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Homoclinic orbits to invariant sets of quasi-integrable exact

maps

Patrick Bernard

october 98

In Hamiltonian mechanics, various questions and results concern the becoming of the
invariant tori of an integrable system after perturbation. It is well known, by KAM theory,
that many of these invariant tori are deformed but not destroyed. But it is known as well
that many of them are destroyed. They give rise to more or less complicated invariant sets
such as Mather invariant sets [9].

One particular kind of tori that can be destroyed is resonant tori, that is invariant tori
foliated by lower dimensional invariant tori. Treschev proved in [11] that if the frequency
induced on the lower dimensional torus satisfies some Diophantine condition, then one of the
lower dimensional tori is preserved, and becomes hyperbolic (whiskered in Arnold’s terminol-
ogy [1]). If the unperturbed Hamiltonian is positive definite, it has been proved by Bolotin
[3] that this preserved torus admits homoclinic orbits in the perturbed system. Similar re-
sults have been obtained by Eliasson [5] for 1-resonant tori without the convexity assumption.
These results are important not only as generalizations to high dimensional systems of old
results on twist maps, but also because they are a step in the attempt to generalize Arnold’s
construction of [1] and study diffusion in high dimensional Hamiltonian systems. Unfortu-
nately, as is explained in [8], there are not enough preserved tori for Arnold’s construction
to be led directly. That’s why the case of resonant tori which do not satisfy Diophantine
conditions and which can be completely destroyed is of some interest. Bolotin gives partial
answer to that question in [3], obtaining semi-asymptotic orbits to the Mather invariant set
but does not obtain an invariant set with homoclinic orbits.

In this paper, we focus our attention to a general resonant torus no lower dimensional
torus of which has to be preserved. We prove that its destruction gives rise to compact
invariant sets, the Peierl’s sets introduced by Mather in [10] and containing the usual Mather
sets, and that these sets admit nontrivial homoclinic orbits. As we stressed above, this result
could have some interest in the study of diffusion, allowing to fill the gaps between preserved
tori. Our method, that provides a different and less involved proof of Bolotin’s result, is based
on periodic orbits: both the invariant sets and the homoclinic orbits are obtained as limits of
periodic orbits which are found by the variational methods of [2]. That the Peierl’s set is the
natural asymptotic set to be considered has just been noticed by Fathi [6] by quite different
methods.

For convenience, we will consider exact maps instead of Hamiltonian flows, the links
between both theories are well known. Let us quote for instance [7] or [2] for details about
convexity assumptions. We also refer to [2] where it is explained how the local study of any
quasi-integrable exact map around a positive definite torus can be reduced to the following
setting.
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1 Main Result

We will consider an integrable symplectic diffeomorphism

Φ0 : Tn × Rn −→ Tn × Rn,

whose pull back
φ0 : Rn × Rn −→ Rn × Rn

can be written
φ0(x, y) = (x+ ω(y), y).

In all the following, we will suppose that Φ0 satisfies the following two hypothesis:

Hypothesis 1 (non-degeneracy) the map ω : Rn −→ Rn is a diffeomorphism.

Then φ0 admits a global generating function of type S [4], i.e. there exists a function S :
Rn × Rn −→ R such that

(x1, y1) = φ0(x0, y0)⇐⇒
{
y0 = ∂1S(x0, x1)
y1 = −∂2S(x0, x1)

. (1)

It is easy to see that in our case

S(x0, x1) = h(x1 − x0),

and we will make the following second assumption

Hypothesis 2 (convexity) the function h : Rn −→ R is strictly convex.

Let Φ be a C1 exact perturbation of Φ0, its pull back φ has a C2 generating function

S(x0, x1) = h(x1 − x0) + εP (x0, x1),

where the perturbation P satisfies

Hypothesis 3 (exactness) P (x0 +m,x1 +m) = P (x0, x1) for all m ∈ Zn.

Since we are interested in the dynamical structure of a bounded region of phase space, we
can change the mapping at infinity and furthermore suppose (see [2])

Hypothesis 4 (localization) there is a compact set K ⊂ Rn and a number a > 0 such that

S(x, x+ t) = h(t) + εP (x, x+ t) = a|t|2 + 0

when t /∈ K.

Let y0 and ω0 = ω(y0) be fixed. Assume that ω0 is resonant, which means that there exists
k ∈ Zn such that < k, ω0 >∈ Z. Let

R = {k ∈ Znsuch that < k, ω0 >∈ Z}

and let r = rank (R), then we say that ω0 is r-resonant. The free group R has a basis B of
cardinal r. It is not hard to see that there is a foliation of the torus y = y0 in ergodic subtori
and a group morphism

F : Tn × Tn−r −→ Tn

2



such that these tori are {
F (x, θ), θ ∈ Tn−r

}
.

The unperturbed map restricted to {y = y0} is given by

F (x, θ) 7−→ F (x, θ) + ω0 = F (x, θ + ω̃0).

