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ABSTRACT. In this paper we study the dynamics near the equilibrium point
of a family of Hamiltonian systems in the neighborhood of a 0%iw resonance.
The existence of a family of periodic orbits surrounding the equilibrium is
well-known and we show here the existence of homoclinic connections with
several loops for every periodic orbit close to the origin, except the origin itself.
The same problem was studied before for reversible non Hamiltonian vector
fields, and the splitting of the homoclinic orbits lead to exponentially small
terms which prevent the existence of homoclinic connections with one loop to
exponentially small periodic orbits. The same phenomenon occurs here but we
get round this difficulty thanks to geometric arguments specific to Hamiltonian
systems and by studying homoclinic orbits with many loops.
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1. Introduction. We consider a family of real analytic Hamiltonian systems with
two degrees of freedom. We suppose that these systems admit an equilibrium, that
we take at the origin, and study the dynamics near this equilibrium.

An equilibrium is called non degenerate if the linear part of the vector field is
invertible. Real Hamiltonian vector fields with two degrees of freedom admit three
types of non degenerate equilibria: the FElliptic equilibria when there are two pairs
of purely imaginary eigenvalues, the Saddle-Center equilibria when there is one pair
of purely imaginary eigenvalues and one pair of real eigenvalues, and the Hyperbolic
equilibria when all eigenvalues have non-zero real part.

We study a family H) of Hamiltonians with a fixed point at the origin, whose
linear part undergoes a transversal bifurcation at A = 0 through the stratum of
degenerate fixed points, from an elliptic fixed point to a saddle center fixed point.
We assume that the degenerate fixed point of Hy admits a pair of null eigenvalues
with a non-trivial Jordan block. This case, which is generic, is called an 0%iw
resonance (see Figure 1).

Although we are interested in the description of the dynamics associated to the
saddle-center fixed point, we must distinguish two cases which are best described
by considering the elliptic side of the bifurcation. Either the quadratic part of
the Hamiltonian at the elliptic fixed point is definite, or it has index two. We
will consider only the definite case. The homoclinic phenomenon described in the
present paper does not occur in the other case.

+i(wo + ON) | +iwg p +i(wo + O(N))
—iX
% BSOS
| —iwo y —i(wo + O(N))
A<0 A=0 A>0

FIGURE 1. Eigenvalues of DVy, (0) in terms of A for a 0%iw resonant equilibrium.

We only study the dynamic for the “half-bifurcation” A > 0, i.e. we study the
dynamic in the neighborhood (in space) of a Saddle-Center fixed point in the neigh-
borhood (in term of \) of a 0%iw resonance.

1.1. Reversible 0%iw resonance. The 0*tiw resonance also appears in the re-
versible context, where it was extensively studied (Iooss and Kirchgassner [11],
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Lombardi [18], Iooss and Lombardi [13]) with motivations coming from waterwaves
problems . In this context, for A > 0 sufficiently small, the Lyapunov-Devaney the-
orem ensures that the equilibrium is surrounded by a family of periodic solutions
of arbitrary small size. Lombardi [18] proved that there exists two exponentially
small functions k1 (A) < ka(A) (i.e. ki(A) = O(e~ %)) such that on one hand the
periodic orbits smaller than k1(A) do not admit any homoclinic reversible connec-
tion with one bump, while on the other hand there exist homoclinic connections to
each periodic orbit of size greater than k2()). In particular, there is no homoclinic
connection to the origin.

These results are based on a reduction to normal forms for which all the periodic
orbits admit a homoclinic connection. The persistence of these orbits in the whole
system is studied through a careful analysis of the holomorphic continuation of
solutions in the complex field.

There does not seam to exist an analog in the reversible context of our definiteness
hypothesis.

1.2. Homoclinic orbits to a Hamiltonian Saddle-Center equilibrium. In
the Hamiltonian case, there are many works about the dynamic associated to
Saddle-Center equilibria, not necessarily in the context of the 0%2iw bifurcation.
Near a Hamiltonian Saddle-Center, the Lyapunov-Moser Theorem ensures that
there exists a family of periodic orbits surrounding the origin. The existence of
homoclinic connections to these periodic orbits have been investigated in many
papers, see [1, 2, 8,9, 3, 19] for example.

In [3], a perturbation of an integrable Hamiltonian system with a saddle-center
fixed point admitting a homoclinic connection is studied. It is proved that, in the
perturbed system, all sufficiently small periodic orbits around the saddle-center
equilibrium admit a heteroclinic connection (but not the fixed point itself). These
Homoclinic orbits remain close to the homoclinic orbits of the unperturbed system,
but may have several bumps, see Figure 1.2.

/

Homoclinic connectionh ~ One-bump homoclinic orbits Two-bump homoclinic orbits
to 0 for the truncated for the complete system for the complete system
system in a tubular neighborhood of h in a tubular neighborhood of h

The system is reduced to a singular poincaré return map, following Conley [6].
This Poincaré map is singular because it is taken with respect to a homoclinic loop,
and not with respect to a genuine periodic orbi. However, the singularity is tamed
thanks to local normal forms around the fixed point, due to Moser in [21]. A KAM
argument (using the integrability of the unperturbed system) then allows to reduce
the study to a bounded invariant domain, and the conclusion is obtained through
a soft area preservation argument.

In the present paper, we prove that the same behavior holds in the Hamiltonian
0%iw resonance. We use a normal form Theorem to put the system in a form similar
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to the one studied in [3] and then proceed as in this paper. Each step is however
much more difficult than in [3] because we are dealing with a singular perturbation,
where the hyperbolic exponents of the fixed point converge to zero with A.

1.3. Homoclinic orbits with several loops for the Hamiltonian 0%iw reso-
nance. In this paper, we consider the Hamiltonian 0%iw resonance. More precisely,
let R* be endowed with a constant symplectic form Q(x,y) = (Jx,y), where J is
a 4 x 4 matrix such that J* = J~! = —J. Consider a C' one parameter family of
analytic Hamiltonians Hy, where A belongs to an interval I of R. We introduce the
following Banach space of analytic functions.

Definition 1.1. Let us denote A(Bgm (0, p), R") the set of analytic functions f :
Brm (0, p) — R™ such that f admits a bounded analytic continuation f : Bem (0, p) —
C™. We define the norm ||HA on A(Bg= (0, p), R"™) by

1l = s | Fee)

2€Bcm (0,p)

e
In the following we suppose that there exists py such that

H:I — .A(BR4 (0, po),R)
A — Hy

is a C! map for the norm Il » i-e. we assume
H € C1(1, A(Bg (0, po). ). (HO)

We study the associated family of Hamiltonian vector fields Vi, := JVH), which
we suppose to admit a fixed point at the origin, i.e.

Vu,(0)=0 forall Ael. (H1)
We assume that for A = 0, the fixed point admits a

0%w resonance. . This means that there exists a basis (ug,us,us,u_) of C* in
which

01 0 0
00 0 0

DeVao® =10 0 w, o (H2)
0 0 0 —i(.U()

We make an additional

assumption on Dy)(D,Vy,(0)). which characterizes the behavior of the spec-
trum of D, Vg, (0) for A = 0. Denote by (ug, u7, v’ ,u* ) the dual basis of (ug, w1, u4,u_).
We assume that

c10 := <1L>{,ch7)\VHA (0).ug) # 0 (H3)

holds. This hypothesis will ensure that the spectrum of D, Vg, (0) is as represented
in Figure 1: we do not consider the hyper-degenerate case when the double eigenva-
lue 0 stays at 0 for X\ # 0. Hence, the origin is an elliptic fixed point when cjgA < 0
and a saddle-center when c190A > 0 (we get Figure 1 when c¢19 > 0 ; if ¢19 < 0 it

holds for X' = —)).
Furthermore, we make the following
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assumption on the quadratic part D2 Vy,(0).[z,z] of the vector field at
A=0. |,

— 2 (U D2, Vg 0): g, wo]) # 0. (H4)

This hypothesis ensures that, in some sense, the quadratic part of the vector field
is not degenerate: cog will appear in the normal form as the coefficient of the only
quadratic term. Thank to this nonzero term, we will be able to show the existence
of homoclinic orbits for the normal form while the linearized vector field does not
admit any such orbit.

In the following we focus our interest on the existence of homoclinic connections,
so we only study the half bifurcation

ClO/\ Z 0, (H5)

because in that case we work in the neighborhood of a

Co0 ‘=

saddle-center fixed point.
Finally, we assume that
wp > 0 (H6)
holds, which means that for the small c1oA < 0, the quadratic part of the Hamil-
tonian is a definite quadratic form.

Under these hypotheses we prove in this paper the following theorem which en-
sures that there exist homoclinic connections to all the periodic orbits surrounding
the origin provided that the homoclinic connections are allowed to admit any num-
ber of bumps. This result is stronger than the one obtained in the reversible case
since it ensures that when any number of bumps is allowed, there is no lower bound
of the size of periodic orbits admitting a homoclinic connection to them.

Theorem 1.2. Under the hypotheses (H1),...,(H6), there exist \g > 0, Cy > 0
and ly € N such that for all X < Ao,

1. the origin is surrounded by a family of periodic orbits Py, labelled by their
symplectic area a € [0,a0] (Lyapunov-Moser);
2. for a €]0, Co\bo [, every periodic orbit Py admits a homoclinic connection.

Note that the Theorem 1.2 only deals with homoclinic connections to periodic
orbits of arbitrary small size. It says nothing on homoclinic connections to 0. Their
existence when several bumps are allowed remains fully open. The proof suggests
(see Section 2) that the number of bumps of the homoclinic connection increases
when the area of the periodic orbits decreases, if this really happens it might pre-
vents the existence of a homoclinic connection to 0. However the theorem does not
give any link between the number of bumps and the area.

Two obstacles prevent the result of Theorem 1.2 to apply to the water waves
problem. The first obstacle is the Hypothesis (H0): the 0%iw resonance appears
in the water waves problem after a centermanifold reduction, and this reduction
does not preserve the analyticity of the initial equation. The second is Hypothesis
(H6): in the water waves problem wy is negative, i.e. the quadratic part of the
Hamiltonian is not definite. Although analyticity may be considered a technical
hypothesis which could possibly be relaxed (although we strongly use it in the
present work), the signature hypothesis is essential. There are strong indications
that the dynamical behavior that we describe in the case wy > 0 does not occur in
the case wy < 0. In particular, we believe that the multibump homoclinics proved
to exist in the case wg > 0 do not exist in the waterwave case.
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1.4. Normal forms for Hamiltonian systems. The first step in the proof of
Theorem 1.2 is a normal form reduction. We give here an abstract normal from
theorem of independent interest, extending Elphick & al. [7] (see also [10]), which
was suggested to the authors by Gérard Iooss. Let R?™ be endowed with the
constant symplectic form Q(z,y) = (Jz,y) where J is a 2m x 2m real matrix such
that J* = J~! = —J. The Hamiltonian vectorfield of the C' function H is JVH.
The flow of this vectorfield is called the Hamiltonian flow of H. The time-one flow
is called the Lie transform of H. This flow might not be defined on the whole
space, but, if H is C? and has a critical point at 0, its Lie transform is defined in a
neighborhood of 0, and it is locally a symplectic diffeomorphism.
Given two functions H and G, their Poisson Bracket is defined by

{H,G} := dH(JVG) = Q(VG, VH).

Let A be a Banach space. We fix k > 2, and consider a C' family of Ck Hamil-
tonian functions H(z). This means that the maps

N\ z) = Halz), (N xz) e OHA(x),..., (N x)— O 1 H(x)
are C! in a neighborhood of 0 in A x R?™,

Theorem 1.3 (Normal form theorem). Let Hy be a C' one parameter family of C*
Hamiltonians such that Dy Hx(0) = 0. We denote by Ha x(z) = 3D, HA(0).[z, 7]
the quadratic part of Hy and by Lo the linear part at A = 0 of the associated
Hamiltonian vector field, i.e. Loz = JV;Ha ().

Then, for each ¢ such that k > € > 2, there exists a C* family ¢y of analytic
local diffeomorphisms satisfying

Dy o(0) =Id
and such that, in the neighborhood of 0 in R?™,
Hro e =Hao+ N+ Ren

where Ny, is a real polynomial of degree at most £ whose coefficients are C' functions
of A\, and

Neala) = Oz + |2%), Realz) = o(|al),
Nea(ettox) = Nya(z) VteR,  or equivalently {Ha oo J, Ny} = 0. (1)

If Hy is a C! family of analytic Hamiltonians, then H o @¢,» and thus Reyq z
are C' families of analytic Hamiltonians. The proof is given in Appendix A.

Remark 1.4. In the case of the Birkhoff normal form, the normal form N belongs
to the kernel of {#2 ¢, -} while here it lies in the kernel of {Hz o o J,.}. For elliptic
fixed points, this is not different since Hog o J = Hao. As explained in the poof,
it is always possible to find a normal form which commutes with H2 o o J, while it
is only possible to find a normal form which commutes with H3 o under additional
assumptions, such as semi-simplicity, which are not satisfied in the situation of the
present paper.

In the context of Theorem 1.2, the normal forms to all orders are integrable,
and admit a saddle-center fixed point with a homoclinic loop. Theorem 1.3 allows
to view the whole system as a perturbation of this integrable dynamics, which is a
context similar to the one of [3]. The proof of Theorem 1.2 then consists of checking
that the constructions of [3] still hold here. The main new difficulty is that we deal
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here with a singular perturbation, where the hyperbolic exponents of the saddle-
center fixed point converge to zero with . After rescaling, this causes the rotation
speed in the elliptic directions to blow up as A goes to zero. This difficulty is the
reason for the apparition of exponentially small quantities in e. g. [18]. The present
work is not as quantitative as [18] and we do not explicitly handle exponentially
small quantities, but the singularity of the perturbation makes the implementation
of each step of the proof much harder than in [3]. However, although we do not
explicitly handle exponentially small quantities, the result obtained in the present
paper is “stronger” than the one obtained in [18] since theorem 1.2 ensures that in
the hamiltonian context and allowing several bumps for the homoclinic connections,
there is no exponentially small minimal size for the periodic orbits admitting an
homoclinic orbit to themselves.

In particular, the analysis of the return map involves a second normal form in
the neighborhood of the saddle center, due to Moser in [21]. We have to prove (see
Appendix C) that this normalization does not blow up when A goes to 0, which
requires a whole rewriting of the proof.

List of notations.

ABrm (0,p),R™) oo 4 ] g 4
F 2 I I A IR 10 IQ ................................. 9
T N 10 D 10
Dl 11 FayMo oo 11
Koo 11 D 12
U 13 P 13
PEL P 13 GO 13
WO 13 T 14
Co 17 P 27
Rog,Rg oo 20 KO oo 20
€ 26 Pl e 30
e A7 [ 51

2. Structure of the proof of Theorem 1.2. This section is devoted to the proof
of Theorem 1.2. The main technical steps of this proof are stated in propositions
whose proofs are postponed in the next sections of the paper.

2.1. Normalization and scaling, dynamics of the normal forms of degree
3 and n.

Normalization and scaling. Proposition 2.1 below gathers the results of nor-
malization and scaling of the Hamiltonian. Point (i) is the change of coordinates
given by the normal form Theorem 1.3. Then (ii7) is a scaling in space and time :
after this scaling, the homoclinic orbits of the truncated normalized system have a
size of order 1 (see the next subsections), which allows a perturbative proof in the
neighborhood of these homoclinic orbits. We must perform the change of parameter
(ii) to have a C! smoothness of scaling (7).

Proposition 2.1. Under hypotheses (H0),---,(H6), for all n > 3, there exist €1 >
0, p1 >0 and

1. a C' one parameter family of canonical analytic transformations of B(0, p1),

X = (bn,)\(&’:) = 5+ O(|§|2)7 (bn,)\ S A(BR4 (07/)1)7R4>;
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2. a change of parameter C', X = 0(e*) with its inverse e* = cio\ + o(\) defined
fore €] —e1,e1],
3. a scaling in space and time T = o.(x), t = €% t;

such that in a neighborhood of the origin, for all e €] — e, 0[U]0, &o[, the normalized
2
Hamiltonian H_(z) = 8621(5) Hpy(.4 (¢n,9(g4)(05(2))) s of the form

1 w(e) n—
H (z) = > (ﬁ - gf) + 2\/§(g1)3 + 52 I, +52Mnys(gl,l2) + SEn)E(g);

where
z=(q,,0,,4,0,), L=d& +p5,

and w and cy are C' functions of € €] — gg,e0| such that w(e) = wy + O(?) et
CQ(E) = c9o + 0(64) with coq 7& 0.

The normal form N,, . is a real polynomial of degree less than n in (gl,gz,QQ)
such that

g

N, (4, L) = O (Ia,|ILs] + (a2 + |L,])?)

and the coefficients of this polynomial are C' functions in ¢ €] — eg,e0[. The re-
mainder R,, :] — eo,e0] — A(Br1(0,p1);R) : ¢ = R, _ is C' one parameter family

=n,e

of analytic Hamiltonians satisfying R, _(z) = O(|lz["*").

This proposition is proved in Section 3. From now on, we work with the Hamil-
tonian H .

Phase portrait for the normal form of degree 3. We first study the dynamics
of the Hamiltonian H, truncated at degree 3

1 w(e)
ﬂ&s@) =3 (Bf _Q?) +2v2 Qi + 52 I,,

where I, = g2 + p3. The associated differential system reads

4, = p,
pt) = g, —-6v2¢
7, = %5,
w(
pt) = —%5F g,

We observe that in this system, the two couples of variables (gl,gl) and (QQ,BQ) are
uncoupled. The solutions of the half system in (g,,p,) are

9 _ 4,(0) __[cosf —sind
(p2> B Ziz)t(pz(o) ’ where  Ro := sinf cosf )’

In particular I, is constant. Let us denote by F§ the periodic orbits satisfying
I, = a and (q,,p,) = (0,0). We get the phase portrait for the half system in
(¢,,p,) by drawing the energy level sets which read

1 2 2 3 _ _ _ 2 3

(2)
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We then get the phase portrait of Figure 2, in which there is an homoclinic
orbit to F§ when oo = 0, whose explicit form is

(qlm) o ]

— sinh(t)
2v2 (14 cosh(t))?

FIGURE 2. Phase portrait for the normal form of degree 3.

For the normal form of degree n, given that %2 = 0, we also get the entire phase
portrait, which is a deformation of the phase portrait (see Figure 2) of the normal

form of degree 3.
Linear change of coordinates and truncation at infinity. From now on,
it will be easier to work in the new coordinates (g1, p1, g2, p2), obtained by the
following canonical linear change of coordinates in which the linearized hamiltonian
system at the origin is in Jordan form :
B)-= ) G)=2G) ()G
P, V2 \-1 1) \p D1 Py D2
In these coordinates the Hamiltonian reads
w(e _

—qip1 + (@ +p1)° + %IQ + & Np(q1 +p1, o,€) + e PRy (z,6),  (3)

where Iy = ¢53+p3 , w is a C* function of € €] —¢o, &g| which reads w(e) = wo+O(e?);

the normal form N,, is a real polynomial of degree less than n in (q1,p1,42,p2)
satisfying

Nu(qi+p1, I, ) = O (lqi+pi || | + (| +p1 ] + | La])?)

and the coefficients of which are C! functions of ¢ €] — gg,&0[ ; the remainder
Ry ] — €0,60] = A(Bra(0,p1);R) : € = R, (-, ¢) is a C! one parameter family of
analytic Hamiltonians such that R, (z,¢) = O(|z|"*1).
We cut this Hamiltonian to get a bounded flow. Let 7,, be a C*>* map of R such

that

1 for r € [~305, 1/7)]

Tpo(r) =
0 for |r| > p2.
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We chose pg such that the homoclinic orbit obtained above for the truncated system
is strictly included in B(0, po). We finally consider the following Hamiltonian,

H(z,€) = Tpo (1) Too (P) T (I2) (—q1p1+(q1+p1)* + 45 I
+&2Nn(qi+p1, 12, €)+€4"78Rn(x,5)),

which, in B(0, £po) is equal to the Hamiltonian (3) obtained above. This truncation
is useful to work with a bounded flow, which cannot get out of B(0, po) : this will
be useful to obtain uniform upper bounds. And then with the aid of these upper
bounds we will get that, for € sufficiently small, the solutions of interest stay in
B(0,%po) : these solutions will also be solutions of the initial Hamiltonian (3).

In the following, we always work with the Hamiltonian without making mention
of the cutoff function T, (r), given that we will always work in B(0, §po).

New parameters ¢,v,u. We introduce new parameters for the Hamiltonian,
e := (g,v, ) so that

w(e)
2¢2
With these new parameters, we have

H(z,e) = —qip1 + (1 +p1)° + Iy + Ny (g1 + p1, Iz, €) + pre™o Ry, (2,). (4)

e for (e,v, ) = (g,0,0) the Hamiltonian is the normal form of degree 3 studied
above in subsection 2.1;

e for (g,v, ) = (¢,€2,0) we have the normal form of degree n ;

o for (e,v, 1) = (g,€2,e* 8= (No+2)) the complete system.
The distance from the complete system to the normal form of degree 3 and the
normal form of degree n corresponds then to the smoothness in the parameters v
(for degree 3) and p (for degree n), uniformly in e. We chose Ny and n later in the
proof.

