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Abstract
We describe the asymptotic behaviour of entropy solutions of the inviscid
Burgers equation on the circle with time-periodic forcing. These solutions
converge to periodic states, but the period of these limit states may be greater
than the period of the forcing. A corollary is that the only solutions without
shocks are periodic. This result can be interpreted in terms of the invariant
curves of the associated dynamics.

Mathematics Subject Classification: 35F25, 35B40, 37E40

We study the quasi-linear first order partial differential equation

∂ty + ∂x(H(t, x, y)) = 0, (B)

where t is a real time, x is a periodic real variable and the unknown y is a real valued function
of t and x. The hypotheses on H will be specified later. Equations of this kind have been
extensively studied as a very simple example of turbulence. A physical model is given here,
which helps the intuition. The Hamiltonian H gives rise to a classical dynamics for particles on
the configuration space, which is here the circle of x variable. On each point x of this circle, put
a particle with momentum y(0, x). Assume that each of these particles moves, independently
of each other, driven by the classical dynamics associated with H . The solution y(t, x) is
then the momentum of the particle that is at point x at time t . The function y(t, x) may be
seen as the Eulerian description of this very simple fluid. Of course, it might happen that
after a certain time several different particles with different momenta have the same position.
This is the reason why the equation does not have classical solutions in general. However,
generalized solution can be defined by the following additional requirement: when a collision
occurs between particles, these particles glue together and form what will be called a shock.
Shocks then absorb the particles that hit them. Note that these shocks are not the same kind of
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objects as particles, their evolution is not driven by the Hamiltonian. The solutions describing
this evolution are called the entropy solutions of (B).

The main goal of this paper is to describe the asymptotic behaviour of entropy solutions of
(B). We prove that, if the Hamiltonian is time-periodic, each solution converges to a periodic
solution. The period of the limit is a multiple of the period of the Hamiltonian. We also prove
that all solutions undergo shocks, except perhaps time-periodic solutions. This does not mean,
however, that periodic solutions are always free of shocks. For many Hamiltonians, there do
not exist any solutions without shocks.

In order to obtain this asymptotic behaviour, we introduce another equation, satisfied by
the primitive of entropy solutions, the Hamilton–Jacobi equation, whose viscosity solutions
are by now well understood. In this process, we have to understand how knowledge on entropy
solutions of the Burgers equation can be gained from knowledge on viscosity solutions of the
associated Hamilton–Jacobi equation. Our second aim is to describe these relations with some
details, and to show how most of what is known on the Burgers equation can be recovered from
this point of view. As a consequence, a large part of the paper is devoted to the presentation
of known results both on the Burgers equation and on the Hamilton–Jacobi equation. It is
worth noticing that the trajectories of the particles, that is the Lagrangian description of our
elementary fluid, play a major role in this approach.

Recently, it has been understood that the study of entropy solutions of equation (B)

provides interesting insights into the dynamics of the Hamiltonian H . This aspect is one of
our motivations, and our work also implies a new observation concerning the dynamics of
the time-one flow of H . We prove that if a curve in phase space is a graph, and is such that
infinitely many of its successive images by the time-one flow are also graphs, then the curve
has to be periodic, that is mapped into itself by some power of the flow. Similar results were
previously obtained by Albert Fathi in the case of autonomous Hamiltonian systems.

1. Introduction

1.1.

The standard circle R/Z is denoted by T. The cotangent bundle T ∗
T is identified with T × R.

Given a function f (t, x) of two variables, we will denote by ft the function x �−→ f (t, x). The
partial derivative with respect to the variable t will be denoted by ∂tf . Throughout this paper,
we will consider a time-periodic Hamiltonian H(t, x, p) : R×T ∗

T = R×T×R −→ R and
the associated time-periodic vector field of T × R is denoted X. We have

X(t, x, p) = (∂pH(t, x, p), −∂xH(t, x, p)).

1.2.

The following standard hypotheses will be assumed:

(i) The Hamiltonian H is C2 and 1-periodic in t .
(ii) The Hamiltonian H is convex in p and ∂2

ppH > 0.
(iii) The Hamiltonian has superlinear growth in p, i.e. lim|p|−→∞ H(t, x, p)/|p| = ∞ for

each (t, x).
(iv) The Hamiltonian flow is complete. More precisely, for all (t0, x0, p0), there exists a

C1 curve γ (t) = (x(t), p(t)) : R −→ T × R such that (x(t0), p(t0)) = (x0, p0) and
γ̇ (t) = X(t, γ (t)) for all t ∈ R.
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The mapping γ (t0) �−→ γ (t) is a diffeomorphism of T×R, denoted φt0,t . We will pay special
attention to the diffeomorphism φ = φ0,1. Note that the completeness hypothesis is satisfied
if there exists a constant C such that |∂tH | � C(1 + H).

1.3.

A typical example of a Hamiltonian satisfying our hypotheses is

H(t, x, p) = 1
2p2 + V (t, x)

with a C2 potential V periodic in t .

1.4.

We consider the equation

∂ty + ∂x(H(t, x, y)) = 0 (B)

of the unknown function y(t, x) : R × T −→ R. This equation will be called the Burgers
equation in the following. Note that in case H = p2/2 + V (t, x), we have the standard forced
inviscid Burgers equation

∂ty + y∂xy = −∂xV (t, x).

1.5.

The Burgers equation is quasi-linear and its characteristics (see [A], chapter 2) are the
trajectories of X. This means that if y(t, x) : [a, b] × T −→ R is a C1 solution of the Burgers
equation, and if γ (t) = (x(t), p(t)) : [a, b] −→ T × R is a trajectory of the Hamiltonian
vector field X, such that p(a) = y(a, x(a)), then the equality p(t) = y(t, x(t)) holds for all
t ∈ [a, b]. In other words, for each a � t0 � t1 � b, the graph of the function x �−→ y(t1, x)

is the image by the diffeomorphism φt0,t1 of the graph of the function x �−→ y(t0, x).

1.6.

Still assuming that y is a C1 solution of the Burgers equation, we obtain that

c(t) =
∫

T

y(t, x) dx

is a constant, which we denote c. The function y can be written y(t, x) = c + ∂xu(t, x), where
u(t, x) : I × T −→ R satisfies the Hamilton–Jacobi equation

∂tu + H(t, x, c + ∂xu) = 0. (HJc)

1.7.

It is known that there exists in general no classical solution of the Burgers equation defined
on R

+ × T satisfying a given initial condition y(0, x) = y0(x), see [A] or [Se]. Note that a
consequence of our results is that the only classical solutions defined for all positive times are
periodic in time. However, the Cauchy problem is well posed in the sense of entropy solutions
(we will define entropy solutions in the following). More precisely, with all t0 ∈ R and all
functions y0 ∈ L1(T), we associate a unique entropy solution y(t, x) ∈ C(]t0, ∞), L1(T))

such that yt −→ y0 as t −→ t0 in a weak sense, see section 3.2. This result is classical,
see [Se] for example.



104 P Bernard

1.8.

We want to describe the asymptotic behaviour of entropy solutions. Let us first recall that for
each c there exists a 1-periodic solution of average c. More precisely, there exists a continuous
and increasing function c �−→ yc from R to C(R, L1(T)), which, with each c, associates a
1-periodic entropy solution of average c, see [KO] or [JKM]. Note, however, that there may
exist more than one 1-periodic solution of a given average c. It is natural to ask whether
all solutions are attracted by these 1-periodic solutions. The answer is negative; there are
examples where periodic entropy solutions of minimal period greater than 1 exist, see [FM].
These subharmonic solutions in turn attract all other solutions, as we now state.

1.9.
Theorem. Let y(t, x) : ]t0, ∞) × T −→ R be an entropy solution of the Burgers equation.
There exists an integer T and an entropy solution ω(t, x) : R × T −→ R that is T -periodic
in t and such that

‖yt − ωt‖ −→ 0

in L1(T) as t goes to infinity.

If H is a function of p only, then ω(t, x) is the constant
∫

y(t, x) dx. The result in this special
case has been obtained by Lax [L]. If H does not depend on t , then the asymptotic solution ω

does not depend on t either, the result in this case follows from the works of Roquejoffre [Ro]
and Fathi [Fa3]. The theorem will be proved in section 3 as a consequence of a similar result for
viscosity solutions of (HJc) obtained in [Be], see also [BR]. We will also prove the following
corollary, which was obtained by Fathi [Fa3] in the autonomous case.

Corollary. If y(t, x) : ]t0, ∞) × T −→ R is a continuous solution of the Burgers equation,
then the function y is the restriction of a Lipschitz solution ω : R × T −→ R that satisfies
ω(t + T , x) = ω(t, x) for some T ∈ N.