The frequency ω̃0 ∈ Rn−r is called the induced frequency. It is useful to define the averaged
perturbation

P : Tn −→ R

given by

P(x) =

∫
Tn−r

P
(
F (x, θ) , F (x, θ) + ω0

)
dθ

= lim
N→+∞

1

2N

N∑
i=−N

P
(
x+ iω0 , x+ (i+ 1)ω0

)
.

The function P is then constant along the ergodic subtori,

P(F (x, θ)) = P(x).

Hypothesis 5 P is minimal on exactly one of the ergodic tori {F (x, θ), θ ∈ Tn−r}, which is
a non-degenerate critical manifold for P. We will note Γ0 this minimal torus.

We will use the notation π both for the canonical projection Rn −→ Tn and for (π, Id) :
Rn×Rn −→ Tn×Rn and Π for the first factor projection Tn×Rn −→ Tn or Rn×Rn −→ Rn.
We also set

Uδ = {q ∈ Tn, dist(q,Γ0) < δ},

and we will write Uδ for π−1(Uδ). We are now in a position to state our main result:

Theorem 1 Let Φε be the exact map whose pullback φε is generated by a C2 function

Sε(x0, x1) = h(x1 − x0)− εP (x0, x1)

satisfying H 1-5. Let C > 0 be any constant, then there are two nonnegative constants ∆
and A and a function δ(ε) with limε→0 δ = 0 such that for any ε 6 ∆ and any c ∈ Rn with
‖c−∇h(ω0)‖ 6 Cε, there exists a compact invariant set Σ̃c(ε) of Φε satisfying

• Π|Σ̃c(ε) is a bilipschitz homeomorphism onto its image.

• Σ̃c(ε) ⊂
{

(x, y) ∈ Tn × Rn/x ∈ Uδ(ε) , ‖y − y0‖ 6 A
√
ε
}
,

• Σ̃c(ε) has r + 1 homoclinic orbits lying in the zone
{
‖y − y0‖ 6 A

√
ε
}

of phase space.

• Both the invariant sets and the homoclinic orbits belong to Per(Φ).

The invariant set Σ̃c(ε) is a Peierl’s set as defined in Mather [10], it will be described with
some details in section 3. If the induced frequency ω̃0 satisfies some Diophantine condition,
and if the maps involved are sufficiently regular, Treschev [11] obtains the existence of an
hyperbolic invariant torus of frequency ω0. In this case, theorem 1 becomes:

3



Theorem 2 (Bolotin,[3]) There is a constant C > 0 such that if there exists a KAM hy-
perbolic torus Γ with rotation vector ω0, then there is c satisfying the hypothesis of theorem 1
such that

Σ̃c(ε) = Γ.

The torus Γ thus admits r + 1 homoclinics.

Remark : The existence of 2r homoclinic orbits may actually be proved in both statements
above by noticing that the system is almost reversible in the region of phase space under
interest.

In Section 2, we introduce the variational setting for periodic orbits that will be used in
all the following. In section 3, we describe the asymptotic set. We first state some general
properties of Peierl’s sets, proving results of [10] in order to stress that no minimal measures
are needed to introduce the Peierl’s set. In the subsections we use averaging methods inspired
from [3] to localize the asymptotic set. In section 4, we explain that certain sequences of
periodic orbits converge to homoclinic orbits, and in section 5, we use this fact to get several
nontrivial homoclinics.

2 Periodic orbits

All the constructions below will be based on periodic orbits, that will be obtained as action
minimizers. We will first introduce a variational problem for orbits of φ in the universal cover
Rn × Rn. Let

ETw = {(x0, . . . , xT ) ∈ (Rn)T+1such that xT = x0 + w},

Consider the Lagrangian
LTw : ETw −→ R

LTw(x0, . . . , xT ) =

T−1∑
i=0

S(xi, xi+1).

It is not hard to see that there exists a T -periodic orbit(
(x0, y0), (x1, y1), . . . , (xT , yT )

)
of φ if and only if

(x0, . . . , xT ) ∈ crit
(
LTw
)
.

The orbit having a given x-projection is then uniquely defined, it satisfies:

yi = ∂1S(xi, xi+1) = −∂2S(xi−1, xi).

This variational setting has been introduced and studied in [2], we will need the following
part of their result, in which only estimate (2) is non-trivial.

Theorem 3 (Bernstein Katok) Given C > 0, there exist two non negative constants ∆
and A, depending on h and C but neither on w or T nor on P , such that if ‖dP‖C0 6 C and
ε 6 ∆, the above variational problem LTw admits a minimizing orbit X = (xi) satisfying

|xi+1 − xi − w/T | 6 A
√
ε. (2)
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There are corresponding problems on Tn. For any c ∈ Rn, let

Sc(x0, x1) = S(x0, x1)− < c, x1 − x0 > .

