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Abstract

The objective of this paper is two-fold. First, some theoretical aspects of dimension reduction in

the context of supervised classification or discrimination are given. The emphasis is put on the

different subspaces that can be defined in this context and what information is contained in each

of them. Then, based on these theoretical aspects, we propose a novel method for supervised

dimension reduction that is dedicated to discrimination purposes. The method, called Dimension

Reduction by Orthogonal Projection for Discrimination (DROP-D) is particularly well suited to

the high dimensionality and high intercorrelation of spectral variables. As with Fisher discrim-

inant analysis, DROP-D aims at finding a lower dimensional subspace in which the classes are

well separated. To do so, DROP-D cleans the observation matrix of variability sources that do

not help with the classification task. For this purpose, the matrix is projected orthogonally to the

within-class axes which prevent a good class separability. In cases where some between-class

axes are collinear with the within-class axes, DROP-D can preserve these axes in order not to

destroy the class separability. DROP-D discriminant axes are orthogonal to one another and thus

offer a simplified interpretablility. The main advantage of DROP-D is that because it is based on

removing unnecessary information, there is no need of a validation set to tune the model parame-

ters. In contrast to modelling techniques, DROP-D thus cannot find class separability when there

is none. In terms of results, DROP-D offers similar performances to the usual linear classification

methods.

Keywords: , Discrimination, Dimension reduction, Orthogonal projection, Supervised

Classification, Spectral discrimination, Discriminant analysis

1. Introduction

Due to their ability to perform accurate and non-destructive measurements, spectral data

have been increasingly used in many scientific and industrial fields over the last decades. The

acquired spectral data, measured as a function of wavelength, are often composed of more than

a hundred narrow bands which means that the classical classification techniques fail. In practice,

because spectral variables are also highly correlated their dimension can be reduced without

loosing important information [1, 2, 3].
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In the case of discriminant models, the variable to be predicted is qualitative. The basic

discrimination approach as developed by Fisher in [4] calculates the discriminant subspace as

the one spanned by the eigenvectors of W−1B, where W and B are the within- and between-

class dispersion matrices, respectively. Two problems arise when dealing with spectral variables

— the first problem, related to the dimensionality (size) of the spectral data set (X), is due

to the fact that the calibration set generally contains many more variables (wavelengths) than

individuals (spectra); the second problem, related to matrix conditioning, is due to the very high

intercorrelation of the measured spectral variables. Actually, both problems are mathematically

similar, i.e., they are both related to a lack of reliable dimensions of the spectral space, which

inhibits the inversion of dispersion matrices [5, 6]. The direct consequence for discrimination of

spectral data is that the within class dispersion matrix W is usually highly singular and so cannot

be inverted.

Factorial discriminant methods solve the issues of dimensionality and conditioning in the

same way as factorial regression [7], i.e., a classical discriminant analysis (DA) is performed on

latent variables obtained by a factorial analysis algorithm. For instance, a Principal Components

Analysis (PCA) of the spectral matrix followed by a DA is a PCA-DA and a Partial Least Squares

(PLS) [8] between the spectral and the class membership matrices followed by a DA is a PLS-

DA [9]. As far as regression is concerned, PLSR is generally more powerful than PCR, since the

calculation of the PLS latent variables takes into account the relationship between the spectral

variables and the responses and not only variability within the spectral data [10]. For the same

reason, PLS-DA is generally more efficient than PCA-DA in the case of discrimination, i.e., by

providing reduced variables with a smaller within-class spread and a larger distance between

classes [11, 12, 13]. PLS-DA is however naturally prone to overfitting the training set and can

find a class structure in the data even where there is none. With such a method, the parameters

must therefore be tuned using either an independent validation set or using a cross-validation

procedure [14], which is problematic when samples are expensive or difficult to obtain. Other

criticisms often made towards PLS is that it is difficult to interpret loadings and scores because

the procedure not only takes into account variations related to the response to be predicted but

must also correct for interfering variations (see O-PLS [15] for a complete discussion on this

topic).

Other approaches have been attempted to modify Fisher’s discriminant paradigm directly

without prior dimension reduction using mathematical tricks to overcome the within-class matrix

inversion problem, e.g., using pseudo inverses or by inversion of the total dispersion matrix

instead of the within-class matrix [16, 17, 18]. One of the best performing methods, Nullspace

LDA (NLDA) uses as discriminant vectors the between-class principal directions computed on

data where all within-class scatter is removed. In doing so, the weighting by W−1 originally

proposed by Fisher to find the optimal discriminant vector is pushed to a limit where no within-

class directions are left. However, in this nullspace, because the projections are orthogonal to

all the within-class directions, the remaining information is very small and this leads to noisy

discriminant vectors.

