B, K(0 — u, 0+ Cu) - R

Now we need to give a lower bound on Eg, , [N, (T')], that will subsequently be integrated over BX ! x

[T~(=7/2 (log T)~!]. Lai and Robbins provide such a lower bound in [28], but under the assumption
(not satisfied here) that, for all o €]0,1[, A has a o(T%) regret on every bandit model. Moreover their
lower bound is asymptotic, which makes it more complicated to integrate. Lemma 14 below provides a
non-asymptotic lower bound on Eg, , [N,(7")], that also follows from a change of distribution argument.

Lemma 14. Let ¢ €]0,1[ and B = [b~,b"] C ©. Introducing

eru(0—y) = Inf {Eg[T — No(T)]: 6, € 0,0 + Cu/2 <, <0} + Cu},
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for every v €]0, 1] there exists positive constants Cy,u1 and Ty (that depend on B, v and ) such that if
u<wuy and Tu?® > Ty, VO_, € BE-1,

Eo

2 2
Nu(T)) 2 L= I08T) () oty _ 20%era(@-a) )
K(05 — u, 05 + Cu) (Tu)F

Using Lemma 14, if T satisfies moreover log(T) > 1/ min(ug, u1,v/log(T1)),

Ta 2 2(1 = 7)*(T(T) — To(T) — 2I5(T)),

where
(10gT)711 T2
T(T) = / ha(ejg)/ 108(T) byl (6.),
BK-1 T—(1-7~)/2 u
(10gT)7110 2
. g(Tw?) 1
T(T) = ha(6 du dH_,(0_,),
(1) = [ omi | e di (-
(logT)711 T 2
To(T) = / ha(ej;)/ 108(TU) 121y 2) =% e 0 (80 )l AH o (6_0).
BK-1 T—(1-7~)/2 u

First, an explicit calculation yields

I(T) = i <(1 - %ﬁgﬂ) —72> log?(T) /BH ha(02)AH_o(0_,),

which shows that

1) 0= ([ 0o ) 1)

~Y
T—oco 4

Then, for every £ > 0, there exists Ty (¢) such that for all T > Ty(¢), for allu > T~0=1/2 1 /(Tu?)¢r <
e. Hence, for T > Ty (),
IQ (T) S EIl (T)
This proves that Zy(T') = 0 (log*(T)).
— 00

Finally, to prove that Z3(T') = 0 (log?(T)), we start by writing

— 00

(og D) o0 (Ty ~
I3(T) = / w(ﬂﬂ)‘ﬂﬂ (A} eT,u(a_a)ha(9;)dH_a(0_a)) du.

T—(1-7)/2 u K-1
and we provide an upper bound on the inner integral. First note that if 8 is such that 6, > 0%, one has
Ro (T, A) > (b(6a) — b(07))Ee[T — Na(T)).

Using (25) together with this last inequality, one obtains, for every u,

Clog*(T) > / Ry (A, 0)dH(8)
{0€BX:05+(u/2<0,<0;+(u}

05 +Cu
> [T 0060) ~ BOER[T ~ N hal6,)d0, dH - (6-.)
BK-1J0%+Cu/2

OatCu . .
2/ eTyu(O,a)/ (b(0a) — b(02))ha(0,)d0, dH_4(0_,).
BK-1 0x+Cu/2
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With B = [b,b"], let us be such that the compact B’ = [b™ 4 Cua/2,b" + Cus| is included in ©. As h,
is uniformly continuous and bounded on B’, there exists us such that and for all 8% € B, for all u < ug,

ha(0) >

[N\

inf ha(02).
[054Cu/2,05+Cu]

Let u < us. Introducing ¢; = infgep/ b(6‘) > 0, using the Lagrange formula,
21 05 +Cu
Clog*(T) > — er,u(0—-a) / (00 — 02)ha(072)d0, dH_o(0_,)
3 Jpr-1 0r+Cu/2

= Ao / e1u(0—a)ha(0F)AH o (0_0).
4 BK—I

Finally, if T <u < ug,

. 4C log?(T) 4C (log(Tu?))?
_ _ _a) < < .
/]3K716T7u(0 a)ha(ea)dH a(e a) < a2 w2 = (22 w2

For T satisfying log(T)~! < uy, [T~(1=/2 (logT)~1] C [T~"=", us] and

I3(T)

IN

/(1ogT)1M(Tu2)%u2( 4C (log(TuQ))Q)du

T-G-m/z U c1¢%y? u?

1G22 Jr—a-v/2 u (Tu?)z

ac /ﬂogTV log(Tu?) ((log(Tu2>)2> du.

