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The task of assessing the working resource of
important structures, in particular, those for aircraft
engines, poses qualitatively new basic problem related
to evaluation of the reliability of materials under con�
ditions of cyclic loading in excess of 106–1010 cycles,
which refer to the field of so�called gigacycle fatigue.
This interest is related to the fact that the resource of
loading for many important parts operating under
conditions of cyclic loading exceeds the so�called
multicycle range. the behavior of materials in the
range of gigacycle fatigue reveals some qualitative
changes in the laws governing both the nucleation of
cracks (in the bulk of a sample) and their propagation,
which are related to changes in the mechanisms of
fatigue crack nucleation and propagation. In the range
of gigacycle loading, the fatigue curve exhibits discon�
tinuities and the behavior shows evidence of a signifi�
cant increase in the role of environment, so that the
problem acquires an interdisciplinary character. 

The stages of material fracture in the range of giga�
cycle loading are classified based on the structural
signs of damage related to a broad spectrum of spatial
scales, including persistent slip bands (PSBs), fatigue
striations, microcracks (formed as a result of PSB
crossing), and grain�boundary defects. The main
damage refers to the defect scales within 0.1 μm–
1 mm, which are significantly smaller than those
detected by the standard methods of nondestructive
testing used for the conventional monitoring of reli�
ability, in particular, during the exploitation of build�
ings. 

An effective method for investigating the role of
initial structural heterogeneity, monitoring the accu�
mulation of defects on various scales (dislocation
ensembles, micropores, microcracks), and determin�

ing critical conditions for the transition from dispersed
to macroscopic fracture is offered by the quantitative
fractography. This technique reveals the characteristic
stages of fracture (crack nucleation and propagation),
thus providing a base for evaluating the temporal
resource of materials and structures under conditions
of gigacycle loading. 

The approach to characterization of the fracture
surface morphology in terms of spatiotemporal invari�
ants was originally proposed by Mandelbrot [1]. This
method is based on an analysis of the relief of a frac�
ture surface, which exhibits the property of self�affin�
ity as manifested by the invariant characteristics of the
surrace relief (roughness) over a broad spectrum of
spatial scales. On the other hand, these characteristics
reflect a correlated behavior of defects on various scal�
ing levels. 

The universal character of kinetic laws establishing
a relationship between the growth rate dl/dN of a
fatigue cracks and a change in the stress intensity coef�
ficient ΔK has been extensively studied both experi�
mentally and theoretically. The power laws originally
established by Paris [2] (and presently referred to as
the Paris law) reflect the automodel (self�similar)
nature of development of fatigue cracks. This law is
related to a nonlinear character of damage develop�
ment in the vicinity of the crack tip (called the “pro�
cess zone” [2]): 

(1)

where C and m are the experimentally determined
constants. For a broad class of materials and wide
range of crack propagation velocities under multicycle
fatigue conditions, the exponent is typically close to
m = 3–4. 

dl/dN C ΔK( )m
,=
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The universal nature of the Paris law was inter�
preted [3] based on the self�similar laws of damage
development and fracture focus formation in the form
of “dissipative structures” representing ensembles of
defects localized on the spectrum of spatial scales. The
formation of these structures reveals a critical charac�
ter of the transition from dispersed to macroscopic
fracture as manifested by the structural�scaling transi�
tions [4]. According to these notions, the propagation
of cracks is related to establishing a long�range corre�
lation interaction in multiscale ensembles of dissipa�
tive structures. This interaction which can be charac�
terized by a certain correlation scale, above which the
interaction proceeds to a scale that determines the
subsequent increment in the length of the propagating
crack (size of the “process zone”). This assumption
concerning the critical conditions for the aforemen�
tioned transition was used in interpretation of the
experimental data so as to explain the self�similar sce�
nario of fatigue crack propagation in a steel sample
under conditions of gigacycle loading. 

The samples of R4 high�strength steel (with a
room�temperature fatigue limit of 600 MPa for
106 cycles at 10 Hz) were tested under fatigue loading
conditions with symmetric tension–compression
cycling at 20 kHz (gigacycle loading regime) on an
original setup [5]. The testing machine consisted of
the following main parts: (i) generator, which con�
verted 50�Hz oscillations into an ultrasonic electric
sinusoidal signal with a frequency of 20 kHz;

(ii) piezoelectric transducer, which generated longitu�
dinal ultrasonic waves and produced mechanical
action at a frequency of 20 kHz; and (iii) ultrasonic
waveguide, which increased the amplitude of mechan�
ical stresses in the (working) central part of the sample. 