In this paper, we propose an approach in which, in contrast to NLDA, the removal of the

within-class variability is controlled so that the most important discriminant information is pre-

served. This approach uses orthogonal projection in order to clean some of the within-class

variability from the observed variable matrix while preserving the most important between-class

directions. A PCA is then applied on the cleaned variables and the resulting scores are used for

discrimination. This method is a general framework in which:

- PCA-DA is a special case, i.e., when no cleaning is performed and,
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- NLDA is at the other extreme, i.e., when all within-class directions are removed.

We also show that the optimal solution offered by DROP-D generally lies between those of

PCA-DA and NLDA.

2. Revisiting discrimination

The most important notations used in this paper are summarized in table 1.

Table 1: Notations

Symbol Description

A Matrix of size n × m.

Ek
(
A
)

Matrix
(
m × k

)
containing the k eigenvectors of A associated to its k largest

eigenvalues.

R
(
A
)

Range of A: Subspace spanned by the columns of A.

P
P

(A) Projection of the column vectors of A onto a subspace spanned by the matrix

P.

In R
n, P

P
(A) = P

(
PTP
)−1

PTA.

In R
m, P

P
(A) = AP

(
PTP
)−1

PT.

P⊥
P

(A) Projection of the column vectors of A orthogonally to a subspace spanned

by the matrix P.

In R
n, P⊥

P
(A) =

(
In − P

(
PTP
)−1

PT
)
A.

In R
m, P⊥

P
(A) = A

(
Im − P

(
PTP
)−1

PT
)
.

P
P,k

(A) Projection of A onto the subspace spanned by the k main directions of R
(
P
)
.

P⊥
P,k

(A) Projection of A orthogonal to the subspace spanned by the k main directions

of R
(
P
)
.

X Matrix
(
N × P

)
containing N observations of a P-variable vector.

Y Dummy matrix
(
N × C

)
coding the class membership of each observation

(
[
0, 0, 1, 0

]
codes for the third class among four).

T
(
X
)

Total dispersion of X ; T
(
X
)
= XTX.

B
(
X,Y
)

Between-class dispersion B
(
X,Y
)
= XTY

(
YTY
)−1

YTX.

W
(
X,Y
)

Within-class dispersion W
(
X,Y
)
= XTX − XTY

(
YTY
)−1

YTX.

When there is no risk of confusion, the symbols T, B and W are used without

arguments.

E = R
(
X
)

Individual space (E ⊆ R
N ).

F = R
(
XT
)

Feature (Variable) space (F ⊆ R
P).

2.1. Prerequisites

In the following we call the individual space, the N-dimensional space (one axis per observa-

tion) in which we can represent the variables (wavelengths) as vectors. Conversely, the variable

space is the P-dimensional space (one axis per variable) in which we can represent the observa-

tions as vectors.

2.1.1. Reminders on orthogonal projection [19, 20]

For any column vector v, and for any subspace defined by its basis P, the orthogonal projec-

tion of v on P is given by

P⊥P (v) = P
(
PTP
)−1

PTvT (1)
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2.2. Subspace decomposition : problem statement

Using a data matrix X and a class matrix Y based on training samples, supervised classifica-

tion consists in finding a model that is capable of predicting the class of any observation x using

its P descriptors. With spectral data, classification is often done in two steps [13] –1) projection

of the observation in a lower-dimensional subspace; 2) attribution of the individual to a class.

The efficacy of the second step is highly influenced by that of the first one. Hence, we are look-

ing for a subspace in which class centres are well separated and class spread around their centers

is small.

From a mathematical point of view, this corresponds to finding Q discriminant axes D
(
P×Q

)

such that the coordinates of X in the subspace defined by D, given by XD maximize the between-

class dispersion given by

B
(
XD,Y

)
=
(
XD
)

T

Y
(
YTY
)−1

YT
(
XD
)

(2)

and minimizes the within-class dispersion given by

W
(
XD,Y

)
=
(
XD
)

T
(
XD
)
−
(
XD
)

T

Y
(
YTY
)−1

YT
(
XD
)
. (3)

In addition, we are looking for a subspace of reduced dimensions, i.e., Q minimal. These three

constraints min(Q), max
(
trace
(
B
))

and min
(
trace
(
W
))

on the way to build the set of axes are

illustrated in Figure 1. This can be achieved by minimizing the ratio of within- to total-class

dispersion given by the Wilks’ Lambda

ΛWilks =
|W |

| T |
=
|W |

| B +W |
(4)

where | A | corresponds to the determinant of the square matrix A.