Introducing heuristically our strategy of proof. At every order n, the nor-
mal form has homoclinic connections to the origin and to each periodic orbit of the
family surrounding the origin. Moreover, if one deflects from the homoclinic tra-
jectory “inward”, one arrives in a region of space filled with trajectories periodic in
(q P 1). In the following, we consider the complete system as a perturbation of the
normal form. The heuristic idea is then to show that if the homoclinic connection
to a periodic orbit P® is perturbated, necessarily it deflects “inward”, and then
“follows” a trajectory periodic in (gl,gl), maybe making several loops and then
finally joins the periodic orbit P* back. Such a trajectory for the complete system
would then be an homoclinic orbit with several loops.

To give a mathematical sense to the idea of “doing several loops”, a natural idea
is then to introduce an appropriate Poincaré section intersecting transversally the
homoclinic orbits of the normal form and to consider iterations of the first return
map to this section. This is our strategy in the following.

2.2. Construction of the first return map. Let us introduce the Poincaré sec-
tion
21 = {(q1,p1,q2,p2) € R/ =6},
where ¢ is fixed “small” : we will have several conditions of smallness on § in the
following, but none linked to the size of ¢.
To construct the first return map to X, denoted by ¥, we proceed in two main
steps, that we summarize here and detail below :
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Global map.: We use the existence of an orbit homoclinic to the origin for the
normal form of degree 3 and show by perturbation that there exists a return
to the section for a and v small. The perturbative method works only on a
part of the homoclinic orbit which is covered in a finite period of time : we
perform this strategy for a trajectory from a second section s to the
section X (see Figure 4).

Local map.: We chose ¥, and ¥; close to the origin. In order to construct a
local map from X; to ¥ we find a local conjugacy to an integrable system
near the fixed point, following Moser.

Construction of a local change of coordinates, F,.

Proposition 2.2. There ezist €o, p < %po and a family of canonical analytic
changes of coordinates

‘7:5(517 m, 527 772) = (801,57 1/}1,§7 P2.e, wZ,é)(gh m, 527 nQ)
= (517 m, 52) 772) + O(l(ga 77>|2)?
defined for |e = (e,v, u)| < &o such that the Hamiltonian H defined by (4) reads in
the new coordinates (§1,m1,&2,m2)

H (F((&1,m,&,m2)),e) = Ke(&1m, &5 +13)
=-&m + “;(fz) (&3 4+ n3) + O((&am, & +m3) %),
and for all g, F., 7' € A(Bgs(0, pp), RY).

Moreover, F. 0,0y := Fo does not depend on ¢, and there erists Mo € R such
that

(5)

| Fe(§1,m1,§2,m2) — Fo(§1,m, &2,m2)| < v Mo (6)
for |e| <eg. All the O correspond to upper bounds independent of .

The proof of this proposition and a more detailed statement are given in Appen-
dix C (Proposition C.1), using some preliminaries from Appendix B.

Remark 2.3. This proposition is a fundamental step of the proof. Unfortunately,
it requires very long and technical computations to obtain the estimate (6). The
main interest (and main difficulty in the proof) of this proposition is to deal with
the singularity in € of the initial Hamiltonian H (see the explicit form (4)) and to
verify that despite of this singularity the estimate (6) is uniform in term of € small.
See also the more detailed version (Proposition C.1) of this proposition in Appendix
C and the comments therein.

The form of the Hamiltonian obtained in the new coordinates allows to get the
entire phase portrait. Indeed, the flow of the associated hamiltonian system satisfies

d(&im) d(&3 +n3)

=0.
dt dt

:0,

Moreover,

d
% = (O K)(&m, & +m3) - &

holds and, given that the O of equation (5) is independent of g, we get
K (&im, & +13) — (—51771 + &+ 775)) < Mol(&umi, 65 +n3) [ (7)

Then, up to a reduction of the radius pj, if necessary (independent of g)

w(e)
2e2

, %L <0 if
& > 0and % > 0if &1 < 0. So, the dynamics in the local coordinates (£1, 11, &2, 72)

is as draw in the phase portrait of Figure 3.
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FIGURE 3. Phase portrait in local co- FIGURE 4. Global return map Ws.
ordinates (§1,71,&2,72)-

(O domaip and range of T2

Ll

v

Global map, from a second section ¥5 to ¥,. We define ¥ by defining its
range in coordinates (£1,m,&2,m2),

Yo i= Fe ({(&1,m,&2,m2) € Bra(0, py)/m = d}).

By a perturbative method in the neighborhood of the homoclinic orbit to the
origin of the normal form of degree 3, we show the existence of a Poincaré map W¥o
following the flow from X5 to Xy. Precisely, denoting by ¢(¢, z,e) the flow of the
hamiltonian system associated to H(-, ), we show the following proposition, which
gives moreover the upper bound (8) useful later :

Proposition 2.4. For § sufficiently small, there exist T~ (6) < T (8) such that for
all (q1,p1,42,p2) in

1
YN Fe <{(§1>771’§2,772)/0 <& < 766’ \/§§+7n§§ ;6}) ,

there exists an unique Tr,((q1,p1,q2,p2),€) € [T (8), T ()] satisfying
?(Tr((q1,p1, G2, p2),€), (41, P1, G2, p2), €) € 1 N B(0,6).

Moreover, denoting by

Uy((q1,p1,q2,02),8) = O(TL((q1,p1,92,P2),), (q1,P1,92,P2),€)
there exists Mo such that

|\I’2,qz ((q1,p1, QQ,P2)7§)2+‘1’2,p2 ((q1,p1,G2,p2), é)zf(q;ﬂ@%)’ < MV€N°M2T+(5)-
(8)

The proof of this proposition is given in section 4.3.

Existence of the first return map to ;. Observing the phase portrait in the
neighborhood of the origin in the local coordinates (1,711, &2, 72) (Figure 3), we see
that the Poincaré map from 3 to s exists if and only if 7 is positive. Given that
in these coordinates, the center-stable manifold to the origin is the hyperplane {n; =
0}, we get that in coordinates (q1,p1, gz, p2), the domain of existence corresponds
to being “on the right side” of the center-stable manifold of the origin (see Figure

Precisely, we show the following
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inof ¥
\/m Fg_l(zl) \/m 21 D domain of £

FIGURE 5. Position of the domain of the Poincaré map and W (0).

Proposition 2.5. It is possible to define a first return map

1 .
U NnFe <{(§17771,§27772)/0 <m < ﬂé, \ &+ < 5}) x] — €0, €0[>— 1.

A more detailed version of this proposition and its proof are given in part 4.3
(Proposition 4.2).

2.3. Construction of an invariant curve for the first return map using a
KAM theorem. From now on, we will not need to distinguish v from e, we work
now with

e=(gv,p) = (57827/1“)'
In this section, we fix one periodic orbit P and prove that the restriction of ¥ to
the energy level set of P can be expressed as a diffeomorphism of an annulus of
R2. Then we construct an invariant curve for this diffeomorphism with the aid of

a KAM theorem. This curve will be useful later in part 2.4 to bound the iterations
of the map ¥, and then to conclude that W*(P) and W*(P) intersect each other.

The maps V¥°® and their expression as diffeomorphisms of an annulus
of R?. Thank to the canonical change of coordinates F. of Proposition 2.2, we
have a precise labelling of the periodic orbits in the neighborhood of 0. Indeed, in
coordinates (£1,71,&2,7m2) we have the family of periodic orbits

{(070752’772)/55 + 77% = a}7

labelled by their symplectic area a. Then, we denote

Pt = F. ({(0,0,&,1m2) /&3 + 13 = a}) . (9)

In particular, given that J; is canonical, the symplectic area of P¢ is also a.
Let us denote by WU® the restriction of ¥ to the energy level set of P?, i.e. to

i n{H = H(P")} = {(q1,p1,92,p2) /01 = 6, H((q1,p1,92,p2),€) = H(P!,€)}

(see Figure 6). Proposition 2.6 below states that U* can be considered as a diffeo-
morphism of a disc of R2.

Proposition 2.6. Let us define the curve

€% =%, N W (0) N {H = H(P")}.
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Va3 + 3

FIGURE 6. Intersection of the energy level set {H = H(P*)} with
the section X;.

q2

(D Domain of \Ilg

FIGURE 7. Invariant curve I'? and size of the annulus used in
the proof.

There exists c,co such that, for a < cod?e?, the restriction U of U to the energy
level set {H = H(P®)} reads as a diffeomorphism

U2 {(q2,p2)/ G5 +p5 < c6°€%, (g2, p2) outside of C¢} — {(q2,p2), 45 +15 < wod’e’}.

The proof of this Proposition is in Part 5.5.

Existence of an invariant curve. We prove now the existence of invariant
curves for each diffeomorphism ¥¢. This will be possible by an appropriate choice
of some parameters : in this part, we chose and fix the order n of the normal form
and the power Ny of € in the Hamiltonian expressed with the three parameters
e = (g,v,pn) (see (4) above), and also a value p as a power of £. Here is the part of
the proof where the normal form is the most fully used. Precisely, we show in this

subsection the following
Proposition 2.7. There exist £y and ey, c1, ¢ such that fore < eg,a < e300+ ;1 <
et gndn > 2(ly+2), No > 4ly+5, the map V¢ := \Il?eysz_rsuoﬂ) has an invariant

curve T'% in the annulus of R? {(ga,p2)/I2 € [c16%€2, cad2?%]}.

Proof. The rest of this subsection is devoted to the proof of this proposition. For
that purpose, we use the following KAM theorem stated by Moser [20] :
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Theorem 2.8 (KAM theorem). Let
¢ :R/27Z X [a,b] — R/27Z xR
(4,0) = (a+ap) + Flg:p),p+ Glg,p))-

We assume that the map ® is exact and that there exists mg > 0 such that for all
P;
1 da
— < —(p) < my. 10
e <) <my (10)
Then there exist £y € N and dg(mg) > 0 such that if
‘F|Co + ‘G‘Co < 6O(m0) and |Oé‘ceo + |F|C£0 + |G‘Cé0 < mg
are verified, then ® admits an invariant curve of the form

{(¢,p) = (¢ + f(d),po +9(d")), ¢ € R/27Z}, (11)
where f, g are C! functions.

The following Proposition 2.9 will involve (proof below) that, with an appropriate
choice of the parameters, the maps W¢ (which are the maps Ue after a change of
coordinates, given in subsection 6.3) satisfy the hypothesis of the KAM theorem
[20] applying it with

Wi 2.0y 1 (0, 0) = (g + aZ(p), p),
U oy (4,0) = (a+a2(p) + F(q, p), p + G2q,p)).

Proposition 2.9. (see Figure 7) There exist co,c1,ce and mg > 0 such that for e
sufficiently small, for all a € [0,c96%c%] and all k < E(Me=1) — 1, in the annulus

{(g2,p2)/ 12 € [c16%€%, c26%€7]},

the \i/g satisfy

1. the map \i/‘(‘a 2. s exact;
a 1

o —m< 2 <L,

8p mo
3. |ad|or < my;

2
a 7

4 Fgck*‘%ck < mo - (56k+€4k)

The proof of this proposition is given in section 6.

Recall that after the normalization until degree n, in Proposition 2.1, we had
£47=8 in the expression of H, that we rewrote "8 = pve™o when we introduced
the parameters p and v. We recall also that we have already chosen the value of v,
v = €2, at the beginning of subsection 2.3. We now chose the values of n and Ny : we
apply the normalization Proposition 2.1 with n := 2¢y + 3 and chose Ny := 4¢y5 + 1.
Then necessarily p = £*0+! and for a < €3 Proposition 2.9 implies that the
hypotheses of the KAM theorem are satisfied in the annulus I € [c16%€2, cp62€?]
for all the maps W%, Then there exists a curve I'* of the form (11) in the annulus
Iy € [c16%2, 26262, invariant by the map ¥¢ = ¥ O

(c.62,c4t0 1)
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2.4. Proof of Theorem 1.2. This subsection is devoted to the proof of Theorem
1.2, using the notations and results contained in the previous parts. Let us fix a
and e, and consider the unstable manifold W*(P®) of the periodic orbit P®.

Our first aim is to verify that W*(P%) does intersect 31, and moreover that this
intersection is in the neighborhood of (4,0,0,0) in which ¥y N {H = H(P%)} is a
graph and also inside the invariant curve I'?. More precisely we prove below that
for a and ¢ sufficiently small, W*(P®) hits the set

2101 B(0,6) 0 (€ m. 60,m0) [ + 78 < 71677 (12)

To prove this, we use that in the coordinates (1,71, &2, 72), the unstable manifold
of P* is the tube

{(§1a7717§2’772> € R4/€1 = 0753 + 77% = Cl},

whose intersection with the hyperplane {(&1,m1,&2,m2)/m = 6} = F-1(X2) is the
circle {(0,9,&2,m2)/€5 + n3 = a}. Then for a < ¢ we can use the map Wy of
Proposition 2.4, which maps Yo onto X1 : this way, we get that W*(P®) intersects
%1 NB(0,0) (see Figure 8). Using moreover the estimate (8) of Proposition 2.4, we
get that for a < ¢;6%¢? and for ¢ sufficiently small, W*(P?) intersects ; in the set

(12).

) )
W)

FIGURE 9. Iterations of the map ¥“ on the curve C.
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Denoting by C2 the curve representing in (go, p2)-coordinates the intersection
WH(P%) N Xy, we then have two possible alternatives :

o first option : C2 and the curve C¢ of the stable manifold intersect in this
case, the proof of the existence of an homoclinic connection to P
is completed,

e second option : C and C¢ do not intersect.

Let us consider the second option. We know that both curves have the same
symplectic area a, so C2 cannot be entirely contained inside CZ¢. Necessarily, C2 is
then outside of CZ.

And we proved that ¢ is defined on the set (12) outside of the curve C%, so we
can consider U¢(C¢). Moreover, we know that for a and e sufficiently small, the
interior of the curve I'? of Proposition 2.7 above maps onto the interior of I'? with
the map ¥¢. Then U2(C¢) is also a curve whose symplectic area is ¢ and contained
inside I'?. We again have two possible options:

e first option : ¥Z(C¢) and C? intersect, in this case, the proof of the exis-
tence of an homoclinic connection with two loops to P* is completed,
e second option : ¥¢(C¢) is outside CZ, and then belongs to the domain of W¢.

Then we iterate this process. Since C? is defined as the first intersection of
W¥(P%) and ¥y, for all N (U2)N(C%) and C? can not intersect. As W9 is a diffeo-
morphism (and then is invertible), then for all Ny, No, (¥2)V1(C#) and (¥2)N2(C2)
do not intersect. Iterating this process Ny times, the set of the (V)N (C%) for
N < Ny cover a surface whose area is Ny - a. And this surface is inside the curve
I'?, whose area is finite. Then, the process must stop for one NV?, i.e. necessarily
there exists one N = N2 € N for which (¥2)"(C#) and C? intersect (see Figure 9).
And this means that there exists an homoclinic connection with N? loops
to the periodic orbit P¢. g

Remark 2.10 ((about the importance of Hypothesis (H6))). The Hypothesis (H6)
is explicitly used below in the proof of Lemma 5.3, and we use this Lemma to prove
the existence of U2

outside. of the curve C? in Proposition 2.6 above (if hypothesis (H6) was not
verified, the domain would be inside the curve). And the latter is crucial to allow
the iterations of the first return map when the curves do not intersect (see Section
2.4).

In the heuristic picture of the strategy outlined above in Section 2.1, the Hy-
pothesis (H6) is what allows to state that if the homoclinic trajectory deflects, it
deviates

inwards. (“interior” in the (q1,p1) coordinates).

3. Normal form and scaling: Proof of Proposition 2.1. This section is de-
voted to the proof of Proposition 2.1. We proceed in three main steps, constructing
the three maps of (4), (i) and (4i7) in the proposition.

Step 1. Consequences of the Normal Form Theorem 1.3. Under Hypothe-
ses (H1),---,(HG6), it is possible to find appropriate coordinates in R* such that x,
H), and (2 read

1 1
x = (q,,P,, G, P,),  HA(x) := 5p] + Swo(al + ;) + O + [x[),
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and Q(x,y) = (Jx,y), where

o

O O O+
o O O
o= OO

—1

We apply Theorem 1.3 to the family of Hamiltonians H (x) and get the existence
of a canonical transformation x = ¢, () such that

~ ~ 1 1 ~ ~ ~
H,\(7) = Ha(6nA(2)) = 551 + 5w0(@5 +P3) + Ny 2 () + R 2 (@),

where the rest En 1(Z) is a C'-one parameter family of analytic Hamiltonians sat-
istying Enx(f) = O (|z|™**) and where &n)\ is a real polynomial of degree < n
satisfying &,M(EE) = O(\Z]? +|7]?) and

Mn,k(zjlaﬁl + tal7Rwot(62752)) - Mn,)\(aluﬁla 627152) for all ¢ S R7 (13)

with
coswopt —sinwpt
Ruot = . .
sin wqt cos wot

Setting t = i—’orf, ¢ € Z in (13) and pushing ¢ to oo, we get that necessarily &n)\
does not depend on pq, i.e.

~ ~0

Mn,k(alaﬁlv Z]v27ﬁ2) == Mn,)\(zjh 627:52)-
Then identifying R? and C via (ga,p2) — (22 = G2 +1p2, Z2 = ¢2 — ip2) and defining

0 —~ _ ~0 ~ ~ ~ . .
M, \(q1, 22,Z2) = N, 1(q1, Ga, 2), identity (13) reads
—~o0

~ iwot
Mn’,\(qlae ° z2,€

—iwot= A °

Za) = M, \(q1, 22, Z2) pour tout t € R.

Then, setting t = —%22 and t = —*22 + 7, we obtain
0 wo
—~0 - _ —~o0 - —~0 -
Mn,)\(qla 22, 22) == Mn,)x(qla |22‘7 |22|) = Mn,)\(qla 7|22|7 7|22|)5
which ensures that MZ’A(QLZ%EQ) = En’/\((ﬁ, |22|) where (q1, I2) — En’)\(ahlg)
is a real polynomial. Hence

~ ~0 ~

Mn,)\(gjlﬂah §27ﬁ2) = Mn,)\(ailvzbaﬁb) = ﬂn,)\(ah EIJ% +ﬁg)

Hence we have proved the existence of a C' one parameter family of canoni-
cal analytic transformations x = ¢, A(T) such that close to the origin H,(T) =

H) (¢n, (%)) Teads

~ 1 1 ~ S
H,\(&) = 5P1 + 5@0(P3 +@3) + Hoa (@105 + @) + Ry (3),

where the rest En,\(f) is a C' one parameter family of analytic Hamiltonians sat-
isfying En)\(a?) = O (|z|™*") and where Eng\ is a real polynomial with respect to
(G1,P3 + G3) of degree less than n with respect to (qi, P2, G2), whose coefficients are
C! functions of \. Moreover, En,A satisfies

H, (@, 53+ 8) = O(N@ + 5 + @) + (@ + || + 1521)?).
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Step 2. Change of parameter \. Expanding En)\ we get that E)\(%) reads

Hy(7) = 37+ 3BO0@ + ) — S & + &0 + BN @ +73)
+Qn7)\(alaﬁ% + (}%) +En,)\(§)v

where

Q, @3 +@) = o((lal + &l + FD)*).

and where ¢, ¢5,¢3 and @ are C! functions of \ satisfying @(0) = wp, ¢;(A) =
c10A + 0(N), ¢5(0) = co9. Moreover,

because of hypotheses (H2), (H3) et (H4). and wp, c19 and cgp are different
from 0.

Finally, since we only consider in this paper the “half bifurcation” corresponding
to c10A > 0 (hypotheses (H3) and (H5)), the Implicit Function Theorem ensures
that the identity

g2 =¢,(\) = cioA +o(N)

can be inverted in a neighborhood of the origin, i.e. A = 5(52) where 6 is a function
of class C*.

Step 3. Scaling. We perform a scaling in space and time suggested by the normal
form of order 3. Indeed, for any n, the normal form part of the Hamiltonian admits
an homoclinic connection to 0 which depends on £. Moreover, for n = 3 this
homoclinic connection ﬁg can computed explicitly and has the form

hg(t) = (gQ q{L(gt)7g3 pfll(g )70’0)

To study the dynamics close to this homoclinic connection, it is more convenient
to rescale the system so that the rescaled normal form of order 3 of the rescaled
Hamiltonian admits an homoclinic connection which does not depend on £. So we
perform the following scaling in space and time

~ 1 2 ~ 1

~5
ql - 2\/552(;:') £ gl’ q2 - 2\/5’52(5) g2 Qz?
~ 1

_ - R R (14)
P =575 e ¢ Pe P2 = 57556 ¢7 Py

This scaling is a conformal mapping which is well defined for & small since ¢2(€) =
c20 + O(£?) and since by hypothesis (H4), coo # 0 holds. Note that the change
of coordinates on (qi,p1, gz, p2) is not canonical. Nevertheless, together with the
scaling in time, for € = 0 the rescaled differential system is an Hamiltonian system
whose Hamiltonian reads

8¢2(€) i

- 1 ~2 1 ~3 1 ~5 1 ~3
6 vimmt W avine P wvine b wvam@ e Py

Moreover, to work with regular functions of the parameter, and because of the
square root in the scaling we also perform a last change of parameter

e2 =2
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For € €] — €9, 0[ U |0, e0[ with g9 = /€0, we get for z = (¢,,p,.q,.p,) the rescaled
Hamiltonian

8¢y (8) ~
Hp) = 20 0.(0.)
=1p2—1q2+2\/§q3+@(q >+ (15)
of1 T 94 41T 92 \dy TPy

+e' N, (g, 45 +93) + e TR, (@),

where NV, _ is a polynomial of degree less than n with respect to (g,,g,,p,) whose

n,€
coefficients are C! functions of £ and which satisfies

Npolap @ +82) =t [Ga(e)2, (6 + 2) + Qoo (19,0602 +122) ]
— 2 2 2 2 2 21\2
=0 (lg,llg2 + B2l + €2(la, > + la2 + p2))?) .