The functional cL
T
w associated to Sc has the same critical points and the same minima than

that associated to S. We can now define

ET = {(q0, . . . , qT ) ∈ (Tn)T+1such that qT = q0}

and

HT
c (q0, . . . , qT ) =

T−1∑
i=0

Hc(qi, qi+1),

where
Hc(q0, q1) = min

π(x0)=q0,π(x1)=q1
(Sc(x0, x1))

In the following, we will usually use q for points and orbits in Tn and x for points and
orbits in Rn. Given T and c, it is easy to see that the function

w ∈ Zn 7−→ min(cL
T
w)

is proper. It must have a minimum, and we will call W T
c the set of rotation numbers w ∈ Zn

realizing this minimum. If X is a minimizing orbit of LTw with w ∈W T
c then it is easy to see

that its projection Q ∈ ET is a minimizer of HT
c , and any minimizer of HT

c can be obtained
that way. The minimizing orbits of the functionals Hc depend on c, and if w, T and c are
fixed, the projection Q ∈ ET of a minimizing orbit X ∈ ETw of LTw need not be a minimizing
orbit of HT

c . Following Mather, we will call configurations the elements of ETw or ET or in
general all sequences of points. Let us end this section with an important remark:

Lemma 1 The function
Hc : Tn × Tn −→ R

is Lipschitz continuous.

Proof: Let us first notice that there is a constant C depending on c such that for any (q, p) ∈
(Tn)2 there are covering points (x, y) of (q, p) with ‖(x, y)‖ 6 C and Hc(q, p) = Sc(x, y). Let
us now take two other points q′ and p′ and their covering points x′ and y′ closest to x and y.
The result follows from the inequality

Hc(q
′, p′)−Hc(q, p) 6 Sc(x

′, y′)− Sc(x, y) 6 K‖(x′, y′)− (x, y)‖ 6 Kd((q′, p′), (q, p)).

�

3 The asymptotic set

We will now define and describe the invariant set to which homoclinic orbits will be searched.
Let

α(c) = inf
T>0

(
minHT

c

T

)
.

This function is the α function of Mather. The following lemma will be of great importance:
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Lemma 2
lim inf
T−→∞

(
min(HT

c − Tα(c))
)

= 0.

Proof: Let us set mT = min(HT
c −Tα(c)). If for some T we have mT = 0 then calling QT the

minimizing sequence of HT
c − Tα(c) and n ∗ QT the nT -periodic configuration consisting of

n iterates of QT we have HnT
c (n ∗QT )− nTα(c) = 0 for any n, and so lim inf mT = 0. Thus

if we assume that lim inf mT > 0, then there is a real number l satisfying

mT > l > 0.

Let us fix r > 0 such that |Hc(z, x) − Hc(z, y)| 6 l/2 when d(x, y) 6 2r. There is a real
number p with 0 < p < 1 such that, given T points on the torus, there is a ball of radius
r containing at least pT of them. Take a minimizing configuration QT = (qTi ) of HT

c , after
permutation of the indices, there are K > pT points qT0 , q

T
i1
, . . . , qTiK−1

contained in a ball of

radius r. The configurations Qk = (qTik−1
, qTik−1+1, . . . , q

T
ik

) of length Tk = ik − ik−1 are almost
periodic and we have

HTk
c (Qk)− Tkα(c) > l/2,

adding these inequalities for all k we get

HT
c (Q)− Tα(c) > Kl/2 > pT l/2.

This gives
α(c) 6 HT

c /T − pl/2

which is in contradiction with the above definition of α. �
The following definition is that of [10], but we avoid the use of minimal measures.

Definition 1 A Peierl’s point is a point q ∈ Tn such that there exists a sequence Qn of
Tn-periodic configurations with qn0 = q and

lim
n−→∞

HTn
c (Qn)− Tnα(c) = 0.

The set of all Peierl’s points is the Peierl’s set Σc.

That this set is not empty is an easy consequence of lemma 2. Take a sequence Qn of Tn-
periodic configurations such that limn−→∞H

Tn
c (Qn) − Tnα(c) = 0. Any accumulation point

of the bounded sequence (qn0 )n∈N is a Peierl’s point. In order to get further information on
the set Σc, we will need the

Lemma 3 Let us fix q0 ∈ Tn and let Qn and Pn be two periodic configurations with qn0 =
q0 = pn0 and

lim
n−→∞

(Hc − Tα)(Qn) = 0 = lim
n−→∞

(Hc − Tα)(Pn),

then qn1 and pn1 have the same limit q1.

Proof: We first take subsequences so that qn1 , pn1 , qnTnq −1 and pnTnp −1 have limits q1, p1, q−1 and

p−1. Consider the configurations

Rn = (qn0 , q
n
1 , . . . , q

n
Tnq −1, q, p

n
1 , . . . , p

n
Tnp

)
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and
Rn(q) = (qn0 , q

n
1 , . . . , q

n
Tnq −1, q0, p

n
1 , . . . , p

n
Tnp

), q ∈ Tn,

and let
hn(q) = Hc(R

n(q))− Tnα(c),

where Tn = Tnp + Tnq . We then have

hn(q) = cn +Hc(q
n
Tnq −1, q) +Hc(q, p

n
1 ).

