Patrick Bernard 
email: patrick.bernard@ujf-grenoble.fr
  
Une propri ét é de transfert en approximation diophantienne

Étant donné un vecteur ω ∈ R n , on définit la suite T i des périodes de ω comme la suite des temps de meilleur retour près de l'origine de la translation x -→ x + ω sur le tore T n . On étudie comment les propriétés diophantiennes du vecteur ω peuvent être exprimées à l'aide de la suite des périodes. Plus précisément, on montre que si le vecteur ω est non résonant, et si ses périodes vérifient l'inégalité T i+1 CT 1+τ i avec τ < (n -1) -1 , alors le vecteur ω est diophantien.

Introduction

0.1

Soit ω un vecteur de R n . On note T n le tore (R/Z) n , et t ω : T n -→ T n le difféomorphisme x -→ x + ω. On s'intéresse au système dynamique discret engendré par t ω . On dit que ω est résonant si il existe k ∈ Z n tel que le produit scalaire ω, k est entier (∈ Z). Dans ce cas, le tore T n est fibré en tores de plus petite dimension invariants par t ω . Sinon, on dit que ω est non résonant, et t ω est uniquement ergodique et minimal, c'est à dire que T n est le seul compact non vide invariant par t ω , et que la mesure de Haar est la seule mesure de probabilité invariante.

Il est très utile en théorie de la moyennisation (théorie KAM par exemple) de quantifier le caractère non résonant de ω. Le plus simple consiste à minorer les "petits diviseurs" d( k, ω , Z), k ∈ Z n . On parle alors de propriétés diophantiennes linéaires. Cette approche est assez naturelle, car les petits diviseurs apparaissent directement au dénominateur des coefficients des séries de perturbation dans de nombreux problèmes. Intuitivement, ceci revient a quantifier l'ergodicité de t ω , mais le sens dynamique des petits diviseurs n'est pas très clair.

On peut aussi mesurer la qualité de l'approximation de ω par des vecteurs rationnels, c'est à dire estimer d(T ω, Z n ), T ∈ Z. On parle alors de propriétés diophantiennes simultanées. Cette approche n'a été utilisée que beaucoup plus récemment dans les problèmes de moyennisation, voir [START_REF] Lochak | Canonical perturbation theory via simultaneous approximation[END_REF], où elle permet une simplification remarquable du théorème de Nekhoroshev. On peut enfin se restreindre à la suite des meilleures approximations de ω, comme suggéré dans [START_REF] Lochak | Canonical perturbation theory via simultaneous approximation[END_REF]. On définit pour ceci les périodes T i (ω) de ω ∈ R n en posant T 0 (ω) = 1 et

T i+1 (ω) = min T ∈ N tel que T ω Z < T i (ω)ω Z . (1) 
Voir 0.2 ci-dessous pour les notations. La croissance des périodes détermine de manière très condensée les propriétés diophantiennes de ω.

Un intérêt majeur de l'approximation simultanée est son caractère profondément dynamique. En effet, si l'on considère un homéomorphisme φ d'un espace métrique et une orbite récurrente φ n (x) de cet homéomorphisme, on peut définir les écarts d(φ n (x), x) et les périodes T i de cette orbite par T 0 = 1 et

T i+1 = min T ∈ N tel que d(φ T (x), x) < d(φ T i (x), x) .
Ces définition coïncident avec les notions vues au dessus lorsque φ est la translation sur le tore de vecteur ω.

La correspondance précise entre les différents types de propriétés diophantiennes n'est pas immédiate, bien que ces propriétés soient visiblement de même nature. Nous rappelons ici le très classique théorème de transfert de Khintchine, et l'étendons aux propriétés diophantiennes définies en terme de croissance des périodes, qui n'avaient pas été étudiées jusqu'ici. Cet article doit beaucoup à mes conversations avec Pierre Lochak sur le lien entre les méthodes de perturbation par approximation simultanées développées dans [START_REF] Lochak | Canonical perturbation theory via simultaneous approximation[END_REF] et la théorie KAM. Je tiens aussi a remercier Xavier Buff, qui m'a suggéré une amélioration de la Propriété 1.3, ainsi que le referee pour sa lecture attentive qui a permis de nombreuses améliorations du texte.