Recall finally that En)g is a C! one parameter family of analytic Hamiltonians sat-
isfying R,, #(z) = O (|z|"*!) for all € in ] — £y, &o[. Thus the explicit formula

1 ~

R R, 2 (

R, () := o12,4n—8

1 4 1 6 1 5 1 =5
2\/552(52)5 4> 2\/552(52)5 Dys 2\/552(52)5 4y 2\/552(52)E 22)

ensures that R, _(z) is a C' family of the parameter e. O

4. Existence of the first return map on ¥; : Proof of Propositions 2.4 and
2.5. This section is devoted to the proof of Propositions 2.4 (given in subsections
4.2) and 2.5 (given in Part 4.3). The previous subsections 4.1 is devoted to the
proof of a lemma used to prove these propositions.

4.1. Smoothness of the flow apart from the rotation. The following lemma
will be the key to prove the smoothness of the first return map, and is a consequence
of the Normal Form Theorem applied up to degree n. This lemma is first used in a
weak way (the C! smoothness is sufficient) in the proof of Proposition 2.4 below.

Lemma 4.1. Denote

1 0 0 0
Ro e (I o) o1 o0 0
=\0 R) T |0 0 cos® —sinf|’
0 O sinf cosf

and let ¢(t, (q1,p1,q2,P2), &, V, 11) be the flow of the Hamiltonian
w(e 1
H((q1,p1,q2,p2),6, v, 18) = —qip1+ %(qg +p3) + 5@ +p1)°
+vN, (g1 + p1, 43 + p3, €) (16)
+vpe™ Ry ((q1,p1, G2, p2), €).

Then

¢(t7 (QI»PI»(I27p2);57 v, ;U/) = RW(Z)t¢(t7 (Q1»p1»Q2ap2)a57 v, ,LL)7

2e

where qz belongs to

Cl (] - 50750[3vck0(R5)) ) where ko := E <NO4 1) )

meaning in particular that 5 is C* with respect to (t,(q1,p1,q2,p2), &, v, 1) and C*o
with Tespect to (t7 (ql;pla q2ap2)a v, :u’)
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Proof. Denoting

(rb(t? (q17p17q25p2)7€3 v, :u) = Rf%td)(t (Q1ap17 q27p2)7€7 v, :u)7

given that (qi,p1) and (g5 + p3) are preserved by the rotation Ruc,, ¢ is then the
22

flow of the nonautonomous Hamiltonian

1
H(t,(q1,p1,q2,p2), 6,5 1t) = —qip1 + =(q1 +p1)° + Ny (g1 + p1. G5 + D3, €)

2
+pue™ R (g1, p1, Ruc , (42, p2), €).-
2e

Thus 5 has the smoothness of Vxﬁ, and in the definition of H all is C°° in terms

of (t7 (thla q?7p2)7 v, ,LL) and C' with respect to (t (thl, q?ap2)a &, /.L), except
Rw(a)t(qQ,pg) (when £ = 0). But the derivatives of Rw(5> read
262

22

D(q2¢p2)(R%t(Q2,p2)) = R@t(qmm), (17)
w(e)
Rw e == QRW e
7 Rete), (42, 02)) 53 (Rt (a2, p2),
0 28 (e )+4€w(5)
g(ﬁgt((bym)) = 1ed QR%JQ%PQ)-

We then get the estimate

1
‘VXRn<q1;p1aR%t(qQapZ)ﬂz) ok = 6(20 (&WC) .
So Vx (vpe™ Ry ((q1, p1, R, (g2, p2),€)) is a CF-function in the neighborhood of
22
¢ =0 as soon as 4k +1 < Njy. O

4.2. Existence of the global map from Y5 to ¥; : Proof of Proposition
2.4. Let us introduce

{QIaplaq27p2 EIRél/ql—(;_ 6}
= {(q1,p1,42,p2) €R*/qu = 6 + 36} .

We proceed in several steps.

Step 1. Case ¢ = (£,0,0). Let us prove the existence of some TF(&;,0) such
that for all (61, 771,52,772) n

Fo H(Z2) N {(51,771752,772)/0 <6 < %5, Vi < ;5}7

H(T*(&1,6), Fol€r,6,€,m2), (£,0,0)) belongs to Eli.

To prove this, we first recall that when € = (£,0,0) the flow and Fy are uncoupled
and that ¢g, p, (-, .,€,0,0) and Fy do not depend of ¢ (see Part 2.1 for the flow and
Proposition 2.2 for Fy). From these facts, we get first that if the 7% exist, they are
independent of (€2,72) and €. Let us prove their existence working with the

restriction of the flow to the (¢1,p1)-plane.
We then use the phase portrait drawn in Part 2.1: let us study
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which of the orbits hit ¥ and ET. . For that purpose, we work first in the
(¢,,p,) coordinates of Part 2.1 and use the parameter a of (2). For ¢ sufficiently
small, if an orbit hits ¥7, then it necessarily hits also 7. Let us denote by a; the
parameter of the orbit passing through the point (gl,gl) = (?5, 0), which reads
also (q1,p1) = (%5, %5) Then the orbits labelled by any a € [as,0] hits ¥7. A
short computation gives
1
a5 = —552(1 — 40).
It remains now to

get back to (qi1,p1)-coordinates. and then to the local coordinates (&1,71).
Firstly, from the study of the phase portraits, we get that the condition a@ < 0
means in local coordinates that & > 0. Let us then study the condition a > a5, by
studying the orbit labelled by ag, in the neighborhood of 3.

On Yo, m; = 0 is satisfied ; let us work in a domain a little larger in (g1, p1)
coordinates

1.3
{(Q17p1)7q1 Z Oapl S [567 55]}5 (18)

and look for a condition on ¢; which ensures that (g1, p1) belongs to an orbit satisfy-
ing a > a5. We consider the orbit @ = a5 more precisely on the half part satisfying
p, = 0, thus we obtain

1 3
q, € [\@55, \/555].

From the equation p, = \/ﬁ — 4\/5@? + a5 of the orbit labelled by a5, we compute
a lower bound of ¢; on this orbit. Let us denote by ¢7” (g 1) a graph description of
the orbit ; for ¢, in [\/5%6, ﬁ%(ﬂ, we get

N 1 1 4v2¢% — s 1
qls(gl) = —(Ql - \/g? — 4\/5@? +a5)=— -1 > ﬁd'
vz V2,4 \Jat - 4vag] +as

Thus we obtain that if ¢ € [0, 6] and p; € [16, 28], then (g1,p1) belongs to an
orbit labelled by a > as.

Finally. | with the aid of (vi) of Proposition C.1, and given that I is preserved
by the flow, we get that for § sufficiently small, all the points

1 1
4 [e2 | 2
(q1,p1,G2,p2) € X2 N Fy ({(51»771752,772) eR*,0<& < 7166’ § +m5 < 25}>

belong to orbits hitting ¥; and ZT, which achieves the proof of existence of
T*(&1,6) as claimed above.

Step 2. Upper and lower bounds for T+ (&;,6). (these bounds are useful to
get back to the general case v, u # 0, see Step 3). Step 1 ensures the existence of
the TF(&;,6). T~ and T are also locally defined by the Implicit Equations

1
Ggn (T, Fo(&1,6,0,0), (£,0,0)) = 6 £ 30
As in Step 2, we get the equivalent Implicit Equation

Bar (T, Fo(£2,6,0,0),(2,0,0)) = 5 & 36 (19)
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Let us prove that (19) satisfies the hypotheses of the C¥* implicit function theorem
in the neighborhood of each (T*(&1,6),&19). On one hand, the result of Lemma
4.1 ensures that this equation is C*°. On the other hand,

aT(%'QI(T’ (q17p1’QQ7p2)7(570?0)) = 8P1H($(T7 (q17p17QQ7p2)5(€7070))a(€70a0))7
where
3
O H((01,P1,42,92):(,0,0) = —a1+ (a1 +p1)*
and

(,5111 (Ti(glo,fo(glo,d,o,()), (Eaga O)))
=)+ %(5 ¢p1 (Ti(£107]:0(£10757070)7 (Eu070))) < Y

hold because of the definition 7%. Then the Implicit Functions Theorem applies

for § sufficiently small. This ensures that 7% are continuous with respect to &1, and
thus bounded.

Step 3. Existence of T7(X,e). From Step 1, we know that

(bth (T_(é-la(s)ufo(gh(su 627”2)3(83070)) = 557 (20)
¢Q1 (T+(€175)a-7:0(£17§a 527”2)’(‘5’070)) = gé (21)

Recall that (g1, p1) are preserved by the Ry, so that ¢, = $q1. And Step 2 ensures
that there exists T~ (6) and T+ (8) such that for all &

T~ (8) < T (€1,6), T+ (€1,6) < T*(9).

Then, from the C'-smoothness of aql (Lemma 4.1 for Ng > 3), together with (iv)
of Proposition C.1, we obtain that for v and p sufficiently small,

B0, (T™(6,0), Fol60,5,E2m),2) € [36,50], (22

buu (T (60,0), Folr,6,62,m),2) € (36, 70]. (23)

Thus we get the existence of T1,(X,e) thank to the Intermediate Value Theorem.

Step 4. Uniqueness of T;,. For that purpose, it is sufficient to show that in the
set

1 7
{(CI17P17(12aP2)/45 S q1 S 167 |p1| S (;u \/—72 S 6}7

the flow satisfies dditl < 0. And indeed
da

3
a -+ (@ +P1)2 + v0p, (Nn(q1 +p1,q§ +P§»E) (24)

2
+M5N0Rn<(qlvp17 Q2;P2)a 5))

1 3
< ——6+298%+ M.

dga

, ‘i <0, which ensures the uniqueness of TF..

Then, for v and § sufficiently small
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Step 5. Upper bound (8). We use that the trajectories of the flow satisfy

d 2+ 2
’%dtm) |HV€N° (P20p, — q28qz)Rn((QI7p17QQ7p2)a5)|

< Muve™o  for (q1,p1,q2,p2) € B(0, po).
Given that Ty (F-*(q1,p1,q2,p2),€) < TF(5), we get the upper bound (8) claimed

above. O

4.3. Existence and smoothness of the entire first return map: Proof of
Proposition 2.5. The following Proposition is a more detailed version of Propo-
sition 2.5.

Proposition 4.2. There exists a first return map
W30 F ({60, &2,m)/0 <m < 6,/ 415 < 0}) x] - eo,20
(pl’ QQ7p27§) = R%T(phq%p%g)(é(T(pl) QQap27§)7 (6ap1a Q27p2)7§)7

where T belongs to C* (] — £0,&0[3,Co (RS)) with ko defined in Lemma J.1.

Moreover, denoting ¥ = (¥,,,---,V,,), there exists M such that for ¢ and 0
sufficiently small,
|Wo, ((p1,02,12),8)* + Vp, ((p1, g2, 12),€)* — (65 + p3)| < vM&S? (25)

holds on the domain of V.

Proof of the existence. As mentioned in part 2.2, observing the local phase portrait
in coordinates (&1, 71, &2,m2) in B(0, pf), the local map from 31 to Xq is very simple,
following the level sets

{(&1,m, &, m2) /&m = C*°, &5 +n3 = C**}.

This local map exists on the set {(£1,11,&2,72)/0 < n1 < d}. We want to compose
this local map with the global map Wy of Proposition 2.4 whose domain is

%7 ({6m e/ <6 < oo G B <o),

Then we need to trim the domain of the local map so that its range is included in
the domain of Wy. Since &5 + 73 and &7; are conserved by the flow, it is sufficient
to restrict the local map to trajectories for which & + 13 < 6% and [&m1| < §4-0.

We proved in Lemma 5.2 that if |n;| < 26 and /g3 + p3 < 26 then

3
&1 = €7 (m, &, m2) < 55.

So it is sufficient to trim the domain of the local map to the set
21 1
0<m <4 and |m| <9, \/QS+P§S5andm Sgﬁazﬂ&

and get then the domain of ¥ stated in the Proposition.

Proof of the smoothness. We showed above the existence of T'(p1, g2, p2,€). Recall
that T is locally defined by the implicit equation given by the intersection with 3:

¢Q1 (T’ (6ap17 QQ7P2),§) = 4.
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Recall that ¢4, = 5,11, so that we get the equivalent implicit equation

$q1 (Tv (63 D1, q27p2)7 §) = 6 (26)

Let us prove that (26) satisfies the hypotheses of the C*° implicit function theorem in
the neighborhood of each (T(p1g, G20, P20, Eo)s P10, 4205 P20, Ep)- 1f they are fulfilled,
we can construct a Cko map T*(p1, g2, p2, €), and the uniqueness of the first return
ensures that 7 = T* and finally that T is Cko. The result of Lemma 4.1 ensures
that this equation is C*°. Let us prove that all ((q1,p1, g2, p2),€) in

1
YiNFe <{(§177717§27772)/0 <m < ﬂ& V& +m < 5}> x] — €0, 0[%,

satisfies Bqul (T, (q1,p1,q2,P2),€) # 0. We have

aT(gql(Ta (q17p17QQ7p2)a§) = 8p1H((’£(T7 (qlaplaq27p2)7§)7§),

where

3
Op H((q1:p1,02,2),8) = —a+ 5 (@ +p1)® + 10y, No(q1 + p1, 45 + p3.€)

+MV€N08p1Rn(<q1;pla q27p2)’ 8))

Given that we work in B(0, pg) (see the truncature in Part 2.1), 9,, N,, and 9,, R,
are uniformly bounded. Moreover,

o,

(/j)q1 (T(p17q2)p2)§); (67p17q27p2);§)

AN

‘;m(T(plaCIz»PQ,é)»(571)17(]2472)@) =~ 0

hold because of the definition 7" and the range of ¥y (Proposition 2.4). Then

~ 3
Ordq, (T (P10, G205 P20, E0)s P1os 4205 P20, Eg) < —0 + 5(2(5)2 T My <0
holds for 6 < % and v sufficiently small.

Proof of the estimate (25). Recall how ¥ was constructed (proof of the existence
above). We use two previous results: on one hand, in local coordinates the flow
preserves &2 + 13, and on the other hand the estimate (8) gives an upper bound of
the variation of ¢5 + p3 by the map Ws.

To complete the proof, we moreover compute estimates of the difference between
&5 +n3 and ¢3 + p3 on X and X by the changes of coordinates . and F.'. We
detail the proof for F, on X5 ; we more precisely need estimates for (i, M, o, 72)
in the domain of ¥y. Recall that we denote F; := (91,6, Y16, V2,6, ¥2,e) 5 (vidi) and
(iz) of Proposition C.1 allows to get that, for all (£1,m1,&2,m2) € B(0, pp),

2.2 (61,11, €2,m2)% + V2. (€1, M1, E2,m2)% — (€5 +15) |
< Mov|(&,m1, &2, m2) P @Mov| (&1, m1, Lo, m2) |° + 2] + |m2]).-
For (&1,m1,&2,12) in the domain of Wa, we then obtain
Q2.6 (€1,m1,62,m2)% + 2 (§1,m, E2,m2)" — (€5 +m3)| < vMGS®. (27)

The same strategy for the change of coordinates F_ Lin the domain of ¥ allows to
achieve the proof of (25). O



26 TIPHAINE JEZEQUEL, PATRICK BERNARD AND ERIC LOMBARDI

5. Restrictions of the first return map seen as diffeomorphisms of an
annulus of R? : Proof of Proposition 2.6. This part is devoted to the proof of
Proposition 2.6. The proof itself is in Part 5.5. The previous parts are devoted to
the proof of lemmas useful for the proof: in Parts 5.1 and 5.2 we prove respectively
that the center-stable manifold W (0) and 3; locally read as a graphs. In Part 5.3
we prove two lemmas concerning the geometry of the different energy level sets on
Wes(0). And in Part 5.4 we prove that the level sets {H = H(P%)} locally read as
graphs and give a description of its position with respect to the graph of W<(0),
thank to the lemmas of the previous part. Finally, with the aid of all these graphs
we can prove Proposition 2.6.

From now on, we only need two of the three parameters € = (¢,v, ) : we only
study the influence of the remainder on the dynamic (we explained it in Part 2.1
when we introduced the parameters g, v, u). Thus we introduce the notation

g = (g, ).
5.1. In ¥;, the center-stable manifold W*(0) reads as a graph.

Lemma 5.1. For § sufficiently small, there exists an analytic function p{’. such
that

Wes(0) N Xy NB(0,0) = {(QIap17(Z2ap2)/QI =0,p1 = pi“;(qz,pz)} :
Moreover, in B(0,6), p$°, satisfies

-7:;1(57]917(]2»102) € {/’71 > O} < p1> pifg(q27p2)' (28)

Proof. We proceed in three steps.

[

0 < pp, for any (9, p1, g2, p2) in B(0,0) the equivalence
(57}717 q27p2) S WQCS(O) < wig((s?pl? QZvPZ) = 07 (29)

holds. Then, statement (vii) of Proposition C.1 ensures the existence of My inde-
pendent of £ such that

Step 1. existence. Recall that we denote F. ! := (1091 crPaerba,). For

1 (a1, p1,q2,02) — p1| < Mol(q1,p1,q2,p2)* for all (g1,p1, g2, p2) € B(0, pp).
So for § sufficiently small (independently of €), for all (g2,p2) € B(0,6), we get

wi§(67 _67 Q27p2) <0< wig((sa 6, Q27P2)~
Then the Intermediate value Theorem ensures the existence of a p{*.(ga, p2) € [, J]
such that
V1 (0,07%(q2,2), 42, p2) = 0.

Step 2. uniqueness and smoothness. We use the implicit equation (29). Dif-
ferentiating (i77) of Proposition C.1 with respect to p; we get the existence of a
convergent power series M (convergent on a ball B(0, pj)) independent of & such
that

Op, (Y1 (q1,p1,q2,p2) — p1) < (@1 +p1+g2+p2) Mi(q1+p1+g2+p2).
See Appendix B for definitions and properties of the relation <.
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Then, if 6 < pg, for all (¢1,p1,q2,p2) € B(0,0),
‘8171 (wig(QI>p17q27p2) _p1)| S 4(5/\41(46)

So for ¢ sufficiently small dp,%; . > 0 in B(0,0). Thus, for any fixed (g2, p2), the
function py — 9y, (6,p1,92,p2) isistrictly increasing, and then we get the uniqueness
of the pf’, (qg,pg)iof Step 1. Moreover, the fact that 0,17 . is nonzero allows to
apply the analytic Implicit Function Theorem to Equation (29) in the neighborhood
of any fixed (4, p*. (g2, p2), g2, p2) : we then obtain the analyticity of p§°..

Step 3. (28). holds given that the function p1 + 7 (6, p1,q1,p1) is increasing.
o e

5.2. ¥; as a graph in local coordinates (£1,71,&2,72)-

Lemma 5.2. Fore,v,u < eqg and § sufficiently small, there exists an analytic map

. defined on the domain Bgs(0,26) := {(n1,&2,m2)/|m| < 26,4/&3 +n3 < 26}
satisfying

FoA S NB0,26) = {61, 6,m) /€1 = €72 (1,€2,72), (1, €2, 72) € Bs (0,20)}

Proof. The proof is very similar to the proof of Lemma 5.1, so we only detail what
is different.

Step 1. Existence. Recall that we denote F. = (p1,c,%1.c, 92, %2,). As in the
Step 1 of Lemma 5.1’s proof, thank to the result (vi) of Proposition C.1, we prove
that for ¢, £ sufficiently small,

1 3
@1@(55, m,&2,m2) —0 <0< 801,2(557 m,&2,m2) — 6

holds for any fixed (11, 2, 72) in Bgs (0, 26). We obtain the existence of p°. (11, §2, 72)
in ]16, 36[ thank to the Intermediate Value Theorem.

Step 2. Uniqueness and smoothness. We proceed as in Step 2 of Lemma 5.1’s

proof, showing with the aid of (i) of Proposition C.1 that for ¢ sufficiently small
O p1,6(81,m1,€2,m2) > 0

holds for all & in |16, 26 and all (1, &2, 72) in Bgs (0, 26). O

5.3. Positions of the W*(P%) on the graph of W (0). The following lemma
ensures that the energy of P® is strictly increasing in term of a.