Since hn(q0) −→ 0 the sequence cn has a limit −Hc(q−1, q0)−Hc(q0, p1). The function hn(q)
thus has a limit h(q) which satisfies h(q0) = 0 and h > 0. It follows that the function

q 7−→ Hc(q−1, q) +Hc(q, p1)

must have a minimum at q0. Taking points x−1, x0 and y1 in Rn covering q−1, q0 and p1 and
such that Hc(q−1, q0) = Sc(x−1, x0) and Hc(q0, p1) = Sc(x0, x1), we obtain that the function

x 7−→ Sc(x−1, x) + Sc(x, y1)

must have a minimum at x0 and the equation

∂2Sc(x−1, x0) = −∂1Sc(x0, y1)

holds true. Let us take a given sequence Qn such that qn−1 has a limit q−1, then any accumula-
tion point of pn1 for any admissible sequence Pn must have a covering that satisfies the above
equation hence the sequence pn1 must have a limit, which corresponds to the only solution of
the equation. We get that p1 = q1 by applying this to the case Pn = Qn. �

The mapping
Φc : Σc −→ Σc

q 7−→ q1.

is Lipschitz continuous. We could prove it using arguments as in lemma 3 but more involved,
we prefer to send the reader to [9]. The set

Σ̃c = {(q, ∂1Sc(q,Φc(q))) , q ∈ Σc}

is Φ-invariant. There is a map φc : π−1(Σc) −→ π−1(Σc) so that the following diagram
commutes.

π−1(Σ̃c)
φ //

Π
��

π

{{xx
xx

xx
xx

x
π−1(Σ̃c)

Π
��

π

{{xx
xx

xx
xx

x

Σ̃c
Φ //

Π

��

Σ̃c

Π

��

π−1(Σc)
φc //

π

{{vvvvvvvvv
π−1(Σc)

π

{{vvvvvvvvv

Σc
Φc // Σc
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The vertical projections Π on this diagram are all bilipschitz homeomorphisms. We will often
use the notation Σc for π−1(Σc) and Σ̃c for π−1(Σ̃c). We have given the general definition of a
Peierl’s set. In order to obtain asymptotic orbits to it, some information must be obtained on
its topology. We now focus our attention to the vicinity of the torus Tn×{y0}. The following
proposition provides us with some Peierl’s set in this zone of phase space, and gives us the
topological information we need.

Proposition 1 Let us fix C > 0, there is a function δ(ε) with limε−→0 δ(ε) = 0, and a
constant A > 0 such that when ε is small enough we have

Σc ⊂ Uδ(ε)

and
Σ̃c ∈ {‖y − y0‖ 6 A

√
ε} ∈ Tn × Rn

for any c such that ‖c−∇h(ω0)‖ 6 Cε.

In the following subsections, we prove proposition 1.

3.1 Averaging

Let us set
S̃(x0, x1) = S(x0, x1) + f(x0)− f(x1),

where f ∈ C1(Tn). All the functionals defined above on sets of periodic orbits are unchanged
when S is replaced by S̃. We will use this fact to reduce our functionals to more convenient
forms.

Lemma 4 For any o > 0, There is a function fo ∈ C1(Tn), such that the modified generating
function

So(x0, x1) = S(x0, x1) + εfo(x0)− εfo(x1)

satisfies
So(x0, x1) = h(x1 − x0) + εP(x0) + εR(x0, x1)

with
|R(x0, x0 + ω0)| 6 o.

Proof: We first formally solve the equation

P (x, x+ ω0) + f(x)− f(x+ ω0) = P(x0).

Let us put

P (x, x+ ω0) =
∑
k∈Zn

pke
i<k,x>

then
P(x) =

∑
k∈R

pke
i<k,x>

and the function f(x) =
∑

k∈Zn fke
i<k,x>, with

fk =
pk

ei<k,ω0> − 1
, k /∈ R ; fk = 0 , k ∈ R

8



formally solves the equation. Under our hypothesis, the above series can be divergent. Nev-
ertheless, given o > 0, there is K ∈ R such that∣∣∣∣∣∣

∑
|k|>K

pke
i<k,x>

∣∣∣∣∣∣ 6 o.
It is then easy to see that

fo(x) =
∑
|k|6K

fke
i<k,x>

satisfies
‖P (x, x+ ω0) + fo(x)− fo(x+ ω0)− P(x)‖∞ 6 o.

this proves lemma 4. �
It will be useful in the following to use the notations

S̃c = Sc − α(c), H̃c = Hc − Tα(c),

and
Q(x) = P(x)−min(P).

Lemma 5 Let us fix C > 0, there are non negative numbers a and b and a function K(o)
independent of ε such that for any c ∈ Rn satisfying ‖∇h(ω0)− c‖ 6 Cε,

a‖t‖2 + εQ(x0)− 4oε−Kε2 6 cS̃o(x0, x1) 6 b‖t‖2 + εQ(x0) + 4oε+Kε2, (3)

where t = x1 − x0 − ω0.