In cases where the data are well conditioned, a solution is given by the Fisher Linear Dis-

criminant Analysis (LDA) paradigm, which can be expressed as:

D = arg max
D

(
trace
(
DTW−1BD

))
= EQ

(
W−1B

)
(5)

where the notation EQ

(
A
)

corresponds to the Q eigenvectors associated to the Q largest eigenval-

ues of the matrix A. However, for ill-conditioned data, the inversion of W is problematic. Thus,

LDA is known to be unable to deal with spectral data and several solutions have been proposed

in the literature to overcome this problem [21].

Nevertheless, the construction of a classification model corresponds to finding a subspace of

the variable space that ‘copies’ the class structure observed in the individual space of the sample

set. The Fisher LDA does this by contracting the subspace corresponding to the within-class

dispersion and by focusing on the subspace carried by between-class dispersion.

The method proposed in this paper offers another way to realize this ‘copy’. This idea is

to use the between- and within-class dispersion to decompose the variable space into different

subspaces so that one of them corresponds to a large part of between-class dispersion and a small

part of within-class dispersion.

2.3. Variability decomposition in R
N and R

P

Suppose we have a matrix X containing N observations of P variables from C classes coded

using dummy variables and stored in a matrix Y. We can then define a mean observation per

class using the matrix operation

XB = Y
(
YTY
)−1

YTX. (6)
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(a) Rp (b) Rq

Figure 1: Illustration of the dimension reduction for classification purposes, i.e., fewer axes (Q ≤ P), a small within-class

dispersion and a large distance between class centroids

Thanks to the dummy variable coding, each of XB row contains, instead of the original observa-

tion, the mean observation of its own class. The operation X 7→ Y
(
YTY
)−1

YTX thus defines a

new sample in which each observation is replaced by the mean of its class (centroid).

We can similarly define XW as

XW = X − XB

=
(
IN − Y(YTY)−1YT

)
X. (7)

The matrix XW thus contains the observations centred on their class centroid.

What happens in the individual space (RN)?

In this space, we can represent the Y matrix, i.e., each column of Y corresponds to one vertex of

the unit N-dimensional hypercube.

In this space, the operation X 7→ Y
(
YTY
)−1

YTX = XB projects the columns of X (individuals)

on the subspace defined by Y. The removed part corresponds to XW which is also an orthogonal

projection, but on the orthogonal complement of Y.

XB = PY(X) = Y(YTY)−1YTX (8)

XW = P
⊥
Y

(
X
)
=
(
IN − Y(YTY)−1YT

)
X (9)

The subspaces spanned by these matrices, EB = R
(
XB

)
and EW = R

(
XW

)
, are orthogonal and

complementary subspaces of ET in R
N (equation 10).

ET = EB ⊕ EW ⊆ R
N (10)

In this space (RN), owing to the orthogonality, we can thus completely eliminate XW without

affecting XB.

However, we are in the individual space, which means that this operation can be applied to

vectors expressed as combinations of individuals and only modify the variable values of the N

observations of the training set, i.e., it is not applicable to any incoming spectrum.

What happens in the variable space (RP)?

In this space, the operation X 7→ XB defined by a matrix N × N in the individual space cannot be

directly applied to a unique observation.

5
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However, in this space, we can use the subspaces spanned by XB and XW . We can show that

the between- and within-class dispersion matrices define an orthogonal basis for these subspaces

and can therefore be used to ‘copy’ the class structure from R
N to R

P. Indeed, it can be easily

shown that formulas B
(
X,Y
)

and W
(
X,Y
)

can be retrieved by computing

T
(
XB

)
= B
(
X,Y
)

(11)

T
(
XW

)
=W
(
X,Y
)

(12)

, i.e., the total dispersion of XB and XW corresponds to B and W respectively.

Proof. Let us call Ỹ = Y
(
YTY
)−1

YT the projector. Noting that this projector is symmetric (ỸT =

Ỹ) and idempotent (Ỹ2 = Ỹ) we have:

T
(
XB

)
,
(
ỸX
)

T
(
ỸX
)
= XTỸX , B

(
X,Y
)

(13)

T
(
XW

)
,
((

IN − Ỹ
)
X
)T((

IN − Ỹ
)
X
)

=
(
XT − XTỸ

)(
X − ỸX

)

= XTX − XTỸX

, W
(
X,Y
)

(14)

Hence, the subspace spanned by XB contains the between-class dispersion while the subspace

spanned by XW contains the within-class dispersion.

In the variable space R
P, let us define these two subspaces FB = R

(
XT

B

)
and FW = R

(
XT

W

)
.