1.10.

One can compare the situation with the viscous case. If one considers the parabolic equation

∂ty + ∂x(H(t, x, y)) = µ∂xxy (Bµ)

with µ > 0, the behaviour is much simpler. One can prove along the lines of [JKM], see
also [B], that for each c there exists a unique solution yc of average c that is 1-periodic in time.
This solution attracts all the solutions of average c. More precisely, if y : [t0, ∞) × T −→ R

is a solution of (Bµ), and if
∫

yt dx = c, then yt − yc
t −→ 0 uniformly as t −→ ∞.

1.11.

The result in the inviscid case can be used to study the dynamics of the diffeomorphism
φ = φ0,1. Note that this diffeomorphism is a finite composition of area preserving right twist
maps, and that any finite composition of right twist maps can be obtained this way. This
correspondence between the twist property and the convexity of the Hamiltonian has been
described by Moser, see [Mo].

1.12.

In order to give a more geometrical meaning to theorem 1.9, we consider the set E of functions
f : T −→ R, which can be locally written as the sum of a continuous function and a decreasing
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function. A function f ∈ E has a right limit f −(x) and a left limit f +(x) at each point x.
These limits satisfy f −(x) � f +(x), with a strict inequality on an at most countable set. Let
G−(f ) and G+(f ) be the graphs in T × R of the functions f − and f +. We define the graph
G(f ) = G−(f ) ∩ G+(f ) of f . Note that G(f ) = G−(f ) ∪ G+(f ). It is also useful to
consider the set

H(f ) =
⋃
x

{x} × [f −(x), f +(x)] ⊂ T × R,

which is a Jordan curve containing G(f ). The Hausdorff distance dH (f, g) between the
compact sets H(f ) and H(g) defines a distance dH on E (one should take the quotient of E by
the relation of almost everywhere equality). The convergence in L1 implies convergence for
the distance dH , see section 3.3.

1.13.

The link between entropy solutions and the dynamics of φ can now be detailed, see section 3.6.
It is convenient to denote by E : L1 −→ L1 the operator that associates with each initial
condition y0 the solution y1 at time 1. The operator E is continuous. In fact, as is well known,
it is a contraction. We will prove this fact in section 4. For each y ∈ L1, we have E(y) ∈ E .
If in addition y ∈ E , then

G(E(y)) ⊂ φ(G(y)).

This property has striking consequences. For example, if yc is a fixed point of E, then yc ∈ E
and G(yc) is negatively invariant. As a consequence, the α-limit of φ|G(yc) is a non-empty
compact set that is fully invariant by φ. It is an Aubry–Mather set. The rotation number
ρ(c) ∈ R of the orbits of this set depends only on c and the function c �−→ ρ(c) is non-
decreasing and continuous, see section 2.7.

1.14.

Having defined the rotation number ρ(c) allows us to complement theorem 1.9. The asymptotic
behaviour of solutions depend strongly on their space average c and on the associated rotation
number ρ(c). If ρ(c) is irrational, then there exists a single fixed point of E of average c, as
was proved in [E] and [So]. We will prove that it attracts all the trajectories of average c, that
is one can take T = 1 in theorem 1.9. If ρ(c) is rational, ρ(c) = p/q in lowest terms, then
one can take T = q in theorem 1.9. It is thus natural to define the integer T (c) by T (c) = 1
if ρ(c) is irrational and T (c) = q if ρ(c) = p/q in lowest terms, and we have the following
refinement of theorem 1.9.

Theorem. For each entropy solution y : ]t0, ∞) × T −→ R of (B), there exists an entropy
solution ω(t, x) : R × T −→ R that is T (c)-periodic in time, with c = ∫

T
yt (x) dx, and

such that yt − ωt −→ 0 in L1(T) as t goes to infinity. As a consequence, we also have
dH (yt , ωt ) −→ 0.

1.15.

Corollary 1.9 can be restated as a new result on the dynamics of φ, which may be seen as a
converse to the celebrated result of Birkhoff (see [Ma1, HF, Si]) stating that a rotational (not
homotopic to a constant) Jordan curve in T × R, which is invariant under φ, is the graph of
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a Lipschitz function y : T −→ R. This corollary was obtained by Fathi [Fa3, Fa2] in the
autonomous case.

Corollary. Let G ⊂ T × R be the graph of a continuous function y : T −→ R. Assume
that there exists an increasing sequence nk of positive integers such that φnk (G) is the graph
of a continuous function. Then there exists a positive integer T such that φT (G) = G, and
the function y is Lipschitz. In addition, if φ(G) 
= G, then the rotation number of φT

|G is an
integer; hence, G contains a T -periodic point of φ.

Let us mention that it is certainly possible to give a more direct proof of this corollary. One
could use a topological approach, as suggested to me by Le Calvez, or a variational approach,
as suggested by Xia. The proof presented in section 3.9 is however extremely short.

1.16.

In the rest of this paper, we will detail the outline given above. We will obtain all the important
properties of entropy solutions of (B) as consequences of properties of the viscosity solutions of
(HJc). Hence, we first describe these viscosity solutions in section 2 and draw our conclusions
in section 3. We explain in section 4 how to understand in our framework the important fact
that entropy solutions form a contraction in L1.

2. Calculus of variations and the Hamilton–Jacobi equation

In this section, we describe the main properties of viscosity solutions of the equation (HJc).
These properties follow from the study of extremals via the Hopf–Lax–Oleinik formula; a
global reference is the work of Fathi [Fa1,Fa2]. We also state a result analogous to theorem 1.9
for these solutions. The results in this section are standard or easy extensions of standard ones;
however, some of the proofs are original.

2.1.

It is useful to introduce the Lagrangian L : R × T × R −→ R associated with H . It is defined
by

L(t, x, v) = sup
p

pv − H(t, x, p)

and has the following properties, which follow easily from the analogous properties 1.2 of H :

(i) The Lagrangian L is C2 and 1-periodic in t .
(ii) The Lagrangian L is convex in v and ∂2

vvL > 0.
(iii) The Lagrangian has superlinear growth in v, i.e. lim|v|−→∞ L(t, x, v)/|v| = ∞ for each

(t, x).

The Lagrangian associated with the modified Hamiltonian H(t, x, p + c) is L(t, x, v) − cv

and it satisfies the three properties given above.

2.2.

For each c and each t0 � t , we have the Hopf–Lax–Oleinik operator V c
t0,t

: C(T, R) −→
C(T, R) defined by

V c
t0,t

(u)(x) = min

(
u(x(t0)) +

∫ t

t0

L(s, x(s), ẋ(s)) − cẋ(s) ds

)
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where the minimum is taken on the set of absolutely continuous curves x : [t0, t] −→ T

such that x(t) = x. Any curve realizing the above minimum is C2 and is the projection of
a trajectory of X. More precisely, the curve (x(s), ∂vL(s, x(s), ẋ(s))) is a trajectory of X.
These operators clearly satisfy the Markov property

V c
t1,t2

◦ V c
t0,t1

= V c
t0,t2

.

Note that these operators have been used in the study of viscosity solutions for quite a long
time, see for instance [Fl]. We need the following definition.

Definition. A function ũ : R
n −→ R is called K-semi-concave if the function ũ − K‖x‖2/2

is concave. The notion is extended to functions defined on convex subsets. A function
u : [t0, ∞) × T −→ R (resp. T −→ R) is called K-semi-concave if it is of the
form u(t, x) = ũ(t, x mod 1) (resp. u(x) = ũ(x mod 1)), with a K-semi-concave function
ũ : [t0, ∞) × R −→ R (resp. ũ : R −→ R ). A function is called semi-concave function if it
can be written locally as the sum of a concave function and a C2 function.

Properties. For each c ∈ R and each t0 < t1 we have:

(i) The operators V are equivariant under addition of a constant, more precisely,
V c

t0,t1
(U + u) = U + V c

t0,t1
(u) for all real constant U .

(ii) The operators V are non-decreasing, the inequality V c
t0,t1

(u) � V c
t0,t1

(v) holds whenever
the continuous functions u and v satisfy u � v.

(iii) The operators V are contractions, we have

‖V c
t0,t1

(u) − V c
t0,t1

(v)‖∞ � ‖u − v‖∞

for all continuous functions u, v : T −→ R.
(iv) For each positive ε, there exists a constant K such that, for |c| � 1/ε and any continuous

initial condition u0, the function

u(t, x) = V c
t0,t

u0(x)

is K-Lipschitz and K-semi-concave on [t0 + ε, ∞) × T.

