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ON ADAPTIVE POSTERIOR CONCENTRATION RATES

BY MARC HOFFMANN∗,1, JUDITH ROUSSEAU∗,1

AND JOHANNES SCHMIDT-HIEBER†,2

Université Paris-Dauphine∗ and University of Leiden †

We investigate the problem of deriving posterior concentration rates un-
der different loss functions in nonparametric Bayes. We first provide a lower
bound on posterior coverages of shrinking neighbourhoods that relates the
metric or loss under which the shrinking neighbourhood is considered, and
an intrinsic pre-metric linked to frequentist separation rates. In the Gaussian
white noise model, we construct feasible priors based on a spike and slab
procedure reminiscent of wavelet thresholding that achieve adaptive rates of
contraction under L2 or L∞ metrics when the underlying parameter belongs
to a collection of Hölder balls and that moreover achieve our lower bound.
We analyse the consequences in terms of asymptotic behaviour of posterior
credible balls as well as frequentist minimax adaptive estimation. Our results
are appended with an upper bound for the contraction rate under an arbitrary
loss in a generic regular experiment. The upper bound is attained for certain
sieve priors and enables to extend our results to density estimation.

1. Introduction.

1.1. Setting. There has been a growing interest for posterior concentration
rates in nonparametric Bayes over the last decade, initiated by the seminal papers
of Schwartz [26], Barron [2] and Ghosal, Ghosh and van der Vaart [15]. Consider
a statistical model or experiment En = {P n

θ : θ ∈ �} generated by data Yn, with
parameter space � equipped with a prior distribution π . The posterior distribution
P π(·|Yn) concentrates at rate εn > 0 under P n

θ0
for the loss � : � × � → [0,∞) if

En
θ0

[
P π (θ : �(θ, θ0) > εn|Yn)] = o(1).(1.1)

Posterior concentration allows to uncover frequentist properties of Bayesian meth-
ods. It implies that the posterior probability of an εn-neighbourhood around the
true parameter θ0 converges to one. Thus, most of the posterior mass will be close
to the truth in the frequentist sense.
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Whenever (1.1) holds uniformly in θ0 ∈ � and if εn can be taken as constant
multiple of the minimax rate of estimation over � for the loss �, we say that the
concentration rate is asymptotically minimax. We further say that the posterior
distribution P π(·|Yn) concentrates adaptively over the collection {�β,β ∈ I} of
subsets of � if

sup
θ0∈�β

En
θ0

[
P π (θ : �(θ, θ0) > εn(β)|Yn)] = o(1) for every β ∈ I,(1.2)

where εn(β) is a constant multiple of the minimax rate of adaptive estimation over
�β . Recently, some families of prior distributions under various types of statisti-
cal models have been studied in this light and have been proved to lead to adaptive
posterior concentration rates; see Section 5.4 for a more extensive discussion of
these results. Similarly as for (1.1), existence of a result of type (1.2) implies that
the Bayes estimator is minimax adaptive under fairly general conditions; see Sec-
tion 5.1. Consequently, existence or nonexistence of adaptive estimators in some
nonparametric situations (see, e.g., [4, 20]) yield limitations about the best possible
achievable concentration rates εn(β) in (1.2).

In this paper, we are interested in understanding further the interplay between
nonparametric minimax rates of convergence and the existence of adaptive con-
centration rates for appropriate priors in nonparametric estimation. We cover in
particular the two paradigmatic examples of density estimation, when the data Yn

is drawn from a n-sample of an unknown distribution, and the case of a signal
observed in Gaussian white noise. More specifically, we attempt to answer the
following related questions:

(I) Can we formalise the connexion between posterior concentration rates and
the minimax theory: given an experiment En and a loss �, can we define some
notion of lower bound associated to the posterior concentration rate? Can we derive
a generic construction for a prior with posterior achieving the minimax rate of
convergence in the sense of (1.1)? Can we further make this construction adaptive,
in the sense of (1.2)?

(II) In the specific framework of the L2 and L∞ metric for the loss �, can
we construct a feasible prior in standard models such as Gaussian white noise or
density estimation for which the posterior distribution contracts adaptively over
Hölder balls?

1.2. Main results. A first answer to these problems is given in Section 2 in the
form of a lower bound on the speed at which the posterior mass outside an εn-ball
vanishes in the sense of (1.1). Assume that � is equipped with a pre-metric3 d that
controls the separation rate between two elements in En. We prove in Theorem 2.1
that if En is dominated and admits a certain regularity condition then, for every

3That is, we only require that d is nonnegative and d(θ, θ ′) = 0 iff θ = θ ′.
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prior π such that the posterior P π(·|Yn) concentrates with rate εn over �, there
exists a constant c > 0 such that

sup
θ0∈�

En
θ0

[
P π (θ : �(θ, θ0) ≥ εn|Yn)] ≥ e−cn�(εn,�,�)2

,(1.3)

where

�(εn,�, �) = inf
{
d
(
θ, θ ′) : �(θ, θ ′) ≥ 2εn, θ, θ ′ ∈ �

}
.

The pre-metric d geometrises the statistical model and does not depend on the
loss function nor the rate. At this point, one might think of d as the Hellinger
distance. If εn → 0, only the local behaviour of d plays a role in the definition of
�(εn,�, �), which gives slightly more flexibility and allows to take, for instance,
d as the L2-metric in the Gaussian white noise model. The precise conditions
that determine d are stated in Theorems 2.1 and 4.1. Explicit computations are
developed in Section 2.

The exponent �(εn,�, �) appearing in (1.3) is a dual formulation of the mod-
ulus of continuity introduced in [14] and further considered by Cai and Low [8],
Cai, Low and Zhao [9]; see Section 5.4. Theorem 2.1 also admits a stronger local
version: εn can be a function of θ also in a manner similar to the between classes
modulus of continuity of Cai and Low [6]. Another important consequence is that
there are limitations of the commonly employed proof strategy for derivation of
posterior concentration rates; see Section 5.3.

In Section 3, we address question (II) and explicitly construct a prior—in the
family of spike and slab priors—that achieves the lower bound of Theorem 2.1 in
the white noise model simultaneously over a collection of Hölder balls H(β,L)

for β ∈ I , where I is a compact subset of (0,∞). Recasting Yn into a regular
wavelet basis (see, e.g., [12] and [13]), we obtain the sequence model

Yj,k = θj,k + n−1/2εj,k, k ∈ Ij , j = 0,1, . . . ,

where k ∈ Ij is a location parameter at scale 2−j with Ij having approximately
2j terms, and the εj,k are i.i.d. standard normal. The spike and slab prior is con-
structed as follows: for j less than a maximal resolution level4 Jn with 2Jn � n,
the θj,k’s are drawn independently according to

πj (dx) = (1 − wj,n)δ0(dx) + wj,ng(x) dx,(1.4)

for appropriate level-dependent weights wj,n > 0. Here, δy(dx) is the Dirac mass
at point y and g is a bounded density on R. For j > Jn, we put θj,k = 0. The con-
struction of the spike and slab prior does not involve knowledge of the smoothness
index β . Due to the point mass at zero, the posterior resembles many properties of a
wavelet thresholding procedure. In Theorem 3.1, we prove adaptive concentration

4In the sequel, we adopt the notation for positive sequences: an � bn if lim supn an/bn < ∞ and
an � bn if an � bn and bn � an simultaneously.
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rates

sup
θ0∈�β

En
θ0

[
P π (θ : ‖θ − θ0‖L∞ ≥ εn(β)|Yn)] ≤ n−B

uniformly in β ∈ I , where εn(β) = M(n/ logn)−β/(2β+1) and for some constants
B,M > 0 depending on π and I only. Moreover, the polynomial speed n−B at
which the contraction holds is sharp according to Theorem 2.1 (up to the expo-
nent B). The spike and slab prior (1.4) therefore leads to an adaptive minimax
posterior concentration rate over Hölder balls H(β,L) for the sup-norm loss, with-
out additional logn term. To the best of our knowledge, this is the first construction
of a prior leading to an optimal adaptive posterior concentration rate in sup-norm.
However, we miss the optimal rate by a logarithmic term if, for the same prior, we
consider contraction under the L2-metric instead of L∞. We show in Theorem 3.2
how to modify the spike and slab prior in order to remove the logarithmic terms in
the L2-metric and achieve exact adaptation in that setting too.

An answer to question (I) is presented in Section 4. We derive a generic up-
per bound, neither restricted to the white noise model nor to L2 or L∞ losses by
considering priors which are uniform over well chosen discrete sieves of �. In
this abstract framework, Theorem 4.1 provides conditions which imply that there
exists a constant C > 0 such that

sup
θ0∈�

En
θ0

[
P π (θ : �(θ0, θ) > εn|Yn)] ≤ e−Cn�(εn,�,�)2

.(1.5)

The interesting case is n�(εn,�, �)2 → ∞, implying posterior concentration at
rate εn. The rate can also be made adaptive by letting εn = εn(θ0) vary with θ0.
Comparing (1.5) with the lower bound (1.3), we see in particular that the upper
and lower bounds agree, up to the constants c and C, and are therefore sharp in
that sense. The rather abstract conditions which are required for (1.5) are satisfied
in the Gaussian white noise model and for density estimation (Propositions 1–3).

In Section 5, we discuss various implications of the lower and upper bounds
(1.3) and (1.5). First, we outline how these bounds on posterior concentration rates
lead to the construction of Bayesian estimators having asymptotic minimax (adap-
tive) frequentist risk, generalising the result of Ghosal, Ghosh and van der Vaart
[15], Theorem 2.5. In Section 5.2, we point out the links between posterior cov-
erage and confidence balls. Interestingly, the lower bound (1.3) implies that the
classical strategy for derivation of concentration rates fails if an arbitrary loss is
considered. This is developed in Section 5.3. Finally, we discuss the relation of the
derived results to other works in Section 5.4, both from a frequentist and Bayesian
point of view.

2. A generic lower bound. In this section, we exhibit tractable conditions on
the structure of a statistical experiment En = {P n

θ : θ ∈ �} generated by data Yn in
order to obtain an explicit lower bound on

En
θ0

[
P π (θ : �(θ, θ0) > εn|Yn)], θ0 ∈ �,
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where εn can be either fixed or a function of θ0, π is a prior on �, P π(·|Yn)

denotes the posterior distribution associated to π and � : � × � → [0,∞) is a
given loss function.

Assume that the parameter space � is equipped with a pre-metric d . Let �0 ⊂ �

and let (ε(θ), θ ∈ �0) denote a collection of positive θ -dependent radii over �0.
We define a local and a global modulus of continuity related to ε(·) between d and
� over a class �0 by setting

�
(
ε(·), θ, �

) = inf
{
d
(
θ, θ ′) : �(θ, θ ′) ≥ ε(θ) + ε

(
θ ′), θ ′ ∈ �0

}
(2.1)

and

�
(
ε(·),�0, �

)= inf
θ∈�0

�
(
ε(·), θ, �

)
.(2.2)

To illustrate the meaning of �, consider, for instance, the context of the Gaus-
sian white noise model (3.1) developed in Section 3 below, where �0 ⊂ � =
L2([0,1]). Take d = L2 and � = L∞ the sup-norm, and for β,L > 0, let �0 =
H(β,L) be a Hölder ball. Set εn(θ) = M(n/ logn)−β/(2β+1) for θ ∈ �0 and
M > 0. Then

�
(
εn(·), θ,L∞)

�
√

logn/n for every θ ∈ �0(2.3)

hence

�
(
εn(·),�0,L

∞)
�

√
logn/n

as well (for a proof see Section A.1). Similarly, if �0 =H(β1,L) ⊃H(β2,L) with
β1 < β2 and if

εn(θ) =
{

M(n/ logn)−β2/(2β2+1), if θ ∈ H(β2,L),
M(n/ logn)−β1/(2β1+1), otherwise,

(2.4)

then

�
(
εn(·),�0,L

∞)
�

√
logn/n.

Obviously, when d = �, then for all θ ∈ �0 we have �(εn(·), θ, �) ≥ εn(θ) and
�(εn(·),�0, �) ≥ inf{εn(θ), θ ∈ �0}.