Proof: For ε small enough, the function x1 7−→ h(x1 − x0) + εR(x0, x1) is uniformly strictly
convex thus there exists a > 0 such that

h(x1 − x0) + εR(x0, x1) >

h(ω0) + εR(x0, x0 + ω0)+ < ∇h(ω0) + ε∂2R(x0, x0 + ω0), x1 − x0 − ω0 > +a‖x1 − x0 − ω0‖2.

This gives

cSo(x0, x1) > h(ω0)− < c, ω0 > −εo+ < ∇h(ω0) + ε∂2R(x0, x0 + ω0)− c, t >
+a‖t‖2 + εP(x0)

> h(ω0)− < c, ω0 > −εo− εC‖t‖+ a‖t‖2 + εP(x0)

> h(ω0)− < c, ω0 > −εo−Kε2 + a‖t‖2 + εP(x0)

changing the constant a in the last inequation. We can also obtain the majoration

cSo(x0, x1) 6 h(ω0)− < c, ω0 > +εo+Kε2 + b‖t‖2 + εP(x0).

We are now in a position to estimate α(c). The above minoration gives

α(c) > h(ω0)− < c, ω0 > +εminP − εo−Kε2

> h(ω0)− < c, ω0 > +εminP − 2εo

9



for ε small enough with respect to o. Let x and y be two points of Γ0, consider the configuration
xk = x+ kω0, let T be the time between ε−1/2 and 2ε−1/2 for which xT is closest to y and set
d = y − xT . Now consider the configuration Y = (yk = xk + kd/T ), it connects x and y and
satisfies

cLo(Y ) 6 bT−1‖d‖2 + Tεmin(P) + Th(ω0)− T < c, ω0 > +εoT + ε2KT

because

cSo(yk, yk+1) 6 b‖d/T‖2 + εP(yk) + h(ω0)− < c, ω0 > +oε+Kε2 + h(ω0).

Since d goes to zero as ε goes to zero, we obtain for ε small enough the estimate

cLo(Y ) 6 Tεmin(P) + Th(ω0) + T < c, ω0 > +2o
√
ε.

If we apply this remark to the case x = y, Y is a periodic configuration and we get

α(c) 6 h(ω0)− < c, ω0 > +εminP + 2oε.

We have estimated α(c):

|α(c)− h(ω0)+ < c, ω0 > −εminP| 6 2oε.

The inequality (3) is obtained by mixing this estimate with the above inequalities. �
We have also proved:

Lemma 6 Let x and y be two points of Γ0, there is a configuration X = (x = x0, . . . , xT = y)
with ε−1/2 6 T 6 2ε−1/2 and

cL̃o(X) 6 10o
√
ε.

3.2 Localization of the asymptotic set

In this rather technical section, we prove proposition 1. In the following calculations, we will
mainly use inequality (3), thus our result will be true for any c satisfying the hypothesis of
lemma 5. We will omit the subscript c.

Lemma 7 Let ν > 0 and x and y be two points of Uν , for o > 0 small enough and ε small
enough with respect to α, there is a configuration X = (x = x0, . . . , xT = y) satisfying

L̃o(X) 6 Cν2√ε.

Proof : We will construct our connecting configuration via Γ0. Let x ∈ Uν , x+d its projection
on Γ0. Considering the configuration (x0, . . . , xT ) = (x, x + ω0 + d/T, . . . , x + Tω0 + d), we
get

S̃o(xi, xi+1) 6 b ‖d/T‖2 + εQ(x+ i(ω0 + d/T )) + εo+Kε2.

Adding these inequalities gives

L̃o(X) 6 bν2/T + Tε

(
sup
Uν

Q+ o+Kε

)
,
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and since
P(x) 6 minP + C(d(x,Γ0))2,

L̃(X) 6 bν2/T + Tε
(
Cν2 + 4o+Kε

)
.

Taking T =
√
ε we obtain that

L̃α(x0, . . . , xT ) 6 Cν2√ε.

In order to prove the lemma, we just have to consider a three part configuration

x = x0, . . . , xN , . . . , xM , . . . , xT = y,

where xN ∈ Γ0 and x0, . . . , xN is the orbit considered above, xM ∈ Γ0 and xM , . . . , xT is a
reversed configuration like above, and xN , . . . , xM is a configuration obtained by lemma 6.
The inequality of the lemma is then satisfied if o is small enough. �

Corollary 1 Let x and y lie in Uν , any configuration connecting x and y satisfies

L̃α > −Cν2√ε.

Proof: Let us consider a configuration connecting x and y, and complete it by the configuration
of low action obtained above connecting y and x. We obtain a periodic configuration, writing
that its action must be non negative gives the inequality of the corollary. �
Let 0 < ν < δ, and let W = Rn − Uν .

Lemma 8 Let X = x0, . . . , xT be a configuration with x0 ∈ Uν , xi ∈ W for i > 1 and
xT ∈ Rn − Uδ. Then for α and ε small enough

L̃α(X) > D
√
εν(δ − ν).

The conclusion holds true for a configuration with xT ∈ Uν , xi ∈ W for i < T and x0 ∈
Rn − Uδ.