Using the range property R
(
AT
)
= R
(
ATA
)
, these subspaces are expressed as

FT = R
(
XT
)
= R
(
XTX
)
= R(T) (15)

FB = R
(
XT

B

)
= R
(
XT

BXB

)
= R(B) (16)

FW = R
(
XT

W

)
= R
(
XT

WXW

)
= R(W) (17)

where we have by construction T = B+W. Figure 2 illustrates this decomposition in the feature

space:

• The total subspace FT, whose dimension is bounded by dim
(
FT

)
≤ min(N, P), represents

the overall data variability in the variable space without considering classes.

• The between-class subspace FB is defined by the spread of the class centroids in the vari-

able space. Its dimension is thus bounded by dim
(
FB

)
≤ min(C − 1, P).

• The within-class subspace FW corresponds to the overall spread of the data around the

class centroids. Its dimension is bounded by dim
(
FW

)
≤ min(N, P).

Then, because the subspace dimension and matrix rank are linked by the fundamental relation

dim R
(
A
)
= rank

(
A
)
= rank

(
AT
)
= dim R

(
AT
)

(18)
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(a) Total (b) Between-class

(c) Within-class

Figure 2: Decomposition in the feature space T = B +W. Note the possible collinearity between bi and w j .

and since, dim FT = dim ET, dim FB = dim EB and dim FW = dim EW, therefore FB and FW

define two subspaces of FT in the variable space such that

FT = FB + FW ⊆ R
p (19)

These subspaces FB and FW are however not orthogonal in R
P and their intersection is not

necessarily empty. The separation of the between- and within-class dispersion is therefore less

obvious than in the individual space. Hence, depending on the class configuration, removing

within-class variability does not necessarily improves the separability as illustrated with Figure 3.

In the following (section 3.1), we propose a method, called DROP-D, that enables a con-

trolled removal of the within-class dispersion, i.e., by preserving its axes collinear with FB.

3. Proposed approach

3.1. DROP-D

Let us define the notations PP,k

(
A
)

(resp. P⊥
P,k

(
A
)
) to correspond to the projection of the

matrix A onto (resp. orthogonal) to the subspace spanned by the k main directions ofR(P), where

R(P), is the subspace spanned by the columns of P. The matrix containing the k eigenvectors

of A associated to its k largest eigenvalues is noted Ek(A). These notations are summarized in

Table 1.

Dimension Reduction by Orthogonal Projection for Discrimination method (DROP-D) is in

three steps.
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(a) b1 and w1 collinear (b) Any b1 and w1

(c) b1 and w1 orthogonal

Figure 3: Effect of removing the first within-class axis with different class configurations in R
P

The first step consists in (temporarily) removing from X the b principal directions of the

between-class scatter, as expressed in equation 20.

X⊥b = P⊥B,b
(
X
)

(20)

In a second step, the within-class dispersion matrix is computed with
(
X⊥

b
,Y
)
. Then, the w

principal directions linked to this within-class dispersion (W∗) are eliminated according to the

equation 21.

Xclean = P⊥
W∗
(
X⊥

b
,Y
)
,w

(
X
)

(21)

The third step is to extract the Q principal directions of Xclean which are given by the prin-

cipal directions of the total dispersion matrix computed with Xclean:

D = EQ

(
T
(
Xclean

))
. (22)

To summarize, DROP-D defines three subspaces FB, FW∗ and FD of RP, such that:

• FB is linked to the b principal directions of the between-class dispersion;

• FW∗ contains the w principal directions of the within-class variance that are orthogonal to

FB;

• FD contains the Q directions that include the b principal directions of the between-class

dispersion and the Q− b principal directions that are orthogonal to the within-class disper-

sion.
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In doing so, DROP-D eliminates the principal directions of the within-class dispersion while

preserving the most important directions of the between-class dispersion. An unconstrained

projection orthogonal to W would introduce the risk of removing important axes of B, because

FB and FW can have a collinear part. In that sense, the step 1 of DROP-D guarantees preserving

at least the b most important axes of FB. In addition, axes of FB that were not included in step 1

preservation, but that are orthogonal to FW , are preserved as well.

3.2. Algorithm

If the data are not already centred: compute the training set mean spectrum (xm← mean(X))

and subtract it from every row of the matrix (X← center(X, xm)).