THEOREM 2.1. Let �0 ⊂ �. Let d be a pre-metric on �. Assume that � is a
pseudo-metric5 on �0, and that the prior π and the family of positive sequences
(εn(θ), θ ∈ �0) satisfy the posterior concentration condition:

sup
θ0∈�0

En
θ0

[
P π (θ : �(θ0, θ) ≥ εn(θ0)|Yn)] = o(1).(2.5)

5That is, the axioms of a metric are required with �(θ, θ) = 0 but possibly �(θ, θ ′) = 0 for some
distinct θ 
= θ ′.
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Assume that the family {P n
θ : θ ∈ �0} is dominated by some σ -finite measure μ

and that there exists a constant K > 0 such that

P n
θ ′
(
Ln

(
θ ′)−Ln(θ) ≥ Knd

(
θ, θ ′)2) = o(1),(2.6)

uniformly over all θ, θ ′ ∈ �0 satisfying

�
(
εn(·), θ, �

)≤ d
(
θ, θ ′) ≤ 2�

(
εn(·), θ, �

)
,

where Ln(θ) = log
dP n

θ

dμ
(Y n) denotes the log-likelihood function w.r.t. μ. If

n�(εn(·),�0, �)
2 → ∞, then, for all θ0 ∈ �0 and large enough n

En
θ0

[
P π (θ : �(θ0, θ) > εn(θ0)|Yn)] ≥ e−3Kn�(εn(·),θ0,�)

2
.(2.7)

The proof is delayed until Section 6.

REMARK 1. By taking εn(θ) = εn constant on �0, we retrieve the more strin-
gent result (1.3) announced in Section 1.2.

REMARK 2 (About the assumptions). Assumption (2.6) is merely on the pre-
metric d that must be related to the intrinsic geometry of the experiment En: it
shows in particular that d must be able to control locally the likelihood ratio. This
can be the Hellinger distance used in the Birgé–Le Cam testing theory in density
estimation or simply the L2-distance in Gaussian white noise model linked to the
Hilbert space structure on which relies the existence of an iso-normal process. Note
also that since d is not required to be symmetric, the order d(θ, θ ′) is important in
assumption (2.6).

In Sections 3 and 4, we show that under some additional assumptions the lower
bound (2.7) is sharp.

3. Upper bounds in the white noise model via spike and slab priors. In
this section, we prove that the lower bound obtained in (2.7) is sharp in the white
noise model when � is either the sup-norm L∞ or the L2-norm. This is done using
spike and slab type priors. We observe

Yn = θ + n−1/2Ẇ ,(3.1)

where the signal of interest θ belongs to the Hilbert space

� = L2([0,1]) =
{
θ : [0,1] →R with

∫
[0,1]

θ(x)2 dx < ∞
}

and Ẇ is a Gaussian white noise on �. The noise Ẇ is not realisable as a random
element of L2; it is therefore viewed as the standard iso-Gaussian process for the
Hilbert space �. Picking an orthonormal wavelet basis, we equivalently observe

Yj,k = θj,k + n−1/2εj,k, εj,k ∼i.i.d. N (0,1), j ∈ N, k ∈ Ij ,(3.2)
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where θj,k = ∫ 1
0 θ(x)�j,k(x) dx is the wavelet coefficient associated to a given

compactly supported wavelet basis (�j,k)(j,k)∈� of � with � = {(j, k), k ∈ Ij , j ∈
N}. We append the basis with boundary conditions and assume that it is associated
with a R-regular multi-resolution of L2([0,1]); see [12] and [13]. The terms cor-
responding to j = 0 incorporate the scaling function and we have that |Ij | is of
order 2j . We identify � = L2([0,1]) with

�2(�) =
{
θ = (θj,k)(j,k)∈� : ∑

(j,k)∈�

θ2
j,k < ∞

}

and we transfer two loss functions on the sequence space model: the L2-loss

�2
(
θ, θ ′) =

( ∑
(j,k)∈�

(
θj,k − θ ′

j,k

)2
)1/2

,

and the L∞-loss

�∞
(
θ, θ ′) = ∑

j∈N
2j/2 max

k∈Ij

∣∣θj,k − θ ′
j,k

∣∣.
Since (�j,k)(j,k)∈� is orthonormal, �2 coincides with the L2([0,1]) norm. How-
ever, the losses �∞ and L∞ are not comparable on � = L2([0,1]) identified with
�2(�), but rather on smooth subspaces of �. To that end, introduce the Hölder
balls6

H(β,L) = {
θ = (θj,k)(j,k)∈� : |θjk| ≤ L2−j (β+1/2), (j, k) ∈ �

}
(3.3)

for β > 0,L > 0. Then we also have that �∞(θ, θ ′) and ‖θ − θ ′‖L∞([0,1]) are com-
parable on H(β,L) ⊂ �2(�).

3.1. Adaptive posterior concentration rates under sup-norm loss: Spike and
slab prior. Throughout the following, let g be a bounded density on R, which
satisfies

inf
x∈[−L0,L0]

g(x) > 0

for some L0 > 0. We consider the following family of priors on � = �2(�). Set
Jn = �logn/ log 2� and notice that n/2 < 2Jn ≤ n. For j ≤ Jn and k ∈ Ij , the θj,k’s
are drawn independently from

πj (dx) = (1 − wj,n)δ0(dx) + wj,ng(x) dx.(3.4)

6Having β = m+{β} with m and integer and β ∈ (0,1], the class H(β,L) coincides with functions

f = ∑
(j,k)∈� θj,kψj,k that are m-times differentiable with f (m) being Hölder continuous of order

{β} provided the regularity of the multi-resolution exceeds β .
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For j > Jn, πj (dx) = δ0(dx), or equivalently, θj,k = 0. We assume that there are
constants K > 0, τ > 1/2, such that n−K ≤ wj,n ≤ 2−j (1+τ), for all j ≤ Jn. This
constraint on the mixture weights implies in particular that the prior favours sparse
models since the individual probability to be nonnull becomes small as the resolu-
tion level j increases. We then have the following.

THEOREM 3.1. Consider a prior in the family of spike and slab priors defined
above. If Yn is drawn from the white noise model (3.2), for every 0 < β1 ≤ β2 and
L0 − 1 ≥ L > 0, there exist M,B > 0 such that

sup
θ0∈H(β,L)

En
θ0

[
P π (θ : �∞(θ, θ0) ≥ M(n/ logn)−β/(2β+1)|Yn)] ≤ n−B

uniformly in β ∈ [β1, β2].

The proof of Theorem 3.1 is given in Section 6.3. It is based on a fine descrip-
tion of the asymptotic behaviour of the posterior distribution on the selected sets
of coefficients θj,k , of the form S = {(j, k), θj,k 
= 0}, that is, we consider coef-
ficients that are not equal to 0 under the posterior distribution. Lemma 1 in Sec-
tion 6.3 states that the posterior distribution is asymptotically neither forgetting
nonnegligible coefficients θ0

j,k nor selecting too small coefficients θ0
j,k under P n

θ0

with θ0 = (θ0
j,k)(j,k)∈�. As follows from the proof, if the prior density g is positive

and continuous on R, then the conclusion of Theorem 3.1 remains valid for every
L > 0 and the procedure is independent of both the smoothness β and the radius L.

REMARK 3. Setting εn(β) = M(n/ logn)−β/(2β+1), we have

�
(
εn(β),H(β,L), �∞

) = O(
√

logn/n)

and according to Theorem 2.1, the best possible expectation of the posterior prob-
ability of complements on εn(β) neighbourhoods in �∞ is at most of polynomial
order n−B ′

for some B ′ > 0. Thus, Theorem 3.1 is sharp up to the constants B ′
and B .

3.2. Adaptive posterior concentration rates under L2 loss: Block spike and slab
prior. Theorem 3.1 implies the existence of M̃ > 0 such that

En
θ0

[
P π (θ : �2(θ, θ0) ≥ M̃(n/ logn)−β/(2β+1)|Yn)] ≤ n−B(3.5)

uniformly in β ∈ [β1, β2] since �2 is dominated by �∞. Therefore, an adaptive
minimax posterior concentration rate in the �2-norm is also obtained up to a logn

term. It can indeed be proved that for this prior the logn term cannot be avoided.
Since the spike and slab prior (3.4) is a product measure on the wavelet coeffi-
cients, this might be viewed as a Bayesian analogue of the fact that separable rules
do not give adaptation with the clean rates in �2 (cf. Cai [5]). To circumvent this
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drawback, we propose a block spike and slab prior which achieves the minimax
adaptive rate for the �2-loss without additional logn term. The posterior associated
to this prior is easier to simulate from numerical data since the space of possible
selected sets is much smaller than the local spike and slab prior (3.4). It leads,
however, to suboptimal posterior concentration rates under sup-norm loss.

For j ≤ Jn, pick a family of independent random vectors θj = (θj,k)k∈Ij
for

j ∈N according to the distribution

π̃j (dx) = (1 + νj,n)
−1(δ0(dx) + νj,ngj (x) dx

) ∀x ∈R
|Ij |,(3.6)

where gj is a density with respect to Lebesgue measure on R
|Ij | which satisfies

sup
x∈R|Ij |

gj (x) ≤ eG|Ij |, inf
x∈[−L0,L0]|Ij |

gj (x) ≥ e−G|Ij |,(3.7)

and νj,n = n|Ij |/2e−c|Ij | for some constants G > 0 and c ≥ 4 + G. For j > Jn put
θj,k = 0. Condition (3.7) is satisfied in particular if, given that group j is not 0, the
θj,k’s are i.i.d. with density g satisfying the same conditions as in the local spike
and slab prior (3.4).

THEOREM 3.2. Consider a prior in the family of spike and slab priors defined
above. If Yn is drawn from the white noise model (3.2), for every 0 < β1 ≤ β2 and
L0 − 1 ≥ L > 0, there exist M,B > 0 such that

sup
θ0∈H(β,L)

En
θ0

[
P π (θ : �2(θ, θ0) ≥ Mn−β/(2β+1)|Yn)] ≤ e−Bn1/(2β+1)

uniformly in β ∈ [β1, β2].

The proof is given in Section 6.4.

REMARK 4. Note that not only do we recover the optimal posterior concen-
tration rate (without any logn term) but we also bound from above the expectation
of the posterior concentration rate by a term of the order

exp
(−cn�

(
ζn(β),H(β,L), �2

)2)
with ζn(β) = n−β/(2β+1) when � is computed under the intrinsic metric d = �2.
The same rate is provided by the lower bound in Theorem 2.1 and is therefore
sharp up to the constant c > 0.

REMARK 5. Since the prior (3.6) depends neither on β nor on L (in particu-
lar if gj corresponds to |Ij | identically distributed random variables with positive
and continuous density g on R) the posterior concentration rate obtained in Theo-
rem 3.2 is moreover adaptive in the minimax sense of (1.2).
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4. A generic upper bound. In this section, we explore a more general situ-
ation and show that the generic lower bound obtained in Theorem 2.1 is indeed
sharp in a wider sense than the one considered in Section 3. In the context of an
arbitrary experiment En, we construct priors with finite and increasing support,
usually referred to as sieve priors. Sieve priors have already been considered in the
Bayesian nonparametric literature in some specific context; see [15] and [16]. In
both cases, the interest of these priors is that they lead to optimal posterior con-
centration rates, without additional logn terms. From a practical point of view,
however, the construction of their support and their implementation is close to
being impossible. Moreover, they have poor behaviour in terms of credible and
confidence sets. In this section, we shall use such priors in the same way, as a de-
vice for the existence of an optimal estimation procedure, not as priors to be used
in practice.