0.2

Notations : On utilise pour l'essentiel les notations de l'appendice 1 de [START_REF] Lochak | Canonical perturbation theory via simultaneous approximation[END_REF]. Soit

ω = (ω 1 , . . . , ω n ) ∈ R n , on note |ω| = sup i |ω i |. Si ω ′ = (ω ′ 1 , . . . , ω ′ n ) ∈ R n , on note ω, ω ′ = ω 1 ω ′ 1 + . . . + ω n ω ′ n le produit scalaire standard, et ω = ω, ω .
Pour ω ∈ R n , on note ω Z = min k∈Z n |ω -k|, et de la même façon, x Z = min k∈Z |x -k| pour x réel.

Théorèmes de Dirichlet

Il est utile pour fixer les idées de rappeler les deux résultats les plus simples de l'approximation diophantienne. On pourra consulter [START_REF] Schmidt | Diophantine Approximation[END_REF] pour les preuves.

1.1

Théorème de Dirichlet : Considérons un vecteur ω ∈ R n , pour tout réel Q > 0, il existe un entier positif T < Q tel que

T ω Z Q -1 n .
En conséquence, il existe une infinité d'entiers T tels que

T ω Z < T -1 n . 1.2 Théorème : Considérons un vecteur ω ∈ R n , pour tout réel Q > 0 il existe un vecteur k ∈ Z n vérifiant |k| < Q et tel que k, ω Z Q -n .
En conséquence, il existe une infinité de vecteurs entiers k tels que k, ω Z < |k| -n .

1.3

Propriété : La suite T i (ω) des périodes de ω satisfait :

1 T i (ω) + T i+1 (ω) T i (ω)ω Z 1 T i+1 (ω) 1/n .
L'inégalité de droite est une conséquence directe du théorème de Dirichlet avec Q = T i+1 (ω). En effet, on a alors

T i (ω)ω Z = min 1 T <T i+1 (ω) T ω Z 1 T i+1 (ω) 1/n .
Pour montrer l'inégalité de gauche, considérons des vecteurs entiers w i tels que

T i (ω)ω Z = |T i (ω)ω -w i |. Comme T i (ω)w i+1 -T i+1 (ω)w i est un vecteur entier non nul, on a 1 T i (ω)T i+1 (ω) T i (ω)w i+1 -T i+1 (ω)w i T i (ω)T i+1 (ω) = w i+1 T i+1 (ω) - w i T i (ω) w i+1 T i+1 (ω) -ω + ω - w i T i (ω) T i+1 (ω)ω Z T i+1 (ω) + T i (ω)ω Z T i (ω) < T i (ω) + T i+1 (ω) T i (ω)T i+1 (ω) T i (ω)ω Z ,
la Propriété en découle.

2 Propriétés de transfert

2.1

Rappelons que la suite T i (ω) est la suite des périodes introduite dans l'introduction. On définit les ensembles

Ω n (τ ) = ω ∈ R n / ∃C > 0, ∀T ∈ N, T ω Z CT -(1+τ )/n , Ω n (τ ) = ω ∈ R n / ∃C > 0, ∀k ∈ Z n -{0}, k, ω Z C|k| -(1+τ )n , Ω(τ ) = ω ∈ R n / ∃C > 0, ∀i ∈ N, T i+1 (ω) CT i (ω) 1+τ , Ω(τ ) = {ω ∈ Ω(τ )/ ∀k ∈ Z n -{0}, k, ω ∈ Z} .
Au vu des théorèmes de Dirichlet de la section 1, les ensembles Ω n (τ ) et Ω n (τ ) sont vides pour τ < 0, il en va évidemment de même des ensembles Ω(τ ) et Ω(τ ). On dit que les éléments de Ω n (τ ) pour τ 0 satisfont une propriété diophantienne linéaire, et que les éléments de Ω n (τ ) satisfont une propriété diophantienne simultanée. Dans cette note, on montre le

2.2

Théorème de transfert : Pour tout τ 0,

Ω n τ (n -1)τ + n ⊂ Ω τ (n -1)τ + n ⊂ Ω n (τ ) ⊂ Ω n (nτ ).
On en déduit par exemple que toutes les notions de vecteurs mal approchables coïncident :

Ω n (0) = Ω n (0) = Ω(0).
Lorsque n = 1, ces nombres sont dits de type constant. On déduit aussi qu'une propriété diophantienne linéaire implique toujours une propriété diophantienne simultanée. L'appartenance à Ω n (τ ) n'implique cependant une propriété diophantienne linéaire que si τ < (n -1) -1 . L'existence de ce seuil sera expliquée dans la section 3.