DROP-D algorithm is as follows:

1. B← XTY(YTY)−1YTX Compute the between-class dispersion

2. Bb ← Eb(B) Extract the b principal eigenvectors of B (via SVD(B))

3. X⊥
b
← X
(
IP − Bb(BT

b
Bb)−1BT

b

)
Remove from X these b directions

4. W∗ ← X⊥T

b
X⊥

b
− X⊥T

b
Y(YTY)−1YTX⊥

b
Compute the within-class dispersion with X⊥T

b
and

Y

5. W∗
w ← Ew(W∗) Extract the w principal eigenvectors of W∗ (via SVD(W∗)). These w

directions are assured to be at least orthogonal to the b previously removed directions

6. Xclean ← X
(
IP −W∗

w(W∗T
w W∗

w)−1W∗T
w

)
Remove from THE ORIGINAL X these w directions

T∗ ← XT

clean
Xclean Compute the total dispersion of Xclean

7. D← EQ(T) Extract the Q principal eigenvectors of T via SVD(T)

8. Optimize b,w and Q

Any new vector x is projected on this new basis by computing s =
(
x − xm

)
DT.

4. Experimental results and discussions

In the following, discrimination results are obtained using the Mahalanobis distance on the

scores of each of DROP-D, NLDA, PLS and PCA [22].

4.1. Data sets

For this study, we used spectra provided by an hyperspectral camera Hyspex V-NIR 1600

(Norks Elektro Optikk, Norway).

4.1.1. Data set A

Data set A contains spectra extracted from an hyperspectral image of vegetation scene ac-

quired under natural lighting at short range (∼ 1 m). More details on the acquisition setup are

described in [23]. The acquired spectra were composed of 160 spectral bands ranging from

415.11 nm to 993.54 nm. The radiance image was transformed into a reflectance image using

a ceramic plate calibrated in the laboratory. Due to the low sensitivity of the camera sensor in

the near infrared (NIR), the 20 spectral bands above 920.78 nm were discarded. Then, because

of the high atmospheric absorption of oxygen at around 750 nm which affects natural lighting

spectrum, bands 93 to 96 were discarded as well. In order to linearise the effect of leaf inclination

on spectrum amplitude, a logarithmic transformation was applied to each reflectance spectrum

[24].
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For the discrimination, around 3000 spectra were manually labelled in the hyperspectral im-

age into one of the three classes: wheat, weed or soil. For training the models, 100 spectra

per class (300 in total) were randomly extracted from the available ground truth, the rest being

left for model validation. The log-transformed training spectra for each class are presented in

Figure 4.
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Figure 4: Data set A presentation: Log-transformed training spectra for each class.

4.1.2. Data set B

Data set B contains spectra extracted from a remotely-sensed hyperspectral image acquired

with a camera embedded in a light aircraft (Piper Seneca II PA 34) flying at ∼ 650 m. This im-

age was extracted from a field measurement campaign carried out over the Quiberon peninsulas

(France) by Actimar (Actimar, Brest, France.) within the exploratory research and innovation

project named HypLitt (more information on the measurement campaign are given in [25]). The

acquired spectra were composed of 160 spectral bands ranging from 409.6 nm to 986.8 nm. Re-

flectance images were obtained through the atmospheric model ATCOR and then adjusted using

spectroradiometric measurement on the ground using reference surfaces [25]. Because of low

signal values below 442.3 nm, the first ten spectral bands were discarded. Then, because of sat-

uration of vegetation spectra above 841.6 nm, spectral bands from 121 to 160 were discarded

as well. Finally, the oxygen absorption bands at around 750 nm, which corresponds to spec-

tral bands 84 to 90 were also removed. The topographic effects on spectrum amplitude were

linearised using a logarithmic transformation on each reflectance spectrum.

A ground truth map that discriminates four classes, i.e., grass, deciduous, conifer and sand

was manually created. For training the models, 100 spectra per class (400 in total) were randomly

extracted from the available ground truth map, which correspond to approximately 4.2% of the

10

Author-produced version of the article published in Chemometrics and Intelligent Laboratory Systems, 2015, N°146, p. 221-231. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.chemolab.2015.05.021



available data, the rest being left for model validation. The log-transformed training spectra for

each class are presented in Figure 5.
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Figure 5: Data set B presentation: Log-transformed training spectra for each class.

4.1.3. Procedures

In order to provide numerical results, we used the overall classification error, which corre-

sponds to the ratio of pixels incorrectly classified over the total number of pixels, expressed in

percent. For cross-validation, where applicable (i.e., number of latent variable for PLS, number

of principal axes for PCA), we used a 10-fold procedure on the training data [14].

In the following, we present different aspects of the dimension reduction method DROP-D

using our two data sets. With data set A, we first illustrate the collinearity of the dispersion

matrices’ eigenvectors in the variable space. Secondly, we show DROP-D in action step by

step and illustrate the effect of removing the within-class variability on the class separability.