Let € > 0. As x +— log®(z)/(2?/?) tends to zero when  tends to infinity, and Tu? > T for u > T~(1=7)/2,
there exists a constant T5(g) such that

(log(Tuz))2 ..

for T > Ts(g),for t > T—(l—"r)/27 E
(Tu?)z

Hence, for T > T5(e),

(log T)~* 2
Iy(T) 4C / log(Tu?) du

e———
CICQ,YQ

B C 2loglog(T)\”
= oy ((1‘ o) ‘”2> log(T),

which proves that Z3(T') = o (log2 (T)) .
Putting everything together, we proved that, for every algorithm A, for every v > 0, for every compact
B C O,

T-(1=7)/2 u

K
Re(AH) o (o 72)% Z/ ha (07)dH 0 (0_4).
a—1 BK-1

Taking the supremum over all compact set B yields, for every v > 0,

K
> (=70 =530 [ ha(8)dH u(00),
a=1

OK-1

provided the integral in the right-hand side is finite. Letting v go to zero concludes the proof.
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D.2 Proof of Lemma 13

Let ¢ €]0,1[ be fixed . As B = [b™,bT] is strictly included in ©, there exists u; such that C :=
b~ — u1,b" + Cuy) in included in ©. For (6,u) € B x [0,u;] we define

(1+Q)%u (b(60) — b0 — w)ha(0 — u)

FOu) = — K(0 —u,0+ Cu)ha(6)

f is continuous on B x [0,t1] and it can be checked that

fO,u) =1.

lim
(0,1)—(00,0)

As f is uniformly continuous, there exists ug < up, such that for all u < ug, for all 0 € B,

v
F6w-11<2,
which rewrites . .
(b(0) = 50— u)ha(0 —w) _ 2ha(0) | _ 7 2ha(0)
K0 —u,0+ Cu) 14+Q)%u| = 2(1+¢)3%*u

hence, for u < ug, one has

(b(0) = b0 — wha(0—w) _ 1= 2ha(0)
K0 —u,0+ Cu) T (14¢? w

Applying this to ¢ such that 1+ ( = % concludes the proof.

D.3 Proof of Lemma 14

Let ¢ €]0, 1] be fixed and define u; and C = [b~ — uy,b" + Cu1] C O as in the proof of Lemma 13. Let
uw < wu; and fix @_, € BK~1, First, using Markov inequality,

[Na(T)] > (1 — 7) log(TU’2)

E
0 = K(0: —u,0; + Cu)

(1 — ) log(Tu?) )

>
Foa (N D) 2 R w6y 1 Cw)

a,u

Thus it is sufficient to prove that there exists C; > 0 such that

(L=)log(Tu?) \ _ cyiog(r®) , 20%eru(0—0)
< < 1log(Tu®) ’ .
Fou (Na(T) S KO0+ w) = T ) )

As u < g, the set {0, : 0% 4+ Cu/2 <60, < 6%+ Cu} is a compact set included in C, therefore there
exists A € BE~1 x C that attains the infimum in the definition of eru(0_q):

er,u(0-a) = EA[T — No(T')],
with A_, = 0_, and A\, = 0% + eu, for some € € [(/2,(]. Using Markov inequality,

(1 —7)log(Tu?) ) < _Ea[T = No(T)] eru(0-—a)

K(0; —u, 05 + Cu) T_ G los@u?) T(l— (1—) log(T'u?) )

K(0x—u,0%+Cu)

Py <Na<T> <
R(0;—w,05+Cu)T

Introducing ¢; = infgee 6(9), using (16) in Proposition 11, for v < uq,

(1—y)log(Tu?) _ 2(1 —v)log(Tu?)

KO —u, 07+ )T = er(l+ O2(Tw?) =

1
9’
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where the last inequality holds to Tu? large enough. Thus there exists T} > 0 such that for u < u; and
TUQ > T17

(1 —7)log(Tu?) ) - 26T’UJE0_&)- (27)

B (200 < i e

f@g—t(ya,s)

Introducing the log likelihood ratio L, = >.._, log T W

=1 here Y,  are i.i.d. samples of the

distribution of arm a, one can write

(1—7)log(Tw?)
Po, ., (Na(T) < K (0% —u,0% + CU)>
1 — ) log(Tu?)

(
K0 —u,0% +Cu

<Py, (Na(T) < 7 L) < (1 - g) 1og(Tu2)> (28)

+Ps, . max  Lp > (1 - 1) log(Tu?) (29)
’ < (1—v) log(Tuz) 2
"X KT —w,0; Fcu)

An upper bound on Term (28) follows from a change of distribution argument. Let £ be the event

(1 — ) log(Tu?)
K0 —u,0: + Cu

£ = {Na(T) S )aLNa(T) S (1 - %) log(TUQ)}
As & € Fn, (1), one has
PA(€) = Ea, , [Le exp (~Lu,n)] = exp (= (1 - 5 ) log(Tu?) ) Pa, . (£).

Thus, using moreover (27),

IN

(28 < (T FRA(E) < (1) 3B (N,(1) “-Wlog(Tu?))

K(ez - uvez + C’U,)

IN

2u? (TUQ)_ eru(0-_q).

An upper bound of Term (29) follows from a concentration inequality specific to exponential families,
stated as Lemma 15, whose proof is provided below for the sake of completeness.