2.3

Mentionnons que les inclusions suivantes, dues à Khintchine, sont bien connues depuis longtemps (voir [START_REF] Lochak | Canonical perturbation theory via simultaneous approximation[END_REF], [START_REF] Schmidt | Diophantine Approximation[END_REF]) : Pour tout τ 0,

Ω n τ (n -1)τ + n ⊂ Ω n (τ ) ⊂ Ω n (nτ ).

2.4

La section suivante est consacrée à quelques discussions sur le théorème de transfert. On y réduit la preuve des deux nouvelles inclusions à celle la Proposition 3.10.

3 Vecteurs rationnels et résonances

3.1

Le module de résonance de ω, R(ω), est l'ensemble des vecteurs k ∈ Z n pour lesquels k, ω ∈ Z. On appelle ordre de résonance de ω le rang de ce sous groupe de Z n , c'est à dire le cardinal de ses bases. Le vecteur ω est dit résonant si son module de résonance n'est pas trivial, c'est à dire si son ordre de résonance est non nul.

3.2

Le vecteur ω est dit rationnel si ses composantes sont rationnelles. Le vecteur ω est rationnel si et seulement si toutes les orbites des t ω sont périodiques. Elles ont alors toutes la même période, qui est le plus petit dénominateur commun des composantes de ω. Les vecteurs rationnels sont les vecteurs maximalement résonants, c'est à dire ceux dont l'ordre de résonance est n. En effet, tout module R de rang n contient le module T Z n pour une certain T . Les vecteurs ayant R pour module de résonance sont donc nécessairement T -périodiques. avec des composantes a i /d i irréductibles.

3.4

Démonstration : Soit R le module de résonance de ω. Considérons une base k 1 , . . . , k r de R, et associons lui la matrice B à coefficients entiers de l'application linéaire R n ∋ x -→ ( k i , x ) ∈ R r . Par un résultat classique, voir [START_REF] Jacobson | Basic Algebra I[END_REF], théorème 3.8, il existe une matrice A ∈ Gl n (Z), une matrice C ∈ Gl r (Z) et une matrice diagonale

Λ =    d 1 0 0 • • • . . . 0 d r 0 . . .   
telle que B = CΛA, où les coefficients diagonaux d i sont des entiers tels que d i divide d i+1 .

La propostion en découle puisque

k, Aω ∈ Z ⇐⇒ A t k, ω ∈ Z ⇐⇒ A t k ∈ Im(B t ) = Im(A t Λ t ) ⇐⇒ k ∈ Im(Λ t ).

3.5

Remarque : Tout sous groupe de Z n n'est pas un module de résonance, et les invariants d'un module de résonance satisfont certaines contraintes. En particulier, il est facile de vérifier que les invariants qui ne sont pas égaux à 1 sont tous distincts :

d i = d i+1 ⇒ d i = 1.

3.6

Lorsque n = 1, un rationnel ω = w/T (sous forme irréductible) de grand dénominateur T a un comportement très proche d'un irrationnel en ce sens que les points kω, k ∈ Z sont bien répartis sur le cercle (ce sont précisément les points de la forme l/T , l ∈ Z). En dimension supérieure, certains vecteurs périodiques de grande période se comportent essentiellement comme des vecteurs non-résonants, et d'autres se comportent plutôt comme des vecteurs résonants (par exemple le vecteur (0, w/T ) ∈ R 2 ). En raison de la non compacité du groupe Gl n (Z) pour n 2, il n'est pas possible de quantifier la présence effective ou non de résonances pour un vecteur périodique ω de grande période par des quantités invariantes par l'action de Gl n (Z). Par exemple, étant donné un vecteur ω ∈ R 2 , l'algorithme des fractions continues permet de trouver une suite (non bornée) A n de matrices de Gl 2 (Z) et une suite de rationnels x n ∈ Q tels que A n (0, x n ) -→ ω lorsque n tend vers l'infini.

Il est donc utile d'introduire la quantité

e(ω) = min k∈R(ω)-{0}
|k|.