Thirdly, we show that the number of within-class axes to remove can be tuned without cross-

validation by comparing calibration and cross validation results. Using data set B, we illustrate

how a full calibration procedure of DROP-D can be accomplished using only the training set. We

also illustrate, using an artificial data set, that since DROP-D operates by removing information,

it cannot model a class structure when there is none. Finally, with both data sets A and B,

we compare DROP-D classification performances with PCA-DA, Nullspace LDA (NLDA) and

PLS-DA.

4.2. Collinearity in R
P

In order to assess the collinearity issue in the variable space, let us first have a look at the

eigenstructure of the total, between- and within- class dispersion matrices for our data set. In
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Figure 6: Eigenvalues and the principal eigenvectors of the dispersion matrices T, B and W

Eb(B) EQ(T)

b = 1 b = 2 Q = 1 Q = 2 Q = 3 Q = 4 Q = 5 Q = 6

Ew(W)

w = 1 63 30 29 62 88 89 90 90

w = 2 34 61 62 30 80 90 88 90

w = 3 90 90 85 83 28 64 88 89

w = 4 89 88 87 87 65 27 89 82

w = 5 89 89 89 88 88 90 8 89

w = 6 89 89 90 90 87 86 89 23

Eb(B)
b = 1 34 56 88 89 90 90

b = 2 58 38 77 77 89 88

Table 2: Angle (in degrees) between the principal eigenvectors of the dispersion matrices T, B and W

Figure 6 are represented the eigenvalue plot and the main eigenvectors for this data set. The

angle between each combination of these eigenvectors is also given is Table 2.

The eigenvalue plot illustrates that the maximum number of eigenvectors for B is C − 1,

12

Author-produced version of the article published in Chemometrics and Intelligent Laboratory Systems, 2015, N°146, p. 221-231. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.chemolab.2015.05.021



where C is the number of different classes. In the data set, in which three classes have to be

discriminated, there are thus only 2 non-zero eigenvalues (Figure 6).

For W and T, the number of non-zero eigenvalue is at most min(P − 1,N), where P is the

number of variables and N the number of observations in the training set. Note that in this data

set, we have more observations than variables. Therefore, these matrices ranks are numerically

full. However, they cannot be inverted because of their bad conditioning (ratio of the maximum

to minimum eigenvalue). The actual rank is thus only around 10 to 15, the remaining is only due

to observation noise.

Observing the shape of the eigenvectors plotted as curves gives a first indication of the non-

orthogonality of the eigenvectors: some of them are nearly identical between the different sets.

This intuition is confirmed by the angles reported in Table: 2.

Some eigenvectors are clearly non-orthogonal (angle < 90 degrees). In this particular case,

most non-orthogonal eigenvectors have an angle of approximately 30 degrees. As we will see

in the following, with this type of data, a compromise has to be made on removing or keeping

these within-class eigenvectors using an orthogonal projection because of a potential loss in

discrimination power.

Although this approach, which consists in examining the angle between eigenvectors is in-

teresting to understand the class structure of the data set, tuning DROP-D parameters looking at

these tables is unmanageable as the number of classes increases. Therefore, in the following, we

adopt a classical parameter tuning approach.

Final remarks concern the ‘shape’ of the obtained eigenvectors. As was observed in the

data set presentation (Figure 4), vegetation spectra have a strong reflectance feature at around

700 nm. This transition, situated at the edge of the red and infrared part of the electromagnetic

spectrum is very distinctive for vegetation spectra and is often referred to as the red-edge. This

red-edge is mostly due to a strong absorption by the chlorophyll within the vegetation and is

thus characteristic of the type of plant. The structure of the red edge (position, slope) is thus

naturally found as a discriminative feature by classifiers. At the end of the red-edge, another

characteristic feature of the vegetation spectra is the near infrared plateau. Finally, the greenness

of the vegetation is also often discriminative between vegetation types and specific features are

thus often found in the 500 to 600 nm range.

4.3. Effect of removing W on the class separability

As we have seen in the previous section, the between- and within-class dispersion matrices

can have some non-orthogonal principal directions. Also, in order to decrease the Wilks’ Lambda

and thus to increase class separability, a possible approach would be to suppress the within-class

variability by removing the principal axis of the within-class dispersion. However, because of

this non-orthogonality, removing these directions may affect the class separability as well. The

idea of DROP-D, as presented in the previous section, is thus to prevent the suppression of too

much between-class dispersion. In the following we present this effect step by step for different

numbers (w) of within-class axes removed and by preserving different numbers (b) of between-

class directions.