2.3.
Proposition. The following properties are equivalent for a function u ∈ C([t0, t1] × T, R):

(i) The function u is a viscosity solution of (HJc) (see [Ba] or [Fa2] for the definition, which
will not be used in this paper).

(ii) The function u is locally Lipschitz on ]t0, t1] ×T and it satisfies (HJc) almost everywhere.
In addition, there exists a non-increasing function K : ]t0, t1 ] −→ ] 0, ∞[ such that the
function ut is K(t)-semi-concave for t0 < t � t1.

(iii) For each t and t ′ such that t0 � t � t ′ � t1, we have ut ′ = V c
t,t ′(ut ).

Corollary. For each continuous initial condition ut0 , there exists one and only one viscosity
solution u : [t0, ∞) × T −→ R of (HJc), given by

u(t, x) = V c
t0,t

ut0(x).

There exists a non-increasing function K(t) : ]t0, ∞ [ −→ ] 0, ∞[ and such that u is K(t)-
Lipschitz and K(t)-semi-concave on [t, ∞) × T for each t > t0. In addition, given a constant
C > 0, the function K(t) can be chosen uniformly for all equations (HJc) with |c| � C.
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Proof. It is standard that (i) ⇐⇒ (iii), see a good exposition in [FMa]. Let us recall a
possible sketch of the proof. One can first prove using variations around the maximum
principle that there is at most one function satisfying (i) with a given initial condition ut0

(see [Ba], section 2.4.). On the other hand, it is obvious that there exists one and only
one function satisfying (iii), namely (t, x) �−→ V c

t0,t
ut0(x). One can prove, see [FMa],

that this function also satisfies (i). It is then the only one to do so, by uniqueness. That
(iii) �⇒ (ii) results from properties 2.2. We shall prove more carefully that (ii) �⇒ (i),
which seems less classical. Let us fix (S, Q) ∈ ]t0, ∞) × T; it is enough to prove (see
[Ba], section 5.3) that all C1 functions φ such that u − φ has a local minimum at (S, Q)

satisfy the equation at (S, Q). If such a function φ exists, then ∂xu(S, Q) exists and is
equal to ∂xφ(t, x). It follows from the lemma below that u is differentiable at (S, Q),
and satisfies the equation at this point, which implies that φ also satisfies the equation
at (S, Q). �

Lemma. Let u(t, x) be a function satisfying condition (ii) of the proposition. If
(S, Q) ∈ ]t0, ∞) × T is a point where ∂xu exists, then the function u is differentiable and
satisfies (HJc) at (S, Q).

Proof. Let us fix a time t2 ∈ ]t0, S[. In view of the fact that all the functions ut , t � t2 are
K(t2)-semi-concave, it is not hard to prove that ∂xu(sn, qn) −→ ∂xu(S, Q) when (sn, qn) is
a sequence of points of differentiability of u converging to (S, Q). If we assume in addition
that (HJc) holds at (sn, qn), we obtain that ∂tu(sn, qn) has a limit H(t, x, c + ∂xu(t, x)). Let
us denote L as the linear form (s, q) �−→ q∂xu(S, Q) + sH(S, Q, ∂xu(S, Q)). We have
proved that there exists a modulus of continuity δ and a set K ⊂ R × T of full measure in a
neighbourhood of (S, Q) such that, for each (S +s, Q+q) ∈ K , the function u is differentiable
at (S +s, Q+q) and ‖du(S +s, Q+q)−L‖ � δ(‖(s, q)‖). It follows that we have the estimate
|u(S +s, Q+q)−u(S, Q)−L(s, q)| � ‖(s, q)‖δ(‖(s, q)‖) for all (s, q) small enough; hence,
u is differentiable at (S, Q) and du(S, Q) = L. �

2.4.

Let u(t, x) : [t0, ∞) × T −→ R be a viscosity solution of (HJc), and let t0 � t < t ′. An
absolutely continuous curve x(s) : [t, t ′] −→ T is said to be calibrated by u if

u(t ′, x(t ′)) = u(t, x(t)) +
∫ t ′

t

L(s, x(s), ẋ(s)) − cẋ(s) ds.

If x(s) is a calibrated curve, then it is C2 and the curve (x(s), ∂vL(s, x(s), ẋ(s)) is a trajectory
of the Hamiltonian vector field X. By extension, we say that a curve γ (s) = (x(s), p(s)) :
[t, t ′] −→ T × R is calibrated by u if x(s) is calibrated by u and if p(s) = ∂vL(s, x(s), ẋ(s)).
It is then a trajectory of X. A curve is said to be calibrated by u on an interval I if it is calibrated
by u on [t, t ′] for all [t, t ′] ⊂ I . The following theorem is due to Albert Fathi.

Theorem (Calibrated curves).

(i) Let x(s) : ]t0, ∞) ⊃ [t, t ′] −→ T be a calibrated curve. For each s ∈ ]t, t ′[ , the function
u is differentiable at (s, x(s)) and ∂xu(s, x(s)) + c = p(s) = ∂vL(s, x(s), ẋ(s)).

(ii) For every (t, x) ∈ ]t0, ∞) × T there exists a calibrated curve x(s) : [t0, t] −→ T such
that x(t) = x. If u is differentiable at (t, x), then there exists only one such calibrated
curve and it satisfies ∂xu(t, x(t)) + c = p(t) = ∂vL(t, x(t), ẋ(t)).
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(iii) If in addition the function ut0 is semi-concave, and if x(s) : [t0, t] −→ T is a calibrated
curve, then the function ut0 is differentiable at x(t0) and ∂xu(t0, x(t0)) + c = p(t0).

Proof. We only sketch the proof. Details can be found in [Fa2] or [Fa1]. The calibrated curve
of (ii) is obtained as a minimizer of the functional

u(t0, x(t0)) +
∫ t

t0

L(s, x(s), ẋ(s)) − cẋ(s) ds

among the absolutely continuous curves x(s) : [t0, t] −→ T satisfying x(t) = x. The second
point is Fathi’s key regularity result. Let us mention the following lemma from [Fa2].

Lemma. If γ (s) = (x(s), p(s)) : [t, t ′] −→ T × R is calibrated by u, then p(t ′) − c is a
proximal super-differential of ut ′ at x(t ′), i.e.

ut ′(x(t ′) + x) � ut ′(x(t ′)) + (p(t ′) − c)x + O(x2)

near x = 0, and p(t) − c is a proximal sub-differential of ut at x(t), i.e.

ut (x(t) + x) � ut (x(t)) + (p(t) − c)x + O(x2).

Using this lemma, we complete the proof of the theorem. If γ (s) = (x(s), p(s)) : [t, t ′] −→
T × R is calibrated by u, and if s ∈ ]t, t ′[, then the restrictions of γ to [t, s] and [s, t ′] are
calibrated hence, p(s) − c is both a sub- and a super-differential of us at x(s) and thus is the
differential. This proves (i). In addition, if ut ′ is differentiable at x(t ′), then its only possible
sub-differential at this point is ∂xu(t ′, x(t ′)); hence, the calibrated curve has to satisfy the
equation ∂xu(t ′, x(t ′)) + c = p(t ′) = ∂vL(t ′, x(t ′), ẋ(t ′)). By Cauchy–Lipschitz uniqueness,
only one characteristic can satisfy this equation. This proves the second point in (ii). The
proof of (iii) is similar: the existence of a calibrated curve emanating from a point provides a
sub-differential, while semi-concavity provides a super-differential. �

2.5.

We are interested mainly in the asymptotic behaviour of solutions. A first description is given
by the following result. The function α(c) introduced below has been given several names, it is
the α function of Mather, the averaged Hamiltonian, or the eigenvalue in terms of idempotent
algebra.

Proposition. For each c, there exists a real number α(c) with the following property. For
every solution u(t, x) : [t0, ∞) × T −→ R of (HJc), the function u(t, x) + tα(c) is bounded
on [t0, ∞) × T.

From now on, we shall mainly consider the corrected equation

∂tu + H(t, x, c + ∂xu) = α(c). (Hc)

Proof. We work with a fixed parameter c. Let us define the sequences

Mn := max
x∈T

V c
0,n(0)(x) and mn := min

x∈T

V c
0,n(0)(x).

Since V c
0,n(0), n � 1, are K-Lipschitz, we have

0 � Mn − mn � K

for n � 1. We claim that Mn+m � Mn + Mm. This follows from the inequalities

V c
0,m+n(0)(x) = V c

0,m(V c
0,n(0))(x) � V c

0,m(Mn)(x) � Mn + V c
0,m(0)(x).
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Hence, by a classical result on subadditive sequences, we have lim Mn/n = inf Mn/n.