At the initial stage, a fatigue crack with a length of
~1.5 mm was nucleated, the subsequent growth of
which was controlled by varying the amplitude of
oscillations. The corresponding stress intensity coeffi�
cient ΔK was calculated by the following formula: 

(2)

where E is the Young’s modulus, ν is the Poisson ratio,
U0 is the amplitude of oscillations, Y is the polynomial
factor, and w is the sample width. For a given sample
geometry (Fig. 1) the polynomial factor was as follows: 

After every step of the fatigue crack growth, replicas
from the sample side surrace were taken in order and
to study the morphology of defect structures at the
crack tip. Figure 2 shows the typical surface relief
observed on a sample replica, which was obtained
using a high�resolution NewView interferometer. This
profilometer ensured a vertical resolution of 0.1 nm
and a lateral resolution of 0.5 μm. These patterns were
analyzed using the methods of correlation analysis for
determining the conditions of scaling invariance in the
ensembles of structures, which were assumed to gov�
ern the subsequent stage of crack development. 

One�dimensional profiles obtained for the surrace
of replicas were used to construct autocorrelation
functions (ACFs) of the following type 

The first nonzero value of the ACF was assumed to
determine the critical scale lsc for establishing long�
range correlation interactions in the ensembles of
defects formed in a process zone scale Lpz (Fig. 2). The
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Fig. 1. Schematic diagram and characteristic dimensions
of the initial sample (in millimeters). 
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Fig. 2. Schematic diagram showing a region at the crack tip and typical image of the replica (see text for explanations). 



values of the critical scale lsc for various stages of crack
propagation are presented in the table. 

Manifestations of the self�similar nature of the
fatigue crack growth were studied using methods of the
theory of similarity and dimensionality [6, 7]. The
crack growth rate was defined as a = dl/dN (where l is
the crack length and N is the number of cycles) and
studied as for correlation with the following parame�
ters: a1 = ΔK, stress intensity coefficient; a2 = E,
Young’s modulus; a3 = lsc, correlation scale in the
ensemble of defects; a4 = Lpz, the scale related to the
process zone. 

Using the Π�theorem and taking into account the
dimensionality of variables [dl/dN] = L, [ΔK] =
FL⎯3/2, [lsc] = [Lpz] = L, and [E] = FL–2, the kinetic
equation for the crack growth 

(3)dl
dN
������ Φ ΔK E lsc Lpz, , ,( )=

can be rewritten as follows: 

(4)

Estimation of the values ΔK/(E ) � 1 and Lpz/lsc � 1
suggest an intermediate�asymptotic character of the
crack growth kinetics for Eq. (4) in the following form:

(5)

where  = l/lsc. Introducing the parameter C =
(Lpz/lsc)

β, we can reduce the scaling relation (3) to the
following form analogous to the Paris law: 

(6)

where α is a universal exponent. 

Using relation (6), which constructed based on the
results experimental investigation of the fatigue crack
growth kinetics with allowance for the calculated lsc
values, it is possible to estimate the exponent as α ~
2.3, which corresponds to the slope of the straight line
in the rectifying coordinates (Fig. 3). A difference of
the exponent α ~ 2.3 from values obtained in the
regimes of multicycle fatigue testing suggests that there
are certain specific features in the formation of frac�
ture regions in the vicinity of crack tip under condi�
tions of gigacycle loading. 
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Values of parameters at various stages of fatigue crack devel�
opment 

ΔK, 

(MPa )
Δl × 104,

m ΔN × 10–5 dl/dN × 
1012

lsc × 104,
m

6.200 2.398 20.5 117 0.033

5.890 1.997 2.82 708 3.4

5.596 2.200 4.74 464 2.2

5.316 2.505 4.22 593 5.5

4.797 3.003 2.75 1090 2.6

4.558 3.597 7.13 505 2.5

4.330 2.403 433 5.56 2.6
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Fig. 3. Rectified plot of relation (6). 