With b = 0, no between-class direction is a priori preserved. Figure 7 show the Wilks’

Lambda of the training data plotted as a function of the number of within-class directions re-

moved. We also represent the obtained dispersion plot for three specified values. At w = 0, the

discriminant vectors correspond to those of the Principal Component Analysis (PCA). The two

vegetation classes (wheat and weed) are poorly separated but distinct from the third class (soil).
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Then, until w = 9, the ‘noisy’ aspect of the obtained curve is due to the non-orthogonality of

W and T. The discriminant vectors keep changing due to the removal of within-class directions.

Then, at around 9 or 10 removed axes, a clearer minimum is obtained. Removing more axes only

degrades the class separability (even for the training set).

With b = 1, the principal direction of the between-class dispersion is preserved. As observed

in Figure 8, a similar ‘noisy’ pattern is obtained, but only until w = 5. In this case only the second

axis of the between-class is affected by the successive cleaning of the within-class directions. The

clear minimum obtained for w = 5 is stable until w = 8. Then, removing more directions starts

affecting the class separability as well, e.g., see the Figure 8 at w = 12 where the wheat (green)

and weed (red) starts to cluster together.

With b = 2, every between-class direction is preserved. With three classes, this corresponds

to the limiting case of DROP-D in which any cleaning does not change the class separability

unless more discriminant axes (Q) are kept (results not shown).

These results on class separability were all obtained with Q = 2 in order to provide these

two-dimensional scatter plots. In the general case, Q, which corresponds to the final number of

discriminant vectors to be used, is another parameter to tune. It actually corresponds to a PCA on

the cleaned spectral matrix as explained in the previous section. Usually, with PCA, the correct

number of components to retain is always subject to discussion because the error decreases only

slowly and an optimal threshold is difficult to estimate. The rule of thumb in such cases is ‘less

is better’. Fortunately, we will see in the following figures that when cleaning the spectral matrix

with DROP-D, this threshold appears to be easier to find.
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Figure 7: Class separability as a function of the number of within-class principal directions removed. (b = 0)
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Figure 8: Class separability as a function of the number of within-class principal directions removed. (b = 1)

4.4. Model calibration

As seen in the previous section, with a careful selection of the between- and within-class

principal axes to keep or to remove, various class separabilities can be obtained. Also, it was

seen that owing to the DROP-D approach, which consists in removing information (contrary to

PLS-DA, which learns the class structure by modelling B), overfitting can be detected directly

on the training set by observing the class separability. In the following, we show that a similar

behaviour is observed with the classification performance.

In figure 9, we show the classification error obtained by DROP-D with the training set (cal-

ibration error) and using a 10-fold cross-validation on the training set. This graph presents the

classification error as a function of the number of final discriminant axes (Q) for different num-

bers of within-class axes removed (number inside the circle). With w = 0 (which corresponds

to a classical PCA) both calibration and cross-validation errors decrease smoothly without any

clear minimum. Then, from w = 1 to w = 4, we observe the similar noisy appearance, but in

terms of classification performance. From w = 5 (optimal) to w = 7, the same classification

error is obtained. In addition, a clear optimal value for Q emerges (Q = 2). Then, observed

with the class separability, when removing one more axis, the error starts to increase. Therefore,

w = 5 is chosen as an optimal value since it corresponds to the smallest value for which the

optimal results are obtained. Also note a similar behaviour obtained for both calibration and

cross-validation curves.

Let us assess the optimal parameters b, w and Q for the data set B using only the calibration

error. Figure 10 shows the four sets of curves that correspond to every possible values for b.

Without preserving the first two between-class axes, removing w always leads to worse results.
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Figure 9: Representation of the classification error of calibration (a) and cross-validation (b) for different values for w

and Q with b = 1.

Note that in these cases, deciding for an optimal value for Q is not an easy task as explained

before. When b = 2, a clear optimum is reached by removing only one within-class axis. In

addition, the optimal value for Q also becomes more obvious to choose. In particular, removing

more w or increasing Q both lead to worse results. Finally, when preserving the last possible

between-class direction, classification results become slightly worse. The optimal parameters

for this data set are thus b = 2, w = 1 and Q = 3. These values actually correspond to those

obtained with the 10-fold cross-validation (not represented here).
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Figure 10: Data set B: Illustration of a full calibration procedure. The curves represent the training error of classification

for different parameters b,w and Q.

Finally, to illustrate that DROP-D cannot learn a class structure when there is none, we show

in Figure 11 the classification error obtained with the same data set in which the class matrix

has been randomly permuted. For any number of removed within-class axes, no structure can

be extracted and the classification results remain constant. On the other hand, with a PLS-DA

model trained on the same data, a class structure can be learned and that method is thus prone to

overfitting. This major difference comes from the fact that DROP-D removes W while PLS-DA

learns a class structure by modelling B [9]. Therefore, because of the high dimensionality, a class

structure can potentially be learned, especially with a small training set. On the contrary, when
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removing information with DROP-D, if the information was useful for discrimination, even the

training data is affected by the loss.
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Figure 11: Comparison of DROP-D and PLS-DA classification errors on the training set with a random class matrix.