We denote this limit by −α. In the same way, the sequence −mn is subadditive; hence,
mn/n −→ sup mn/n. This limit is also −α because 0 � Mn − mn � K. As a consequence,
we have, for all n � 1,

−K − nα � mn � −nα � Mn � K − nα.

Now let u(t, x) : [t0, ∞) × T −→ R be any solution, and let t1 be an integer greater than t0,
then for all integers n ∈ N we obtain, for all x,

min
T

ut1 − K � min
T

ut1 + mn + nα � u(n + t1, x) + nα � max
T

ut1 + Mn + nα � max
T

ut1 + K.

Recalling that u is Lipschitz on [t1, ∞) × T, we obtain the conclusion of the proposition with
α(c) = α. �

2.6.

The following lemma is due to Jensen, the proof is from [BR]. The corollary is fundamental
and by now classical.

Lemma. If u(t, x) : [t0, ∞) × T −→ R is a viscosity solution of (HJc), the function
v(θ, x) : T × T −→ R defined by

v(θ, x) = lim inf
t mod 1=θ

(u(t, x) − tα(c))

is a viscosity solution of the Hamilton–Jacobi equation

∂θv + H(θ, x, c + ∂xv) = α(c),

where θ denotes t mod 1.

Corollary. The Hamilton–Jacobi equation

∂θu + H(θ, x, c + ∂xu) = a

has a 1-periodic viscosity solution if and only if a = α(c).

Proof of the lemma. We have to prove that V c
s,t (vs) = vt for all s � t . Let us first prove

that V c
s,t (vs) � vt . In order to do so, we fix (t, x) and consider an increasing sequence nk of

integers such that u(t +nk, x) −→ v(t, x). There exists a sequence of curves xk : [s, t] −→ T

that is calibrated by the u(t + nk, x) and satisfies xk(t) = x. We have

u(t + nk, x) = u(s + nk, xk(0)) +
∫ t

s

L(σ, xk(σ + t), ẋk(σ + t)) dσ.

Let us assume, taking a subsequence if necessary, that the sequence xk is converging to
x : [s, t] −→ T uniformly on compact sets. Taking the lim inf in the equality above gives

v(t, x) � v(s, x(0)) +
∫ t

s

L(σ, x(σ + t), ẋ(σ + t)) dσ � V c
s,t (vs).

We assume that the functions us+nk
have a common Lipschitz constant to conclude that

lim inf u(s + nk, xk(0)) = lim inf u(s + nk, x(0)) � v(s, x(0)).
In order to prove the reverse inequality, note that for all curves x : [s, t] −→ T we have

u(t + n, x(t)) � u(s + n, x(s)) +
∫ t

s

L(σ, x(σ ), ẋ(σ )) dσ.
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Taking the lim inf, we obtain

v(t, x(t)) � v(s, x(s)) +
∫ t

s

L(σ, x(σ ), ẋ(σ )) dσ

for each curve x; hence, V c
s,t (vs) � vt , which is the desired inequality. �

2.7.
Proposition. The function α(c) : R −→ R is convex, C1, and superlinear. For each viscosity
solution u(t, x) : [t0, ∞) × T −→ R of (HJc), there exist curves γ : [t0, ∞) −→ T that are
calibrated by u. These curves all have the same rotation number

lim
1

t

∫ t

t0

ẋ = ρ(c) := α′(c).

Proof. We begin with superlinearity. Let v(θ, x) be a periodic solution of

∂θv + H(θ, x, c + ∂xv) = α(c).

Let (θ(c), x(c)) be a minimum of v. The function v is semi-concave and hence differentiable
at (θ(c), x(c)), where ∂tv = 0 = ∂xv. It follows that

α(c) = H(θ(c), x(c), c)

and the superlinearity of α follows from the superlinearity of H .
Let us continue with convexity. For fixed t and x, the function c �−→ V c

0,t (0)(x) is clearly
concave, since it is defined as a minimum of linear functions. It follows that the function
c �−→ −α(c) = lim V c

0,t (0)(x)/t is concave as a limit of concave functions; hence, α(c) is a
convex function. �

Lemma. Let uc : [t0, ∞)×T −→ R be a viscosity solution of (HJc) and let x(t) : [t0, ∞) −→
T be calibrated by uc, then

α′(c−) � lim inf
1

t

∫ t

t0

ẋ(s) ds � lim sup
1

t

∫ t

t0

ẋ(s) ds � α′(c+).

Proof. See [G] for related material. Let uc : [t0, ∞) × T −→ R be a viscosity solution of
(HJc) and let x(t) : [t0, ∞) −→ T be calibrated by uc. We have

uc(t, x(t)) − uc(t0, x(t0)) =
∫ t

t0

L(s, x(s), ẋ(s)) ds − c

∫ t

t0

ẋ(s) ds.

In view of the definition of α(c) in section 2.5, the function uc(t, x)+ tα(c) is bounded; hence,

lim
t−→∞

(
c

t

∫ t

t0

ẋ(s) ds − 1

t

∫ t

t0

L(s, x(s), ẋ(s)) ds

)
= α(c).

Let us now consider a viscosity solution ue : [t0, ∞) × T −→ R of (HJe). With the same
curve x(s), we have

ue(t, x(t)) − ue(t0, x(t0)) �
∫ t

t0

L(s, x(s), ẋ(s)) ds − e

∫ t

t0

ẋ(s) ds;

hence,

α(e) � lim sup

(
e

t

∫ t

t0

ẋ(s) ds − 1

t

∫ t

t0

L(s, x(s), ẋ(s)) ds

)
,
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which implies

α(e) − α(c) � lim sup

(
e − c

t

∫ t

t0

ẋ(s) ds

)
.

The desired inequalities follow at the limit. �

We still have to prove that the function α is differentiable. We need some preliminaries.

2.8.

Let C be the set of continuous curves x(t) : R −→ T such that the mapping t �−→ x̃(t) =
(t mod 1, x(t)) with values in T

2 is either one to one or periodic. Let us endow C with the
topology of uniform convergence on compact sets. The following result of Poincaré is very
standard and will not be proved here.

Proposition. Each curve x ∈ C has a well defined real rotation number

ρ(x) := lim
1

t

∫ t

0
ẋ(s) ds.

In addition, the mapping x �−→ ρ(x) is continuous on C. If x(t) and y(t) are two curves of C
such that x̃(R) and q̃(R) are disjoint subsets of T

2, then they have the same rotation number.

2.9.

Lemma. Let u(θ, x) and v(θ, x) be two viscosity solutions of (Hc) of time period 1. Then
there exists a curve x(t) : R −→ T that is calibrated both by u and v.

It is usual in Aubry–Mather theory to define the Aubry set as the unions of all curves that are
calibrated by all 1-periodic viscosity solutions of (Hc). It is known that the Aubry set is not
empty. This result of course implies the lemma, but we provide a simple self-contained proof.

Proof. Let us define the number M(t) := max(vt −ut ). The function M(t) is non-increasing,
because the inequality vt � M + ut implies vs � M + us for all s � t , by properties 2.2(i)
and (ii). On the other hand, the functions u and v are periodic; hence, M(t) is periodic
and constant. We denote this constant by M . Let us fix a time t and a point xt such that
v(t, xt ) = M(t) + u(t, xt ). Let x(s) : (−∞, 0] −→ T be a curve calibrated by u and such
x(t) = xt . Since

u(t, x(t)) = u(s, x(s)) +
∫ t

s

L(s, x(s), ẋ(s)) − cẋ(s) ds

and

v(t, x(t)) � v(s, x(s)) +
∫ t

s

L(s, x(s), ẋ(s)) − cẋ(s) ds

for all s < t � 0, we obtain

M � v(s, x(s)) − u(s, x(s)) � v(t, x(t)) − u(t, x(t)) � M;
hence, the inequalities are all equalities, which imply that the curve x(s) is also calibrated by v.
We have found a curve x(s) : (−∞, 0 ] −→ T that is calibrated by u and v. We now consider
a curve x̄(s) : R −→ T obtained as an accumulation point of the sequence x(s − n), n ∈ N.
This curve is calibrated by u and v. �
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Corollary. There exists a real number ρ(c) ∈ [α′(c−), α′(c+)] such that each curve
x : R −→ T calibrated by a 1-periodic viscosity solution u(θ, x) of (HJc) has rotation
number ρ(c).