Proof: We will give the proof of the first part of the lemma, the proof of the second part goes
along the same line and is easier. Since Γ0 is a nondegenerate minimal manifold for P we
have

P(x) > minP +D(d(x,Γ0))2.

It follows that
S̃o(xi, xi+1) > a‖ti‖2 + εCν2 − 4oε−Kε2

for i > 1. We then choose o so that Dν2 − 4o > Dν2/2 > 0, and obtain

S̃o(xi, xi+1) > C‖ti‖ν
√
ε,

for ε small enough and i > 1. On the other hand,

S̃o(x0, x1) > a‖t0‖2 + εQ(x0)− 4oε−Kε2,

S̃o(x0, x1) > a‖t0‖2 + εDν2 − εC‖t0‖ − 4oε−Kε2.

For ε small enough, we get
S̃o(x0, x1) > D‖t0‖ν

√
ε,

11



Adding all the minorations we have obtained gives the lemma because

∑
i

‖ti‖ >

∥∥∥∥∥∑
i

ti

∥∥∥∥∥ > |δ − ν|.
�

Lemma 9 There is a function δ(ε) such that limε→0 δ(ε) = 0 and a function a(ε) satisfying
a(ε) > 0 for ε > 0 such that any periodic configuration (x0, x1, . . . x0 + m) of any rotation
number leaving Uδ(ε), satisfies L(x0, . . . , x0 +m) > 2a(ε):

L(x0, . . . , x0 +m) > 2a(ε) if xi /∈ Uδ(ε) for some i.

Proof: Let δ be fixed, and let X be a periodic configuration leaving Uδ, let ν = δ2. If X stays
out of Uν , then adding the inequalities

S̃o(xi, xi+1) > a‖ti‖2 + εDν2 − 4oε−Kε2,

we obtain
L̃(X) = L̃o(X) > εDν2 − 4oε−Kε2,

for any small o, so that we have
L̃(X) > Dεδ4

for ε small enough. Let us now suppose that X comes into Uν . We can find a configuration
Y = x−i, . . . , x0, . . . , xj in X with x0 /∈ Uδ ,xk ∈W if −i < k < j and (x−i, xj) ∈ (Uν)2. The
above lemma gives us

L̃α(Y ) > D
√
εδ3.

By corollary 3, we then have
L̃(X) >

√
ε(Dδ3 − Cδ4)

when ε is small enough with respect to delta. As a consequence of these results, there is a
constant D > 0 such that the inequality

L̃(X) > Dmin
(√
εδ3, εδ4

)
must be satisfied when δ is small enough and when ε is small enough with respect to δ. The
lemma follows. �
The horizontal localization of proposition 1 follows. Let us now end the proof of proposition 1:
We are still given a fixed c satisfying the hypothesis of theorem 1, and we omit all subscripts c.
Let Xk ∈ ETkwk be a sequence of periodic configurations such that L̃(Xk) −→ 0 and Tk −→∞.

Lemma 10 The rotation number wk satisfies:

‖wk/Tk − ω0‖ 6 2A
√
ε

when k large enough and ε small enough, where A is the constant of inequality (2).

12



Proof: By inequality (2), we have

‖xki+1 − xki − wk/Tk‖ 6 A
√
ε.

Assume that ‖wk/Tk−ω0‖ > 2A
√
ε with the same constant A, then setting tki = xki+1−xki −ω0

as usual, we have that ‖tki ‖ > A
√
ε. Putting this in inequality 3 gives

L̃(Xk) > Tk(aAε− oε−Kε2)

for any o, which gives a contradiction when o and ε are small enough because Tk −→∞ and
L(Xk) −→ 0. �
Using lemma 10 and (2) we obtain

‖xki+1 − xki − ω0‖ 6 3A
√
ε

for k large enough. Vertical localization of proposition 1 follows, with a different constant A.

�

4 Convergence

In this section we will study sequences of periodic orbits, and obtain homoclinic orbits as
accumulation points. We fix c ∈ BCε(∇(ω0)), and we will omit the subscript c in the following
Let Qk be a sequence of Tk-periodic orbits such that H̃(Qk) −→ 0 and Tk −→∞. The orbit
Qk has a covering Xk ∈ ETkwk minimizing LTkwk . We can take a subsequence to be reduced to
the case where the inequality of lemma 10 is satisfied for every k, and where the sequence
wk/Tk has a limit ω, which satisfies

‖ω − ω0‖ 6 2A
√
ε.

Let Xk(m) ∈ ETkwk+m be the minimizing sequence of LTkwk+m, and Qk(m) its associated orbit
on Tn. We need some informations about these orbits.

Lemma 11 There is a constant C(m), depending on m but not on k, such that

L̃(Xk(m)) 6 C(m).

Proof:

L̃(Xk(m)) 6 L̃(xk0, . . . , x
k
Tk−1, x

k
Tk

+m)

6 L̃(Xk) + S̃(xkTk−1, x
k
Tk

+m)− S̃(xkTk−1, x
k
Tk

)

6 L̃(Xk)−min S̃ + sup
‖x‖61,‖y‖61+m+ω0+3A

√
ε

S̃(x, y).