We adopt the same framework as in Section 2: En = {P n
θ , θ ∈ �} is gener-

ated by the observation Yn and is dominated by some σ -finite measure μ, and

Ln(θ) = dP n
θ

dμ
(Y n) is a likelihood function. The loss function � : � × � → [0,∞)

is a pseudo-metric. Let us be given a family

εn = (
εn(θ), θ ∈ �

)
that we understand as the target posterior concentration rate at point θ relative to
the loss �. Typically, εn(θ) is the minimax rate of estimation over a subclass �0 ⊂
� which contains θ . Let (�n)n≥1 be an increasing sequence of compact subsets
of � for the topology induced by the loss �. More precisely, we only require that
�n can be covered by a finite collection of balls centered at θ with radius εn(θ)

in terms of the loss �. We denote by Nn the number of such balls and by θ(l) the
centers of these balls for l = 1, . . . ,Nn. Note that we do not necessarily require
that Nn is the minimal number of such balls satisfying the coverage property. We
define a sieve prior as follows:

πn = 1

Nn

Nn∑
l=1

δθ(l)
.(4.1)

To control the posterior concentration rate, we need to partition the sieve (θ(l),1 ≤
l ≤ Nn) into slices.

DEFINITION 1. For every θ0 ∈ �n, a partition (Jr ,1 ≤ r ≤ Rn) of {1, . . . ,Nn}
(we omit the dependence upon θ0 in the notation) is called θ0-admissible if:

(i) There exists A > 0 such that J0 = {l : �(θ0, θ(l)) ≤ Aεn(θ0)}.
(ii) For all 1 ≤ r ≤ Rn, |Jr | ≤ |J0|.

THEOREM 4.1. Assume that there exist constants C0,K0,K1 > 0 and for ev-
ery θ0 ∈ �n a θ0-admissible partition (Jr ,1 ≤ r ≤ Rn) together with injective
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maps jr : Jr → J0 such that

P n
θ0

(∃r,∃l : Ln(θ(l)) −Ln(θ(jr (l))) > −K0nd(θ(l), θ(jr (l)))
2)

(4.2)
≤ C0 exp

(−K1n�
(
εn(·), θ0, �

)2)
and

Rn∑
r=1

e−K0nu2
r ≤ C0e

−K1n�(εn(·),θ0,�)
2
,(4.3)

where ur = min{d(θ(l), θ(jr (l))), l ∈ Jr}. Then for all θ0 ∈ �n,

En
θ0

[
P πn

(
θ : �(θ, θ0) > Aεn(θ0)|Yn)] ≤ 2C0e

−K1n�(εn(·),θ0,�)
2
.(4.4)

The proof is delayed until Section 6. Conditions (4.2) and (4.3) on the admis-
sible partition are rather abstract. Interestingly, (4.2) is the only condition which
links the geometry of � to the model {P n

θ , θ ∈ �}. To illustrate conditions (4.2)–
(4.3) and the admissible partition, consider the following setup:

� = ⋃
β∈[β1,β2]

H(β,L) = H(β1,L) ⊂ �2(�),

where the Hölder ball H(β,L) is defined in Section 3. Put �(θ, θ ′) = �∞(θ, θ ′)
and d(θ, θ ′) = �2(θ, θ ′). Let �n = {θ ∈ � : θj,k = 0,∀j > Jn} with n < 2Jn ≤ 2n

and set φn = φ0(logn/n)1/2, where φ0 > 0 is fixed. Define

Dn = {
θ = (aj,kφn, j ≤ Jn, k ∈ Ij ), aj,k ∈ Z∩ [−L − 1,L + 1]}(4.5)

and identify Dn as a subset of �n by appending zeros, that is, θj,k = 0 whenever
j > Jn. The set Dn defines the sieve, which we can enumerate as {θ(l),1 ≤ l ≤ Nn}
with Nn = |Dn|. For any θ0 = (θ0

j,k)(j,k)∈� ∈ H(β,L) with β ∈ [β1, β2], there
exists an integer Jn(β) and a constant b0 such that

sup
j>Jn(β)

max
k∈Ij

∣∣θ0
j,k

∣∣ ≤ φn/4,
∑

j>Jn(β)

2j/2 max
k∈Ij

∣∣θ0
j,k

∣∣ ≤ εn(β),

(4.6)
2Jn(β) ≤ b0(n/ logn)1/(2β+1),

and we can pick θ∗ ∈ Dn satisfying

∀(j, k) ∈ �,
∣∣θ0

j,k − θ∗
j,k

∣∣ ≤ φn/2.

This implies in particular that ∀j > Jn(β),∀k ∈ Ij , θ
∗
j,k = 0, and �∞(θ0, θ

∗) ≤
(φ0 + 2)εn(β). We are ready to construct an admissible partition. First, consider
the semi-metric d1 : Dn ×Dn → [0,∞) defined by

d1
(
θ, θ ′)2 = ∑

j≤Jn,k∈Ij

((
θj,k − θ ′

j,k

)2 − φ2
n1{(j,k)∈Uc,θj,k∧θ ′

j,k<θ0
j,k<θj,k∨θ ′

j,k}
)
,
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where

U =
{
(j, k) ∈ �,j ≤ Jn,min

t∈Z
∣∣θ0

j,k − tφn

∣∣ ≤ φn/4
}
.(4.7)

Using the semi-metric d1, we say that θ, θ ′ ∈ Dn are equivalent if d1(θ, θ ′) = 0,
which defines an equivalence relation. Denote by Ir the elements of the corre-
sponding quotient space, and let I0 be the equivalence class of θ∗. Then, for any
θ ∈ I0

�∞(θ0, θ) ≤ 3φn

4

Jn(β)∑
j=0

2j/2 + εn(β) ≤ (
3φ0b

1/2
0 + 1

)
εn(β).

Eventually, we can define for A ≥ 4(3φ0b
1/2
0 + 1) the sets

J0 = {
θ ∈ Dn : �∞(θ, θ0) ≤ Aεn(β)

}
, Jr = Ir ∩J c

0 ,(4.8)

where we have identified the partition of the indices with the partition of the ele-
ments of Dn. We then have the following.

PROPOSITION 1. Assume that θ0 ∈ ⋃
β∈[β1,β2]H(β,L) = H(β1,L), and con-

sider the partition (Jr , r ≥ 0) (depending on θ0) defined as in (4.8) above. Then,
if � = �∞, the partition (Jr , r ≥ 0) is θ0-admissible and satisfies (4.3).

Moreover, if Yn is drawn from the white noise model (3.2), for every 0 < β1 ≤ β2

and L > 0, there exist M,B > 0 such that

sup
θ0∈H(β,L)

En
θ0

[
P πn

(
θ : �∞(θ, θ0) ≥ M(n/ logn)−β/(2β+1)|Yn)] ≤ n−B

uniformly in β ∈ [β1, β2].

The proof of Proposition 1 is given in Appendix A.4. The generic upper bound
allows us to prove posterior concentration in L2 loss with the “clean” adaptive rate
εn(β) = n−β/(2β+1) as well. In fact, we obtain an analogous result to Theorem 3.2
by constructing an appropriate sieve prior and using Theorem 4.1. For sake of
brevity, we give the statement without a proof.

PROPOSITION 2. There exists a sieve prior πn, such that if Yn is drawn from
the white noise model (3.2), for every 0 < β1 ≤ β2 and L > 0, there exist M,B > 0
with

sup
θ0∈H(β,L)

En
θ0

[
P πn

(
θ : �2(θ, θ0) ≥ Mn−β/(2β+1)|Yn)] ≤ exp

(−Bn1/(2β+1))
uniformly in β ∈ [β1, β2].
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Even more interesting is that the generic upper bound can be also applied to
prove adaptive rates for density estimation, with respect to �∞ loss. In this model,
we observe Yn = (Y1, . . . , Yn), where Yi, i = 1, . . . , n are independent and identi-
cally distributed on [0,1] with density fθ and write√

fθ (x) = ∑
(j,k)∈�

θj,k�j,k(x).(4.9)

Here, the parameter space consists of vectors θ = (θj,k)(j,k)∈� ∈ H(β,L) such
that the right-hand side of (4.9) is larger than some constant c > 0 and ‖θ‖�2 = 1.
We refer to this restricted Hölder space as H′(β,L) in the sequel. In this case, we
can take d = �2 again.

PROPOSITION 3. There exists a sieve prior πn, such that if Yn is drawn from
the density model (4.9), for every 1/2 < β1 ≤ β2 and L > 0, there exist M,B > 0
with

sup
θ0∈H′(β,L)

En
θ0

[
P πn

(
θ : �∞(θ, θ0) ≥ M(n/ logn)−β/(2β+1)|Yn)] ≤ n−B

uniformly in β ∈ [β1, β2].

The proof of Proposition 3 is given in Section A.5.

5. Further results and discussion.

5.1. Construction of minimax adaptive estimators given adaptive concentra-
tion. The main focus of this work is to study the full posterior distribution under
the frequentist assumption of a true parameter θ0. As a statistical implication of the
results let us shortly comment on convergence rates of Bayesian point estimators.
In the nonadaptive case, Theorem 2.5 in [15] asserts the existence of an estimator
that converges with the posterior concentration rate to the true parameter. How-
ever, the construction of the estimator crucially depends on knowledge of the rate
εn and is therefore not applicable in the adaptive setup. Not surprisingly, the Bayes
estimator

θ̂ ∈ argmin
δ

Eπ [�(δ, θ)|Yn],(5.1)

(assumed to be well defined) (see, e.g., [23]), Chapter 2, will achieve the adaptive
rate under quite general conditions. To see this, assume that �(θ, θ ′) = �(θ ′, θ) for
all θ, θ ′ ∈ � and observe that for any θ0 ∈ �,

�(θ̂ , θ0) ≤ Eπ [�(θ̂ , θ) + �(θ, θ0)|Yn] ≤ 2Eπ [�(θ, θ0)|Yn].(5.2)

If the loss is bounded, say supθ∈� �(θ, θ0) ≤ M , this can be further controlled by

2
(
εn(β) + MP π (θ : �(θ, θ0) > εn(β)|Yn)).
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Consider now a subset �β ⊂ � such that for any θ0 ∈ �β the posterior concentra-
tion rate at θ0 is bounded by εn(β) in the slightly stricter sense

sup
θ0∈�β

En
θ0

[
P π (θ : �(θ, θ0) > εn(β)|Yn)] = o

(
εn(β)

)
.

Then

sup
θ0∈�β

P n
θ0

(
�(θ̂ , θ0) > 2(M + 1)εn(β)

) = o(1)

and

sup
θ0∈�β

En
θ0

[
�(θ̂ , θ0)

] = O
(
εn(β)

)
.

Consequently, θ̂ achieves the rate εn(β) over �β . In the case of an unbounded
loss functions �, slightly refined arguments can be applied. Consider, for in-
stance, the framework of Theorem 3.2. Here, adaptation is meant over Hölder balls
H(β,L) ⊂ H(β1,L) with β1 > 0. Since supθ,θ ′∈H(β1,L) �2(θ, θ ′) ≤ M2 < ∞ for
some constant M2, we can improve any estimator by projection on H(β1,L). The
projected estimator lies then within �2-distance M2 from θ0. Thus, considering risk
of estimators, we may replace the �2-loss by the modified bounded loss function
�̃2 = min(�2,M2). Together with Theorem 3.2 and the steps described above, the
Bayes estimator with respect to �̃2 yields then an adaptive estimator.

An alternative modification to incorporate unbounded loss functions goes via a
slicing of �(θ, θ0) in En

θ0
[Eπ [�(θ, θ0)|Yn]]. With (5.2),

En
θ0

[
�(θ̂ , θ0)

] ≤ 2εn(β) + 2
∑
j≥1

(j + 1)εn(β)En
θ0

[
P π (θ : �(θ, θ0) > jεn(β)|Yn)].

The second term of the upper bound will typically be negligible (uniformly
over �β ) since it involves the posterior concentration. In fact, under the conditions
of Theorem 3.1, the Bayes estimator in (5.1) adapts to Hölder balls with respect to
the sup-norm loss.

PROPOSITION 4. Consider the spike and slab prior (3.4) with wj,n ≤
n−62−j (1+τ) and τ > 1/2. If Yn is drawn from the white noise model (3.2), for
any 0 < β1 ≤ β2 and L0 − 1 ≥ L > 0, then there exists M > 0 such that with
εn(β) = M(n/ logn)−β/(2β+1),

sup
β∈[β1,β2]

sup
θ0∈H(β,L)

P n
θ0

(
�∞(θ̂ , θ0) ≥ εn(β)

) = o(1)

and

sup
β∈[β1,β2]

εn(β)−1 sup
θ0∈H(β,L)

En
θ0

[
�∞(θ̂ , θ0)

]
< ∞.