Proof. It is easy to see that, if x is calibrated by a periodic solution, then x ∈ C; hence,
x has a rotation number. Let us consider two curves x(t) and q(t), such that x is calibrated
by the 1-periodic solution u(θ, x) of (Hc) and q is calibrated by the 1-periodic solution
v(θ, x) of (Hc). In view of the lemma, there exists a third curve f (t) that is calibrated
both by u and v. Since x and f are both calibrated by u, the sets x̃(R) and f̃ (R) are either
disjoint or equal. In each case, we have ρ(x) = ρ(f ). In the same way, f and q are both
calibrated by v; hence, ρ(q) = ρ(f ). As a consequence, we have ρ(q) = ρ(x). Hence,
all the curves that are calibrated by some 1-periodic solution of (Hc) have the same rotation
number and we can denote this rotation number by ρ(c). It follows from lemma 2.7 that
ρ(c) ∈ [α′(c−), α′(c+)]. �

2.10.

We are going to prove that the function ρ(c) is continuous. This implies the differentiability
of α and completes the proof of proposition 2.7. Let us fix a value of c and consider a
sequence cn converging to c. Let vn(θ, x) be a time-periodic viscosity solution of (Hcn) and
let xn(t) : R −→ R be a curve calibrated by vn. We extract a subsequence k of n in such a
way that the sequence vk converges, uniformly on compact subsets of R × T, to a viscosity
solution v of the equation (Hc). In addition, we can suppose that the curves xk are converging
uniformly on compact sets to a curve x(t) that is calibrated by v. By the definition of ρ(c),
we have ρ(xk) = ρ(ck) and ρ(x) = ρ(c). By continuity of the rotation number on C, we
have ρ(xk) −→ ρ(x); hence, ρ(ck) −→ ρ(c). This is the expected continuity of ρ. We have
proved proposition 2.7.

2.11.

The asymptotic behaviour of viscosity solutions is described by the following theorem, obtained
in [Be] (see also [BR] for another proof, and see [Fa3] and [Ro] for related results). Let
T (c) ∈ N be defined by

T (c) = 1 if ρ(c) is irrational,
T (c) = q if ρ(c) is the rational p/q in lowest terms.

Theorem. Let u(t, x) : [t0, ∞) × T −→ R be a viscosity solution of (HJc). There exists a
viscosity solution v(t, x) : R × T −→ R of (HJc) that satisfies vt+T (c) = vt − T (c)α(c) for
each t ∈ R and

lim
t−→∞ ‖ut − vt‖∞ = 0.

3. Entropy solutions and characteristics

The relation between classical solutions of Burgers equation and the Hamiltonian dynamics is
quite well understood from section 1.5. We shall now describe the main properties of entropy
solutions, with emphasis on their relation with dynamics. We will also prove theorem 1.14
and corollary 1.15.
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3.1.

A function y : ]t0, t1 [ −→ R is called an entropy solution of Burgers equation (B) if:

(i) The functions y and H(t, x, y(t, x)) are locally integrable and the equation holds in the
sense of distributions:∫

[t0,∞)×T

y(t, x)∂tφ(t, x) + H(t, x, y(t, x))∂xφ(t, x) dt dx = 0

for all smooth function φ : ]t0, t1[ × T −→ R with compact support (see [Se] for details).
Note that the space average

∫
T

y(t, x) dx is then a constant c.
(ii) The Oleinik inequalities

yt (x + δ) − yt (x) � K(t)δ

hold for all t ∈ ]t0, t1[, x ∈ T and δ > 0, with a positive and decreasing function K(t).

3.2.

Let yn be a sequence of functions of L1(T). Considering these functions as periodic functions
on R, we can define the primitives Yn(x) := ∫ x

0 yn. We say that the sequence yn converges
very weakly to y if the primitives Yn converge to Y , uniformly on compact sets.

Proposition. For each t0 ∈ R and each y0 ∈ L1(T), there exists a unique entropy solution
y : ]t0, ∞) × T −→ R of Burgers equation such that yt converges very weakly1 to y0 when t

converges to t0. This solution satisfies

y ∈ L∞([t1, ∞) × T) ∩ C(]t0, ∞), L1(T))

for all t1 > t0, and it is given by y(t, x) = c + ∂xu(t, x), where c = ∫
T

y0 dx and u(t, x) is the
viscosity solution of (HJc) of initial condition ut0(x) = ∫ x

0 (y0 − c).

Proof. Let us first deal with uniqueness. The standard method to prove uniqueness is to use
the Oleinik inequalities 3.1(ii), via a duality method; see [H], theorem 2.2.1, or [Se], 2.8. We
shall use the Hamilton–Jacobi equation. Indeed, let y(t, x) : ]t0, ∞)× T −→ R be an entropy
solution. Note that this function is locally bounded in view of the Oleinik inequalities. Define

ũ(t, x) =
∫ x

0
(y(t, q) − c) dq −

∫ 1

0

∫ x

0
(y(t, q) − c) dq dx,

where c = ∫
T

yt dx. We have, in the sense of distributions, ∂txũ = ∂ty = −∂x(H(t, x, y)).
Hence, the distribution ∂t ũ(t, x) + H(t, x, y(t, x)) does not depend on x and is the locally
integrable function f (t) = ∫

T
H(t, x, y(t, x)) dx. The function u(t, x) = ũ(t, x)−∫ t

t0
f (s) ds

satisfies ∂tu + H(t, x, y) = 0 and ∂xu = y − c in the sense of distributions; hence, both ∂xu

and ∂tu are locally bounded functions on ]t0, ∞) × T and (see, e.g., [EG], section 4.2.3) the
function u is locally Lipschitz on ]t0, ∞) × T. In addition, the Hamilton–Jacobi equation
∂tu + H(t, x, c + ∂xu) = 0 holds almost everywhere. The function u satisfies condition (ii)
of proposition 2.3 as a consequence of the Oleinik inequalities (ii) above. Since the functions
yt converge very weakly to y0 as t −→ t0, we have ũt −→ ut0 uniformly as t −→ t0,
which implies that ut −→ ut0 uniformly. As a consequence, the function u is continuous
on [t0, ∞) × T. In view of section 2.3, the function u has to be the viscosity solution of
(HJc) of initial condition ut0 . So the only candidate to be an entropy solution of (B) is
y(t, x) = c + ∂xu(t, x).

1 The nature of the convergence of entropy solutions to their initial condition can be described more precisely
depending on the regularity of the initial condition. This question, however, is not very relevant to our discussion.
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It is classical to obtain the existence of entropy solutions as limits of regular solutions of
the viscous equation (Bµ). However, we shall use once more the Hamilton–Jacobi equation,
i.e. we shall prove that the function y(t, x) = c + ∂xu(t, x) introduced in the discussion on
uniqueness is indeed an entropy solution. Recall that u is Lipschitz on [t1, ∞) × T for all
t1 � t0; hence, ∂tu and y = c + ∂xu are well defined in L∞([t1, ∞) × T) as well as in
H(t, x, y(t, x)). It is straightforward that (i) is satisfied and (ii) follows from property (ii) of
proposition 2.3.

3.3.

In order to prove the continuity of the mapping t �−→ yt from ]t0, ∞) to L1(T), let us introduce,
for each positive number K , the set EK of functions that satisfy both

|y(x)| � K for all x

and

y(x + δ) � Kδ + y(x) for all x ∈ T and δ > 0.

Lemma. The set EK is relatively compact in L1(T) ( for the strong topology). In addition,
there exists a modulus of continuity CK(ε) such that

dH (y, z) � CK(‖y − z‖L1)

for y, z ∈ EK , where dH is the distance defined in section 1.12.

Proof. Let us denote by τδy the function x �−→ y(x + δ). We claim that, for each δ ∈ R, we
have ‖τδy − y‖L1 � 2K|δ|. In view of the Riesz–Fréchet–Kolmogorov compactness criterion
(see [Br], IV.5) this implies the first part of the lemma. In order to prove the claim, let us
first suppose that δ > 0. Using the Oleinik inequality, we get τδy − y � Kδ. Let us set
z+(x) = max{0, τδy(x) − y(x)} and z− = max{0, y(x) − τδy(x)}, so that τδy − y = z+ − z−.

We have z+ � Kδ; hence,
∫

T
z+ dx � Kδ. Noticing that

∫
T
(τδy − y) dx = 0, we obtain that∫

T
z− dx = ∫

T
z+ dx; hence,

‖τδy − y‖L1 =
∫

T

z+ dx +
∫

T

z− dx � 2Kδ.