�

Lemma 12 There is a constant C(m) such that for any 0 6 i < j 6 Tk

H̃(qki (m), . . . , qkj (m)) 6 C(m).

13



Proof: Let us set P = (pj , . . . , pi) = (qkj (m), . . . , qkTk(m), qk1 (m), . . . , qki (m)). Writing

H̃(P ) + H̃(qki (m), qkj (m)) > 0

gives
H̃(P ) > −max

(Tn)2
H̃.

We get

H̃(qki (m), . . . , qkj (m)) = H̃(Qk(m))− H̃(P )

6 C(m) + max H̃.

�
Thanks to these lemmas, we are in a position to study the accumulation points of the sequence
Qk(m). Let us fix a sequence ak of integers, we can consider the centered orbit

Θk =
(
θki = qki+ak(m)

)
i∈Z

,

where everything is defined by periodic continuation. There is a subsequence Θl(k) such that
l 7−→ θli has a limit θi for every i. The biinfinite sequence Θ = (θi)i∈Z will be called an
accumulation point of the centered orbit Θk. An accumulation point of a centered orbit of
a sequence Y k of periodic orbits will be called an accumulation point of Y k. We have the
following proposition, in which as usual everything depends on a vector c ∈ Rn satisfying
‖c−∇h(ω0)‖ 6 Cε.

Proposition 2 Any accumulation point of Qk(m) is the projection of an orbit that is homo-
clinic to Σ̃, any orbit obtained that way satisfies the localization ‖y − y0‖ 6 A

√
ε of theorem

1.

This proposition provides no existence result up to now since the accumulation point could
be an orbit contained in Σ.
Proof: Since Θk are orbit segments, we have

∂2S(θki−1, θ
k
i ) = −∂1S(θki , θ

k
i+1),

taking the limit we obtain
∂2S(θi−1, θi) = −∂1S(θi, θi+1),

which means that θi is the projection of the orbit (θi, ∂1S(θi, θi+1)). Since ‖xki+1(m)−xki (m)−
ω0‖ 6 4A

√
ε, this orbit must stay in the zone ‖y − y0‖ 6 A

√
ε (where A is a new constant).

To prove that this orbit is homoclinic, it is enough to prove that the α and ω-limit of the
orbit (θi, ∂1S(θi, θi+1)) lie in Σ̃. We will prove it for the ω-limit, the other part being similar.
It is sufficient to see that for any subsequence θj(i) having a limit θ, we have θ ∈ Σc and
θj+1 −→ φc(θ). Taking a subsequence if necessary, we can suppose that d(θj , θ) 6 2−j . Let
us consider the configuration

Zj = (θ, θj(i)+1, . . . , θj(i+1)−1, θ),

14



it satisfies H̃(Zj) > 0 and

H̃(Zj) 6 H̃(θj(i), θj(i)+1, . . . , θj(i+1)) + C2−j .

Adding these inequalities and using lemma 11 yields

i1∑
i=i0

H̃(Zj(i)) 6 C2−j(i0) + H̃(θj(i0), . . . , θj(i1+1))

6 C2−j(i0) + sup
k

(
H̃(θkj(i0), . . . , θ

k
j(i1+1))

)
6 C2−j(i0) + C(m).

We obtain that H̃(Zi) −→ 0 so that θ ∈ Σc and θj(i)+1 −→ φc(θ). The last assertion fol-
lows from the fact that φc(θ) is the only possible accumulation point of the sequence θj(i)+1. �

5 Nontriviality and multiplicity

As we noticed it in the previous section, proposition 2 does not guarantee the existence of
nontrivial homoclinic orbits. Some additional work will be needed. Let us fix δ small, there
is ε0 such that Σ ∈ Uδ when ε 6 ε0. There also exists η such that d(q,Σ) 6 η ⇒ q ∈ Uδ when
ε 6 ε0. Let us define the open set

Vη ⊂ Rn × Rn = {(x0, x1) such that d ((x0, x1), graph(φc)) < η} ⊂ Uδ × Uδ.

We associate to any periodic orbit X ∈ ETw its relative homology

(hb(X) =< w, b > −T < ω0, b >)b∈B ∈ Zr,

recall that B is a basis of the resonant group. We also associate to any point x ∈ Uδ coefficients

(hb(x)) = E(< x, b >)b∈B ∈ Zr,

where E(x) is the integer closest to x, the above giving a good definition if δ has been chosen
small enough. These coefficients have of course no topological meaning.

Lemma 13 If δ has been chosen small enough, for any point x ∈ Σ,we have

hb(φc(x)) = hb(x)+ < ω0, b >,

from which easily follows that

(x0, x1) ∈ Vη ⇒ hb(x0) = hb(x1)+ < ω0, b > .