The proof of Proposition 4 is given together with the proof of Theorem 3.1 in
Section 6.3.
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5.2. Posterior concentration and confidence balls. The posterior distribution
does not only provide point estimators but also Bayesian measures of uncertainty.
Apart from regular parametric models, it is not clear whether such credible sets
have a frequentist interpretation as measures of confidence. In this section we dis-
cuss some consequences on the asymptotic behaviour of posterior credible balls.

Assume that the prior π leads to a concentration rate εn over some subset �0 of
the parameter space, that is,

sup
θ0∈�0

En
θ0

[
P π (θ : �(θ, θ0) > εn|Yn)] ≤ e−cn�(εn,�0,�)

2 → 0.

As discussed in Section 5.1, this implies under mild conditions existence of a point
estimator θ̂n satisfying

sup
θ0∈�0

P n
θ0

(
�(θ̂n, θ0) > εn

) = o(1).

Let αn ∈ (0,1) be a sequence, possibly tending to zero, that satisfies
e−cn�(εn,�0,�)

2 = o(αn). Construct the credible ball

Cn = {
θ : �(θ, θ̂n) ≤ qπ

αn

}
,

where qπ
αn

is the 1 − αn posterior quantile of �(θ, θ̂n) so that

P π (θ ∈ Cn|Yn) ≥ 1 − αn.(5.3)

We then have the following two properties for Cn:∫
�

P n
θ (θ ∈ Cn)dπ(θ) ≥ 1 − αn,

(5.4)
sup
θ∈�0

P n
θ

(
�(Cn) > 4εn

) = o(1),

where �(Cn) = sup{�(θ, θ ′) : θ, θ ′ ∈ Cn} = 2qπ
αn

is the diameter of Cn.

PROOF OF (5.4). The first inequality is a consequence of the Fubini theorem
since (5.3) is true for all Yn so that∫

�
P n

θ (θ ∈ Cn)dπ(θ) =
∫
Yn

P π (θ ∈ Cn|Yn)dmπ

(
Yn) ≥ 1 − αn,

where mπ is the marginal distribution of Yn. The second statement of (5.4) follows
from the fact that for all θ ∈ Cn,

�(θ̂n, θ) ≥ −�(θ0, θ̂n) + �(θ0, θ).

Thus, on the event {�(θ0, θ̂n) ≤ εn}, for all t < qπ
αn

and every θ0 ∈ �0,

αn ≤ P π (�(θ, θ̂n) > t |Yn) ≤ P π (�(θ0, θ) > t − εn|Yn)
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implying

P n
θ0

(
qπ
αn

> 2εn

) ≤ P n
θ0

(
�(θ0, θ̂n) > εn

)+ P n
θ0

(
P π (�(θ0, θ) > εn|Yn) ≥ αn

)
= o(1) + e−cn�(εn,�0,�)

2

αn

= o(1),

uniformly over θ0 ∈ �0. This completes the proof of (5.4). �

A natural question is then whether the first inequality of (5.4) can be turned into

inf
θ∈�

P n
θ (θ ∈ Cn) ≥ 1 − α

at least for some reasonably small α. Of particular interest is the case of adaptive
posterior concentration rate, which we illustrate considering the sup-norm loss �∞
over a collection of Hölder balls

⋃
β∈[β1,β2]H(β,L) =H(β1,L) with 0 < β1 ≤ β2

and L > 0 fixed. Assume that

sup
β∈[β1,β2]

sup
θ0∈H(β,L)

En
θ0

[
P π (θ : �∞(θ, θ0) > εn(β)|Yn)] ≤ n−B

with εn(β) = M(n/ logn)−β/(2β+1) for some M,B > 0 and

sup
β∈[β1,β2]

sup
θ0∈H(β,L)

P n
θ0

(
�∞(θ̂ , θ0) ≥ εn(β)

) = o(1).

By Theorem 3.1 and Proposition 4, this is, for instance, achieved by the prior
in (3.4) and the Bayes estimator θ̂ . Let αn ≥ n−B+t for some t > 0, then following
from (5.4) we obtain ∫

�
P n

θ (θ ∈ Cn)dπ(θ) ≥ 1 − αn,

(5.5)
sup

β∈[β1,β2]
sup

θ0∈H(β,L)

P n
θ0

(
�(Cn) > 2εn(β)

) = o(1).

In this case, there exists no adaptive confidence band (see, e.g., [18]), so that (5.5)
implies that for all α > 0,

lim
n

inf
β∈[β1,β2]

inf
θ0∈H(β,L)

P n
θ0

(θ0 ∈ Cn) = 0.

The nonexistence of adaptive confidence bands means that requiring both honest
frequentist coverage and adaptive length of the band is too strong. Integrating out
the confidence band is a weaker notion and a possible alternative to the approach
of [18] which modifies confidence bands by taking off some points θ and by de-
manding coverage and adaptive length over this restricted set. Further notice that
the first inequality of (5.5) implies that

π
(
θ : P n

θ (θ ∈ Cn) ≤ 1 − α
) ≤ αn

α
.

This is, however, not enough to characterise the parameter values θ0 for which
P n

θ0
(θ0 ∈ Cn) is small. This question is of interest but beyond the scope of the

present paper.
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5.3. Consequences on proving strategies for posterior concentration rates.
The lower bound in Theorem 2.1 has an interesting consequence for nonparamet-
ric Bayes in general. So far, the state of the art techniques for deriving posterior
consistency and concentration rates date back to the work of [26]. Her approach
relies on two key ideas. First, treat the numerator and denominator in the Bayes
formula separately. Second, introduce an abstract test and express the upper bound
in terms of errors of the first and second type. These methods were later refined by
[2, 15] and [16]. In particular, from the proof of Theorem 1 of [16], if for εn their
conditions (2.4), (2.5) (associated to the loss �) are satisfied and

P n
θ0

[
Ln(θ) −Ln(θ0) < −nε2

n

] ≤ e−c1nε2
n

for some positive c1, then

En
θ0

[
P π (θ : �(θ, θ0) > Mεn|Yn)] � e−c2nε2

n

for some c2 > 0. The lower bound of Theorem 2.1, however, implies that

�(εn, θ0, �) � εn.

Therefore, if the targeted concentration rate (say the minimax estimation rate over
some given class) ε∗

n satisfies

�
(
ε∗
n, θ0, �

) = o
(
ε∗
n

)
then the approach of [16], Theorem 1, leads to a suboptimal posterior concentra-
tion rate. The core of the problem comes from the decomposition of the posterior
probability which treats separately the denominator Dn and the numerator Nn (see
Section A.2) where the main steps of the arguments of [16] are recalled. Denote
by �n the test for H0 : θ = θ0 versus H1 : �(θ, θ0) > εn. Then the derived upper
bound can be written as follows: There exists a positive sequence un such that

En
θ0

[
P π (θ : �(θ0, θ) > εn|Yn)]

(5.6)
≤ En

θ0
[�n] + ecnu2

n sup
θ :�(θ0,θ)>εn

En
θ [1 − �n] + e−c′nu2

n,

with finite constants c, c′ > 0 on which we do not have good control. For the right-
hand term of (5.6) to be small, we need

sup
θ∈�n

1{�(θ0,θ)>εn}En
θ [1 − �n] = o

(
e−cnu2

n
)
.

Hence, εn shall verify the constraint �(εn, θ0, �) � un; if the minimax estimation
rate ε∗

n over a given class satisfies �(ε∗
n, θ0, �) = o(un), the approach through tests

typically leads to suboptimal posterior concentration rates. To illustrate this, con-
sider the white noise model where d is the L2 loss, � = �∞, and θ0 belonging to
a Hölder ball with smoothness β . Assume that θ1 ∈ � satisfies �(θ0, θ1) > εn and
‖θ1 − θ0‖L2 ≤ C�(εn(·), θ0, �) for some fixed arbitrary C. Any test �n with error
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of first kind smaller than some small ε must have a second kind error greater than
that of the likelihood ratio test φn,θ1 for H0 : θ = θ0 against H1 : θ = θ1. In other
words,

En
θ1

[1 − �n] ≥ En
θ1

[1 − φn,θ1] � e
−c1n‖θ1−θ0‖2

L2 ≥ e−nc1C�(εn,θ0,�)
2

for some c1 > 0. This implies �(εn, θ0, �) � un. The above argument can be gen-
eralised to other models, in particular, to density estimation with θ0 ∈ H(β,L)

for L,β > 0. If we rely on the bound (5.6), the best achievable concentration
rate is given by the (�, d)-modulus of continuity ω(un) as defined in (5.7) below.
As an example, consider density estimation. Any prior which leads to the min-
imax estimation error n−β/(2β+1) in the Hellinger metric gives un = n−β/(2β+1)

in (5.6) (possibly up to logn terms). Since for � the sup-norm and θ0 ∈ H(β,L),
ω(n−β/(2β+1)) � n−(β−1/2)/(2β+1), this explains the (suboptimal) rate observed
in [17] which was derived using the standard approach, and thus a bound of the
type (5.6).

5.4. Relation to other works. In the last decade, a variety of posterior concen-
tration rates have been derived. These studies include density estimation in the case
of independent and identically distributed observations as in [15], nonparametric
regression (Ghosal and van der Vaart [16]) and the white noise model (Zhao [31],
Belitser and Ghosal [3]), Markov models (Tang and Ghosal [29]), Gaussian time
series (Choudhuri, Ghosal and Roy [11] and Rousseau, Chopin and Liseo [25])
to name but a few, or the recent canonical statistical setting of [10]. For each of
these models, a variety of families of priors have been investigated. An interest-
ing feature of the Bayesian nonparametric approaches considered in these papers
is that minimax adaptive concentration rates are achieved using hierarchical types
of priors where, at the highest level of hierarchy some hyperparameter, somehow
related to the class index β , is itself given a prior distribution. For instance, in
the case of density estimation, the renown class of Dirichlet process mixtures or
related types of mixtures lead to adaptive posterior concentration rates over collec-
tions of Hölder balls of regularity β , up to a logn term, see, for instance, [19, 24,
28] and [27] under the Hellinger or the L1 losses on the densities. Gaussian ran-
dom fields, with inverse Gamma bandwidth as prior models also lead to adaptive
posterior concentration rates up to a logn term for a large class of models, includ-
ing the nonlinear regression model under the empirical quadratic loss on the design
and the classification problem under the L2 loss; see [30]. Similarly, orthonormal
basis expansions with random truncation generically yield adaptive posterior con-
centration rates too, provided the loss function is well chosen; see [1]. All these
results, however, are proved using the approach proposed by [16], which relies on
the existence of tests with exponentially small error of the second kind outside
�-neighbourhoods of the true parameter. Therefore, these results are applicable to
loss functions which behave similarly to d .
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Previous to this work, suboptimal asymptotic behaviour of posterior distri-
butions has been observed for specific loss functions. Arbel, Gayraud and and
Rousseau [1] shows, for instance, that a random truncation prior with minimax
adaptive (up to a logn term) posterior concentration rate under L2 loss leads to
significantly suboptimal posterior concentration rate and (and risk) under point-
wise loss.