The inequality for δ < 0 follows in the same way from the fact that τδy − y � Kδ in this case.
We now prove the second part of the lemma. See [KO] for related material. Let us

consider two functions y and z of EK and assume that dH (y, z) � 2ε > 0. There exists a point
(x0, y0) ∈ H(y) (see section 1.12 for the notation) such that the ball B of radius 2ε centred at
(x0, y0) in T × R does not contain any point of H(z). Hence, either z(x) � y0 + ε for almost
all x ∈ [x0 − ε, x0 + ε] or z(x) � y(x0) − ε for almost all x ∈ [x0 − ε, x0 + ε]. We will
treat the first case, the second being similar. Using the Oleinik inequality, we obtain, for each
δ ∈ [0, ε],

z(x0 + δ) � y0 + ε � y(x0 + δ) − Kδ + ε.

Hence,

‖y − z‖L1 �
∫ x0+min{ε,ε/K}

x0

z(x) − y(x) dx �
∫ min{ε,ε/K}

0
ε − Kx dx � ε2 max

(
1

2
,

1

2K

)
.

�

Corollary. Let VK ⊂ C(T, R) be the set of K-semi-concave (hence K-Lipschitz) functions.
Then every function u ∈ VK has a derivative ∂xu in EK , and the operator ∂x : VK → EK is



116 P Bernard

uniformly continuous, when VK is endowed with the topology of uniform convergence and EK

with the strong L1 topology.

Proof. In order to prove that the operator ∂x : VK → EK is uniformly continuous, let us
consider two sequences un and vn of VK , such that ‖un − vn‖∞ −→ 0. We have to prove that
‖∂xun − ∂xvn‖L1 −→ 0. If not, there would exist subsequences uk and vk such that ∂xuk and
∂xvk have different limits y and z in L1. This implies that the sequences uk and vk have limits
u and v in C(M, R), and that these limits are different. But this is obviously in contradiction
with the assumption that ‖un − vn‖∞ −→ 0. �

In view of this corollary, the continuity of t �−→ yt follows from the continuity of
t �−→ ut . �

3.4.

It is clear from what has just been written that theorem 2.11 implies our main new results,
theorems 1.9 and 1.14. Indeed, if y(t, x) is an entropy solution of (B), we write it y = c +∂xu,
where u is a viscosity solution of (HJc). Theorem 2.11 gives the existence of a viscosity
solution v of (HJc) such that v(t + T (c), x) = v(t, x) − T (c)α(c) and ‖vt − ut‖∞ −→ 0 as
t −→ ∞. It follows from the considerations above that the function ω(t, x) = c + ∂xv(t, x)

is an entropy solution of (B), and it clearly satisfies ω(t + T (c), x) = ω(t, x). In addition, for
t1 > t0, all the functions ut , t � t1 and vt , t ∈ R belong to the same set VK . We obtain that
‖yt − ωt‖L1 = ‖∂xut − ∂xvt‖L1 −→ 0 as t −→ ∞ in view of the uniform continuity of the
operator ∂x : VK → EK . The second part of lemma 3.3 then implies that dH (yt , ωt ) −→ 0.

3.5.

Consider an entropy solution y(t, x) : [t0, ∞)×T −→ R of Burgers equation, let c = ∫
T

y dx

and let u(t, x) : [t0, ∞) × T −→ R be a viscosity solution of (HJc) such that y = c + ∂xu.
A trajectory γ (s) : [t0, ∞) ⊃ [t, t ′] −→ T × R of the Hamiltonian vector field X is called a
y-characteristic if γ (s) ∈ G(ys) for each s ∈ [t, t ′]. A curve x(s) : [t0, ∞) ⊃ [t, t ′] −→ T

is also called a y-characteristic if it is the projection of a y-characteristic γ (s). The following
theorem extends the method of characteristics to entropy solutions.

Theorem (characteristics).

(i) A curve γ (s) : ]t0, ∞) ⊃ [t, t ′] −→ T×R is a y-characteristic if and only if it is calibrated
by u.

(ii) Let γ (s) : ]t0, ∞) ⊃ [t, t ′] −→ T × R be a y-characteristic, then for each s ∈ ]t, t ′[ the
function ys is continuous at x(s) and y(s, x(s)) = p(s).

(iii) For every t > t0 and every (x, p) ∈ G(yt ) there exists a unique y-characteristic
γ (s) : ]t0, t ] −→ T × R such that γ (t) = (x, p).

(iv) If in addition yt0 ∈ E , then for every t > t0 and every characteristic x : ]t0, t[�−→ T we
have p(t0) = y(t0, x(t0)), where (x(t0), p(t0)) is naturally defined by prolongation of the
Hamiltonian trajectory (x(t), p(t)).

(v) There exists a characteristic x(t) : [t0, ∞) −→ T.

Proof. The proposition will be deduced from the properties of calibrated curves mentioned
in section 2.4. If γ (s) = (x(s), p(s)) : [t, t ′] −→ T × R is a calibrated curve, then we have
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seen that y is continuous at (s, x(s)) for each s of ]t, t ′[ and that y(s, x(s)) = p(s). As a
consequence, calibrated curves are characteristics and (ii) holds for these curves.

Let us now prove (iii). Let us fix a point (x, p) ∈ G(yt ) and let (xn, pn) be a
sequence of points of G(yt ) converging to (x, p). For each n, there exists a calibrated
curve (xn(s), pn(s)) : [t0, t] −→ T × R such that xn(t) = xn. Since (t, xn) is a point of
differentiability of u, this calibrated curve satisfies pn(t) = ∂xu(t, xn) + c = pn. These
calibrated curves converge to a calibrated curve that terminates at (t, x, p). Uniqueness in (iii)
is a consequence of the Cauchy–Lipschitz theorem for the Hamiltonian vector field.

We now prove that all characteristics are calibrated curves. Let γ (s) = (x(s), p(s)) :
[t, t ′] −→ T×R be a characteristic. Let γ̃ (s) : [t0, t ′] −→ T×R be the unique characteristic
terminating at (t ′, x(t ′), p(t ′)), which was obtained above (and which is a calibrated curve).
Clearly, γ has to be the restriction of γ̃ , hence it is a calibrated curve. �

3.6.

In terms of the dynamics, using the notation of section 1.12, this theorem implies that

G(yt ′) ⊂ φt,t ′(G(yt ))

when t0 < t < t ′, and that

G(E(y)) ⊂ φ(G(y))

when y ∈ E .

3.7.

A function y : ]t0, t1[×T −→ R is called a backward entropy solution of (B) if the function
y̆(s, x) := −y(t1 − s) is an entropy solution of the reverse equation

∂t y̆ + ∂x(H̆ (t, x, y)) = 0, (B̆)

where H̆ (t, x, p) = H(t1 −t, x, −p). If y is a C1 solution of the Burgers equation, then it is an
entropy solution and a backward entropy solution. However, entropy solutions and backward
entropy solutions are different in general. More precisely, the function y is a backward entropy
solution if and only if it is a solution in the sense of distributions, and satisfies the reversed
Oleinik inequalities

yt (x + δ) � yt (x) − K(t)δ

when δ > 0, with an increasing function K : ]t0, t1 [ −→ ] 0, ∞). As a consequence, if y

is both an entropy solution and a backward entropy solution, then yt is Lipschitz for each
t ∈ ]t0, t1[. More precisely, we have the following proposition.

Proposition. Let y : ]t0, ∞) × T −→ R be an entropy solution of (B). The function y is a
backward entropy solution of (B) on ]t0, t1[ × T if and only if the function yt1 is continuous.
The function y is then locally Lipschitz on ]t0, t1[ × T.

Proof. Let us first assume that y is both an entropy solution and a backward entropy solution.
Then for each compact interval of time I ⊂ ]t0, t1[, the functions yt , t ∈ I are equi-Lipschitz.
In view of the lemma in section 2.3, we conclude that y is Lipschitz on I .

Assume now that yt1 is continuous. Then each point (x, yt1(x)) is the endpoint of a single
characteristic �x(t) = (Q(t, x), P (t, x)) : ]t0, t1 ] −→ T. Clearly, we have y(t, Q(t, x)) =
P(t, x) for all (t, x) ∈ ]t0, t1] × T. Let z(t, x) : (−∞, t1] × T −→ R be the unique
backward entropy solution with final condition yt1 given by proposition 3.2. Let us fix a point
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(t, x) ∈ [t0, t1] × T and a z-characteristic γ (s) = (x(s), p(s)) : [t, t1] −→ T × R satisfying
x(t) = x. Since −yt1 ∈ E , this characteristic furthermore satisfies p(t1) = z(t1, x(t1)) (this
results from (iv) of the theorem on characteristics). As a consequence, the characteristic γ (s)

coincides with �x(t1)(s). This implies that zt is continuous at x and satisfies

z(t, x) = p(t) = P(t, x(t1)) = y(t, Q(t, x(t1))) = y(t, x).