Proof: Let us consider a sequence Xk as above with L̃(Xk) −→ 0 and xk0 −→ x. The
sequence xk1 then has a limit φc(x) satisfying ‖φc(x) − x − ω0‖ 6 A

√
ε. We obtain that

| < φc(x), b > − < x, b > − < ω0, b > | is small. Since both φc(x) and x are in Uδ,
< φc(x), b > and < x, b > are close to integers, the result follows. �
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As an easy corollary of that lemma, we obtain that if Xk is an orbit such that L̃(Xk) −→ 0
then (xki , x

k
i+1) ∈ Vη for all i when k large enough, thus hb(X

k) =< xkTk , b > − < xk0, b >

−Tk < ω0, b > is close to hb(x
k
Tk

)− hb(xk0)− Tk < ω0, b >= 0, so hb(X
k) = 0, which writes

< wk, b >=< ω0, b >

for k large enough. We also define the relative homology of a φ-orbit homoclinic to Σ as
follows,

hb(Θ) = lim
i−→∞

(hb(θi)− hb(θ−i)− 2i < ω0, b >).

This is well defined because for i large enough, we have θi ∈ Uδ and (θi, θi+1) ∈ Vη. We can
now prove the existence of nontrivial orbits. Let us fix some m and consider the sequence
Xk(m). There is an alternative
1- There exist ak such that

(
xkak(m), xkak+1(m)

)
admits an accumulation point out of Vη, and

so there is a nontrivial homoclinic, that leaves Uη.
2- (xki (m), xki+1(m)) ∈ Vη holds when k is large enough.
If 2- holds, it follows easily that the periodic orbit Xk(m) has trivial relative homology:

hb(X
k(m)) = 0.

This last equation writes
< m, b >= 0,

we can choose m so that this equation is not satisfied, in this case 2- is impossible and so 1-
is true.

We will now go in some kind of concentration compactness for our sequences Xk(m) to
obtain multiplicity. Assume m has been chosen so that a nontrivial accumulation orbit leaving
Uη exists. There are a sequence ak0, an homoclinic orbit Θ0 and a subsequence of Xk(m) that
will still be noted Xk(m) such that xk

i+ak0
(m) −→ θ0

i for all i. Possibly changing ak0, we can

suppose that there exists A0 such that (θ0
i , θ

0
i+1) ∈ Vη for i < 0 or i > A0, and given ν > 0,

we can take a subsequence of our subsequence such that d(xk
i+ak0

(m), θ0
i ) 6 ν for |i| 6 2A0,

this subsequence is still noted Xk(m). Let us define

ak1 = min{i > ak0 +A0 such that (xki (m), xki+1(m)) /∈ Vη}

and
ak−1 = max{i < ak0 such that (xki (m), xki+1(m)) /∈ Vη}.

We can extract another subsequence such that there exists a nontrivial homoclinic orbit Θ1,
and an integer A1 satisfying

(θ1
i , θ

1
i+1) ∈ Vη when i > A1

and
d(xk

i+ak1
(m), θ1

i ) 6 ν when |i| 6 2A1.

We can continue the process by defining

akl = min{i > akl−1 +Al−1 such that (xki (m), xki+1(m)) /∈ Vη}
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and finding Θl and Al with
(θli, θ

l
i+1) ∈ Vη when i > Al

and
d(xk

i+akl
(m), θli) 6 ν when |i| 6 2Al.

We can do the same for l < 0. Assume now that the process ends on each side, that is we
have l+ > 0 and l− 6 0 such that akl++1 > Tk and akl−−1 < 0 when k > k0, then we have

found a subsequence Xk(m) such that

d(xki (m), θl
i−akl

) 6 ν when akl − 2Al 6 i 6 akl + 2Al

and

(xki (m), xki+1(m)) ∈ Vη when akl +Al 6 i < akl+1 or Tk > i > akl+ +Al
+

or 0 6 i < akl− .

Looking precisely at the construction we just performed and applying lemma 13, we see that

< m, b >= hb(X
k(m)) =

l+∑
l=l−

hb(Θ
l). (4)

Lemma 14 If there are only a finite number N of geometrically distinct homoclinics then
the process described above ends for each m. It follows that the relative homologies of these
homoclinics must additively generate Zr and thus

N > r + 1.

Proof: If the process always ends, then the above sum formula (4) must be satisfied, and since
the function

m 7−→ (< m, b >)b∈B ∈ Zr

is easily seen to be onto, we have the second part of the lemma. It remains to prove that the
process ends. If there are only N homoclinic orbits, there are at most N leaving Uη, one of
them must occur at least (l+ − l−)/N times in the sequence Θl defined above, that is there
are indices l1, . . . , lK with K > (l+ − l−)/N such that Θlj = Θ. Let us set

Y k
j =

(
xk
aklj
, xk

aklj
+1
, . . . , xk

aklj+1

)
.

and

Ỹ k
j =

(
θ0, x

k
aklj

+1
, . . . , xk

aklj+1
−1
, θ0

)
.

The configuration Ỹ k
j is periodic and leaves Uη, so there must be o > 0 such that

L̃(Ỹ k
j ) > 2o.

If ν has been chosen small enough, it follows that

L̃(Y k
j ) > o.

This gives
C(m) > L(Xk(m)) > Ko

which is a majoration for K and thus for l+ − l−. �
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