To our knowledge, the question of the existence of adaptive minimax posterior
concentration rates when � is the pointwise loss or even the sup-norm loss L∞ has
been an open question until now. A consequence of our results is the explicit con-
struction of priors that lead to adaptive concentration rates for various loss func-
tions (including the sup-norm L∞). Given a prior π and a loss function �, the best
achievable rate of concentration of the posterior distribution is intimately linked to
the geometry of the experiment En = {P n

θ , θ ∈ �} in the most classical sense of Le
Cam (see, e.g., [21]), expressed through the pre-metric d . The behaviour of such a
pair (�, d) is reminiscent of several phenomena in minimax theory: these include
estimation of linear functionals [14], constrained risk inequalities [4, 7, 9] or the
existence of adaptive confidence sets [6, 22]. In all these studies, a key ingredient
is the behaviour of a (�, d) modulus of continuity

ω(ε) = sup
{
�
(
θ, θ ′) : d(θ, θ ′) ≤ ε, θ, θ ′ ∈ �

}
, ε > 0(5.7)

that quantifies the maximal error in the desired �-loss for a prescribed statisti-
cal distance ε induced by the experiment En via the intrinsic pre-metric d . More
precisely, if there are two sequences εn > 0 and θn ∈ �, such that d(θ0, θn) ≤ εn

implies that there exists no convergent test of

H0 : θ = θ0 against Hn : θ = θn,

then ω(εn) yields a lower bound for the minimax estimation rate of θ in �-loss. The
nonexistence of adaptive confidence intervals over Hölder balls in the Gaussian
white noise model lies at the heart of this simple phenomenon: In that case, � is the
pointwise or L∞-norm and d is the L2-metric. The fact that an irregular function
can be close to a smooth functions in L2([0,1]) while away from the smooth target
in L∞ explains the negative result of Low [22] [see also [17, 18]] and is quantified
by ω(εn). Interestingly, in the Bayesian framework, the lower bound derived in
Theorem 2.1 is of similar nature and the modulus of continuity defined in (2.2)
is the dual of the modulus of continuity considered in the frequentist minimax
literature and defined in (5.7).

6. Proofs.

6.1. Proof of Theorem 2.1. We prove Theorem 2.1 by contradiction. Assume
that there exist θ0 ∈ �0 such that

En
θ0

[
P π (θ : �(θ0, θ) > εn(θ0)|Yn)] < e−3Kn�(εn(·),θ0,�)

2
,(6.1)
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infinitely often, which without loss of generality we can assume to be satisfied
for all n. By definition of �(εn(·), θ0, �), we can choose a sequence (θ∗

n )n ⊂ �0
satisfying

�
(
εn(·), θ0, �

) ≤ d
(
θ0, θ

∗
n

) ≤ 2�
(
εn(·), θ0, �

)
and

�
(
θ0, θ

∗
n

) ≥ εn(θ0) + εn

(
θ∗
n

)
simultaneously. Then for every θ ∈ �,

�
(
θ, θ∗

n

)
< εn

(
θ∗
n

) ⇒ �(θ, θ0) > �
(
θ0, θ

∗
n

)− εn

(
θ∗
n

) ≥ εn(θ0)

so that

En
θ∗
n

[
P π (θ : �(θ∗

n , θ
)
< εn

(
θ∗
n

)|Yn)]
≤ En

θ∗
n

[
P π (θ : �(θ0, θ) > εn(θ0)|Yn)]

≤ eKnd(θ0,θ
∗
n )2

En
θ0

[
P π (θ : �(θ0, θ) > εn(θ0)|Yn)]

+ P n
θ∗
n

(
Ln

(
θ∗
n

)−Ln(θ0) > Knd
(
θ0, θ

∗
n

)2)
≤ e−(3K−2K)n�(εn(·),θ0,�)

2 + P n
θ∗
n

(
Ln

(
θ∗
n

)−Ln(θ0) > Knd
(
θ0, θ

∗
n

)2)
= o(1)

in contradiction with the posterior concentration (2.5).

6.2. Proof of Theorem 4.1. For θ0 ∈ �n, let (Jr ,0 ≤ r ≤ Rn) be a θ0-ad-
missible partition satisfying (4.2) and (4.3). Let An(θ0) = {θ ∈ �n : �(θ0, θ) >

Aεn(θ0)}, where A is defined via the admissible partition in (4.8). Set pn,θ (Y
n) =

dP n
θ

dμ
(Y n) so that Ln(θ) = logpn,θ . For the sieve prior πn defined in (4.1),

P πn
(
An(θ0)|Yn) =

∑Nn

l=1 1An(θ0)(θ(l))pn,θ(l)
(Y n)∑Nn

l=1 pn,θ(l)
(Y n)

≤
Rn∑
r=1

∑
l∈Jr

pn,θ(l)
(Y n)∑

l∈J0
pn,θ(l)

(Y n)
≤

Rn∑
r=1

max
l∈Jr

eLn(θ(l))−Ln(θ(jr (l))).

Let

�n(θ0) = {∀r ≥ 1,∀l ∈ Jr : Ln(θ(l)) −Ln(θ(jr (l))) ≤ −K0nd(θ(l), θ(jr (l)))
2}.

On {Yn ∈ �n(θ0)},

P πn
(
An(θ0)|Yn) ≤

Rn∑
r=1

e−K0nd(θ(l),θ(jr (l)))
2

≤
Rn∑
r=1

e−K0nu2
r ≤ C0e

−K1n�(εn(·),θ0,�)
2
,
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thanks to assumption (4.3), which combined with assumption (4.2) completes the
proof.

6.3. Proof of Theorem 3.1 and of Proposition 4. Recall that the prior can be
written in the following hierarchical way: First, select a set of nonzero compo-
nents S, with distribution P the product of independent Bernoulli random vari-
ables B(wj,n) for j ≤ Jn. Given S, draw independently θj,k ∼ g for all (j, k) ∈ S,
and put θj,k = 0 otherwise.

Asymptotically, the posterior concentrates on supports S containing only
indices (j, k) with |θ0

j,k| > γ
√

logn/n and all indices (j, k) with |θ0
j,k| >

γ
√

logn/n, where 0 < γ < γ < ∞ are appropriate constants. In this respect, the
posterior behaves similar as hard thresholding. Indeed, for

Jn(γ ) = {
(j, k) ∈ � : ∣∣θ0

j,k

∣∣ > γ
√

logn/n
}

with γ > 0

we have the following.

LEMMA 1. Under the conditions of Theorem 3.1, for every 0 < β1 ≤ β2, L ≤
L0 − 1, and any B > 0, there exists γ > 0 such that

sup
β1≤β≤β2

sup
θ0∈H(β,L)

En
θ0

[
P π (Sc ∩Jn(γ ) 
=∅|Yn)] � logn

nB
.(6.2)

Suppose that the mixing weights in the spike and slab prior (3.4) satisfy wj,n ≤
min(1

2 , n(τ∧1)/2−1/4−2B2−j (1+τ)) with B > 0, τ > 1/2. Then, for sufficiently small
0 < γ ,

sup
β1≤β≤β2

sup
θ0∈H(β,L)

En
θ0

[
P π (S ∩J c

n (γ ) 
=∅|Yn)] � logn

nB
.(6.3)

The proof of Lemma 1 is delayed until Appendix A.3. Suppose for the moment
that for any B > 0 the bound γ can be chosen large enough such that

sup
θ0∈H(β,L)

En
θ0

[
P π

(
max

(j,k)∈Jn(γ )

∣∣θj,k − θ0
j,k

∣∣ > γ
√

logn/n|Yn
)]

� logn

nB
,(6.4)

uniformly in β ∈ [β1, β2]. The last estimate ensures that the posterior concen-
trates around θ0

j,k with the good rate
√

logn/n on every component (j, k) on
which signal might be detected. Now we are ready to complete the proof of
Theorem 3.1. The definition of a Hölder ball in (3.3) implies that there exists
a Jn(β) with 2Jn(β) ≤ k2(n/ logn)1/(2β+1) for some constant k2 > 0 such that
Jn(γ ) ⊂ {(j, k) : j ≤ Jn(β), k ∈ Ij } and

sup
θ0∈H(β,L)

∑
j>Jn(β)

2j/2 max
k∈Ij

∣∣θ0
j,k

∣∣ ≤ 1

2
M(n/ logn)−β/(2β+1) =: 1

2
εn(β),
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for M a sufficiently large constant. In order to prove the theorem, it is suffi-
cient to show that �∞(θ, θ0) ≤ εn(β) for all θ with max(j,k)∈Jn(γ ) |θj,k − θ0

j,k| ≤
γ
√

logn/n and support S satisfying the constraints Sc ∩ Jn(γ ) = ∅ and S ∩
J c

n (γ ) = ∅. Using the properties of Jn(β),

�∞(θ, θ0) ≤
Jn(β)∑
j=0

2j/2 max
k∈Ij

∣∣θj,k − θ0
j,k

∣∣+ 1

2
εn(β) ≤ γ 2Jn(β)/2

√
logn/n + 1

2
εn(β)

and the right-hand side can further be uniformly bounded by εn(β). This estab-
lishes Theorem 3.1 provided (6.4) is true.

For Theorem 3.1, it therefore remains to show (6.4). By Lemma 1, we can re-
strict ourselves to parameters with support S satisfying Sc ∩ Jn(γ ) = ∅. Using
a union bound and considering the cases γ

√
logn/n < |θ0

j,k| ≤ γ
√

logn/n and

γ
√

logn/n < |θ0
j,k| separately,

P π
(

max
(j,k)∈Jn(γ )

∣∣θj,k − θ0
j,k

∣∣ > γ
√

logn/n and Sc ∩Jn(γ ) = ∅|Yn
)

� n max
(j,k)∈Jn(γ )

P π (∣∣θj,k − θ0
j,k

∣∣ > γ
√

logn/n and θj,k 
= 0|Yn).
Consider the event

�n,B = {√
n
∣∣Yj,k − θ0

j,k

∣∣ ≤ (
2 log |Ij | + 2B logn

)1/2
,∀j ≤ Jn,∀k ∈ Ij

}
.

Then

P n
θ0

(
�c

n,B

) ≤ 2n−BJn ≤ 2 logn

nB
.(6.5)

For all j ≤ Jn, k ∈ Ij , on �n,B , |Yj,k| ≤ |θ0
j,k|+ 1

2 ≤ L0 − 1
2 and so if a = inf{g(x) :

|x| ≤ L0} > 0, then, setting u0 = �−1((1 + 1/
√

2)/2)∫
R

e−(n/2)(Yj,k−θ)2
g(θ) dθ ≥ a(2π/n)1/2(2�(u0) − 1

) ≥ a(π/n)1/2,(6.6)

where �(x) = Pr(N (0,1) ≤ x). For any (j, k) ∈ Jn(γ ),

P π (∣∣θj,k − θ0
j,k

∣∣ > γ
√

logn/n and θj,k 
= 0|Yn)
≤ a−1 sup

x
g(x)

(
n

π

)1/2 ∫
R

1
{∣∣θ − θ0

j,k

∣∣ > γ
√

logn/n
}
e−(n/2)(Yj,k−θ)2

dθ.

On �n,B , {∣∣θ − θ0
j,k

∣∣ > γ
√

logn/n
} ⊂ {|θ − Yj,k| > 1

2γ
√

logn/n
}
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provided γ is large enough. Therefore, for any (j, k) ∈ Jn(γ ),

P π (∣∣θj,k − θ0
j,k

∣∣ > γ
√

logn/n and θj,k 
= 0|Yn) ≤ a−1 sup
x

g(x)23/2e−γ 2 logn/8

and together with the union bound and the estimate of P n
θ0

(�c
n,B) above, equa-

tion (6.4) follows for γ sufficiently large. The proof of Theorem 3.1 is complete.
The proof of Proposition 4 relies on the computations above. Define A1 =

{max(j,k)∈Jn(γ ) |θj,k − θ0
j,k| ≤ γ

√
logn/n}, A2 = {S : Sc ∩Jn(γ ) = ∅} and A3 =

{S : S ∩ Jn(γ ) = ∅}. On A1 ∩ A2 ∩ A3, �∞(θ, θ0) ≤ M(n/ logn)−β/(2β+1) for
some M > 0. Thus, with (5.2), Proposition 4 is proved if

Eθ0

[
Eπ (�∞(θ, θ0)(1Ac

1∩A2∩A3 + 1Ac
2
+ 1Ac

3
)|Yn)] ≤ logn√

n
.(6.7)

Let A be a measurable subset of the parameter set, then using the Cauchy–Schwarz
inequality twice,

En
θ0

[
Eπ (�∞(θ, θ0)1A|Yn)]
�

∑
j,k

2j/2En
θ0

[
Eπ (∣∣θj,k − θ0

j,k

∣∣2|Yn)]1/2
En

θ0

[
P π (A|Yn)]1/2

≤ 2
∑
j,k

2j/2
(
En

θ0

[
Eπ (|θj,k − Yj,k|2|Yn)]+ 1

n

)1/2

En
θ0

[
P π (A|Yn)]1/2

.