Lemma 5.3. There exist ag,e1 > 0 and a convergent power series My such that
foralle,v,u < ey and all a,a’ < ag

1. |H(Pte) — W(E)a| < Za’My(a) holds

£2

2. ifa<d then H(P% ) = K.(0,a) < H(PY &) = K.(0,d).

Proof. Recall that K. was introduced in (5), and P¢ was defined by (9), so that for
any fixed (£2,4,72,q) such that f;a + 77%7@ =a

H(P,e) = H(F(0,0,8,a,72,0),£) = Kc(0,a).
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Denoting
‘Fi - -FO = V(@i,ga wll,ga SD/Q,ga 1/}/2@)
and using the particular form of Fy stated in Proposition C.1, we get

]:5(07 0, 5241’ 772,(1) = (0, 0, 52711) 7]2,a) + V(‘:Oll,ga wi,g’ 90/2,57 %,g) (07 0, 52,117 772711)' (30)
Let us denote
w(e)
22
Hj is of order 3 in term of ¢; and is C' in term of € = (&, v, ). Thus H3 admits a
convergent upper bound for < uniformly in . So do ¢} _, ¥ ., 5 ., 15 . as stated in
() of Proposition C.1. We finally obtain the existence of a convergent power series
M independent of ¢ such that

H(q1,p1,q2,p2,€) = —qup1 + (q% +P§) + Hs(q1,p1,q2, P2, €)-

H(F-(0.0.6.m2).2) = 5 5 (& +18) < ZMa(&a.m). (31)

Moreover, thank to the particular form of K, = H(F.(-),€) stated in (60), we get
that M3 can be chosen of order 4 and as a power series of £5 +73. Thus there exists
a convergent power series M such that

K.(0,a) — %a < 512@2/\41(@), (32)

which achieves the proof of (i) of the lemma. As a consequence of (32), there exist
agp and a real M7 such that
w(e)
DR
So, given that w(0) > 0 (Hypothesis (H6)) for v sufficiently small (this small size is
independent of ¢) and a < o’ < ayg,

H(PY &) — H(P%,e) = K.(0,a") — K.(0,a) > 0. (34)

]

v
0aK:(0,0)1q—0 = for all a < ap, 92K.(0,a), < €—2M1. (33)

Remark 5.4. Hypothesis (H6) only appears in this lemma ! But in an essential
way (to derive (34) from (33)).

We introduce in the following lemma the diffeomorphism g. which is the restric-
tion of F, to X1 NWe(0), seen as a map from R? onto R? thank to the graph form
of W<4(0) stated in Lemma 5.1. The following result gives a hint on how the stable
manifolds W#(P®) of the P? intersects with ¥; (recall that they are in W(0)).
Observe that in the (g2, p2) coordinates, these intersections are the images through
ge of the circles of area a. The following Lemma describes some properties of the
ranges of the circles through the map g..

Lemma 5.5. Let C, := {(£2,m2)/3 + 13 = a} circle of area a in R?, and let us
introduce
ge : Bre(0, %5) — R?
(527"72) = (@2,§7w27§)(§§7§(07527772)70762’772)a
where we recall the notation (Y1,6,Y1.e,P2.e,V1,e) = Fe. Then for § and v suffi-
ciently small,

(a): g<(Cq) is a Jordan curve,
(0): if a < d’ then g¢(C,) is inside g<(Cy).
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Proof of (a). Given that C, is a Jordan curve it is sufficient to show that g. is an
homeomorphism from Bgz(0, 36) to g=(Bgr2(0, $6)). For this purpose, let us prove
that the map

9z :(q2,p2) = (Pa.c, s ) (6, P (q2, P2), G2, P2)
is the inverse function of g., where (¢, %1 ., 05 %5.) = .7-'9’1.

We first verify that g_ is well defined on g.(Bg:(0,26)). On one hand, Lemma
5.1 and Proposition C.1 ensures that g- is well defined if /g3 +p3 < § and
(6, p5°.(q2, P2), @2, p2) is in B(0, ppy), and that Ip§°. (g2, p2)| < 6. On the other hand,
thank to Lemma 5.2 and (vi) of Proposition C.1, we get that for v sufficiently small
g:(Br2(0,16)) € B(0,6). Then g- o g. is well-defined for small values of v and
26 < pp. B

Let us prove now that g o g, is equal to identity. From the definitions of 512’5
and g. and given that - -

]:2(512@(03 627 7’2)) 07 527 772) S wes (O)

(because 11 = 0), we get that

(0,05%.(9:(62,m2)), 9e (€2, m2)) = (D125 V1e, P00 2,6) (€77(0,€2,72), 0, &2, 72).

Thus

g; °9§(§2a7l2) = (@2_@1?2_,;)(]:;(512,5(07§2a772)70a§2a772)) = (527772)'

This achieves the proof of (a).

Proof of (b). Let us first show that g. preserves the areas. Indeed, let C be a curve
of Bg2(0, 26). We denote by A(C) the symplectic area of C in R? endowed with the
restriction of © to R2. Given that the curves of R*

{(6177717527 772)/51 = §IZ:§(0a q27p2)7771 = 07 (527772) € gg(c)}

{(q1.p1, 42, p2) /a1 = 6, p1 = P5°.(q2. p2), (g2, p2) € C},

are respectively subsets of {(&1,71,&2,m2)/m = 0} and of {(q1,p1, 92, p2)/a1 = 9},
their areas are respectively A(g:(C)) and A(C). So, given that F, is symplectic and

thus area-preserving, we get

A(g=(€)) = A({(&1,m1,&,m2)/6 = 7200, q2,p2),m = 0, (&2,m2) € g=(C)})
= A(fé({(gla 771752a772)/€1 = £E§(07 q27p2)7771 = 0’ (5277]2) € gé(c))})
= A({(qlvplv q27p2)/q1 = 5,]71 = piqg(q%p?)a (q27p2) € C}) = A(C)

So g. is area-preserving.

The result (a) ensures that g.(Co) divides g.(Br2(0,16)) into two connected
subsets. Given that g. is an homeomorphism (see the proof of (a)), ge(C15) belongs
to one of these subsets and g.(C,) to the other. Area preservation ensures that
9=(C15)’s area is greater than 9<(Car)’s area, so g.(C,) is inside g.(Cor) and 9:(Cis)
is outside. ]



30 TIPHAINE JEZEQUEL, PATRICK BERNARD AND ERIC LOMBARDI

5.4. In ¥, the energy level set of P® reads as a graph ; position of this
graph with respect to the graph of W< (0).

Lemma 5.6. Let us define

w(e) o
2¢2 (qg +p%) - H(Pgaé)'

For § sufficiently small and a < %52, for € sufficiently small, there exists pfa such
that B

{(ql,pl,qz,pQ)/H((thhqz,pz),é) = H(Pﬁaé)} NX:NB(0,0)
m{(leplquaPQ)/‘Eé(qg +p§3a)| § 52}
= {(Q17p17QQ7p2)/q1 =0,p1 = pi.(qe,p2,a), (g2, p2) € Br2(0,6), |he| < 52}

he(q3 + p3.a) =

Moreover, p{{s reads

pfg(Qz,Pz, a) = pi (g2, p2, he (g5 + p3,a), €), (35)

with pi analytic with respect to (q2,p2, h) and Ct with respect to € ; more precisely
pil belongs to C*(] — eo,0[%,.A) (see Definition 1.1 of Part 1).

Proof. We proceed in two main steps.

Step 1. Existence. Let us denote Hs := H — Hy where H> is the quadratic part
of H. We get

H(5,p1,q2,p2.€) = H(P &) <= h(¢5 + p3,a) = 6p1 — H3(8,p1,q2,p2,£).  (36)
We first consider h as an independent variable, i.e. we consider the equation

h:(spl_H3(6aplaq2ap27§)7 (37)

From the explicit expression of Hs for v = 0 and given that Hz is C' with respect
to v and all its variables, for § and v sufficiently small, we get that

626 — H3(67 267 q2,pP2,&,V, IU/) > 627 0- (_25) - H3(67 _257 CI27p275707M) < _62-

Thus the Intermediate Value Theorem ensures that the equation (37) admits a
solution pi (g2, pa, h, ) € [0, ] when |h| < §2.

Step 2. Uniqueness and smoothness. From the explicit form of H3 when
v = 0 and given that Hj is C! with respect to v and all its variables, we get that
for § and v sufficiently small, for [p;| <,

1
apl(épl - H3(67p17q27p27§)) > 5(5 > 0.

Considering the implicit equation (37) and proceeding like in the Step 2 of Lemma
5.1’s proof, we then get the uniqueness and the analyticity of pi. (|

The following lemma is a refinement of Lemma 5.6: it gives an expression of the
domain of pf in terms of (go,p2,a) and a description of the position of the graph
pi with respect to i
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Lemma 5.7. There exists co such that for § sufficiently small and for a < cyd?e?,
the function p! satisfies

1
{H=H(P")} N1 N B(0,0) N {(q1,p1,q2,p2)/I2 < §w06252}
1
= {(thl,(h,}?z)/(h = 6,p1= p{ (¢2,p2,0), I < 2w052€2}

Moreover, for all (q2,p2) € g:(Br2(0,6)), p{'.(q2,p2,a) > p§°.(q2,p2) holds if and
only if
(q2,p2) is outside of C := {(q2,p2)/p1" (42, P2, a) = P{°. (g2, p2)}- (38)

J4!

we arein 21

O = H(P'),,

|
2 (g20¢p20)
|

'@wm@) ®

——

FIcure 10. In X;, positions of the energy level set {H = H(P®)} and of the
center-stable manifold W (0).

Proof of the domain of pif. Recall that

~ w(e a
he(a3 + 2.0) = 155 3+ 02) — H(PE. )]

On one hand, given that w is continuous, for € sufficiently small we get
w(e)
2e2
On the other hand, from (¢) of Lemma 5.3, we get

1 1
12§§w05252 = | (q§+p§)|§§62.

a a w(e) w(e) w(e)
H(PL )| < [H(PE g) = 5 a| + |5 5] < @ Maa) + |5 5al.

So, there exists ¢y such that if a < coe?0? then |H (P2, g)| < 56. This proves the
expression of the domain of pi’ claimed in the lemma, given that if I, < %w05252
and a < cpe?6? then |he (g3 + p3,a)| < 62 O

Proof of the equivalence (38). Recall that g. was defined in Lemma 5.5. First, let
us prove that C¢ = g-(C,). For that purpose, we work on the intersection of the
domains of p{{é and pi%.. We consider then g2, ps,a such that Io < wpé?e? and
a < co6%e?. Using Lemma 5.3, for € sufficiently small we get that
(57pi,5§(Q27p2)7 q27p2> € {(Q1apla qupQ)/H((Q1ap1a Q27p2)7§) = H(ngé)}
= Kc(0,(9- " (g2,02))5, + (92 (a2, 02))3,) = Ke(0,a).
<~ g '(g2,p2) € Ca,
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which proves that C¢ = g.(Ca).

Let us consider a fixed value (g2, p2g) outside of g.(C,) and suppose that more-
over (gag, p2g) belongs to g-(Br2(0,d)). Then Lemma 5.5 ensures that there exists
a’ > a such that (gaq, p2g) € 9:(C,,). Thus given that C? = ¢.(C,), the proof will be
achieved if we show

p{{é(QQ»ana/) <p{-{§<q2ap27a)' (39)
Recall that p{’_ is defined by (36), i.e
w(e "
O 3+ 02) — H(P.2) = 00 (42, 2.0) — Hy(6.pfL (2.2 0). 22,8, (40)

Recall also that we proved in the Step 2 of Lemma 5.6’s proof that

p1 > 6p1 — H3(0,p1, g2, p2, €)
is strictly increasing for [p;| < d. Finally, Lemma 5.3 ensures that H(P¢,g) <
H(P£/7§), so that (39) is a consequence of (40). This achieves the proof of (38). O

5.5. Proof of Proposition 2.6. Let us define
e {(q2,p2)/ 45 + p3 < ¢6°€%, (g2, p2) outside of C&} — {(q2,p2) /a5 + p3 < wodc?}

(Q27p2) ’_><\I]§) (p{{(Q27p27a)7CI27P2)-

(a2,p2)

We proceed in several steps.

Step 1. Let us prove first that for any ¢, for € sufﬁciently small, the set

{(Q1,P1,Q2,P2)/Q1 =0,0 <p1 —p7%(q2,p2) < 5779 @ +p3 < ¢’ 2} (41)

- 24/\/1
is a subset of ¥’s domain.
Firstly, the equivalence (28) of Lemma 5.1 ensures that
P1e(q2,p2) <p1=m >0.
Secondly, let us prove that

1 1
—i= ) < =6 42
|— 24M |wla( planap2)‘_ 24 N ( )
where we recall that ]-"gl = (P10 V1 erPaer ¥y ). On one hand, the definition of
p§°. ensures that 11 (6, p%. (g2, p2), g2, p2) = 0, and on the other hand from Lemma

B.3 we get that

Ip1 — p1’e(q2, p2)

V10,1, 42, p2) — ¥ (6, P7°.(¢2, P2), G2, p2)
=< 10p, 01 10, P51 (g2, P2) + D1, G25 P2) 1 — DT (g2, p2)|-

Then, from Lemma B.2 and (¢i¢) of Proposition C.1, we obtain

[1 (6, p1, 42, p2) — U1 (6, DT (g2, P2), @25 P2)| < Molpr — pT (g2, p2)|-

This achieves the proof of (42).
Finally, for ¢ and § sufficiently small,

q§+p§§cé2u=> £§+n§§5.

Indeed, this result is a consequence of (vii) of Proposition C.1.



HOMOCLINIC ORBITS WITH MANY LOOPS FOR 0%iw RESONANCES 33

Step 2. domain of ¥Z. Let us prove now that for c sufficiently small, the set

Sy N {H = H(P)} N {(q1,p1,42,p2)/ (g2, p2) is outside of CZ, g5 + p3 < cdc”}

is a subset of the set (41), and then also of ¥’s domain.
Firstly, observe that (38) ensures that

(q2,p2) outside of C = p{' (¢2,p2, a) > p§° (g2, p2).-

Secondly, let us show that for ¢ and e sufficiently small,

J.

1
G +ps < c6%e* = pl (g2, p2, @) — p§°(qa, p2) < TYvA

On one hand, we know that on the curve C¢, p(gq, p2,a) —$°.(g2,p2) = 0. On the
other hand, from the definition of p{*,, we get that

E?

_ Dgsp2)¥1 (
ap1 1/1f,§
and so (ii¢) of Proposition C.1 allows to obtain that

|Dpf§((J2,p2)‘ <2

for ¢ sufficiently small. From the definition (36) of pif we get in a similar way that

Dp$°.(q2,p2) = 5, 1% (q2,p2), @2, p2)-

o|Q

|Dq2,P2p11LI(CI2»p2» a‘)‘ S
Thus we obtain that

CS C
% +p3 < c6°e* = |pi' (g2, p2, @) — i, (g2, p2)| < <2 + 8) Ve,

So, for ¢ sufficiently small, the result claimed in the summary above holds.

Step 3. range of ¥2. Let us prove that the image of (41) through ¥ is a subset
of the set where the energy level set {H = H(P%)} reads as the graph of pil.

From Proposition 2.4, we already know that the range of ¥ is a subset of B(0, ).
Let us show that the image of (41) is a subset of

1
{(q1,p1, 92, p2), 12 < 5&105262}.
From (25) with v = 2, we get that if Iy < ¢§%e? then

w(e
|%<\I]‘D ((qlapla q2ap2)a §)2 + \I/pz ((qlaph q2ap2)7 §)2)| S M(C + 6)62
So the result claimed in the summary of the main steps above holds for ¢ and §
sufficiently small. O

6. Construction of an invariant curve for the restrictions of the first
return map with the aid of a KAM theorem: Proof of Proposition 2.9.
This section is entirely devoted to the proof of Proposition 2.9.

In this part we consider a < cpd%e2, and work in annulus of the form

{(a2,p2)/1I2 = ¢ + p3 € [c1(8)d€°, c2(8)d€7]},

where c¢1, c2 are lower than the ¢ of UZ’s domain (see Proposition 2.6): the choice
of ¢1, o is made in Lemma 6.5. Here is an outline of the proof of Proposition
2.9:
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e Parts 6.1 and 6.2 are devoted to the proof of estimates concerning the ¥¢.
The results (i) and (i77) will be the consequences of the estimates on the
\If‘(le,gg,o) showed in Part 6.1, and (iv) a consequence of the upper bounds of

?5,52,;0 — \11?876270) computed in Part 6.2 .

e In

Part 6.3, we introduce the changes of coordinates which transforms ¥¢ into

\ilg The proof of (i7), (ii7) and (iv) follows directly from the results of Parts
6.1 and 6.2.

Part 6.4. is devoted to the proof of (i).

6.1. Estimates for the first return map \II?E}EQ)O) of the normal form. In this
part, we give first in Lemma 6.1 an explicit form of the \Il’(ls’ £2.0) in polar coordinates.
We then use this form to compute upper and lower bounds. Up to the change of
coordinates that we will perform in Part 6.3, Lemma 6.2 states the upper bound
(1) of Proposition 2.9 and Lemma 6.5 is the result (#¢). The latter lemma requires

the proof of the two preliminary results of Lemmas 6.3 and 6.4.
Lemma 6.1. In polar coordinates, \11‘56’62’0) reads

(\Ilg,(e,EQ,OV \II:,(E,€27O))(H7 ’I“) = (9 + @(Ta a, E)a ’I“),
with

w(e)
@(T,Q,E) = 282 T(p{{57€270)(7’,0,a),7‘,0, (535270))

T(pf(lsyggo)(T,O,a),r,O,(5,62,O)) "
+€ /O 82N7l((¢Q1+¢p1 )(Sa (571)1(5752,0) (Ta Oa a)v T, O)a 6)3 T, €)dsa

where p{{(s,sz,o) (rcos,rsin®,a) and T(py,rcosf,rsind, (e,2,0)) (recall that T was
defined in Proposition 4.2) are independent of 6.

Proof. Recall that for u = 0, the Hamiltonian system reads

@i(t) = —p1+3(qr+p1)? +20Nulqr +p1. 65 + p3.e),

pi(t) = @ —3(qn+p1)?—e201No(q1 +p1, @3 + 93, €), 13
() = L py 4+ 202N, (a1 + pr, 63 + p3,€)po, (43)
ph(t) = —49q — 20N, (g1 + p1, @3 + 03, €)ge.

This system satisfies

d, . 9 d
4 - “L=o.
dt(q2 + p3) pTeE: 0

Then, the (g1,p1) component of the flow reads ¢(q, »,)(t, (¢1,P1, I20), €) for a fixed
value Iy = Ipg. So for gag, pag such that go3 + pa2 = Ia,

q2 429
t) =R,
(pQ) ( ) 9(75,]20,6) <p20> 9
w(e)

t
0(t, Izg,€) := ?“F/ 202Ny ((dgy + bp.) (s, (q1,p1, I20), €), 12, €)ds.
0

The result claimed by Lemma 6.1 follows, up to the proof that the functions
p{i(s’gz’o)(r cosf,rsinf,a) and T(p1,7 cosf,rsinb, (¢,2,0)) are independent of 6.

where



HOMOCLINIC ORBITS WITH MANY LOOPS FOR 0%iw RESONANCES 35

Indeed, p{{(s £2.0) is defined as the unique p¥ such that

H((&p{{a q27Q2)7 (Ea 5270)) = H(P(Oé,g?,oy (€a€270))

1
o bl - L4l Nl %) = S H(PL gy (2.2,0))

where the latter equation is independent of §. Similarly, T is defined by
gql (T7 (5ap1a CI27P2)7 (57 52; 0)) = 67

where from the form (43) of the hamiltonian system we know that the (q1,p1)
component of the flow reads ¢4, p,)(t, (q1,p1, I20),€). Then, the definitions of pl
and T are independent of # and we get the result. a

Lemma 6.2. There exists M such that for 0 < a < ¢y and r? € [c10%€2, c6°€?],
for all k < ko = E(¥2=2), © satisfies

M
|07O(r,a,6)| < S5

Proof. On one hand, from the result of Lemma 4.1 the explicit formula of © in
Lemma 6.1 reads

O(r,a,e) = ggi)T(p{‘(’g,EQ’O)(r,O,a),r,O,(5,52,0))
+52]: <T(p{€5752,0) (7", Oa a’)v T, 07 (57 52; 0))7]9{{575270) (Ta 0, a)7 T, 5) ’
(44)
with F and T in C'(] — €9, &0[,C*®). On the other hand, recall that
P{{,g/(fhap% a) = pi” (g2, p2. he' (43 + 13, a),€'), (45)

where p1 belongs to C*(] — €o,0[?, A). Thus the only irregularity is in

ﬁé/(rg,a) = gﬂ — H(P;,g')
for ¢ = 0. And we check that there exists M; such that for k& < ko and r? €
[c10%€2, cd2€?],

~ M

k 2 1
Oy he (r ,a)‘ S %
holds. Finally, we obtain the existence of M such that for k < kg and r? €

[c10%€2, cpd2€?],

M
|3f@(r,a,e)| < Thr

O

To prove (ii) of Proposition 2.9, we need a lower bound of 9,0. In view of

the explicit form of © obtained in Lemma 6.1, we first compute estimates of T in
Lemma 6.3 below and then of p!! in the following Lemma 6.4.