We have proved that yt = zt for t ∈ ]t0, t1[. �

3.8.
Proposition. Let y, z : ]t0, ∞) × T −→ R be two continuous entropy solutions of (B). Then
the function t �−→ ‖yt − zt‖L1 is constant.

This result will be extended in section 4, where we give a proof of the well known fact
that the function t �−→ ‖yt − zt‖L1 is non-increasing if y and z are entropy solutions. Since
continuous solutions are both entropy solutions and backward entropy solutions, this implies
the proposition. However, we give an independent proof here.

Proof. Let us consider the graphs �yt
and �zt

of y and z in T × R. Let Ut be the domain
enclosed by these two curves, that is the union of all bounded connected components of
T × R − (�yt

∪ �zt
). Clearly, ‖yt − zt‖L1 is the area of Ut . It follows from the theorem on

characteristics that U ′
t = φt,t ′(Ut ) for t ′ > t > t0, where φ is the Hamiltonian flow. The area

of Ut does not depend on t because the flow is area preserving. �

3.9.

We are now in a position to prove corollary 1.9. Let us first state it in slightly greater generality.

Corollary. Let y(t, x) : ]t0, ∞) × T −→ R be a solution of the Burgers equation. If there
exists an unbounded sequence tn > t0 of times such that the function ytn is continuous for all
n, then the function y is the restriction of a Lipschitz solution ω : R × T −→ R that satisfies
ω(t + T , x) = ω(t, x) for some T ∈ N.

Proof. It follows from proposition 3.7 that the function y is both a forward entropy solution
and a backward entropy solution on ]t0, tn[ × T for each n. It follows from the Oleinik
inequality and the reversed Oleinik inequality that the function y is Lipschitz on [t ′0, ∞) × T

for all t ′0 > t0. On the other hand, there exists a periodic solution ω(t, x) such that
‖yt − ωt‖L1 −→ 0 as t −→ ∞. The functions ωt are equi-Lipshitz because the functions yt ,
t � t ′0 are equi-Lipshitz. As a consequence, both entropy solutions ω and y are continuous
on [t ′0, ∞) × T; hence, ‖yt − ωt‖L1 is constant and thus is zero. We have proved that
y = ω on [t1, ∞) × T. �

3.10.

The fact that backward characteristics always exist, but that forward characteristics do not,
is one of the key features of entropy solutions. Particles may be absorbed by shocks,
but they cannot be created by shocks. In order to understand the full future of a given
particle, it is useful to introduce the notion of a weak characteristic. Consider an entropy
solution y(t, x) : [t0, ∞) × T −→ R of the Burgers equation, let c = ∫

T
y dx and let

u(t, x) : [t0, ∞) × T −→ R be a viscosity solution of (HJc) such that y = c + ∂xu. We say
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that an absolutely continuous curve x(s) : [t0, ∞) ⊃ [t, t ′] −→ T is a weak y-characteristic
if it satisfies the equation

ẋ(s) ∈ [∂pH(s, x(s), y−
s (x(s))), ∂pH(s, x(s), y+

s (x(s)))]

almost everywhere. It is clear that y-characteristics are weak y-characteristics, and that the
notions of weak y-characteristics and of y-characteristics coincide if y is a continuous solution.

Proposition. For each t > t0 and x0 ∈ T, there exists one and only one weak characteristic
x(s) : [t, ∞) −→ T satisfying x(t) = x0.

Proof. In view of the convexity of H in the p variable, there exists a constant K such that the
function Y (s, x) = ∂pH(s, x, y(s, x)) satisfies |Y (s, x)| � K and the Oleinik inequality

Y (s, x + δ) � Y (s, x) + Kδ

for δ > 0, s � t . Since ∂pH(s, x, y±(s, x)) = Y±(s, x), the equation for weak characteristics
can be written as

ẋ(s) ∈ [Y−(x(s)), Y +(x(s))].

Now the proposition follows from a result of Filippov, see [H], theorem 1.4.2. �

3.11.

Proposition. All weak y-characteristics x(s) : [t, ∞) −→ T have the same rotation number

lim
1

t

∫ t

t0

ẋ = ρ(c) = α′(c).

Proof. Let x(t) : ]t0, ∞) −→ T and q(t) : ]t0, ∞) −→ T be, respectively, a genuine
y-characteristic and a weak y-characteristic. Let x̄(t) : ]t0, ∞) −→ R and q̄(t) : ]t0, ∞) −→ R

be continuous functions such that x̄(t) mod 1 = x(t) and q̄(t) mod 1 = q(t), and such that
x̄(t0) � q̄(t0) � x̄(t0) + 1. Note that q̄(t) = q̄(t0) +

∫ t

t0
q̇, with a similar property for x̄. The

uniqueness of weak y-characteristics implies that x̄(t) � q̄(t) � x̄(t) + 1 for all t . Since x is
a genuine y-characteristic, it is calibrated by u, so that proposition 2.7 implies

x̄(t)

t
−→ ρ(c) and hence

q̄(t)

t
−→ ρ(c). �

4. Pairs of solutions and dissipation

It is well known that if y and z are entropy solutions of (B), then the norm ‖yt − zt‖L1 is a
non-increasing function of t . We shall give a proof of this fact. In short, it is a consequence of
the fact that values of local maxima of differences of viscosity solutions are decreasing. We
now give the details.

4.1.

Let f : T −→ R be a continuous function. We say that x0 ∈ T is a point of local maximum
of f if there exists an interval ]a, b[ ⊂ T containing x0 and such that f (x0) = max]a,b[ f and
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f (x0) > max(f (a), f (b)). The value f (x0) is then called a value of local maximum. The
following proposition states that the values of local maxima of a difference ut −vt of viscosity
solutions are non-increasing functions of t .

Proposition. Let u, v : [t0, ∞)×T −→ R be a pair of viscosity solutions of (HJc), let t1 > t0,
and let d = u−v. Let x1 be a point of local maximum for dt1 and let ]a, b[ be an open interval
containing x1, and such that max(dt1(a), dt1(b)) < d(t1, x1) = max]a,b[ dt1 . Let a(t) and b(t)

be curves calibrated by u and satisfying a(t1) = a, b(t1) = b. Then for each t in ]t0, t1], we
have M(t) = max[a(t),b(t)] dt > max(d(t, a(t)), d(t, b(t))); hence, M(t) is a value of local
maximum. In addition, the value M(t) is a continuous and non-increasing function of t on
]t0, t1].

Proof. The functions d(t, a(t)) and d(t, b(t)) are non-decreasing on [t0, t1]; hence,
d(t, a(t)) � d(t1, a(t1)) < M(t1) and d(t, b(t)) � d(t1, b(t1)) < M(t1). On the other
hand, consider a curve q(t) that is calibrated by v and satisfies the final condition q(t1) = x1.
Since the function d(t, q(t)) is non-increasing, we have d(t, q(t)) � d(t1, q(t1)) = M(t1). It
follows that d(t, q(t)) > d(t, a(t)) and d(t, q(t)) > d(t, b(t)) for each t ; hence, the curve
q(t) cannot cross the curves a(t) and b(t), and q(t) ∈ ]a(t), b(t)[ for each t . As a consequence,
we have M(t) � d(t, q(t)) > max(d(t, a(t)), d(t, b(t))) and thus M(t) is a value of local
maximum. In addition, we have M(t) � d(t, q(t)) � M(t1). The same construction can be
performed with a smaller final time t ′1 satisfying t < t ′1 � t1; hence, we have the inequality
M(t) � M(t ′1) for t < t ′1 � t1. As a consequence, the function M(t) is non-increasing on
]t0, t1]. �

4.2.

In order to apply the proposition to pairs of entropy solution of (B) with possibly different
averages, we need some refinements. From now on, we sometimes consider functions on T as
periodic functions on R without changing their names.

Corollary. Let c and c′ be two real numbers, let u : ]t0, ∞) × T −→ R be a viscosity solution
of (HJc), let v : ]t0, ∞)×T −→ R be a viscosity solution of (HJc′), and let t1 > t0. We denote
by dt the difference dt (x) = ut (x) − vt (x) + (c − c′)x : R −→ R. Let x1 ∈ R be a point of
local maximum for dt1 , and let ]a, b [ ⊂ R be an open interval of length less than 1 containing
x1, and such that max(dt1(a), dt1(b)) < d(t1, x1) = max]a,b[ dt1 . Let a(t) and b(t) be curves
calibrated by u ( for (HJc)) and satisfying a(t1) = a, b(t1) = b. Then there exists t ′0 < t1
such that, for t ∈ [t ′0, t1], we have M(t) = max]a(t),b(t)[ dt > max(d(t, a(t)), d(t, b(t))).
The value M(t) is a continuous and non-increasing function of t on [t ′0, t1]. The functions
t �−→ d(t, a(t)) and t �−→ d(t, b(t)) are non-decreasing on [t ′0, t1].