We apply this inequality to A = Ac
1 ∩ A2 ∩ A3, Ac

2, and Ac
3. Using the bounds

above, it is sufficient to control En
θ0

[Eπ((θj,k − Yj,k)
2|Yn)]. Recall the definition

of the spike and slab prior (3.4) and observe

Eπ ((θj,k − Yj,k)
2|Yn)

≤ Y 2
j,k + 2wj,n supx g(x)

a

∫
R
(θ − Yj,k)

2e−n(θ−Yj,k)
2/2 dθ∫ L0−L0

e−n(θ−Yj,k)
2/2 dθ

≤ Y 2
j,k + 2wj,n supx g(x)

an

× [
�
(√

n
(
L0 − θ0

j,k

)− εj,k

)− �
(−√

n
(
L0 + θ0

j,k

)− εj,k

)]−1

with εj,k = √
n(Yj,k − θ0

j,k) and � the distribution function of a standard normal

random variable. Since |θ0
j,k| ≤ L0 − 1,∫ ∞

0
e−ε2/2(�(√

n
(
L0 − θ0

j,k

)− ε
)− �

(−√
n
(
L0 + θ0

j,k

)− ε
))−1

dε

≤
∫ ∞

0
e−ε2/2(�(

√
n − ε) − �(−√

n − ε)
)−1

dε
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�
∫ √

n

0
e−ε2/2 dε +

∫ ∞
√

n
εen/2−ε

√
n dε

� 1 + e−n/2.

The same inequality can be obtained for the integral over (−∞,0). Consequently,
there exists a universal constant C > 0 for which

En
θ0

[
Eπ ((θj,k − Yj,k)

2|Yn)] ≤ (
θ0
j,k

)2 + 1

n
+ 2Cwj,n supx g(x)

a
.

Since |θ0
j,k| � 2−j/2 and wj,n ≤ 2−j , we obtain that for any measurable set A and

uniformly over θ0 ∈ H(β,L),

En
θ0

[
Eπ (�∞(θ, θ0)1A|Yn)] � nEn

θ0

[
P π (A|Yn)]1/2

.

From the proof of Theorem 3.1 above, we find that the right-hand side is of or-
der logn/

√
n, provided that the exponent B in Lemma 1 and (6.4) is three. This

completes the proof of Proposition 4.

6.4. Proof of Theorem 3.2. We set Y j = (Yj,k, k ∈ Ij ) and similarly θj =
(θj,k, k ∈ Ij ). Whenever convenient, we identify Y j and θj as sequences in-
dexed by the whole set of indices �, setting their value to be 0 on the comple-
ment of Ij . Thus, if ‖ · ‖ denotes the usual Euclidean norm on R

|Ij |, we have
�2(θj , θ

′
j ) = ‖θj − θ ′

j‖ with a slight abuse of notation.
The proof of Theorem 3.2 follows the classical line for studying posterior con-

centration rates as proposed in [16], with some extra care that has to be taken in
order to avoid the usual logn term that appears in this case. Set un(β) = n−β/(2β+1)

and let J̃n(β) satisfy K1n
1/(2β+1) ≤ 2J̃n(β) ≤ 2K1n

1/(2β+1), where K1 is a constant
to be large enough. Define

�n(β) = {θ : θj,k = θj,k1{j≤J̃n(β),k∈Ij }}.
We first prove that for some c1,K1 > 0,

P π (�n(β)c|Yn) ≤ e−c1nu2
n(β).(6.8)

Let θ0 = (θ0
j,k)(j,k)∈� ∈H(β,L) with L ≤ L0 −1 and L0 is the constant appearing

in condition (3.7). Denote by Bn the intersection of the events{
Yn : n∥∥Y j − θ0

j

∥∥2 ≤ e|Ij |,∀j with J̃n(β) ≤ j ≤ Jn

}
and {

Yn : ∣∣Yj,k − θ0
j,k

∣∣ ≤ 1/2,∀j ≤ J̃n(β), k ∈ Ij

}
.
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Set ce = e/2 − 1 and Ce = (1 − e−ce )−1. For a χ2
p distributed random variable ξ ,

we have Pr(ξ > eq) ≤ e−ceq whenever q ≥ p. Hence,

P n
θ0

(
Bc

n

) ≤ 2ne−n/8 +
Jn∑

j=J̃n(β)

e−ce|Ij | ≤ 2ne−n/8 + Cee
−ce|IJ̃n(β)| ≤ e−An1/(2β+1)

,

for n large enough, with A proportional to K1. Since

�n(β)c = ⋃
j≥J̃n(β)

{θ : θIj

= 0}

(here θIj

= 0 means θj,k 
= 0 for at least one k ∈ Ij ) we conclude

P π (�n(β)c|Yn) ≤ ∑
j≥J̃n(β)

(1 + νj,n)
−1νj,n

∫
R

|Ij | e−(n/2)‖θj−Y j‖2
gj (θj ) dθj∫

R
|Ij | e−(n/2)‖θj−Y j‖2

dπ̃j (θj )

≤ ∑
j≥J̃n(β)

eG|Ij |νj,n

(
2π

n

)|Ij |/2

exp
(

n‖Y j‖2

2

)
.

For all j ≥ J̃n(β), we have ‖θ0
j‖2 ≤ L2|Ij |2−j (2β+1) ≤ C|Ij |/n, for the radius of

the Hölder ball L and some constant C > 0 which decreases to zero as K1 grows.
On the event Bn, we thus infer n‖Y j‖2 ≤ 2(C + e)|Ij |. Therefore, on Bn,

P π (�n(β)c|Yn) ≤ ∑
j≥J̃n(β)

e(G+C+e)|Ij |νj,n

(
2π

n

)|Ij |/2

≤ 2e
−(c−G−e−(1/2) log 2π−C)|IJ̃n(β)| ≤ 2e−bK1n

1/(2β+1)

for some b > 0 as soon as c > G + e + 1
2 log 2π provided we choose K1 large

enough. This proves (6.8). We are ready to complete the proof. For An = {θ :
(
∑J̃n(β)

j=0 ‖θj − θ0
j‖2)1/2 ≤ Mun(β)/2},

P π (θ : �2(θ, θ0) > Mun(β)|Yn)
≤ P π ({θ : �2(θ, θ0) > Mun(β)

}∩ �n(β)|Yn)+ P π (�n(β)c|Yn)
≤ P π (Ac

n|Yn)+ P π (�n(β)c|Yn).
We bound the first term of the right-hand side by

P π (Ac
n|Yn) ≤

∫
Ac

n

J̃n(β)∏
j=0

e−(n/2)‖θj−Y j‖2
(1 + νj,n) dπ̃j (θj )∫

R
|Ij | e−(n/2)‖θj−Y j‖2

gj (θj ) dθj

≤
∫
Ac

n

J̃n(β)∏
j=0

ν−1
j,ne

G|Ij | e−(n/2)‖θj−Y j‖2
(1 + νj,n) dπ̃j (θj )∫

[−L0,L0]|Ij | e−(n/2)‖θj−Y j‖2
gj (θj ) dθj

.
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On Bn, with obvious notation,∫
[−L0,L0]|Ij | e

−(n/2)‖θj−Y j‖2
dθj

≥
(

2π

n

)|Ij |/2

− Pr
(∃j ≤ J̃n(β), k ∈ Ij : |Yj,k| + n−1/2∣∣N (0,1)

∣∣ > L0
)
.

Since |θ0
j,k| ≤ L for all Yn ∈ Bn, we find |Yj,k| + n−1/2|N (0,1)| ≤ L + 1

2 +
n−1/2|N (0,1)|, and hence

Pr
(∃j ≤ J̃n(β), k ∈ Ij : |Yj,k| + n−1/2∣∣N (0,1)

∣∣ > L0
)

≤ nPr
(∣∣N (0,1)

∣∣ > √
n

2

)
≤ 2ne−n/8.

It follows that for Yn ∈ Bn,∫
[−L0,L0]|Ij | e

−(n/2)‖θj−Y j‖2
dθj ≥

(
2π

n

)|Ij |/2

− 2ne−n/8 ≥ 1

2

(
2π

n

)|Ij |/2

.

We now study the numerator in P π(Ac
n|Yn). For Yn ∈ Bn

−‖θj − Y j‖2 ≤ ∥∥θ0
j − Y j

∥∥2 − 1

2

∥∥θj − θ0
j

∥∥2 ≤ e

n
|Ij | − 1

2

∥∥θj − θ0
j

∥∥2
.

On Bn, we can subsequently bound P π(Ac
n|Yn) by 2e

∑J̃n(β)
j=0 (G+e/2)|Ij | times

∫
Ac

n

J̃n(β)∏
j=0

(
n

2π

)|Ij |/2

ν−1
j,ne

−(n/4)‖θj−θ0
j‖2

(1 + νj,n) dπ̃j (θj )

= e−(nM2un(β)2)/32

×
J̃n(β)∏
j=0

∫
R

|Ij |

(
n

2π

)|Ij |/2

ν−1
j,ne

−(n/8)‖θj−θ0
j‖2

(1 + νj,n) dπ̃j (θj )

≤ e−(nM2un(β)2)/32
J̃n(β)∏
j=0

(
ν−1
j,n

(
n

2π

)|Ij |/2

+ 2|Ij |eG|Ij |
)

≤ e−(nM2un(β)2)/32
J̃n(β)∏
j=0

(
ec|Ij | + 2|Ij |eG|Ij |).

Choosing M large enough and using the exponential bound on P n
θ0

(Bc
n) shows that

En
θ0

[P π(Ac
n|Yn)] ≤ e−An1/(2β+1)

. This completes the proof of Theorem 3.2.
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APPENDIX: ADDITIONAL PROOFS

A.1. Explicit bounds on �n.

PROOF OF (2.3). Since we are on a Hölder space, we can prove the result for
� = �∞ (see also Section 3). Consider θ = (θj,k)(j,k)∈� ∈ H(β,L) and pick Jn(β)

such that

1
2(L/2M)1/β(n/ logn)1/(2β+1) ≤ 2Jn(β) ≤ (L/2M)1/β(n/ logn)1/(2β+1).

On resolution level Jn(β) chose an arbitrary index in �, (Jn(β), k∗) say. By defini-
tion of H(β,L) there exists θ ′ ∈ H(β,L), with |θ ′

j,k −θj,k| equals L2−Jn(β)(β+1/2)

if (j, k) = (Jn(β), k∗) and zero otherwise. Then �∞(θ, θ ′) = L2−Jn(β)β ≥ 2εn(θ)

and ‖θ − θ ′‖L2 = L2−Jn(β)(β+1/2) � √
logn/n. �

A.2. Derivation of (5.6). We briefly recall the main arguments of Ghosal,
Ghosh and van der Vaart [15] leading to inequality (5.6). Their method is based
on two assumptions, namely a bound on the local entropy as well as existence of
a decomposition � = �n ∪ (� \ �n) such that the prior is uniform on �n (with
respect to Kullback–Leibler balls) and assigns negligible mass to � \�n (cf. [15],
equations (2.7), (2.3) and (2.5)). To derive (5.6) only the assumption on the prior
needs to be imposed. Recall that

P π (θ : �(θ0, θ) > εn|Yn) =
∫
�(θ0,θ)>εn

eLn(θ)−Ln(θ0)π(dθ)∫
� eLn(θ)−Ln(θ0)π(dθ)

=: Nn

Dn

.

Under the imposed conditions, there are constants c, c′ > 0 such that P n
θ0

(Dn ≥
exp(−cnu2

n)) ≥ 1−e−c′nu2
n (cf. [15], Lemma 8.4). Hence, for any test function �n,

En
θ0

[
P π (θ : �(θ0, θ) > εn|Yn)]
≤ En

θ0
[�n] + ecnu2

nEn
θ0

[∫
�(θ0,θ)>εn

eLn(θ)−Ln(θ0)(1 − �n)π(dθ)

]
+ e−c′nu2

n

≤ En
θ0

[�n] + ecnu2
n sup

θ :�(θ0,θ)>εn

En
θ [1 − �n] + e−c′nu2

n.

A.3. Proof of Lemma 1.