Pour illustrer son rôle, considérons un vecteur réel ω et une suite d'approximations rationnelles w n /T n de ω, où la période T n tend vers l'infini. Il n'est pas difficile de voir que la limite ω est résonante si et seulement si la suite e(w n /T n ) est bornée. Notons que, pour un vecteur rationnel w/T de période T , on a l'estimation 1 e(w/T ) T 1/n .

En effet, le théorème 1.2 donne l'existence d'un vecteur entier k tel que |k| T 1/n et k, w/T Z < 1/T, mais alors k ∈ R(w/T ). Réciproquement, pour la plupart des vecteurs rationnels w/T de dénominateur T , e(w/T ) est au moins de l'ordre de T 1/(n+1) . Ceci est rendu plus précis par la Propriété 3.7 ci-dessous. Les vecteurs périodiques pour lesquels la valeur e est grande sont ceux dont l'orbite est constituée de points bien répartis sur le tore.

3.7

Propriété : Pour tout réel strictement positif τ , la proportion de vecteurs entiers w tels que e(w/T ) T points entiers w dans [0, T -1] n tels que e(w/T ) A. On termine alors la démonstration en remarquant que

n 2T 1-τ n+1 + 1 n+1 T n-1 = o(T n ).

3.8

En ne retenant d'un vecteur rationnel que sa période T , on perd donc une information essentielle. Par exemple, la suite des distances T (ω, 0) Z , T ∈ Z, associée au vecteur (ω, 0) ∈ R n+1 est la même que la suite T ω Z associée à ω, alors que le vecteur (ω, 0) est fortement résonant et engendre des orbites très mal réparties dans T n+1 . De la même façon, la suite des périodes T i (ω, 0) est la même que celle de ω. Il est remarquable qu'une simple connaissance de la suite T ω Z puisse suffire à déterminer le caractère non résonant de ω, voir 3.9. Il n'est pas possible de tirer ce caractère non résonant d'une connaissance de la suite des périodes. Pourtant, si l'on suppose à priori le vecteur ω non résonant, on montre que certaines estimées sur la croissance des périodes permettent de déduire des propriétés diophantiennes linéaires vérifiées par ω. Cette remarque, à ma connaissance nouvelle, fait l'objet de la proposition 3.10, qui sera démontrée dans la section suivante.

3.9

Propriété : Pour tout τ < (n -1) -1 , les vecteurs de Ω n (τ ) sont non résonants. Ce résultat est bien sur impliqué par les inclusions de Khintchine 2.3. Nous allons cependant en donner une preuve élémentaire. Considérons un vecteur résonant ω. D'après 3.3, il existe une matrice A ∈ SL n (Z) telle que Aω = (ω ′ , w/p) ∈ R n-1 × Q, (w, p) ∈ Z 2 . Appliquons le théorème de Dirichlet à pω ′ . Il existe une infinité d'entiers T tels que T pω ′ Z < T -1/n-1 , et donc tels que

T (pω ′ , w) Z < 1 T 1/(n-1) ⇐⇒ T pAω Z < p 1/(n-1) (pT ) 1/(n-1) .
Il y a donc une infinité d'entiers T ′ = pT et une constante C tels que 1) .

T ′ ω Z C (T ′ ) 1/(n-
Ceci exclut que ω puisse appartenir à l'ensemble Ω n (τ ) lorsque

1 + τ n < 1 n ⇐⇒ τ < 1 n -1 .

3.10

Proposition : Si ω est non résonant et si il existe τ ∈ 0, 1 n-1 et C > 0 tels que T i+1 (ω) CT i (ω) 1+τ alors il y a une constante D > 0 telle que, pour tout k ∈ Z n , on a k, ω Z D|k| -1+µ n , où µ = nτ n -(n -1)(1 + τ ) .

3.11

Démonstration du théorème de transfert : Nous ne prouverons que les deux première inclusions. Nous renvoyons à [START_REF] Schmidt | Diophantine Approximation[END_REF] pour la preuve de la troisième inclusion. La deuxième inclusion découle directement de la propriété 3.10. La première inclusion découle de la propriété 3.9 et de la remarque suivante : Si ω ∈ Ω n (τ ′ ), on obtient en appliquant théorème de Dirichlet avec Q = T i+1 (ω) que

CT i (ω) -(1+τ ′ )/n T i (ω)ω Z T i+1 (ω) -1/n , et donc que ω ∈ Ω(τ ′ ) (voir [2]).
4 Démonstration de la proposition 3.10

Le vecteur ω est fixé une fois pour toutes, on notera donc T i les périodes T i (ω). On considère une suite de meilleures approximations ω i , c'est à dire une suite de vecteurs rationnels telle que T

i (ω i -ω) = T i ω Z et T i ω i = w i ∈ Z n . Soit k ∈ Z n ,
comme ω est non résonant, les produits scalaires k, ω i ne peuvent être entiers que pour un nombre fini de valeurs de i, et on peut définir

i(k) = 1 + max i tel que k, ω i ∈ Z .