Lemma 6.3. For the truncated Hamiltonian

1 w(e
H((q1,p1,42,p2), (£,0,0)) = —qup1 + = (q1 + p1)* + ( )(qg +p3),

2 2e2

the time T of first return to the section satisfies

aplT((qlapla Q27p2>7 (57070)) = aplTO(pl) < 0.
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Proof. In the coordinates (ql,pl) (see Part 2.1), the truncated Hamiltonian reads

1 g we)
5(1’ 2q1+22

Recall that ¢3 + p3 is constant, so that the flow follows the level sets

1 2 2 13 2 3
i(glfgl)JrEQl:—a@Bl:iq/gl—glfa.

We get periodic orbits when 0 < o < o and the homoclinic orbit for a = 0. Let us
denote by (g, (t),p, (1), q2(t), p2(t)) the perlodlc solution associated with « and by

7(a) its period. Then Bl(%T(Oé)) =0, and ¢, (0) and gl(%T(a)) are the two positive
roots of 22 — 2% — a. And 17(a) satisfies

17-(&)_/;7'(04) Bl(t) dt_/ql(é‘r(a))i—m(a) 1 i
0 L -0 —a  Jyoeaw  VE-ta

given that ¢ () = p,(¢). By studying the map z — 22 — 23, we obtain that

Oaz1(0r) > >0 and daz2() < 0 for all o €]0, 5=[. This proves that d,7(c) < 0, and
thus that 9,,7°(p1) < 0. O

1, ., )+

(63 +p3)-

Lemma 6.4. Let ¢;,c, be two fized positive reals satisfying co — ¢; > 46.
Let us introduce ¢, ¢y such that ¢; < ¢ < ¢ < ¢y — 46 and define

1 1
L 421 o 422
c1i= —, ¢gi= —=.

wo wo

Then there exist co such that for all € sufficiently small, for all a € [0,cod%€?] and
r? € [c16%€?, cab?e?],

1
pﬁe76270) (r,0,a) € [¢;0, 0], 8hp1 55 > 0.

Moreover, on this domain, her satisfies hor (12, a) € [c,02, (co — 46)5?].
Proof. Recall that Lemma 5.6 defines pi’ and asserts that it is C!.

Step 1. Case € = (¢,v = 0,u = 0). Let us introduce ¢, ¢, such that
o < <d <dy<ch—46 <cy,— 40
In the case considered in this step, pi is defined by
- 1 -
pi" — *(5 +pi1)* = h.

Recall also that on its domain, |p| < § holds. From these two results we get that,
on one hand

1
Onpr (r,0,h, (,0,0) > 5 >0 (46)
holds on the domain of pi*. And on the other hand, for all h in [¢]6?, () — 46)d?],
i (r,0,h,a,v = 0) € [c} 5, chd). (47)
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Step 2. Case ¢ = (£,¢2,0). Given that pi”’ is C' in term of v and ¢, from (47)
we get that for ¢ sufficiently small, for all h in [¢} 82, (ch — 46)6?],

i (r,0,h,a, (g,€2,0)) € [¢,6, cy0].

and from (46) we obtain

1
ahﬁlH(Ta 07 h7 (57 627 O)) Z 27(5 > 0.

Recall that

he(0,0) = X2 pi(p, e,

The choice of ¢y, ¢y ensures that for e sufficiently small if 72 belongs to [c162€2, ca62e?]

then g(;z)rz is in [¢]6?,c46%]. And Lemma 5.3 with v = 2 ensures that

wle) g2
’H(P;,,g’) < ot 5 Mod.

So, for cg sufficiently small, if a < cyd2e2, then

‘H( %€ )| < min(c] — ¢}, (ch — 46) — ¢5)5°.

O

Lemma 6.5. If Ny > 5, there exist cg,c1,co and m, M > 0 such that for ¢ suffi-
ciently small, for all a € [0,co6%€%] and all r? € [c16%€?, ca62e?],

M
= < 0,.9(r,a,¢) < ~

Moreover, we can chose ci1,co satisfying
Mé<c<cy<ec,
with the constant ¢ introduced in Proposition 2.6 and M is the constant of the upper

bound (25).
And there exist ¢, c, such that on this domain, he and pH satisfies

ilg’ (r*,a) € [¢,6°, (¢, — 40)67], p{{(s,s{o) (r,0,a) € [¢,6, cy0]. (48)

Proof. The existence of M (without conditions on a and ) is a direct consequence
of Lemma 6.2 for kK = 1, given that we suppose Ny > 5.

In order to prove the existence of m, we use the form (44) of © together with
the form (45) of pf : © reads

Oae) = ST, o (r0.0).1.0.(c.6%0) + F (i (. 0).1.).
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where T' and F belong to C!(] — &9, £0[,C*). Differentiating with respect to r we
get
0r-0(r,a,¢)

wle
_ 2(52) O T 20 (r,0,a), 7,0, (¢,€%.0)) X

(0057, 0,0, (2,2 0)0, b (%, @) 40,511, 0,0, (2,22 0)

0T, 20 (0,0, 7,0, (2,2 0))

€ (8h]-' (ﬁéf (% a),r, e)(%r)—l—@r}i (ﬁg (ra),r, e)) , (49)

= 0 T, 20y (r,0,),7,0, (2,2, 0™ (0,0, (¢, %, 0))0 s (12, 0) + O (sl ) ’

where (49) holds because 8, T, d,pi",d,T,d,F,d.F are continuous and for any
fixed choice of cg, ¢1, ca, l~1§/ is bounded and Lemma 6.4 ensures that pi’ is also.

Let us show that the principal part in (49) admits an upper bound of the form
— % for an appropriate choice of ¢y, c; and cy. For that purpose, we use Lemmas
6.3 and 6.4.

On one hand, Lemma 6.3 ensures that 9,,7°(p1) < 0 when p; > p1(6). Then,
given that 7" is C!, for any set {p; € [c,d,c,0]}, there exists m such that 9,, T° <
—2m on this set. For ¢, p sufficiently small, we get

Op, T(p1,92,p2,€) < —m < 0 for all p1 € [¢;6, c56].

Let us chose ¢, ¢, satisfying moreover

cy — 40 4c
=2 <e, ¢ <cytdd, MS<
wo WO
where M is the constant of the upper bound (25). On the other hand, with this
choice of ¢;, ¢,, Lemma 6.4 ensures that there exists cg, 1 and cg satisfying c1,ca < ¢

and ¢; > M4 such that for all a € [0, cp6%e?] and r? € [c10%€2, ca6%€?],

4

- 1
pﬁg,g2)0) (Ta Oa Cl) S [2157 225] ahle (Ta 07 CL, (57 EQa 0)) Z % > O

Moreover, for 12 € [c162€2, ca62e?]

&izg/ (T2,a) = 2(;(;2)7" > \/6@5

We finally obtain that for a € [0, cgd%e?] and r? € [c16%e2, c20%€?],

w(e) OT
2e2 Opy

opitt 5 Ohg 2
8h (T7 07 a” (635 70)) 8
< -

(pl(E c2,0)(r,0,a), 7,0, (¢, £2,0))

which, together with (49) achieves the proof of the Lemma. O

6.2. Upper bound C* of \Il(8 2 \Il(s c2,0)" Given that the KAM theorem of [20]

(see Theorem 2.8 in part 2.3) is stated in polar coordinates, we need the following
lemma, which gives upper bounds of the polar form (¥§(6,r), ¥2(6,r)) of ¥* in
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terms of (Vg (q2,p2), ¥y, (g2, p2)). This computation relies on the fact that we
work on the domain

{(a2,p2) /a5 + p3 € [e10%%, c20%%]},
which is away from 0.

Lemma 6.6. If (p1,q2,p2,€’) belongs to the domain of ¥ and c16%c? < ¢35 + p3 <
c20%e?, then

\II(Q%PQ)(planap%gl) = \Ilr(pla QQap27§/)R‘119(p1,q2,p2,§/)7
where W, is C* and in R/277Z,

wle ~
\Ije(pla q27p27§/) = %T(pla Q27P27§l) + ¢0(T(p17q27p27§/)7 (57p17 q?»p?)vg/)a

holds with T and ¢g C* in C*(] — eo,0[>,C*) and there exists M such that for
every variable x of @,

M (s i
ai»%‘ < 67 (;;)wé(b%l + |a;{;¢p2> .

Proof. Thank to the upper bound (25) of Proposition 4.2 (with ¢ = £2), there
exists M such that if (p1,ge,p2,€’) is in the domain of ¥ and (g2,p2) satisfies
{(g2,p2)/45 + p3 € [c10%€?, c26°€7]} then

U(p1,q2,p2.€") € {(q1.p1,02,p2) /05 + 3 € [(c16® — M&®)e?, (ca6” + M5°)e?]} .

(50)
On one hand, Lemma 6.5 ensures that ¢; > M§, thus, denoting
W, (p1,q2,p2,€') == \/qu (P1,42:P2,€')* + ¥y, (P1, 42, P2, )3,
U, is C* as ¥. On the other hand, recall that
\I](pl, q2, P2, §/) - R%T(pl,qzypz’gl)d)(T(ph q2, P2, §/), (5,}71, q27p2),§l)a
SO
_ w(g) / - ’ /
‘119 = 52 T(pla q2,P2, & ) + ¢9(T(p17 q2,P2,E )a (67p17QQ7p2)a§ )7
where (Eg is defined by
¢LI2 i_ i(bpz — 6159. (51)

O
And (50) ensures that |¢,|2 > (¢; — M8)§2e2, then if x is any variable of ¢, we get

1 ~ ~
m (|3;c¢q2| + |3x¢p2|) .

Differentiating (51) many times, we obtain the upper bounds claimed above for the

3x$9’ <

higher order derivatives of ¢g. O
Lemma 6.7. For a,e,u sufficiently small and 0 < k < ko,
W26, (.22 ) = W3 (.6, (2,22, 0)|ow < (0 + 55 ) 0,

o o a’ p
| (r,0, (e,€%, 1)) — UG (r,0,(g,€%,0))| i < <€k+2 + ek+1> M.
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Proof. To compute an upper bound of \IJ‘(IE o2 , we firstly wanted to

®) - ‘1/?5@270) Cck
use an upper bound of 9, ¥? ) together with the Mean Value Theorem. Unfor-

(g,e2
tunately, \I/?E .2, 18 not smooth with respect to u because of

J)

> wle
h(s,EQ,,u,)(r2a a) = g,'ﬂ - H(P(Cé,g;?,u)? (Eagzvﬂ))v

Indeed, P¢ is defined as P2 := F.(C?) and F. = F(. ., is not smooth with respect
to p. So in the following we are going to use J, together with the Mean Value
Theorem as soon as it is possible, and we will complete by a use of 0, together with
an upper bound of |iL(5752,“) (r?,a) — ﬁ(575270)(r2, a)l.

From Lemma 5.3, for a < a¢ and €, u sufficiently small we get the upper bound

e 2 (1, @) = e 2. 0) (1%, @) = | H(PL 2 gy, (6,6%,0) = H(PL 2 ), (2,67, 1)
< Mya?.
On one hand, recall that from the definitions of ¥* (p.32) and from the form
(35) of pff,, W& reads
U3 (r,0, (e, €%, 1))
=0, (ﬁlH(r cos @, rsind, B(E,Ezw)(rz, a),(g,e2, 1)), rcosf,rsinb, (e,€2, u))
= U (r, 0, hie 2 (12, a), (6,67, 1))

where U, and pif belong to C'(] — £, £0[?,C*) and thus so is the new function ¥¢
for 72 € [c10%€2, c6%€?] and a < ¢pd?e?. Recall also that Lemma 6.4 ensures that
h(ce2,,) is bounded on this domain. Then we get that for any j + ¢ < ko,

LGV (r,0, he c2 1 (1%, a), (6,62, 1)) — DIOGUE(r, 0, b c2 ) (r?, @), (£,€%,0))

8h (87285\1/7’%(7’, 0) h7 (57 623 :U'))) ‘ |ﬁ(a,€27u) (T2a a)_iL(a,EQ,O) (T27 CL)|

< sup
r26[016252,026252]
hele, 5% c,6°]

+ sup
r2€[c16%e?,c06%?]
he(c,6%,¢,67]

O (DLORTL(r,0, b 20/ (%, ), (2%, ) )| -

And given that |8}Li~1(5’52,u) (r?,a)| < 21 (see the proof of Lemma 6.2), we obtain
0
W36, (2. 8% ) = W31, 6, (2,62, 0) |, < (o + 5 ) M.

On the other hand, recall that W4(r, 0, (¢,£2, 1)) reads

w(e)
2e2

T(ﬁlH (’I" COS 97 r Sin97 B(s,€2,u) (T27 CL), (57 527 M>)7 q2,P2, (Ea 527 M))
T o (T (rcosb,rsind, e o (%), (2,2 1),
q2,pP2, (55 627 p,)), (57]717 QQ7p2)7 (67 527 M))

where T and pi! belong to C'(] — €o,0[*,C*). From Lemma 6.6 and given that
®qo.p, Delongs Cko, with the same computations as that of the upper bounds of
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2
\Ij?(r’ 05 (655 7#))7 we get

|\IJZ(T, 9, (Sagza/‘)) - \Ilg(ra 0; (5a52a0))|ck

A\
o |
Ql\')
+
U=
N—
+
wi
VS
Q
+
=
N—

IN

N
™

ES

+

[\v)

™

DN

>

+

[ov]
\/

6.3. Change of coordinates, proof of (ii), (iii) and (iv) of Proposition 2.9.

Change of coordinates. Denoting by [E%] the integer part of = =, let us define

€:= } (52)

(=]

and perform the following change of coordinates.

2

1
0,r) = (sq’ ﬁp) , q€R/27Z,p° € %[015270152]-

Observe that 1 — 2 < % < 1. Let us denote by \i/g the map W¢ expressed in
those new coordinates. Thus ‘i/g is defined for p? € [c162, (1 — €%)cad?], i.e. for e

sufficiently small ‘i/g is defined on a set p? € [¢102, d16%] independent of ¢. \ilg reads

Vi “O(Ve, =(po a 1~
\I/(E,EZJL) (Q7 P) = <C] + 6@(\/2;,0’ a, 5) + 6(\11(67527'u) — \II(E’EZ”O))Q(EC]’ \/gp) ,
Lo . 1
P + 75( (5,527M) — \11(875270))9(gq, \/gp) )
= (q +ag(q,p) + Fz 2 ,)(0,0)s 7 + G 2 (4, p)) ' (53)

Proof of (it) of Proposition 2.9.
dpal = £V/20,0(Vep, a,¢).

From Lemma 6.5 and the definition of dy, we get that for p? € [¢15?, d15?],

Observe that from the definition (52) of &, we get that 1 < & < 2if ¢? <
then obtain

dag _ o
Idp

so (ii) holds with mg = max(2v2M, -1).

—2V2M <

Proof of (iii) of Proposition 2.9. Given that if p? € [c16%, d16?] then 72 € [c16%€2,
c20%¢?], Lemma 6.2 ensures that for k < ko,

‘6"”‘@

k0O
oo @) =

EVE

o~k M
(\fp7a5)7 EVE k+2<\fM for e

l\')\»—l
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Proof of (iv) of Proposition 2.9. Lemma 6.7 ensures that for i + j < k < ko,

@ aJ a —\ﬁ_j
0OpFlecr (@ p)] = &5

7 )

Y] a a 1 =
6987{(\1/(5,62,”) - \11(8762,0))9(%(]? \/gp)

VE a? 1 a® | p
< ¢ i M- citit2 + 22(i+j+1) =M- 23k + 26k |
and
i 0j Ya —\/gj i 27 a a 1 =
aqaZG(s,EQ,y)(%p)‘ = ¢ Zi 8087{(\:[}(5,52,#) - @(8,5270))7“(%(]7 \/gp) )
_\E 2 H a? [
= &M (a + Ei—i—j) M- Gt )

So finally, for 0 < k < ko — 1,

Fe Ge e (E
‘ (E,EQxM)‘Ck T ’ (EaEQ)H)‘ck =07\ g3k T 26k |
]

6.4. Proof of (i) of Proposition 2.9: The U are exact maps. We first prove
that the ¥° are area-preserving maps (Lemma 6.8), and then that for every Ja
there exist some Jordan curves intersecting their range through ya (Lemma 6.9).
These two results together ensures that (i) of Proposition 2.9 holds.

Lemma 6.8. U is an area-preserving map.

Proof. W is symplectic given that it is a first return map associated to a Hamil-
tonian flow. Moreover, we verify that the change of coordinates

-1
v (p0) = (VEp, Zg)
is symplectic. Then ‘i'g is symplectic and thus area-preserving. O

Lemma 6.9. We fix A > 0.
For € sufficiently small with respect to A, every Jordan curve C in the set

{(a,0)/p” € [16°,dr8°]}
and of the form
C=A{(gp),p=f(@)} with for all ¢ € R/27Z,|f'(q)| < A,

intersects its range \ilg(C)

Proof of an upper bound for the map V7. Firstly, we prove that there exists a
constant M" such that the upper bound

‘(‘i’g)p(q,p) - p‘ < M pe™o (54)

holds in the domain {(q, p)/p? € [c10%,d16%]}. For that purpose, we use two results:
le in the coordinates (g2, p2), there exists M such that on the domain B(0, pg)
the flow of HY(., (e,e%, 1)) satisfies

‘ d(g5 + p3)

<M No+2.
ar | =R
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2. on the domain {(6,7)/r? € [c16%€?, c20%€?]} the time T of first return to 3
is bounded: this is the consequence of the C*-smoothness of T'(p1,q1,p2,€)
together with the fact that pi’ is bounded on this domain thank to (48) of
Lemma 6.5.

From (¢) and (i7) we derive that
\(\PQ@ (g2, P2, 0)* + (¥2)p, (g2, P2, a)* — (g3 + p3) | < Mpe™o?(Sup|T])
S M/ﬂENO+1~
Thus in polar coordinates we get

(). (r,0,0)° - No+2,

JUE
& ‘(\I/a (r,0,a) —TH‘If“ (r,0,a) +r‘<M’u5N‘J+2
= ‘(\I! (r,0,a) — r’ < M"pe™ott given that r > \/cie.

Which, in coordinates (g, p) reads
(92), (1.0, = 1| = | (02, 0, VED) ~ V0| =

‘\f( Yr(a,p) — Vep| .

This completes the proof of (54).

Proof of Lemma 6.9. Consider a curve C as described in the statement of the
Lemma. From (54) we get that W2(C) is in the tube

{(a.p),p € fla) — M" ™", f(q) + M ue™]}

(see Figure 11) whose area admits the upper bound 2M" ue™°-(length of the curve
C). Where the length of C reads

' V(@)% + fg)2dg < 2m(A + V/dy).

0

impossible
F1GURE 11. Range of C through \i'g

Suppose that \i!g(C) N C = 0 holds. Given that C is a Jordan curve, so is \ilg(C),
and then their inside and outside sets are well-defined. From Lemma 6.8 we get that
their inside sets have the same area, and thus necessarily WZ(C) is in the outside
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set of C. Then W(C) is in the tube {(g,p),p € [f(q), f(q) + M"ueN°]}, and so is
its inside set whose area is greater than me;.

So for p,e sufficiently small with respect to c¢i,d; and A the area of the tube
is lower than the area of the curve W%(C), so that necessarily We(C) N C # 0 is
impossible. - - O

A. Appendix. Proof of Theorem 1.3. This appendix is devoted to the proof of
Theorem 1.3 used in Part 3. We thank Gérard Iooss who suggested us this version
of the Normal Form Theorem and the main ideas of its proof. We denote by E;
the finite dimensional vector space of homogeneous polynomials of degree £ on R?™,
We denote by F; C E, the subspace of homogeneous polynomial satisfying (1). So
Fy is the space of polynomials appearing in the normal form.

The property of the space F; that is used in the proof is that Fy is a supplement
of the image of the linear operator

S = {Hz,0,5}

from Ej to itself, which is called the Homological operator. This will be established
below in step 3. Any other supplement could be used as well, and the choice made
in Theorem 1.3 is not canonical.

Proof. We begin with a summary of the strategy of proof.

Strategy of proof. We perform the proof by induction on £ > 2. We set
¢1.» = Id and construct a C! family of local analytic symplectic diffeomorphisms
Gox = Po—1,x 0 pe,x for each ¢ > 2, where ¢y 5 as the Lie transform (the time one
Hamiltonian flow) of a homogeneous polynomial S; » of degree ¢ whose coefficients
are C! functions of \. In view of step 2.1 below, such a homogeneous Hamiltonian
generates a Lie transform (, , which is a C! family of local analytic symplectic
diffeomorphisms. Assume that, for some ¢ < k,

Haodr—1x =Hoo +Ne—1x + Re—1,n

where NM;_1 ) is a polynomial of degree at most ¢ — 1 of the form (1) and whose
coefficients are C! functions of A, and where Ry_1 x = o(|z|*"!). Then R,_; y is
a C! family of C¥ Hamiltonians hence there exists a C' curve Py in Ey such that
Re—1x = Pox + Ry, with Ry \ = o(|z|?). The iterative step consists in finding a
Hamiltonian S, » which is a homogeneous polynomial of degree ¢ whose coefficients
are C! functions of X\ in such a way that the corresponding Lie transform ¢
satisfies the equation

M0 o1 0pex = Hao+Ne—ix+ Nea+ Reas (55)

with Ny € Fp and Ry ) = 0(|x\z) We then define ./\/'57)\ = Ne_L)\ + Ny x.