PROOF OF (6.2). We have

P π (Sc ∩Jn(γ ) 
=∅|Yn) ≤ ∑
(j,k)∈Jn(γ )

P π (θj,k = 0|Yn)

≤ ∑
(j,k)∈Jn(γ )

e
−(n/2)Y 2

j,k

wj,n

∫
R

e−(n/2)(Yj,k−θ)2
g(θ) dθ

.
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Recall the definition of �n,B in the proof of Theorem 3.1. If Yn ∈ �n,B and γ is
large enough, then |Yj,k| > 1

2γ
√

logn/n. With the same argument as in (6.6),

P π (Sc ∩Jn(γ ) 
= ∅|Yn) ≤ ∑
j≤Jn,k∈Ij

e
−(nY 2

j,k)/2√
n

wj,na
√

π
≤ nK+3/2−γ 2/8

a
√

π
,

and together with (6.5) this completes the proof of (6.2), provided γ is sufficiently
large. �

PROOF OF (6.3). We have

P π (S ∩Jn(γ )c 
= ∅|Yn) = ∑
(j,k)∈Jn(γ )c

P π (θj,k 
= 0|Yn)

≤ ∑
(j,k)∈Jn(γ )c

wj,n

∫
R

e−(n/2)(θ−Yj,k)
2
g(θ) dθ

(1 − wj,n)e
−(n/2)Y 2

j,k

≤ 2
√

2πn−1/2 sup
x

g(x)
∑

(j,k)∈Jn(γ )c

wj,ne
(nY 2

j,k)/2
.

If Yn ∈ �n,B , for any (j, k) ∈ Jn(γ )c,

nY 2
j,k ≤ γ 2 logn + 2 log |Ij | + 2B logn + 2γ

√
logn

√
2 log |Ij | + 2B logn

≤ 2 log |Ij | + (
2B + γ 2 + γC

)
logn,

for some constant C. Hence, whenever Yn ∈ �n,B , using that wj,n ≤
n(τ∧1)/2−1/4−2B2−j (1+τ) with τ > 1/2,

P π (S ∩Jn(γ )c 
=∅|Yn) � n−3/4+(τ∧1)/2−B+γC/2+γ 2/2
∑
j≤Jn

|Ij |22−j (1+τ)

� n1/4−(τ∧1)/2−B+γC/2+γ 2/2 = O
(
n−B),

where for the last equality, we need that γ is sufficiently small. The proof of (6.3)
follows from (6.5). �

A.4. Proof of Proposition 1. We start with verifying condition (4.3). For
r ≥ 1, there exists an injective mapping ψ : Ir → I0 such that

ψ(θ)U = θ∗
U and

∣∣ψ(θ)j,k − θj,k

∣∣ 
= φn ∀(j, k) /∈ U .

This implies in particular that |Jr | ≤ |Ir | ≤ |I0| ≤ |J0| and the partition is ad-
missible. Also, by construction of Dn, for every θ ∈ Jr we have that �2(θ,ψ(θ))2

takes its values in the lattice {φ2
n,2φ2

n,3φ2
n, . . .} and the cardinality of {r : u2

r = φ2
n}

is bounded by 2
∑

j≤Jn
|Ij | = I . By induction on M = 1,2, . . . , the cardinality of
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{r : u2
r = Mφ2

n} is further bounded by
∑M

i=1 I i ≤ (Cn)M+1 for some C > 0. This
implies that for any K0 > 0,

Rn∑
r=1

e−K0nu2
r ≤ ∑

M≥1

e−K0nMφ2
n
∣∣{r : u2

r = Mφ2
n

}∣∣ ≤ ∑
M≥1

n−K0φ0M(Cn)M+1,

which has polynomial decay in n as soon as φ0 > 2/K0, and can thus be taken of
the form e−K1n�(εn(·),H(β,L),�∞)2

for some K1 > 0. This bound is not based on any
specific assumption on the experiment {P n

θ , θ ∈ �} and only depends on the set �,
the loss � = �∞, and d = �2. It remains to check condition (4.2). We first consider
the white noise model. Then

−n−1(Ln(θ) −Ln

(
ψ(θ)

))
= ‖θ − θ0‖2

L2 − ‖ψ(θ) − θ0‖2
L2

2
− ∑

(j,k)∈�

(
Yj,k − θ0

j,k

)(
θj,k − ψ(θ)j,k

)

= ‖θ − ψ(θ)‖2
L2

2
+ 〈

θ − ψ(θ),ψ(θ) − θ0
〉
L2

− ∑
(j,k)∈�

(
Yj,k − θ0

j,k

)(
θj,k − ψ(θ)j,k

)
.

The above computation is simply a sequential formulation of the Cameron–Martin
formula: Here, we emphasise on the property that �2(θ, θ ′) = ‖θ − θ ′‖L2 is a
Hilbert norm associated to the scalar product 〈·, ·〉L2 . The sum in (j, k) ∈ � in-
volving Yj,k has to be understood as a limit in L2(P n

θ ), and it is well defined since
θ − ψ(θ) ∈ �2(�) and the Yj,k are independent and standard normal under P n

θ .
Recall the definition of U in (4.7). For (j, k) ∈ U , we have by construction

|θ0
j,k −ψ(θ)j,k| ≤ φn/4 and for (j, k) ∈ Uc, |θ0

j,k −ψ(θ)j,k| ≤ 3φn/4. In the latter
case, we also know that |θj,k − ψ(θ)j,k| 
= φn but has values in {0,2φn,3φn, . . .}.
Therefore,

Ln(θ) −Ln

(
ψ(θ)

) ≤ −n‖θ − ψ(θ)‖2
L2

8
+ n

∑
(j,k)∈�

(
Yj,k − θ0

j,k

)(
θj,k − ψ(θ)j,k

)
.

Introduce the event �n = {maxj≤Jn,k∈Ij
|Yj,k −θ0

j,k|
√

n ≤ 2
√

logn}. For Yn ∈ �n,∣∣∣∣ ∑
(j,k)∈�

(
Yj,k − θ0

j,k

)(
θj,k − ψ(θ)j,k

)∣∣∣∣
=

∣∣∣∣ ∑
(j,k)∈�

1|θj,k−ψ(θ)j,k |≥φn

(
Yj,k − θ0

j,k

)(
θj,k − ψ(θ)j,k

)∣∣∣∣
≤ 2φ−1

0

∥∥θ − ψ(θ)
∥∥2
L2
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due to |Yj,k − θ0
j,k| ≤ 2

√
logn/

√
n ≤ 2/φ0φn. Picking φ0 large enough,

Ln(θ) −Ln

(
ψ(θ)

) ≤ −n‖θ − ψ(θ)‖2
L2

16
on �n.

Since P n
θ0

(�c
n) ≤ 2n−1, condition (4.2) is satisfied. This completes the proof of

Proposition 1.

A.5. Proof of Proposition 3. We start with the construction of the prior πn.
Contrariwise to the white noise model, we truncate j ≤ Jn with

√
n/ logn < 2Jn ≤

2
√

n/ logn. Set � = ⋃
β∈[β1,β2]H

′(β,L). Recall the definition of Dn in (4.5) with
φn = φ0

√
logn/n and consider

D′
n = {

θ ∈Dn : ∃θ ′ ∈ � such that
∣∣θj,k − θ ′

j,k

∣∣ ≤ φn,∀j ≤ J n, k ∈ Ij

}
as set of nonnormalised test densities. By construction

∑
j,k θj,k�j,k ≥ c/2, ∀θ ∈

D′
n and, therefore,

√
fθ = ‖θ‖−1

L2

∑
j,k θj,k�j,k is well-defined, that is, fθ is a den-

sity [note that this definition extends (4.9) in a consistent way]. The set D′
n consti-

tutes the sieve and the prior is given by πn ∝ ∑
θ∈D′

n
δθ/‖θ‖

L2 .
For the subsequent analysis, we need some inequalities for the elements in D′

n,
which are derived next. Due to β1 > 1/2, the coefficients of the parameter vectors
are absolutely summable and

L = max
(

sup
θ∈�∪D′

n

�∞
(
θ/‖θ‖L2,0

)+ ∑
(j,k)∈�

|θj,k|,1
)

< ∞.

Let θ ∈ D′
n. By construction, there exists a θ ′ ∈ � with ‖θ ′‖L2 = 1 and |θj,k −

θ ′
j,k| ≤ φn for all (j, k) ∈ �. With ‖θ‖2

L2 = 〈θ + θ ′, θ − θ ′〉L2 + 1 we find

1
2 ≤ ‖θ‖L2 ≤ 2,

∣∣‖θ‖L2 − 1
∣∣ ≤ 4Lφn and

∣∣∣∣ 1

‖θ‖L2
− 1

∣∣∣∣ ≤ 8Lφn.(A.9)

Next, let us construct an admissible partition. Notice that there is a finite J0, such
that

sup
θ∈�∪D′

n

max
j>J0,k∈Ij

|θj,k| +
∞∑

j>J0

∑
k∈Ij

θ2
j,k < 2−21 1

L
3 .(A.10)

Let Q = �L2
211�. For every (j, k), we can define an equivalence relation � via

θj,k � θ ′
j,k iff θj,k = θ ′

j,k or θj,k, θ
′
j,k ∈ (θ0

j,k − qj,k(θ0)φn, θ
0
j,k + qj,k(θ0)φn),

where

qj,k(θ0) =
⎧⎪⎨⎪⎩

Q, if j ≤ J0,
1, if j > J0,

∣∣θ0
j,k

∣∣ > 2−9φn,

0, if j > J0,
∣∣θ0

j,k

∣∣ ≤ 2−9φn.
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This induces an equivalence relation on the nonnormalised densities D′
n via θ � θ ′

iff θj,k � θ ′
j,k for all (j, k), j ≤ J n. By construction, there exists θ∗ ∈ D′

n such

that |θ0
j,k − θ∗

j,k| ≤ 1
2φn for all (j, k). Denote by Ir , r = 0,1, . . . the equivalence

classes of D′
n and let I0 be the equivalence class of θ∗. Define Jn(β) as in (4.6),

replacing φn/4 by 2−9φn in the first condition. Using (A.9), there exists a constant
A = A(β,L,φ0,Q) such that, for all θ ∈ I0,

�∞
(
θ0, θ/‖θ‖L2

) ≤ �∞(θ0, θ) + 4Lφn�∞
(
θ/‖θ‖L2,0

)
≤ 2Qφn

Jn(β)∑
j=0

2j/2 + εn(β) + 4L
2
φn

≤ Aεn(β).

For this A, we define J0 = {θ ∈ D′
n : �∞(θ0, θ/‖θ‖L2) ≤ Aεn(β)}, Jr = Ir ∩ J c

0 .
Now, for any r ≥ 1, we construct an injective map ψ : Jr → J0 and verify that
for this map the properties (4.2) and (4.3) hold. To this end, define ι(θj,k) as
�θ0

j,kφ
−1
n �φn if θj,k > θ0

j,k and �θ0
j,kφ

−1
n �φn otherwise. If (j, k) ∈ Jr , r 
= 0,

ψ(θ)j,k =

⎧⎪⎪⎨⎪⎪⎩
θj,k, if

∣∣θj,k − θ0
j,k

∣∣ < qj,k(θ0)φn,

ι(θj,k), if
∣∣θj,k − θ0

j,k

∣∣ ≥ qj,k(θ0)φn, qj,k(θ0) > 0,

0, if qj,k(θ0) = 0.

It is not difficult to see that ψ : Jr → J0 is injective. This completes the proof of
the admissible part. By following the same arguments as in the proof of Proposi-
tion 1, condition (4.3) can be verified.