4.1

Établissons pour commencer les inégalités

k T i(k)-1 2 √ n T 1-1/n i(k) 1 2 √ n C 1 1+τ T n+(1-n)(1+τ ) n(1+τ ) i(k) . On a k, ω i(k)-1 ∈ Z, et k, ω i(k) Z 1/T i(k) donc | k, ω i(k) -ω i(k)-1 | 1/T i(k) .
On en déduit que

k 1 2T i(k) ω i(k)-1 -ω .
En appliquant le Théorème de Dirichlet avec Q = T i+1 , on obtient

ω i(k)-1 -ω √ n|ω i(k)-1 -ω| √ n T i(k)-1 T 1/n i(k)
, ce qui donne la première égalité. La seconde inéqualité est alors une conséquence directe de l'hypothèse.

4.2

Un calcul simple donne alors que implique, puisque T j(k)+1 CT 1+τ j(k) , que

T i(k) 2 √ n C
T j(k) 2 √ n C 1 1+τ ) n 1+µ 1+τ C 1 1+τ k n 1+µ 1+τ .
D'un autre coté, on a la majoration

T j(k) 2 √ n C 1 1+τ k n(1+µ) .
On a donc, comme j(k) i(k),

k, ω j(k) Z 1 T j(k) 2 √ n C 1 1+τ k -n(1+µ) . (2) 
En utilisant encore le théorème de Dirichlet, on obtient

|ω j(k) -ω| 1 
T 1+1/n j(k) et donc | k, ω j(k) -ω | k T 1+1/n j(k) 1 T j(k) C k τ -µ 1+τ , (3) 
où C ne dépend pas de k. Il est facile de voir que τ < µ, et donc, par (2) et (3) que

k, ω Z 1 T j(k) (1 -ǫ( k )) 2 √ n C 1 1+τ k -n(1+µ) (1 -ǫ( k )),
où ǫ(x) est une fonction qui tend vers 0 lorsque x tend vers l'infini. La proposition annoncée en découle.

3. 3

 3 Proposition : Soit ω un vecteur résonant d'ordre r. Il existe une matrice A ∈ Gl n (Z) et une famille d i , 1 i r, d'entiers tels que d i divise d i+1 et tels que (d 1 e 1 , . . . , d r e r ) forme une base du module de résonance de Aω, où (e 1 , . . . , e n ) est la base standard de R n . En particulier, Aω = (w/T, ω ′ ) ∈ Q r × R n-r , où ω ′ est un vecteur non résonant et w/T est un vecteur périodique (rationnel) de période T = d r . Lorsque ω est périodique, on lui associe donc n invariants d i , où d n = T est la période. Il existe alors une matrice A ∈ Gl n (Z) telle que Aω = (a 1 /d 1 , a 2 /d 2 , . . . , a n /d n )

  lorsque T tend vers l'infini. Démonstration : Nous allons majorer le nombre de points entiers w de [0, T -1] n tels qu'il existe un vecteur entier k vérifiant |k| A et k, w = T l, l ∈ Z. Pour chaque couple (k, l) ∈ Z n × Z, l'hyperplan k, w = T l contient au plus T n-1 points entiers dans [0, T -1] n . Par ailleurs, pour un vecteur entier k donné, le nombre d'entiers l tels que l'hyperplan k, w = T l intersecte [0, T -1] n est au plus n(2|k|+1), puisque | k, w | n|k||w|. Le nombre de couples (k, l) ∈ Z n × Z vérifiant |k| A et tels que l'hyperplan d'équation k, w = T l intersecte [0, T -1] n est donc inférieur à n(2A + 1) n+1 . Il y a donc au plus n(2A + 1) n+1 T n-1

  où µ est donné dans l'énoncé. Définissons l'indice j(k) = min j i(k) tels que T j+1 2