The case £ = 2, which is just a problem of deformations of linear systems, is a bit
specific, we detail it in Step 1 below. We then study in Step 2.1 how a C' family
of homogeneous Hamiltonians of degree ¢ > 3 generates a C! family of analytic Lie
transforms. This allows to solve the iterative equation in degree ¢ > 3 in Step 2.2:
We prove the existence of C! curves Ny, and Sy, in F, and Ej satisfying (55). The
equations for £ = 2 and ¢ > 3 involve the same linear operator S — {Hsz0, S} on Ej,
called the homologic operator. We study this operator in Step 3, where we prove
that Fy as defined by (1) is a complementary space of its image. This property is
used in Step 1 and Step 2.2.
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Step 1. Normalization at order 2. The initial Hamiltonian ) reads
Hy=Hor+ Rox=Hao+ Po+ Ra»,
where P, is a homogenous polynomial of degree 2 whose coefficients are C! func-
tions of A verifying Py = 0, and Rs = o(|z|?).
We consider a family of linear symplectic diffeomorphisms 2 » obtained (for each
A) as the time one Hamiltonian flow of a family quadratic Hamiltonians Sy . The

gradient V.Ss ¢ is a linear map, that we identify with its matrix (whose coefficients
are C! functions of \) so that

1
SQ’)\(LC) = 5 <V527Ax, {E>

and

P2\ = exp(JV Sy 3),
which is a matrix whose coefficients are C! functions of A\. By keeping only the
quadratic term in (55), we obtain the equation

(’szo + Pz,)\) o exp(JVSQ,)\) = 7‘[2’0 + NQ’)\. (56)

Note in this expression that the composition o is not a product of linear maps, but
the composition of a quadratic form with a linear map. We rewrite this equation as

Ny — Fa(Pon, S2,0) =0, (56)

where F5 : E5 X Es — FE5 is the analytic map given by
Fao(P,S) = (Ho,0+ P) oexp(JVS) — Hayp.
The map S +— VS is just the isomorphism which to a quadratic form associates its
matrix times two. The map F; satisfies
F2(0,0) =0, 9pF2(0,0)- P =P, 0sF2(0,0)-S={Hao,S}
To compute the last derivative, just observe that
95F2(0,0) - S(z) = 0y (Ha,0 0 e’V (2) = 9y (Ha0 0 "V (2)) = {H20, S} (),

where the time derivatives are taken at ¢ = 0.

Let F» be a complementary space of the image of the linear map S +— {Hz2,0,S5}
on Fs, and let G5 be a complementary space of its kernel. We will see in step 3 that
we can take for Fy the space of quadratic Hamiltonians satisfying (1). The map

(N,S) = N — 9sF>(0,0) - S

is an isomorphism from G x F5 to F5. By the implicit function theorem, the
equation
N —F(P,S)=0
can thus be solved by (N(P),S(P)) € F» x G for each small P € E;. Moreover
the map P — (N(P),S(P)) is analytic near the origin. We now set
Nox=N(Psy), Sor=S(Px).
These matrices are C! functions of A, and they solve (56).

Step 2.1. Lie transform. Fach element S € Ey, ¢ > 3 generates a Lie transform
g which is an analytic local symplectic diffeomorphism of R?™ satisfying

ws(x) =z 4+ JVS(x) + O(|z|%). (57)

For each bounded open set By C Ey, there exists p > 0 such that the map S — ¢g
is C' on By with values in A(Bgzn (0, p), R*™).
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As a consequence of (57), given a Hamiltonian H € E;, we have
Howps=H+{H,S}+O(|z|1). (58)
To prove that the map S+ ¢g is C' we first consider the differential equation
Ohrs = JVS 0 thg

with initial data 1s = Id on the Banach space A(Bgzm(0,1),R?™). The map
(S,1) — JVS o1 is Cl. Considering S as a parameter, we apply the Cauchy-
Lipschitz Theorem and obtain the existence of a solution (¢,S) — s = (¢, S)
which is C! on ]| — T, T[x U, for some T > 0 and some neighborhood Uy of the origin
in Eg.

Let us now consider, for p > 0, the homothety 6 : x — x/p of R*™. The map
¥+ 100 is a linear isometry between A(Bgzm (0,1), R*™) and A(Bgzn (0, p), R?™).
The map

(t,8) = s = pyo (P72t pl7D/28) 00 = piyezys 00
is defined on | — p'~¢/2T, p'=¢/2T[x p'~*/2U. We observe that @os = Id, and that
duprs = P "I 20p (P72, pl22S) 00 = p' I IVS 092500 = JVS 0 s

since VS is homogeneous of degree £ — 1. As a consequence ;g is the time t
Hamiltonian flow of S. If p is chosen small enough, then the map (¢,S5) — ;g is
defined and C! on | — 2,2[x By, hence the map S — g is a C! on By, with values
in A(Bgzn (0, p), R?™).

Step 1.2. Equation at order ¢ > 3. We are assuming that
Ha o pr—1x = Hoo +Ne—1x + Py + Rex
In view of (58), we get that
Haodr_1.x0pexn=Hoo+Ne—1x+ Poy+{Hao+ Nax, Seat +o(|z[").
By keeping only the terms or order ¢ in (55), we get the equation
Nex —{Hz2,0+ Nox, Sern} = Pox. (59)
We write this equation under the form
Nex = Fe(A, Sen) =0,

with Fp(A, S) = {7‘[2’0 + Na », S+ Py ». Obviously, 0sF;(0,0) - S = {7‘[2@7 St.

Let Fy be a complementary space of the image of the linear map S — {Hz2,0,S5}
on Fy, and let Gy be a complementary space of its kernel. We will see in step 3
that we can take for Fy the space of quadratic Hamiltonians satisfying (1). By the
implicit function theorem, the equation

N — Fi(A\,S) =0

has a unique small solution (N x,Sex) in Fy X Gy, which is a C! function of A
near A = 0. Then, the Lie transform g of S ) is a C' family of local analytic
diffeomorphisms which solves (55).

Step 3. Study of the homological operator. We have used above that Fy, as
defined by (1), complements the image of the homological operator

A: S — {HQ)O,S}
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in Ey. Any other complementary space could be used as well, but the relatively
simple definition of F, makes it a good choice. In many situation, the kernel

K;:={N € Ey| Noe'o = N vt}

of the homological operator turns out to also complement its image. The normal
form can then be obtained in this space. In the case of Birkhoff normal forms,
we have Fy = K. In the case of interest in the present paper, however, it is not
possible to reduce the system to a normal form in K.

Let us now prove that Fy is always a complementary space of the image of the
homological operator. For that purpose we define, for any pairs of polynomials
5,5 : R?™ — R lying in E, the inner product given by

(5,8 =5(0s) - '|a=0-

For multi-indices a, -+ , aom and By, - -+, Bom, We have
a1 a2 B1 Bam \ _ | |
<x1 ."'.x2mm7x1 """/EQm >€_a1'...a2m' 60(1,51'.'50427,1,527”

where dq; 5, = 1 if a; = B; and 0 otherwise. The product (.,.); thus defines
an Euclidean structure on Fy,, and the standard base of E, is orthogonal for this
structure. Let us set

*
7‘[2,0 = —Hz,o oJ,

in such a way that Lj = (JVHa0)" = JVHS (.

We claim that the adjoint of the homological operator A is A*(S) = {M54,S}.
This implies that F, = Ker A*, and then that F; complements the image of A,
which is what we wanted to prove.

Let us finally prove the claim. For each linear map T of R?>™, each index i, and
each smooth function fon R*™ we have

(@) (foT)=(SoT* () f)oT

as can be proved by induction on the degree ¢ of S. Here T™ is the adjoint of T for
the standard Euclidean structure on R?>™. We deduce that

(SoT, Sl>£ = (9, S"o T*>£
for each S and S’ in E,. We now compute

(A*S, 8"y = (AS',S) = <8t(S’ o etLO)‘t:075> — 8, <S’ o etLé’S>

|t=0
= (Au(S0e'™), S’>‘t=0 = ({H34.5}.5")

which proves the claim. g

=0, <S o etlo, S'>

B. Appendix. Definition of < and technical lemmas. In this appendix we
define the relation < on the set of formal power series, and state a few properties
of this relation. The proofs are left to the reader (the complete proofs are in the
Appendix B of [15]).

Definition B.1. Let f and g be two formal power series on C, with d variables.
We denote them

f(xl,... ’de): Z a)nx?l...xg‘d = Z anxn, g(xl’... 7xd): Z bnx’n

neNd neNd neNd
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We define < by f(z1, -+ ,24) < g(21,- -+ ,xq) if and only if
VneNe b, cRY and |a,| < by.
We define also
@ = 3 lanle”,

neN?

max{f,g}(z) = ) max{la,| [bs[}2".

neNe

Lemma B.2. Let f and g be two formal power series from C% to C.

1. f<gifandonlyif |f| <g.
2. If f < g then

Vi<d, Oy f < 0ug.
3. Letd <d andy= (y1, - ,ya). Consider f and g for
r = (.131,"' ,l'd) = (ylvyla"' s Y, s Yd, ayd’)v
that we denote f(y) and §(y). Then

f(@) < glz) = f(y) < ay).

4. When d = 1. If f is a convergent power series of order ng, then there exist
two positive constants ¢ and v such that

210
flz) < eT— fyx;
and more precisely, if f € A(Bc(0,p),C) (see Definition 1.1), then
AN, amo
fz) < pnoAl_ %x'
5. If0 < f(x) < g(x), then
1 1
= @) " T gle)
6. If f < g and g € A(Bca(0,p),C), then f € A(Bca(0,p),C) and
171, < Nl
Lemma B.3. Let F be a scalar formal power series of the variables (x1,--+ ,xq),

with positive coefficients, and ®, ¥ be two vectorial formal power series

O(z1, -, wa) = (¢1,-++ ,9a)(T1,+ , Ta),

\I}(xlv"' 7xd) = (’l/}la"' ﬂl)d)(%l»"' 7xd)~
Then we have the upper bound

F(®+ W) — F(®) < [DF|(|®] + [¥]).[¥],

where we use the notation
d
IDP[(|®] + [®]).[¥] := > |02, FI(|@1] + [W1], -+, | Dl + [Wa]).[Ts].

=1
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Lemma B.4. We consider a family of formal power series of the form

FV(Y) = (FV,l(yla"' 7yd)a"' 7Fl/,d(y1a"' 7yd)) = (ylv"' ’yd) +O(|Y|2)

such that Fy is convergent and there exist N € N and a convergent power series M
such that for all j=1,--- ,d,

Foj—Foj<vyi+ - +ya) "My + - +ya)

holds ; we moreover suppose that F, is invertible and denote

FY) = (o Frg) (V).

v

Then there exists a convergent power series My such that for all j =1,--- ,d
F,;,—Fy; =< V(y1+---+yd)NM1(y1 + 4 ya)
holds.

C. Appendix. Construction of a local canonical change of coordinates:
Proof of Prop. 2.2. This appendix is devoted to the proof of the Proposition C.1
below, which is a more general and detailed version of Proposition 2.2.

This proposition gives some estimates on the dependence of a change of coordi-
nates F; in term of some parameters ¢ := (¢, v, ). For fixed values of the parameter
€ the existence of the change of coordinates F. is already well-known, it is a theo-
rem of Moser [21] together with a result of Russmann [22]. The main result here is
that under some assumptions, the singularity in € in the quadratic part of the initial
Hamiltonian does not affect the bounds (i) — (iz) (they are all independent of €).

This proposition plays a crucial part in the proof of Theorem 1.2, points (i) and
(1) being the pivotal results. These results allow in particular to get fine properties
of many objects such as the center-stable and center-unstable manifolds or the
energy level sets, given that these objects are very simple in the (&1,71,&2,72)-
coordinates.

Indeed, these results play a big role in the proof of Proposition 2.6: at each step
of the proof, we use local properties, local being in the spatial sense or for small
values of the parameter v, and we have to verify that the local neighborhoods do
not tends to an empty set or do not move too much when ¢ goes to 0. For instance,
consider Lemma 5.1 in which we claim that the center-stable manifold W (0) can be
expressed locally as the graph of a map p{®.. The results of Proposition C.1 ensures
that this graph expression holds for &, v, u small, in a neighborhood (namely B(0, §))
independent of €, v and pu.

Knowing precisely these neighborhoods is important then to perform a pertur-
bative method (namely KAM theorem with the perturbative parameter p, see Part
6) in a fixed annulus.

Proposition C.1. Let us consider a family of real analytic Hamiltonians H in
A(Bgr4(0, p),R) of the form

as(€)
H((q1,p1,42,p2),8) = —a1q1p1 + g—i(q% +15) +h(q,p1) +vR (g1, 01,62, p2), £),
where e = (g,v, ). We suppose that as is a continuous function verifying as(0) # 0
and that R(.,g) is a C -family of analytic functions, and

h(qi,p1) = O(|(Q1,p1)|3>7 R((q1,p1,q2,p2),€) = O(|(Q1aP1aQ2ap2)\3)-
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Then, there exist g, pj, and a family of canonical changes of coordinates

fg = (@1,§7¢1,§7@2,§3w2,§)

defined for |e| < eg such that the Hamiltonian in the new coordinates (§1,m1,&2,12)
reads

H (F£(§17n17£27n2)a§) = K§(£17717£% + 77%)
= & + 52 (& +03) + O, & +)P),

and such that for all e, F. and ]_-§—1 belong to € A(Brs(0,p)),R*), and for ¢ =
(€,0,0), F(c,0,0) is independent of € and is of the form

F(,0,0)(&15m1, €2,m2) == Fo(€1,m1,82,m2) = (¢1,0(1,m),%1,0(61,m1),62,m2). (61)

(60)

Moreover we have the following estimates (recall that < is defined in Appendiz
B): there exists a power series of one variable M, convergent on B(0,4p() such that

1. (Fo = Fo)(€r,m, €2, m2) < v(&tm+Ea+ne) *M(Er+m+Ea+n2),

2. Fe(&,m, &2,m2) — (1,1, €2, m2) < (§+m+Ea+m2) > M(E1+m+Ea+n2),

8. FZMq1,p1,q2,p2) — (q1, 01,42, p2) < (Q14P1+q2+p2) > M(q1+p1+¢2+p2).
And there exists a real Mg satisfying

4. |Fe(&sm,&2,m2) — Folér,m, &o,m2)| < vMo,

5. |F N qu, p1g2.p2) — Fo (a1, 01, 2, 02)| < v M,

6. |Fe(&r,m,E2,m2) — (1,m, &2, m2)| < Mol(Ex,m, E2,m2) %,
7. | FZ g1, 01,62, p2) — (1, P15, 42, p2)] < Mol(q1,p1, g2, 2) %,
8. |p2.e(&1,m. &2, m2) — Eo| < vMol(&,m, E2,m2) %,

9. |ae(&1,m, &2, m2) — M| < v Mo|(&1,m1, &2, m2))2.

for all (&1,m1,&2,m2) in B(0, py) and all (g1, p1,4q2,p2) in B(O, pp).

Plan of the proof. Proving this fair dependence in term of the parameters re-
quires to perform again each step of the existence proofs of Moser and Russmann,
to verify the effect of the singularity in term of € at each step of the construction
of F.. This is a very long and technical work given that F; is firstly constructed
as a formal power series, by induction on the coefficients, so that at each step we
compute the estimates by the method of majorant series.

Section C.1: complex variables: We compute a change of coordinates which
diagonalize the linear part of the vector field, but also leads to complex vari-
ables. We detail this classical change of coordinates in order to prove at the
end of the proof (in Part C.5) that the final change of coordinate is real.

Section C.2: non canonical changes of coordinates: We first consider the
family of changes of coordinates Fy, which are not canonical. For fixed values
of g, they are the changes of coordinates constructed by Moser [21]. The
construction of the final canonical changes of coordinates relies on the F;, and
so do the estimates of Proposition C.1. So, in Part C.2, we compute estimates
on the dependence of F, with respect to .

Section C.3: introduction of the canonical changes of coordinates:
We then introduce the family of canonical changes of coordinates F. For
fixed values of ¢, they nearly are the changes of coordinates constructed by
Russmann [22]. We moreover prove in this part the particular form of F, (*570’0)
(in order to get (61)).
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Section C.4: estimate (i) on the canonical changes of coordinates:
We prove that the F. satisfy an estimate of the form of (i) of Proposition
C.1.

Section C.5: back to R and proof of the final form of the Proposition
Gathering the previous results and getting back in R, we can finally prove the
Proposition C.1.

C.1. Diagonalization / complex variables. We first perform the following com-
plex canonical change of coordinates

¢ q1 q1

/ .
n|_(I O pr| . 1 1 /1 i
o] = (O P) o | = P o | where P = 7\/5 <i e
j2) p2 p2

Let us construct first the changes of coordinates F* in C?*, and at the end (see

subsection C.5) define F, := P~'F P. The Hamiltonian in the new coordinates
reads

H(($17y1,$27y2)>§)

(e
=—x1y1 —1 2(2 )33292 + h(z1,y1) + vR((21,91, %2, 42),2). (62)

with a1, as € R. The associated Hamiltonian system reads

Z = anmy + Oy h(z1,y1) + vy, R((21,y1, 72, 92), )
Y1 = —a1y1 — O, h(z1, 1) — V0, R((21, y1, X2, Y2),€)
gy = 12285, 4 10, R((x1, 1,22, 2), €) (%9)
Yo = "‘2(5)3/ — 103, R((x1,Y1, %2, Y2), €).
Let us denote it by
71 = 1w+ firo(mn,yn) Fvfie((@n v, v2,v2))
Y1 = —oqyr + 9101, Y1) +vgre((T1,y1,72,92))
Gy = .aQ(E)x + v fac((x1,y1,T2,Y2)) (64
Yo = "‘2(8)3/ +vgae((w1,91,22,12))-

Note that for i = 1,2, the families (f;.). and (gi ). are C'-families of the space
(A(Be+(0,01),€), 111 ), given that & > R(-,2) is C' on A(Be (0, p1), ©).

C.2. First family F_, not canonical. Let us firstly introduce the following no-
tation:

Definition C.2. Let ¢(z1,y1, 22, y2) be a formal power series from C* to C, of the
form
(25(3?1,21179627312 Z Cm nxl y?lx;nzygz'
m,n€EN?
Let us define the “sub”-power series, from C? to C, made of the sum of all the
monomials of ¢ satisfying m; = ny; and my = no,

[ wla w2 Z Cn nwl
neN?

We first fix € and state the following lemma

Lemma C.3. Consider a Hamiltonian of the form (62) with a1, as real satisfying
the assumptions of Proposition C.1. Then
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(0): for all £ there exist a formal power series
(71,1, 72,Y2) = Fg(ﬁlﬂha&,ﬂz) = (@1,5,7/;1@952,;,l/;z,g)((flaﬂlaf2a772))a
and formal power series of 2 variables a; . and Bié for i =1,2 satisfying

Fe(z,g) =+ O(|z[?),

@1,§(w1,w2) = a1+ O((w1,w2)), 0:62,5(w17w2) a2(6)+0((w17w2)),
bic(wi,wa) = —a1+ O((wi,ws)), bag(wr,ws) = “2<€>+0(<w1,w2>>,

such that in the new coordinates (&1,m1,&2,m2), the hamiltonian system reads

&= are(&m, &am)é

o= bie(&m. &em)m

§o = azc(&am,&em2)ée (65)
2 = bag(§1m1, Sam2)2-

(#9): for all €, we have existence and uniqueness of the formal power series Fy,

@i et bo of (i) if
le,g 1/;1@ 952.@ dlé
{51}’[771]7[52]’ 772] (66)

are any 4 given power series of the form 14+ O(wy,ws).

(¢i1): If F; is a formal power series satisfying (i), then F’Ql also satisfies (i) if
and only there exist some formal power series ®;,V; such that

(I)i(wl,ng) =1+ O((wl,wg)),
Ui(wi,w2) = 1+ O((w1,w2)),

F;(ﬁ,n) = Fg(@l(&mafﬂh)fl, Uy (&m0, Eama)m,
Do (&1, &2m2)E2, Wa(1m, 52772)772)-

(tv): Necessarily, a1 = —b1 . et ag e = —ba.
(v): Moreover, if the 4 power series (66) are convergent power series, then Fy,
Gie and b; . are convergent, i.e. there exists a disk on which they are analytic.

Proof. in the statement of this lemma, (v) is in fact the direct consequence, in our
case, of the result stated by Moser [21]. And (i) — (iv) are the steps of his proof (still
applied to our particular case): (i) and (i) correspond to his Part 2, (iv) is the
lemma stated in his Part 3 and (4i%) is the Step I of the proof of the latter lemma.
Point (v) is proved in his Part 4. We state here explicitly these steps of his proof
because we use it below.