Lemma 15. Let the (Y;) be i.i.d with distribution vg and mean u = b(6).

- x
—Y:) > < — - —
P (Lnéiﬁ[( },1(” Y:) > x) < exp ( Nd (u ,u))
Introducing the notation 6, = 6 — u and

s — (L=7)log(Tu?) _ (1—7)log(Tu?)
PR w0+ Cw) K (Ba, 07+ Cu)

the log likelihood ratio can be made explicit, and satisfies, for n < K,

n

Ly = Y (00— Xa)Yas = b(0a) +b(Aa)

s=1
= (B, —\o) zn:(ya,s —b(0a)) + nK (04, M)
s=1
) Z(b(ga) —Yos)+(1—1) log(Tu?).
s=1

31



Term (29) is upper bounded by

Po, ., (nﬁgl%(XT [()\a - ga)Z(i)(?a) ~Yas)+ (1 — ) log(Tu?)

> (1 - %) 10g(Tu2)>

n L )
<o (s 0072 00

s=1
Under 6, the sequence Y, s is 1.i.d with distribution v . Therefore, using Lemma 15 one obtains, with
the notation 7, = b(6,),

R )

Letting ¢; = infpec b(6) and co = infgee b(H), from (16) in Proposition 11,

YK (0% —u, 0% + Cu) v a a1 o o
2(1 =7)(e + Du {2(1—7)2(“”) a2 ¢t ]

YK (05 —u,0;+Cu)

S (4 e belong to a compact C’ satisfying C C C’ C ©.

Thus, for u small enough, &, and 7, —

Letting cj = supgeer b(0), using (17),

Ky (vK(0; —u,0; + Cu) )
(29) = exp <‘2_( 20— )+ Du ))
K- w05+
= o (Ctostrt g RO
< exp <_ 10g(TU2) 7201 Cl(l + C)2) )

8(1—=7)cy (1+¢)?

Letting Cy = S(Yi?yl)cé caig, from the upper bounds obtained on (28) and (29), it follows that

P, ., (Na(T) o _(1—=7)log(Tu?)

X 2
<9 2 T 2\ 72 u O—a —C1 log(Tu”)
_K(GZ—U,HZJrCu))_ W T) Feralfo) e ’

provided that « < u; and Tw? > T}, which concludes the proof. O

Proof of Lemma 15 The proof follows from the Chernoff technique and a maximal inequality.
Let S, = >, (p—Y;). For every A > 0,

P (max S, > x) =P (max M > 6”) < e ME [GASN} ) (30)
n<N n<N

where the last inequality is a consequence of Doob’s maximal inequality applied to M,, = e*5», which is

a sub-martingale with respect to the filtration generated by the (Y;). Indeed, using the convexity of the
mapping z — e,
E[M, — Mp_1|Fn_1] = e*E [eMSn*Swl) 1| Fpy

> MRS, — Sy 1|Fn_1] = 0.

Using the independence of the Y; and E[e*?] = exp(b(6 4+ \) — b(6) for any X € R, it can be show that

e ME [e*V] = exp (—N {)\ (% - b(@)) + b(0) — b(0 — /\)}) .
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The exponent is minimized of \* satisfying b( — A*) = b(0) — z/N and

e”%EFY&q - am(eN@w—AU@%U—bw—Aﬂ+M®D
= exp(—NK(0 —)\*,0)) =exp (—Nd (u— %,u)) .

The conclusion follows by plugging A* in (30).

D.4 The lower bound for Bernoulli bandits

As pointed out by [27], in the particular case in which hy(f) = ¢() for all a = 1,..., K, using the fact
that the distribution of max,cs 6, has density kq(0)Q*~1(#) where Q is the c.d.f. of the distribution
with density ¢ and k = |S|, the constant in the lower bound can be expressed

1 . _K(K-1) ) .
5;/ ha(605)dH—q(0—a) = f/@q (0)QF~2(0)db. (31)

eK-1

Now consider a Bernoulli bandit model with K arms, with a uniform prior distribution on the mean of
each arm. The set of Bernoulli distribution of means p € [0, 1] form an exponential family when each
distribution is parametrized by the natural parameter 6 = log(p/(1 — p)). This exponential family is
characterized by

O =R, b(f) =log(l+eY),

and the reference measure is the Lebesgue measure. As each mean p, is drawn from a uniform distribution
on [0, 1], the associated natural parameter 6, is drawn from a distribution on R having respectively density

and c.d.f.
0 ef
d 0) = .
and Q(B) = 1

q(0) = (15769)2

Using the formula (31), the constant of the lower bound is

1«K—1{/“° ekl 0 }ﬂK—lﬁ/w K-t I
2 oo (L ef)K+2 2 0o (1+ax)K+2
 K(K-1) 1
2 K(K +1)’

where the integral is computed using by inducting, using a by part integration. Finally, the asymptotic
rate of the Bayes risk for a Bernoulli bandit model with K arms and a uniform prior on their means is

1K -1
ST 10g?(T).
s e M)
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