4.5. Classification performances

As we have seen, a major interest of DROP-D is to provide a method robust to overfitting.

Let us now have a look at the classification performance that this method provides on our data

sets. We also compare the results with the most commonly used dimension reduction methods,

i.e., PCA-DA, NLDA (setting w = 15) and PLS-DA. For all methods, the class decision is made

using the minimum of Mahalanobis distance between each class. Note that because of equal

class prior in our case, this affectation corresponds to a Quadratic Discriminant Analysis (QDA)

on the obtained scores [22].

An initial classification performance assessment is qualitative and is made by observing the

shape of the obtained discriminant vectors for data set A (Figure 12). Indeed, as every dimen-

sion reduction method used is linear, the obtained discriminant vectors can be plotted as spectra

and can be analysed in the same way. Only those of DROP-D and NLDA are orthogonal since

they correspond to the eigenvectors of symmetric matrices. However, although it leads to high

classification performances, the ‘shapes’ of NLDA discriminant vectors are not interpretable in

practice, which probably explains the lack of interest from the chemometrics community. The

DROP-D discriminant vectors that come from preserved between-class principal directions ap-

pear less noisy due to the averaging involved in the computation of these eigenvectors. However,

the discriminant vectors obtained by removing within-class axes are noisier, but offer a different

type of information to PLS-DA or PCA-DA.

Then, for practical uses, it is interesting to assess the classification performances for different

numbers of training samples. For this purpose, with both data sets, we randomly selected among

the training set from 10 to 60 spectra per class, in steps of 10. These results are presented in

Figure 13.

The obtained results in terms of classification performance are very similar with these data

sets. All these methods appear to be relatively non sensitive to the lack of training samples. In

particular, above 30 samples per class, the classification stabilizes to its optimal value, which is

of great interest for practical uses. The only noticeable difference was with data set A, when

less than 30 training samples per class were used, comes from the estimation of the class co-

variance at the decision stage (Mahalanobis distance). DROP-D and NLDA subspaces were

17

Author-produced version of the article published in Chemometrics and Intelligent Laboratory Systems, 2015, N°146, p. 221-231. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.chemolab.2015.05.021



500 600 700 800 900

-2

0

2

4

Wavelength (nm)

1 2 3 4
PCA-DA discriminant vectors

500 600 700 800 900

-2

0

2

4

Wavelength (nm)

1 2 3
PLS-DA discriminant vectors

500 600 700 800 900

-2

0

2

4

Wavelength (nm)

1 2
NLDA discriminant vectors

500 600 700 800 900

-2

0

2

4

Wavelength (nm)

1 2
DROP-D discriminant vectors

Figure 12: Discriminant vectors obtained for the four tested methods.
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Figure 13: Validation error for an increasing number of training samples.
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two-dimensional, PLS-DA was three dimensional and PCA-DA was four dimensional, there-

fore, with such a small number of samples, the class covariance estimation was better in the

lower dimensional spaces.

5. Conclusion

The aim of this paper was two-fold. First, to give a new vision of the discrimination paradigm

using subspace decomposition. Then, based on these observations, we proposed a novel discrim-

ination approach that uses orthogonal projection to clean the data before dimension reduction.

The proposed method is called DROP-D and performs a data cleaning using an orthogonal

projection onto the within-class principal directions. In that sense, it mimics Fisher LDA, but

instead of weighting the projection by the within-class inversion, it directly removes the infor-

mation due to this within class-variations.

We also show that unless being very careful when removing the within-class information,

the class separability can be lost because of non-orthogonality of the within- and between-class

principal directions. Therefore, in DROP-D, a first step consists in preserving the most important

between-class directions so that no cleaning can be performed on them. Once the data is cleaned,

a classical Principal Component Analysis is performed in order to provide reduced data.

This method provides similar results to the more classical approaches (PCA-DA, PLS-DA

and NLDA) in terms of classification performances. However, contrary to PLS-DA, due to the

nature of the method, overfitting can be avoided without using the cross-validation procedure.

Indeed, since it is cleaning the data instead of learning a class structure, DROP-D classification

results are affected if useful information is removed even during the training phase.

Other dimension reduction strategies, which may prove to be even more powerful and subtle

in their cleaning performance are currently under investigation. Another research direction is to

link this work to existing orthogonal filtering techniques already used in regression analysis.
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