Addendum. If ]a′, b′[⊂]a, b[ is a smaller interval and if M ′ = d(t1, x
′
1) = max]a′,b′[ dt1 >

max(dt1(a
′), dt1(b

′)), then the corollary can be applied to the value M ′ in the interval ]a′, b′[
with the same time t ′0.

Proof. Let us fix intervals I and J of length less than 1 such that [a, b] ⊂ I ⊂ Ī ⊂ J . We
also call I and J the images of I and J in T, which are proper subsets of T. Let K ′ be a
common Lipschitz constant of the functions vt , t � (t0 + t1)/2, and let K = 2K ′/(1 − |J |).
Let us fix a time t ′0 < t1 and a 1-periodic K-Lipschitz function wt ′0 : R −→ R such that
wt ′0(x) = v(t ′0, x) + (c′ − c)x for x ∈ Z + J . We can see wt ′0 as a function on T and define in
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a natural way w(t, x) = V c
t ′0,t

(wt ′0)(x) for t � t ′0. We claim that w(t, x) = v(t, x) + (c′ − c)x

for all x ∈ I and t ∈ [t ′0, t1], if t ′0 < t1 is large enough. Assuming the claim, and assuming
in addition that t ′0 is sufficiently large that the curves a(t) and b(t) remain in I on [t ′0, t1],
the corollary follows from the proposition above applied to u and w, which both solve (HJc).
In order to prove the claim, recall that

w(t, x) = min

(
wt ′0(x(t ′0)) +

∫ t

t ′0

L(s, x(s), ẋ(s)) − cẋ(s) ds

)

and

v(t, x) = min

(
vt ′0(x(t ′0)) +

∫ t

t ′0

L(s, x(s), ẋ(s)) − c′ẋ(s) ds

)
,

where the minima are taken on the set of C1 curves x(s) : [t ′0, t] −→ R terminating at x.
By superlinearity of L, it is possible to choose t ′0 so close to t1 that, if t ′0 � t � t ′ � t1 and
x(s) : [t, t ′] −→ R is a curve starting outside J and ending inside I , then∫ t ′

t

L(s, x(s), ẋ(s)) ds � 2K +
∫ t ′

t

L(s, x(t ′), 0) ds + (|c| + |c′|)
∫ t ′

t

|ẋ(s)| ds.

If t ′0 is chosen sufficiently close to t1, then for each x ∈ I , the curves reaching the minima in
the expressions of w and v above satisfy x(s) ∈ J for all s. We have proved that if t ′0 is large
enough, then for each x ∈ I it is possible to restrict the minima in the expression for w and v

above to curves x(s) contained in J . For such a curve, we have

wt ′0(x(t ′0)) +
∫ t

t ′0

L(s, x(s), ẋ(s)) − cẋ(s) ds

= vt ′0(x(t ′0)) + (c′ − c)x(t ′0) + c(x(t ′0) − x) +
∫ t

t ′0

L(s, x(s), ẋ(s)) ds

= vt ′0(x(t ′0)) + (c′ − c)x +
∫ t

t ′0

L(s, x(s), ẋ(s)) − c′ẋ(s) ds.

As a consequence, the equality w(t, x) = (c′ − c)x + v(t, x) holds for all t ∈ [t ′0, t1] and all
x ∈ J . This ends the proof of the claim and the proof of the corollary. �

4.3.
Theorem. Let y(t, x) and z(t, x) : ]t0, ∞) × T −→ R be two entropy solutions of (B). Then
the function

t �−→ ‖yt − zt‖1

is non-increasing. In addition, let x0(t) and x1(t) be two curves that are characteristics both
for y and z, and let J (t) and I (t) be the two continuously varying intervals of T such that
I (t) ∪ J (t) = T and I (t) ∩ J (t) = {x0(t), x1(t)}. Then each of the functions

t �−→ ‖(yt − zt )|I (t)‖1 and t �−→ ‖(yt − zt )|J (t)‖1

is non-increasing.

Proof. We shall prove the first part, leaving the easy modifications needed to prove the second
part to the reader. Let y = c + ∂xu and z = c′ + ∂xv be two entropy solutions of (B), and let
d(t, x) = ut (x) − vt (x) + (c − c′)x. The idea of the proof is very simple. The L1 norm of
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yt − zt is the total variation of the function dt . Since the local maxima of this function do not
increase, and since its local minima do not decrease, the total variation of dt cannot increase.
The details are, however, a bit tedious. �

We consider u and v as periodic functions ]t0, ∞) × R −→ R and define d(t, x) =
ut (x) − vt (x) + (c − c′)x. We denote by Var(dt ) the total variation of dt on any interval of
length 1. This quantity does not depend on the interval, and

Var(dt ) = ‖yt − zt‖L1(T).

We shall prove that, for each t1 > t0, there exists a time t ′0 ∈ ]t0, t1[ such that, for each t ∈ ]t ′0, t1[,
we have Var(dt ) � Var(dt1). Because it is also continuous, the function t �−→ Var(dt ) is then
non-increasing, which is the desired result.

Let us fix a time t1 > t0. Assume first that the functiondt1 does not have any local minimum.
In this case, Var(dt1) = |c′ − c|. On the other hand, the inequality Var(dt ) � |c′ − c| clearly
holds for all t ; hence, we have proved that

Var(dt ) � Var(dt1)

for all t < t1.
Otherwise, there exists a point a ∈ R of local minimum of dt1 . We consider a

y-characteristic a(t) : ]t0, t1 ] −→ R terminating at a. There exist non-decreasing sequences
M−

k and M+
k of finite subsets of ]a, a + 1[ such that for each k :

• Each point of M−
k is a point of local minimum of dt1 .

• Each maximal interval in the complement ]a, a + 1[−M−
k of M−

k contains exactly one
point of M+

k .
• Each point of M+

k is a point of local maximum of dt1 .
• The sets M−

k and M+
k are disjoint.

• We have, when k −→ ∞,

2
∑

x∈M+
k

dt1(x) − 2
∑

x∈M−
k

dt1(x) − dt1(a(t1)) − dt1(a(t1) + 1) −→ Var(dt1).

It is possible that M−
k is empty for all k. In this case, Mk

+ is also independent of k and
contains a single point x, and we have

Var(dt1) = 2dt1(x) − dt1(a(t1)) − dt1(a(t1) + 1).

In view of the corollary, there exists t ′0 such that the function M(t) = max]a(t),a(t+1)[ dt is
non-increasing on [t ′0, t1], and the functions d(t, a(t)) and d(t, b(t)) are non-decreasing on
this interval. As a consequence, for t ∈ ]t0, t1[, we have

Var(dt ) � 2M(t) − dt (a(t)) − dt (a(t) + 1) � 2M(t1) − dt1(a(t1)) − dt1(a(t1) + 1) = Var(dt1).

Otherwise, the function dt1 has oscillations and the sets M−
k are not empty. Let us choose,

for each point x ∈ M−
k , a y-characteristic x(t) : [t0, t1] −→ R satisfying x(t1) = x. Let

M−
k (t) be the union of all the points x(t) obtained that way. The corollary above and its

addendum allow to find a time t ′0 ∈ ]t0, t1[ independent of k such that, if ]x, x ′ [ ⊂ ] a, a + 1[
is a maximal interval of the complement of M−

k , then the y-characteristics x(t) and x ′(t)
associated with x and x ′ satisfy a(t) � x(t) < x ′(t) � a(t) + 1 for each t ∈ ]t ′0, t1[, and the
interval ]x(t), x ′(t)[ contains a point of local maximum q(t) of dt , such that the associated value
of local maximum d(t, q(t)) is non-increasing. Let M+

k (t) be the union of all such points q(t).
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Recall also, from the corollary, that the function t �−→ d(t, x(t)) is non-decreasing on ]t ′0, t1[
for each of the chosen characteristics x(t) ∈ M−

k (t). We have, for t ∈ [t ′0, t1]

Var(dt ) � 2
∑

q∈M+
k (t)

dt (q) − 2
∑

x∈M−
k (t)

dt (x) − dt (a(t)) − dt (a(t) + 1)

� 2
∑

q∈M+
k (t1)

dt1(q) − 2
∑

x∈M−
k (t1)

dt1(x) − dt1(a(t1)) − dt1(a(t1) + 1) −→ Var(dt1);

hence, Var(dt ) � Var(dt1).
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invariant under diffeomorphisms of the annulus. vol 1) With an appendix by Albert Fathi Astérisque
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