Therefore, it remains to check (4.2). For u > 0, we have logu = 2 log(
√

u) ≤
2(

√
u − 1) and, therefore,

Ln(θ) −Ln

(
ψ(θ)

) ≤ 2
n∑

i=1

( √
fθ(Yi)√

fψ(θ)(Yi)
− 1

)
.(A.11)

We further decompose the right-hand side using

x

y
− 1 = x − y

z
+ (x − y)(z − y)

z2

(A.12)

+ (x − y)(z − y)2

z3 + (x − y)(z − y)3

z3y

with x = √
fθ (Yi), y = √

fψ(θ)(Yi), and z = √
fθ0(Yi). In the sequel, we con-

trol the large deviations behaviour of the terms on the right-hand side separately
[denoting the single steps by (I)–(IV)]. The key ingredient is the following well-
known version of Bernstein’s inequality: If X1, . . . ,Xn are i.i.d., centered and
|Xi | ≤ M , then ∀t > 0, P(|∑n

i=1 Xi | > t) ≤ 2 exp(−1
2 t2/(nE[X2

1] + Mt/3)).
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(I) Define �n,1(τ ) as the event{∣∣∣∣∣
n∑

i=1

�j,k(Yi)√
fθ0(Yi)

− n

∫
�j,k(u)

√
fθ0(u) du

∣∣∣∣∣ ≤ τ
√

n logn,∀j ≤ Jn, k ∈ Ij

}
.

Observe that the random variables �j,k(Yi)/
√

fθ0(Yi), i = 1, . . . , n, are i.i.d.,
bounded in absolute value by a multiple of n1/4 and their second moment is one.
Thus, by a union bound and Bernstein’s inequality, P n

θ0
(�n,1(τ )c) � n−1, provided

that τ is large enough. On Yn ∈ �n,1(τ ),
n∑

i=1

√
fθ(Yi) −√

fψ(θ)(Yi)√
fθ0(Yi)

≤ n

∫ (√
fθ (u) −

√
fψ(θ)(u)

)√
fθ0(u) du

+ τ
√

n logn
∑
(j,k)

∣∣∣∣ θj,k

‖θ‖L2
− ψ(θ)j,k

‖ψ(θ)‖L2

∣∣∣∣.
Using the inequalities (A.9), we can bound the second term on the right-hand side

by τφ−1
0 (1 + 16L

2
)n‖θ − ψ(θ)‖2

L2 , and thus, making φ0 large enough we obtain
on Yn ∈ �n,1(τ ),

n∑
i=1

√
fθ (Yi) −√

fψ(θ)(Yi)√
fθ0(Yi)

≤ n

∫ (√
fθ(u) −

√
fψ(θ)(u)

)√
fθ0(u) du + 2−9n

∥∥θ − ψ(θ)
∥∥2
L2 .

(II) Similar as for (I), set �n,2 for the event{∣∣∣∣∣
n∑

i=1

�j,k(Yi)�j ′,k′(Yi)

fθ0(Yi)
− nδ(j,k),(j ′,k′)

∣∣∣∣∣ ≤ n3/4 logn,

∀j, j ′ ≤ Jn, k ∈ Ij , k
′ ∈ Ij ′

}
,

with δ(j,k),(j ′,k′) the Kronecker delta. Now, �j,k(Yi)�j ′,k′(Yi)/fθ0(Yi),
i = 1, . . . , n, are i.i.d. and bounded in absolute value by a multiple of

√
n. The

second moment is also smaller than const. × n1/2. Using a union bound and Bern-
stein’s inequality, P n

θ0
(�c

n,2) � n−1 for n large enough. On Yn ∈ �n,2, we see that∑n
i=1(

√
fθ (Yi) − √

fψ(θ)(Yi))(
√

fθ0(Yi) − √
fψ(θ)(Yi))/fθ0(Yi) can be bounded

by its expectation plus∑
j,k

∣∣∣∣ θj,k

‖θ‖L2
− ψ(θ)j,k

‖ψ(θ)‖L2

∣∣∣∣ ∑
j ′,k′:�j,k�j ′,k′ 
=0

∣∣∣∣θ0
j,k − ψ(θ)j,k

‖ψ(θ)‖L2

∣∣∣∣n3/4 logn.

Due to the compact support of � , there are of the order of logn index pairs
(j ′, k′) with j ′ ≤ J n and �j,k�j ′,k′ 
= 0. Using that ψ(θ) ∈ J0, together with the
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inequalities (A.9), yields |θ0
j,k − ψ(θ)j,k/‖ψ(θ)‖L2 | ≤ (Q + 4L)φn. Because of

|θj,k − ψ(θ)j,k|1θj,k 
=ψ(θ)j,k ≥ φn, the expression in the last display is smaller than
2−9n‖θ − ψ(θ)‖2

L2 , for sufficiently large n and, therefore, on Yn ∈ �n,2,

n∑
i=1

(
√

fθ (Yi) −√
fψ(θ)(Yi))(

√
fθ0(Yi) −√

fψ(θ)(Yi))

fθ0(Yi)

≤ n

∫ (√
fθ (u) −

√
fψ(θ)(u)

)
× (√

fθ0(u) −
√

fψ(θ)(u)
)
du + 2−9n

∥∥θ − ψ(θ)
∥∥2
L2 .

(III) This case works similar as (II) and is therefore only sketched here. In
fact, we need to consider �n,3 which is the same event as �n,2 but applied to the
random variables �j1,k1(Yi)�j2,k2(Yi)�j3,k3(Yi)/f

3/2
θ0

(Yi) (and the n3/4 should be
exchanged with n). Since these random variables are bounded in absolute value by
a constant times n3/4 and have second moment smaller than a constant times n, we
obtain P n

θ0
(�c

n,3) � n−1. Using the inequalities (A.9) again, on Yn ∈ �n,3,

n∑
i=1

(
√

fθ(Yi) −√
fψ(θ)(Yi))(

√
fθ0(Yi) −√

fψ(θ)(Yi))
2

f
3/2
θ0

(Yi)

≤ n

∫ (√
fθ (u) −

√
fψ(θ)(u)

)(√
fθ0(u) −

√
fψ(θ)(u)

)2 du√
fθ0(u)

+ 2−10n
∥∥θ − ψ(θ)

∥∥2
L2 .

The first term on the right-hand side can be further bounded by a constant times

n
∑
j,k

∣∣∣∣ θj,k

‖θ‖L2
− ψ(θ)j,k

‖ψ(θ)‖L2

∣∣∣∣ ∫ ∣∣�j,k(u)
∣∣(√fθ0(u) −

√
fψ(θ)(u)

)2
du.

Expanding
√

fθ0(u)−√
fψ(θ)(u) and using the compactness of � as well as |θ0

j,k −
ψ(θ)j,k/‖ψ(θ)‖L2 | ≤ (Q + 4L)φn and (A.9), we find that the last display can be
further bounded by O(n‖θ − ψ(θ)‖2

L2φn logn), and so, on Yn ∈ �n,3,

n∑
i=1

(
√

fθ (Yi) −√
fψ(θ)(Yi))(

√
fθ0(Yi) −√

fψ(θ)(Yi))
2

f
3/2
θ0

(Yi)
≤ 2−9n

∥∥θ − ψ(θ)
∥∥2
L2 .

(IV) For this term, no exponential inequality is needed, and a deterministic
bound can be obtained as follows. Observe that there is a constant c(�), such

that |√fθ0(Yi) −√
fψ(θ)(Yi)| ≤ c(�)Qφn

∑Jn

j=0 2j/2 � 2Jn/2φn. This shows that

n∑
i=1

(√
fθ (Yi) −

√
fψ(θ)(Yi)

)(√
fθ0(Yi) −

√
fψ(θ)(Yi)

)3
/
(
f

3/2
θ0

(Yi)
√

fψ(θ)(Yi)
)
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can be bounded by a constant times

n22Jnφ3
n

∑
j,k

∣∣∣∣ θj,k

‖θ‖L2
− ψ(θ)j,k

‖ψ(θ)‖L2

∣∣∣∣.
Using the definition of J n and (A.9), we find that this term is of negligible order
O(n‖θ − ψ(θ)‖2

2/ logn), uniformly over θ .
Now, we are ready to complete the proof. Since P n

θ0
((�n,1(τ )∩�n,2 ∩�n,3)

c) �
n−1, we can throughout the following assume that Yn ∈ �n,1(τ ) ∩ �n,2 ∩ �n,3.
It is then enough to prove 1

n
(Ln(θ) − Ln(ψ(θ))) ≤ −K0‖θ − ψ(θ)‖2

L2 for some
positive constant K0. Combining the estimates in (I)–(IV), with (A.11) and (A.12),
we find, for sufficiently large n,

1

n

(
Ln(θ) −Ln

(
ψ(θ)

))
≤
∫ (√

fθ (u) −
√

fψ(θ)(u)
)(

2
√

fθ0(u) −
√

fψ(θ)(u)
)
du + 2−7∥∥θ − ψ(θ)

∥∥2
L2

=
(

1

2
− ∥∥ψ(θ)

∥∥
L2

)∑
j,k

(
θj,k

‖θ‖L2
− ψ(θ)j,k

‖ψ(θ)‖L2

)2

+ 2
∑
j,k

(
θj,k

‖θ‖L2
− ψ(θ)j,k

‖ψ(θ)‖L2

)(
θ0
j,k − ψ(θ)j,k

)+ 2−7∥∥θ − ψ(θ)
∥∥2
L2

using that∫ (√
fθ (u) −

√
fψ(θ)(u)

)√
fψ(θ)(u) du = −1

2

∫ (√
fθ (u) −

√
fψ(θ)(u)

)2
du.

If |θ0
j,k| > 2−9φn, then by construction of ψ(θ)j,k , we have(

θj,k − ψ(θ)j,k
)(

θ0
j,k − ψ(θ)j,k

) ≤ 0.

Otherwise, if |θ0
j,k| ≤ 2−9φn, then ψ(θ)j,k = 0 and so

2

‖ψ(θ)‖L2

∑
j,k

(
θj,k − ψ(θ)j,k

)(
θ0
j,k − ψ(θ)j,k

) ≤ 2−7∥∥θ − ψ(θ)
∥∥2
L2 .

Since also
∑

j,k θj,k(θ
0
j,k − ψ(θ)j,k) ≤ LQφn, 1

2 − ‖ψ(θ)‖L2 ≤ −1/4 and

−∑
j,k

(
θj,k

‖θ‖L2
− ψ(θ)j,k

‖ψ(θ)‖L2

)2

≤ −1

4

∥∥θ − ψ(θ)
∥∥2
L2 + 2

(
1

‖θ‖L2
− 1

‖ψ(θ)‖L2

)2

,

we obtain that n−1(Ln(θ) −Ln(ψ(θ))) is less than

− 3

64

∥∥θ − ψ(θ)
∥∥2
L2 + 1

2

(
1

‖θ‖L2
− 1

‖ψ(θ)‖L2

)2

+ 2LQφn

∣∣∣∣ 1

‖θ‖L2
− 1

‖ψ(θ)‖L2

∣∣∣∣.
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Now, we need to distinguish two cases. First, assume that there is a (j, k) with
j ≤ J0 and ψ(θ)j,k 
= θj,k . In this case, ‖θ − ψ(θ)‖2

L2 ≥ Q2φ2
n. By (A.9) and the

choice of Q,

1

n

(
Ln(θ) −Ln

(
ψ(θ)

)) ≤ − 1

64

∥∥θ − ψ(θ)
∥∥2
L2 + (

27L
2 + 25L

2
Q − 2−5Q2)φ2

n

≤ − 1

64

∥∥θ − ψ(θ)
∥∥2
L2 .

Now, suppose the opposite, that is, whenever ψ(θ)j,k 
= θj,k then j > J0. By con-
struction of J0 [see (A.10)],∣∣∣∣ 1

‖θ‖L2
− 1

‖ψ(θ)‖L2

∣∣∣∣ ≤ 4
∣∣〈ψ(θ) + θ,ψ(θ) − θ

〉∣∣
≤ 4 max

j>J0,k∈Ij

∣∣θj,k + ψ(θ)j,k
∣∣φ−1

n

∥∥θ − ψ(θ)
∥∥2
L2

≤ 2−7(LQ)−1φ−1
n

∥∥θ − ψ(θ)
∥∥2
L2 .

Similar, we obtain(
1

‖θ‖L2
− 1

‖ψ(θ)‖L2

)2

≤ 2−5∥∥θ − ψ(θ)
∥∥2
L2,

by using the Cauchy–Schwarz inequality instead. Therefore, in this case, we also
get 1

n
(Ln(θ) −Ln(ψ(θ))) ≤ − 1

64‖θ − ψ(θ)‖2
L2 . This completes the proof.
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