Morser’s proof relies on the fact that system in the new coordinates is of the
form (65) if and only if F. satisfies

a1p1.e+f10(¢1, a,% ) +vfi, a( )= A P

—1 1 c491.0(P1e, P12)FVan, s( = A i,
(02(5) 5 B - (67)

P2 +vfie ( )= A P2.e

aQ(E Yoe+vgre(F) = Aga o,
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where we denote

Arg = (ay,e(E1m, Eom2) D1 + ao,e (€11, E2m2) Ds)
Dy := &0 — 110y, (68)
Dy = 30z, — 120y, .

Lemma C.4. Let us denote by Fy = (¢1,6,%1,6, 92,6, W2,c), i the formal power

series satisfying
Pl,e 1 7;[}1,; o P2.e _ 7/’2,;
[fl]_l_{m}_{ffz}_{ﬁz]’ (69)

whose existence and uniqueness are asserted in Lemma C.3 (ii). They have the
following properties

(i): Fle,0,0) and ay (c0,0) are independent of €. Let us denote them by a1 and

Fle,0,0) == Fo = (¢1,0,¥1,0, 92,0, ¥2,0),

Moreover, they read
Fo(&1,m,&2.m2) = (¢1,0(&1,m), ¥1,0(&,m), §2,m2)
042(6)

ai,(c,0,0) (w1, w2) = a1,0(w1), as,(c,0,0) (W1, w2) =1 =

(ii): There exist a convergent power series M such that for every e < o,

(F. — Fo)(€1,m1, &, m2) < v(E1+m+Eatme) 2 M(E14+m1+Ea+12).

Proof of (i). Let us consider System (67) with v = y = 0 and prove that there
exists a solution F{. ¢y independent of € and of the form required in (i). Given
that the uniqueness of such F\. o) and a; (- 0,0y was established in Lemma C.3 (ii),
this will prove (i).

With the system (67) together with the ansatz

Fg(gla 771752”72) = (@1@(517771)) Qﬁl,g(flﬂ?l)af%%)

.QglE
menw) =), arglon,w) =128,

and using the particular form of the operators Dy and Dy (defined in (68)), we get

a11e(Em)+Ffrolere(€,m), Y1.e(61,m)) = are(&m) D11 (1, m1)
—o11,e(§1,m)+91,0(P1,(61,m), Y1.e(&1,m)) = a1, (Eem)D1v1e(§1,m)

[ye [ye 70
1%52 = 1%52 (70)
_iazeg&‘),OQ — 10125(25) (_772)

Only the two first equations remain. To prove that there exist such 1,91, 01,
we moreover use (iv) of Lemma C.3: we are going to prove that there exist aj ¢(&171)
and b1 ¢(€171) solving the following system 71, and we will conclude thank to (iv)
which asserts that —b; . = a1 .

{ 1016 (€1, M)+ f10(P1e5 1) = (a1,6(E1m1)€10e, + brc(Eam)mdn, ) p1.c(E1,m)
—o1 1,6 (&1, m)+91,0(01.6,V1e) = (a1,(Eam1)E10e, + b1 (E1m1)m0n, ) wl,g(§1,(771))~
71
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Our aim is to prove the existence of such formal power series ¢1 c,%1,c, a1, and by ..
Denote them by

+oo too
P1e(1,m) =& + Z e (€m),  Yre(€,m) =&+ Z ¥ (€1,m),

N=2 N=2
+o00 too

ae(wn) =i+ Y at (@), bie(w) = —ar+ Y b (W),
N=1 N=1

where the o ¥V al¥ and b are homogeneous polynomials of degree N. System
(71) at degree N > 2 read then

al@{v_alDlwiv_gla’iv_l :‘FN(W{\/I7¢{\47&{M_1)M<N)’ (72)
—OMP{V - alDlwiv - ﬁlbi\Fl = gN(‘lO{\/vai\/aaiwilaM < N) (73)

Observe that the kernel of the operator (Id— Dy) is the vector space generated by the
monomials of the form &; (£1m1)™, and is a bijection of the vector space generated by
all the other monomials. We then prove the existence of the @V, 9V, a1 et oIV 1
by induction: on one hand, for ¢&;al (¢1m1) we take the sum of all the monomials of
the form & (£17m1)™ in the polynomial —Fn (oM, M aM~' M < N), and do the

same for bYY. And on the other hand, for ¢ (£1,7;) we chose the antecedent of
Fu(eth il al™ M < N) = &al™ (€m)

by the operator (Id — D;) in the vector space generated by the monomials which
are note of the form &;(&1m1)™. We do the same with ¥V, without monomials of
the form 7y (&171)™.

Then the solution F. satisfies the properties stated (i) ; indeed: on one hand
]|
which is £;. And on the other hand (©1,(c,0,0), ¥1,(¢,0,0)> @1,(¢,0,0)» 01,(¢,0,0)) Solves the
system (71) which is independent of . And by the uniqueness stated in Lemma
C.3 (i1), we get that (©1,(2,0,0), ¥1,(c,0,0)> @1,(¢,0,0) 01,(,0,0)) are independent of . O]

w;’é} given that ¢ . has only one monomial of the form & (§1m1)™,

1

Proof of (ii). Let us denote

1 1
F§I = (90/1,§7¢/1,§7 @5,571/}%,;) = 7(F£ - F0)7 a‘;,s = ;(ai’é - ai’o)'

Py €
In the following proof, we use the absolute value and the maximum associated with
the order relation <, which are introduced in Definition B.1. We proceed in several
steps.

Step 1. System (75) satisfied by the F!. F, and Fy satisfy (67) (with ¢ for
the former, and (g,0,0)) for the latter). We substract those 2 systems and divide
by v, and then use the explicit expression of as o, ¢1,0,%¥1,0, ¥2,0, ¥2,0, which implies
in particular that

Dyp1,0=0= Datp1 0 = D120 = D122 0.
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We then get the following system satisfied by F_

(041—041D1—ia25g5) D2) ©1.—61a) .
= (a1,0—a1)Dyp) + (a'17§D1+a'27§D2) (pro—&+vet )
~f1.e(Fo+vF,)++ (f1,0(901,0’¢1,0)*f1,0(¢1,0+’/¢/1,§v1/’1,0*’”/’/1@))
(the same with 1))
(182~ Dy 122D ) o o
— (a1.0-01) Dy o+ (0} Dr-+ah . Ds ) vigh .~ fo.o (Fo+v FY)
(the same with ).

(74)

This system can be understood as an infinity of equalities of coefficients of power
series, and then as equalities of the absolute values of coefficients. Moreover, observe
that in the term of the left hand side, & a'17§(51771, &am2) is made of monomials

of the form &;(&1m1)™ (€2m2)™2 and (al(I—Dl)—iM(E) Dg) ¢} . does not have any

82
monomial of the form &;(&1m1)™ (Eama)™2.

Then, from each equality of (74), we get two inequalities, and obtain the following
System

=<

.(al(I—Dl)—iaZige)l%) 1| < |(a1,0—a1)D1p] o+ (ai . Di+ab Do) (p1,0—E1+v0h )
—fre(Fo+vFo)+1 (fr.0(01.0,%1,0)— frolero+vel o, Y10+t )]
(a1,o—6¥1)D1<p/1,§+(al1,§D1+a/2,§D2) (4/71,0—514-1/90/1@)

~fre(Fo+vFo)+2 (fro(01,0,%1,0)— f1,0(01,04v01 e, Y1,0+v11 ) |
the same with the 3 other equations of (74)

|€1ai | <

(75)

Step 2. An upper bound M, of F.. We introduce two families of formal power
series

Mé(fla m, 527 772) = mj’x { mj“x(Dlspll,§7 Dqu/l,g)—’_‘ 9011 €:|

ij(D1¢17gaD2¢i,§)+ [ i,&}

max(Digh ., Dot )+ [eh.c

mjx(Dﬂ/Jé@DQwIz,g)‘f' [ é,g}

Let us prove that ‘cp’lé < M. We denote

80/1,5(517771,527772) = Z C(m,n)g’{nln?l ;)127732' (76)

m,neN?
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Then

mEX(Dlspll,ga D2¢,1,§)+’ |:90/1,§:|

= > lcanmlmax {[mi—na|, [ma—nal, 1} " )" €57 0y,

m,neEN? 77
(&1,m1,&2,m2)- (77)

<X el € = |

m,neN2

So go’lé ‘ < M,. With the same method one can check that M. is also an upper
bound of [¢1.|,|¢2.c| and |2|.

Step 3. Lower bounds of the left hand side terms of (75) in term of
M. Let us show that there is the following lower bound for the left hand part of
equation (75)

min{|a1| 20
< (m(I—Dl)—iai(QE)) Phel-

1 92 } : (ij(DW’l,@DW'z,EH [80'1@]
Indeed, using notation (76), the term of the right hand side of (78) satisfies

(78)

‘(Oq(f - Dl)—iaz(;)> @ | €, E2,m2)

- Bl (s 1)) 22 ) ) e

52
m,neN?

given that «ay, as are real. And we already computed the term of the left hand side
of (78) (see (77)). So, (78) will be proved if we show that, for all m,n € N?,

. [ loa| aa(e)
min { —,
4 2e2

} |C(m,ny| max {|my—na], [ma—na|, 1}

< @ (|a1(1—(m1—n1))|+|ai(2€) (m2_n2)|> .

holds. We consider two different cases: firstly, if m; = n1 + 1 and mo = no, then
C(m,n) = 0. Indeed, from the definition of F. we get

/
1 1
-4 -
& v\ & & v
Secondly, if m; # ny + 1 or mg # ng, we then get the result using that |1 — (mq —
ny)| > 1 or |mg — na| > 1. Hence

as(e)
-2

as(e)

Jaa ][ = (m1 = m)| + | —

|ms — ng| > min{|ay|,

31,




HOMOCLINIC ORBITS WITH MANY LOOPS FOR 0%iw RESONANCES 57

The proof of (78) is then completed. And with the same method, we obtain the
same type of inequalities for 1] _, 5 ., 45 ., and finally get

[ leal ()
mln{4, 92 M,
< max al(I—Dl)—iQZ(g) ol
o 22 ie

b

<a1(I—D1)—iO‘Z(QE) > Ui

)

Step 4. Upper bounds of the right hand side terms of (75) in term of ..

From now on, taking (£1,71,&2,m2) = (w,w,w,w), we consider all the power series

as power series of one variable w. The inequalities < are preserved by this change

of variables. Given that ¢1.0,%1,0,920,%2,0 and a; o — a1 are convergent power

series (by Lemma C.3) without term of degree 0, and that f1 0, g1,0 are convergent

without terms of degree 0 and 1, Lemma B.2 ensures the existence of ¢,y such that
w w?

2
s - =<
Cl—fyw a1,0(w?) — o Cl—'yw

wi,O(wW‘}awaw)ﬂ/}i,O(wawawvw) < 679)

w?

(80)

=< .
f1,0,91,0(w,w) 9 —w
Jie,91,6, f2.c €t gac are C° in term of ¢ in the space (A(B(c4(0,p1),(C), ||~HA)7 SO
that there exists an uniform upper bound in term of A- uniform en £. Moreover,
the fi¢, 916, foc and g2 . do not have any monomial of degree 0 or 1. Then we get
(with larger ¢ and gamma if necessary)

w?

f1,§a91,§7f2,§792,§(wvwaw7w) < Cl—’yw' (81)
Let us compute upper bounds, in term of M, (w,w,w,w) and A.(w? w?), of the
terms of the right hand side of (75). We use Lemma B.3 to obtain the last of the
following inequalities.

(.4)2

ME(w7 w’ (JJ’ w);

’(01,0 — 041)D1<P/1,§|(wawaw’w) =< “T= e

w2
‘(a’l,éD1+a’27§D2>(<p1,0—§1+ugp'1,§) < A (W2 w?) (21/M5(w,w,w,w) + €3 ) ;

— Yw

[Fr.2(Felo,0,w,0))| < Ufrel(Ionol - hnol 400101 Ll -+, D, )

2
(4c1_wW +4v M, (w,w, w, w))

<c

)

1—7 (401:”W + 41/M§(w,w,w,w))

% (f1,0(01,0,%1,0) = fr0(P1,6:¥1,2))

< 11D ol (Il ol +(16t 94 D) - (k.

2c TR M, (w,w,w,w)
<c 1= = 2M (w, w, w,w).
177(26#21/M2(w,w,w,w)) =

+1 )
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Step 5. An inequation independent of ¢ satisfied by M.. We come back
to system (75) and use the lower bounds of the terms of the left hand side (Step 3)
and the upper bounds of the right hand side (Step 4). Taking the maximum of the
terms of the left hand side, we obtain

M. < c1 —M:+A. (QVMQJrclfjw)
(4c v M, )2 ort
+c +c oM.
1- 7(4(:1 SHWM) 1= 7( )
wA: < cr L M. +A. (QVME—i—cl jw) (82)
(40 +4VM5) 2c1 _ 2w M,
+c +ec oM.
1 (te ) 1y Qerpt)

We introduce

N (w) = M (w,w,w,w) + wA (w? w?).
Moreover, given that ¢ ., %1, 92, and 12 do not have any monomial of degree
0 or 1 and the a;. of degree 0, necessarily, N; read N; = w?N/(w), where N/ is a
formal power series. We aim now at showing an upper bound of N/ independent of

€. And from system (82) we get that there exist ¢ and 4/ such that for v < 1 N,
satisfies

(=5 + o) (=5
N!+2wNP + ¢
1 Yw 1_,7/(1 Ww+W2NI)

N/ satisfies then a functional inequality independent of ¢.

N. <

Q) . (83)

Step 6. Construction of a convergent majorant series Z. We aim now at
constructing a convergent power series Z satisfying

(55 +2) (=
——Z(w) +2wZ*+ ¢
1—yw 1—y ( +w2Z)

and such that Z(0) > N.(0). Indeed, from (83), by induction on the coefficients of
N, and Z we will then obtain

cw

Zw)=<¢ ) , (84)

1—yw

Né(w) < Z(w),
so that Z will be the convergent upper bound independent of ¢ that we are looking
for.

And by the analytic implicit functions theorem applied to equation (84) in the
neighborhood of w = 0, we get the existence of a such Z: indeed, for w = 0, equation
(84) read

Z —cc =0,
where 0 (Z — cc’) =120 for all Z. And, up to a choice of larger ¢ and ¢’ in (83)
if necessary, cc’ > N/(0) is satisfied because N.(0) is uniformly bounded in term of
¢ for € < g given that all the analytic functions defining N/ are C° in term of £. So
we get the existence of a convergent power series Z such that N’ ‘(w) < Z(w). Then,

M, (w,w,w,w) < wZ(w), A(w? w?) <wZ(w)
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hold, and thus

M (1,11, €2,m2) < Me (e, -+, Ertprtlatng) < (Srtmtlatne)® Z (St i)
and the same for A.. Finally thank to Step 2, we get

Ul b ol and [ (61,1, 62,m2) < (Ga+m+&etn2)? Z(Ei+m+Eatnz),
lag c|(61,ms&2,m2) < (Gtm+Eatn) Z(E+m+-Eatng).
O

|01 ¢

C.3. The canonical family F} : Construction, properties of Fj. In this
part, the first Lemma C.5 states the existence of a family of canonical changes of
coordinates F} verifying a criteria, and then Lemma C.7 gives the main properties
of F}. Thank to the criteria, in next section we will prove that the F* are conver-
gent and we will show that F* — Fj admits upper bounds of the type claimed in
Proposition C.1. The appropriate choice of the criteria will also allows to prove in
Part C.5 that the F, are real. Our criteria (87) is very close to the one used by
Rssmann [22] but slightly different in order to obtain a real change of coordinates.

Lemma C.5. For all g,

(i): There exists some canonical formal power series
ﬁé(gla m, 627 772) = (517 m, 627 772) + O(|(€1, m, 527 772)|2)ﬂ (85)
and a Hamiltonian formal power series of 2 variables K. such that

(65) (5)
52

H(F.((&1,m,82,7m2))) = Ko (&1, Eamp) = —anamy — i §ama +--+ (86)

(id): If F‘Q satisfies (i), then F; also satisfies (i) if and only if there exists a
formal power series S(w1,ws) such that

Fgl(gv n)=Fy (®1(Em1, Eam2)E1, U1 (€111, Eama) 11, Pa(E1mn, Eama)Ea, Wa(E1m, Eama)1a)

holds, where we denote

— eawiS(wl,wz)7 e—(’)wiS(wl,wg).

D, (wr,ws) : U, (wy,ws) =

141): ere exists a unique canonical formal power series denote =
111): Th it ) cal { ies denoted F;
(1,01 o) 50505 ) satisfying (i) and verifying the criteria

o ([5] Conont [25] a0 [ ] G- ] <w1,w2>)(835

Remark C.6. Taking the values a1 ¢(w1,ws) = Oy Ke(w1,ws) and ag o(w1,ws) =
Ouwy K (w1, w2), we see that (7) of this lemma is a particular case of Lemma C.3.

Proof of (i). We construct ﬁg with the aid of a generatrix function, i.e. we construct
a formal power series W, and define F by the implicit equation

ﬁg(a’nl W§($> n)’ 771’ an2W§($> T/)) 772) = (xla 69:1 Wg(ma 77)7 .%'2, a{r2W§($’ 77))
In order to obtain F; of the form (85) we look for W, of the form
We(z,n) = We(z1,m, 22,12) = 211 + 2nz + O(|(z, 1))
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Then, the formal power series W, and K, verify (86) if and only if

H((Ihaﬂtlwg(xan)vI27612W§(I777))7§)
= Ké(am Wé(xvn)vnlv 3772Wg($=77)»772)a (88)
with K, of the form

Ké(glanhf?vn?) = K§<£1771’£2772) - 70‘151771 B lw€(§)

Let us denote

Wg(%ﬁ) = Z WQN(%U% H(z,y,¢g) := Z H«{;V(x7y)v Kc(&,n) = Z Kg(f;n);

N>2 N>2 N>2

+ O((&1,m1, &2,m2) [2).

where WQN , Hg , K év are homogeneous polynomials of degree N. Then (88) is sat-
isfied if and only if for all N > 2,
a(e)

alDle(xvn)+17D2Wg(xvn)_Kg(xvn):‘FN(WQJw?KéVI7M<N)7

where Fy only depends of the WM KM for M < N and where we denote D; =
210z, —MOy,, and Dy = 2205, — 1720y,

Given that a1 and ao are real, observing the images of the monomials, we get
that (c1Dy + iai—gf)Dg) is a bijection of the set of formal power series without
monomials of the form (x17;)™(zam2)". Thus, we construct the W and KV by
induction, choosing at the step IV:

KN (zym, zomp) = [FN(Wg,K§17M<N) (111, &2m2)

ReHIE
WQN(mlvnlax%nQ) = (a1D1+1 25(2)

(IN(WgM, KM M < N) = KN (21, xzm)) ,

Dy)~! (89)

Proof of (i7). This is nearly the result proved by Rssmann [22] in its part 3: he
shows that the change of coordinates

(€1,m1,&2,m2) = (P1(&am, E2m2)€1, Ui (€amn, E2me) e, P2(E1m, Eama)€2, Wa (&1, Eam2)n2)

is canonical if and only if ®; and ¥; are of the form stated in (i¢). Using the result
of [21] here above in (4ii) of Lemma C.3 we then achieve the proof of (ii).

Proof of (iti). Let us fix one ﬁé satisfying (i). From (i), we get that F solves
(#41) if and only if on one hand there exists a formal power series S(w;,ws) such
that

Fg* _ ﬁg (et’?ul S(§1ﬁ1v§2n2)§1’ e 0w S(&1m1,62m2) g 5(51771»&2772)52’ o Ows S(&1m1,62m2)

»).

(90)
and on the other hand, denoting F} = (7 _, %7 ., ¢5 ., 7 o), the criteria (87) is
verified, i.e. N I

o ([ o [5]  (]  [2] )=

Let us show that for this ﬁg there exists a unique S such that F_ satisfies those

n,e

two conditions (except S(0,0) that does not need to be unique). Denoting ﬁ7 =
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(P1,e, Vi,e, P2e, Y2.), from (90) we get for i = 1,2

e o ()

&i i
Wk } 8. 1[’
_ —0w S (w1,w2) e
wi,w2) = € g wi,w2),
{ ub ( ) i ( )

Y

|

Recall that FL(1,m1,&,72) = (€1,m,82,m2) + O(|(&1,m1, &2, 72)[), thus [ £ } =
14--- and V”} =1+ ---. Then (87) holds if and only if

(w18, +iwsd,,)S :wl[(eawls—(1+ams))+([*"g;]—1 Ou
e 0 —(1-0,,5))— (| 2= }

ifls v (] o

o= (1-0,8) ([ 5] - 1) e,

Recall that S(0,0) does not need to be unique to complete the proof. Let us choose
S5(0,0) = 0 and denote

w17w2 = E S w17w2

N>1
where the SV are homogeneous polynomials of degree N. Then (91) reads

{ —2(w18w1+iw28wZ)Sl = 0,

(B, +iw20,)SN = Fn(SM,1< M < N) for N> 2. (92)

Computing the images of the monomials through the operator (w19, +iw20., ), we
observe that it is invertible on the set of formal power series without monomial of
degree 0. Then 92 allows to construct S without monomial of degree 0 in a unique
way. O

The following Lemma gives a more precise description of F (*6’0’0).

Lemma C.7. F( 0,0) is independent of € ; then we denote it F(*s,o,o) = F§. More-
over Fy is of the form

Fg(é-l?nlagQ?nQ) = (SDT,O(é-hnl)?wik,O(£17771)7§27772) . (93)

Proof. We proceed in 2 main steps.

Step 1. Construction of a ﬁ(g’o,o) independent of ¢, of the form (93).
Following the strategy of proof of (i) of Lemma C.5, it is sufficient to prove that we
can construct W, o0y and K. o) of the form

LQolE
Wie0,0)(,m) = im+x2me+W (z1,m), K 0,0)(w1,ws) = —aiw—i 25(2 )+K/(W1)-

We use the particular form of H when v = 0 (see (62)). Denoting Dy = 10y, —
MOy, , we obtain that Wi o) and K o) satisfy (i) of Lemma C.5 if and only if

—ar Dy W' (z1,m) = K'((21 + 0, W (21, m))m) — (@1, m + 0z, W (z1,m)). (94)
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Note that this equation is independent of €. Let us show that we can construct such
W' and K'. Denote

"(1,m) Z W (z1,m), K'(wr) Z K™ (@),

N>3 N>2

where the W'V, K’V are homogeneous polynomials of degree N. At degree N, (94)
reads

—ay DIW™N (zy,m1) — K'N (1) = Fn(WM, K™ M < N).

Recall that a1 # 0. As in the proof of (i) of Lemma C.5, oy Dy in invertible on the
set of formal power series without monomials of the form (x17;)™, and we get the
existence proceeding by induction with the same strategy.

Step 2. Construction of F (500) independent of ¢ and of the form (93).

Following the strategy of construction of the proof of (iii) of Lemma C.5, it is
sufficient to prove that we can construct

F(*E,O.O) _ ﬁ‘(a,0,0) (efhis(s,o,o)(51771’52772)&,7 e Ow; S(a,o,o)(§1771,§2772)m;i =1, 2) ,

with the ﬁ(a,0,0) = 1?'0 of Step 1 above, and
(2,00 (w1, w2) = So(wr).

Given that Fy is of the form (93), the criteria (87) reads

Wy <eawlSo(w1) |:90£1,0:| (Wl) —e_awlso(un) lm (OJI)) =0

1 T]1_

—2w10,, So(w1) = w1y [( DeoySo(w1) (1+aw150(w1)))+( 905110} 1> OwiSo(w1)

Y10 1) e 0wiSo(w1) |
m

This equation is independent of € and admits a unique solution Sp(wq) : the proof
is similar to that of (ii7) of Lemma C.5. O

— (e %) _(1-9,,50(w1)))— (

C.4. Upper bound of F} — F7. In this part, we state in the Lemma C.9 that
F? — F§ admits an upper bound of the form of those of Proposition C.1. But firstly,
we prove the technical Lemma C.8 which will be useful to prove Lemma C.9.

Lemma C.8. Let ® be a vectorial formal power series of the form

D:(E1,m1, 62, m2) = (P (&1, E2m2) €, Ui (€amn, E2me)m, P2(§1m1, E2m2)E2, Wa (€1, am2)n2)

where @1, Wy, Po, Uy are formal power series satisfying
(1)1(070) =1= \Ijl(O,O) - ©2(0a0) = \112<0a0)
Then there exist some formal power series ®1, W, ®5, ¥, such that

@&, M, E2,m2) > (@1 (€am, £2m2) 0,0 (€1, Eamz) 1, @5 (€11 £2m2) 2, U (E1my, Eama)2).



HOMOCLINIC ORBITS WITH MANY LOOPS FOR 0%iw RESONANCES 63
Proof. Let us denote the inverse of ®

(P_l : (§17n1a§2an2) —
(5’1(517771,527772),@1(5177717527772),é2(§1,771;§2,772),\I’2(§17771,§2,772)) .

We want to prove that ~<f>1 reads £ P (&17m1,&am2), i.e. that all the monomials of
the formal power series ®; are of the form (&171)"t (€am2)™2&;. This is equivalent to
show that

(&10e, — 7718771)&)1 = &)1, and (&0, — n23n2)<i>1 =0.

Writing similar conditions on Uy, Oy, Uy, we get that Lemma C.8 holds if and only
if ® satisfies

1 0 00 & 1 0 00
_ 0 -1 0 O 0 -1 0 O _
D® 1(5177717527772) 0 0 0 0 2; = 0 0 0 0 P 1(51777155277]2)5
0 0 0 72 0O 0 0 0
(95)
and
00 0 O & 0 0 0 O
_ 00 0 O 0 0 0 O _
Dé 1(6177717527772) 0 O 1 O 2; = O O 1 O @ 1. (96)
00 0 -1 72 0 0 0 -1

We know that @ verifies those two criteria (95) and (96). Let us prove then that
&~ satisfies (95) (same proof for (96)). From (95) verified by ® at (£1,m1, &2, 1m2) =
(I)il (513 77/17 géa 775) and USng

D¢_1(§17 7717627772) = (D(I’(Q_l(flanhéé?n2)))_17

we get
1 0 00
- 0 -1 0 0f ._
D®o@ M (&Lm&m) [ o o o o B (L&)
0 0 0 O
1 0 00
0 -1 0 O _
“lo o o o o ® 1(51»77/1;5&;77/2)'
0 0 00
And this implies the result (95). O

Lemma C.9. For dall ¢ €] — eg,e0[, the formal power series F? is a convergent
series. Moreover there exists a convergent power series M such that

FY — F§ < v(&+m+&otn) *M(&+m+E+ne2). (97)
Proof. To show that the F} are convergent, the strategy is the same as that of

Rssmann [22], even if here we use a criterium (87) different from his. Here we only
prove the upper bound (97).
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The first key ideas of this proof are the similar upper bound proved for F; in
Lemma C.4 (7i) and the result (iii) of Lemma C.3 which allows to express F_ in
term of F, : there exist a vectorial formal power series

. : (&1, 82,m2) =
(D1 (Eam, Eamz)€n, W (Eamr, Eam2) s Pac (G111, Eam2) 2, o e (171, Eam12)2)
where ®; (w1, w2) =1+ -+ and ¥; . (w1,wz) =1+ -+, such that
F.=F o®..
Then, in this proof we will split ®, into a product of maps of the form
—5, e
Fo= oo (@)= @i Biam)) o ((Gm) = (@ic¥icgimy))
= Fgo((fi,Th)H(ea‘“'iS&:veﬁ“ism)%((&,m)H(egi’éfuejéi’ém))Ogs,

=(P1,e,Y1,e,P2,6,¥2,¢) =fc

where g, : ((fi,ni)H(@é\Pi,ggi,771-)) dnd Sg, S’i)g, 5@5, E/i@ ®, ., U, . are power
series of two variables (wq,ws) = (&111,&212).

Remark C.10. This factorization of F is the same as that used by Rssman [22]
in his proof: he proves that F converges by showing that every map of the factor-

ization converges. In our proof below, we recall how these maps are constructed,
but

we consider that their convergence for all fixed ¢ is a known fact.

Here is an outline of the proof:

Step 1.: We define h. and compute an estimate of h, — hg ;
Step 2.: We introduce ®. and prove that it reads

Bt (60 ) 1y (SO Gmlg omShalEomGanay ),
Step 3.: We show that the S;. read
Sie = Sie + 0, Sz,

and prove an upper bound of f. — fo ;
Step 4.: We introduce (@1.c,¥1.c, Pa.c,P2.) and show an estimate of S, — Sp.

The key argument of Steps 1, 2 and 3 is that F is symplectic. Step 4 relies on the
criterium satisfied by F7. Let us now detail these steps.

Step 1. Let us define

he : (§1,m1,82,m2) = ((P1e-W1.e)(Eamn, Eom2)én, M, (PoeWao)(E1m1, Eama)Ea, 12).
Given that F_ is symplectic, , tDFQ*QDFé* = ) holds and thus

'DF.QDF. = 'D®.'DFQDF D®, = 'D$.QD®,.
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Considering two of the coeflicients of these matrix, we get

Oy 01,608, V1,6 =0, 1,608, 01,600, 92,606, V2.6 =0, V2,0, P2,
= —0u, (<I>1’§\I/1,§w1)
D2 01,606,001, =00, V1,608, 1,6 10, 02,60, Va,e =0y 2,6 Ot P26
= —@,2 (@2’3112@0.)2) 5
with F; := (p1,6, 1., P2.e, Y2.) and where @, ., ¥, . are formal power series of two

variables (w1, wa) = (&1m1,&212).
On one hand, from the result (ii) of Lemma C.4 we get the existence of a con-
vergent power series M such that

O, (Fz — Fo)(&1,m1,&2,m2) < v(§1+m+E&a+n2) My (§1+m+Ea+n2),

and obtain similar upper bounds for O, (F; — Fy) and for the 0, (F; — Fy). On the
other hand, Lemma C.3(v) ensures that Fj converges.

Thus, substracting (98) for € from (98) for € = (g,0,0), we get the existence of a
convergent power series My such that

8w,i(<I>i7§\I!i7§w,») — 8%(@1*70\1’1‘,06%) < VMQ(Wl"‘(.UQ).

From which we finally obtain the existence of a convergent power series M, such
that

(98)

he — ho < v(&1+m+E&+n2) My (E1+m+Ea+n2).

Step 2. Let us define
<i>§ =®. 0 h;l.
Given that ®. and h. are both of the form

(&iymi) = (fi(&ame, §2m2)6i, gi(§1m1, Eamz) i)
with fi(w,w2) =1+ -+ ,gi(w1,ws) =14 ---, Lemma C.8 ensures that &:’g is also

of this form, i.e. there exist ;. =1+---,¥; . =1+ --- such that

'i’gf (&, mi) — ((i)i,g(flnlagﬂb)giv\I’i,g(flnh{?’h)m) .

Let us show that for i =1,2, E)ié and {Ivlié satisfy

@-é(wl,wg)\llié(wl,o.)g) =1. (99)
From the definition 'ié oh. = ®, of ®_, we get that for i = 1,2

B (Pr oW1 e (wr, wo)wr, o W (Wi, wa)wz) Bi oW (wi, wa) = B (wr,wa)
e (PreW1 e (w1, wo)wr, Po e Vo (Wi, wa)ws) = ;o (wy,wa).

and then, for i = 1,2

i (P1, U1 cwr, Bo Wy cws) Uy o (D107 cwr, Dy W ctn) By W cw; = By W .

Given that @1 ¥y (w1,we) =14+ and ®g ¥y (w1, w2) =14 ---, the map
(w1, wa) = (P1eVrcwr, Pa Vo cwo)

is invertible, and we then obtain

&)i,g(wlaw2)\yi,§(wl7 Wo)w; = w;,
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which achieves the proof of (99). Introducing S; . := ln(cfié), <T>i7§ reads

@iyg(wl,wg) = esi’é(wl’wz), \Ill-é(o.}l, WQ) = eisi’é(wl’u&).

Step 3. Given that F is symplectic and F; o h;l =Fo &’Q, we get
'D(F. o h")QD(F. o hZ') = D®.QD®,. (100)
Considering the coefficients of this matrix and denoting
ﬁg = (851@7 751@ P2, 1[’2@) =Fco h;
we obtain
Og, P1.20¢, V1,e— 0y V1,0, P, + 0y P2,06, Vo,e— Oy V2,0, e
= 1112(0wy S1,6— 0w, S2.¢).  (101)

From Step 1 above and (ii) of Lemma C.4, together with Lemma B.4, we get that
F; reads

F, = Fy+vF,,

where F. é has an convergent upper bound for <, uniform in term of e. Then Equation
(101) is of the form

Ro(wlaWQ) + VRé(wlaWQ) = aWQSLE(wlvwQ)_aw1S2,§(wlaw2)a

where Ry is convergent and R, is uniformly bounded for <. Let us define then

S‘l,g(wl,u@) = / (Ro + VR.) (w1, t)dt, S’gé(wl,wg) =0,
0
and

Je i (&,m,&2,m2) =
(egl,;(&m,éanz)gl’6751@(51771,52772)7’1’egz,g(élméwz)&’6792,;(51771,52?72),72) .

From these definition, the S; . and f. are also of the form
Sie=Sio+vSie, fe=fo+vfl
with the S’ ic and fé bounded for < by a convergent power series independent of €.

Moreover, the S; . — S; . verify then
Oun(S1.2 = 1) = Doy (S22 = S2.2) = 0. (102)
Let us define

S, (w1, w2) = / (S1e— 81.2)(t wa)dt + / (Sa.e — 82.0)(0, 1)t
0 0

thank to (102), S. satisfies

D0, 8: = S1. — Sic, DioySe = Soc — S

& & )
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Step 4. Gathering the results of Steps 1 to 3 and using Lemma B.4, we get that
F? reads

F

F§ © he_Pl © fé_l (e_awl Siflv eaul Sinla e_awz 52527 eawz 52772)

(@1,;7 1/31,§a ¢2,§a 1&2@) (e_awl Sigla eawl Sé’rlla e_6w2 Séé-?? eaw2 anQ) (103)
where

(Bre,V1es Poe, V) = (P10, V1,0, B2,0, V2,0) + V(B o, V) oy Bhoy Py o), (104)
with (¢ ., 1[1’1@ Do e vé’g) have a convergent upper bound for < independent of ¢.

Let us now study S;. We proceed in several steps.

Step 4.1. Consequence of Criterium (87): equation satisfied by S; =
1(Sz — Sp).  With the notation (103), observe that F satisfies the criterium (87)
if and only if

+  dws (e_a“QSE [@fl;] (w1, ws) — P25z [wl’al (WI’W2)> =

The same calculations as those of the proof of Lemma C.5(7i7) (to obtain equation
(91)) lead to the equivalent equation

(w18, Hiwsd,,)Se = wi [(e’aw1si—(1—0w155))+([@f}71 o= OuSe
(oD (140,,5)) — (| 22| 1) e2r5:]
i [ (7 0ue— (1-0,82))+ (| 22 | 1) 7055

(25— (148,5.)) — ([w —1) eawz-%} .

Writing this latter equation for ¢ and for € = (¢, 0,0), we get that S, := %(SE —So)
satisfies

1 <1
_2(0J16w1 +iw28w2)5; = wy [(eawlss_eaw150)+awlsé+ |:(¢0§1,€:| efawlsi
£ v £ 1
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D 1
+ ([@1,0] _1> 7(8—8“,15'2_678‘”180)

&1 v
1
;(66“135—66“150)4—8“,15';
. ’lr/)ié eaW1S5—<|:1[)1’O:| _1) l(eawlsé_eawlso)
Uit m 14
1 v
oo 0,5 0,8 1o | P2e| 0.8
Hiwe| Dl ¢ OH%SJ{ & } ‘ (105)

n ({@2,0] _1> l(e—awzsé_e—awzso)
&2 v

1 s
= (eDe= —ee550) 1.9, S — [251 o0wsSe
B 72

14

([ )penan]

In order to obtain a majorant series of the S, we define

‘/i,g(wl, WQ) = |awi5§|(wla w2)a Vé(w) = ‘/Lé(wa w) + V27§(w7w)7

and compute a majorant series of the V; with the aid of (105).

Step 4.2. Lower bound of the left hand term of (105). Let us denote

o § : ni, no
SQ T QnynaWp Wo™-

ni,n2EN
Then
wiVie(wi,ws) = D ilan, n, e wh?,
ni,me €N
|w1 Oy Se + iwa0, Se| = Z [n1 4 ingl|an, n, Wit wy?.
ny,no €N

Given that n; < |ny + ing|, we get

inZ@ < |w18w1 S§ + iw28sz§|(w1, wg). (106)

Step 4.3. Existence of an upper bound of the right hand term of (105).
of the form

2
Zwi (G} (w1, w2) + GF (w1, w2, Vie, Var)), (107)
=1

where G}, G? are convergent power series independent of € and G} is an homoge-
neous polynomial of degree 1 and G? is of order more than 2. To show that, let us



HOMOCLINIC ORBITS WITH MANY LOOPS FOR 0%iw RESONANCES 69

compute successively upper bounds of each right hand side term of (105):

1 1
2 (e OwSe _g=0uS0) _ Z (= 0uiSe _o=0uiS0) | 25%3;

v v
= —2(sinh(d,,S:) — sinh(0.,S:)) + 20.,5%

2p
00 (Ou; Se)* (0w, S0)?P~F
/ k=0
- —28%3%2::1 2p+1)!
o (2p+1)(|9w; So|+VVi,0)?P
< 2 3 GRS
o (19w, Sol+Vie)*”
= QW,g(\awiSd*m@)pgo (2(1)0+2)! ;

(the last inequality holds for v < 1), where the last upper bound is of the form G?
given that Sy is convergent and independent of ¢.

Given that ¢4 . is of the form (104), there exists a convergent series M indepen-
dent of € such that

H‘PV/l,e] —84, S
e 1~E
51

(orvem) = || 2]+ [ B] e

< () M(wr, ) (1 (oSt 1))
< (witw2)M(0,0)+(w1+wa) (M (wr,w2)—M(0,0)
+M(wy,ws)(exp —1) o (|0, Sol+ Vi ¢)

which is of the form (107) given that for all €, |0,,,5¢/(0,0) = 0 holds because

(w1, ws)

0u;8:(0,0) = S; £(0,0) — S; (0,0) = S; .(0,0),

where
eSie(wiwa) _ q)é(wl;WQ) =14,

We get similarly an upper bound of [w“} P19

st
Finally,

P10| 1 1 |efawls5 B efaulso}
L & ] v
(B10] |1

< ‘2}’0 —1)|—awlsg—(@wlso)|elawlssH%Sol by Lemma B.3
L 61 | v B

< 79061,0 -1\ Vie 210wy Sol+Vie o1 <1,
| S1

which is of the form G7.

Step. Equation of construction of the majorant series Z. Gathering the
results of Steps 4.1, 4.2 and 4.3, we obtain that V; satisfies

wVew) < w(Glww)+Ghw,w)

FG (W, @, V), Ve(@))+ G (w,w, Va(w), Va(w)) )
Hence

Velw) < aw+c (w+ Ve())®

= 1 —y(w+V:(w)) (108)
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by (iv) of Lemma B.2.
Let us construct a convergent power series Z(w) such that
(w+ Z(w))?
[ (@+ZW))’
and prove by induction on the coefficients of the series that Ve < Z(w).

Z(w)=cw+c

Step 4.5. Initialization of the induction (if existence of Z). Thank to
(108) the proof by induction works if we prove the initialization. At degree 1 in
(w1, w2), (105) reads

2(w15w1 + iwgé‘wZ)(Sé)l =

given that the right hand side (105) is of the form (107). Thus the degree 1 term
of S, (S%)1 vanishes. At degree 2 in (w1,w2), (105) gives
m,

2 M

. 4

2((,018w1 + IWQan)(S;)Q = Zwi |: 1’8:| -
- i=1 & ly

where the right hand side term is uniformly bounded. Thus, there exists « inde-

pendent of £ such that

w(Ve)i(w) < aw?.

Step 4.6. Existence of Z. To satisfy the initialization assumption, we look for
Z satisfying

(w+ Z(w))?
1—7(w+ Z(w))
i.e. we look for Z; such that

Z1 (1 =qw(l+ 2Z1)) —c(1 —qyw(l + Z1)) — ew(l + Z1)* = 0 <= F(Z;,w) = 0.

This equation, independent of &, satisfies the assumptions of the analytic Implicit
Functions Theorem in the neighborhood of (w, Z;) = (0, «). Thus we get the exis-
tence of the analytic function Z;, i.e. a convergent power series in the neighborhood
of 0.

Choosing S2(0,0) = 0 (possible because only the derivatives of S. are in the
definition of F'), we obtain the upper bound

Z(w) =caw+c and Z(w) = wZ;(w), with Z,(0) > q;

Sé(wl,LUQ) =< Sé(O, 0) + lel,é(wl,wg) + OJQVQ,Q(wl, (JJQ)
=< (w1 Fw2) Ve (w1 +w2)

=< (W1+WQ)Z1 (W1+WQ),

where Z; is a convergent power series independent of ¢.

Step 5. Conclusion of the Lemma’s proof. F; reads

Ff=FoohZbo foh o ((&,mi) = (7%, €% %eny))) .
And thank to Lemma B.4 and to the results of the previous steps, this is a product
of formal power series of the form R, = Ry + VR’g where Ry, R, are convergent and
admit a convergent upper bound M independent of e. Thus F" is also of this form
Ry + VR/Q . Moreover, F is defined as

FZ(&,m, &ame) = (§,m, &)+ F5(&1sm,62,m2) = (§1,m1,€2,m2) + -+,
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so that we can chose the upper bound of F; — F without monomials of degree 0
and 1 ; i.e. there exists a convergent power series M such that

(FF = F3)(&1,m1,62,m2) < v(€1+m+Eatne) P M(E+m+Eatne).

C.5. Back in R%, proof of Proposition C.1.
Lemma C.11. 1. Define F, := P_lFé*P, where F? was introduced in Lemma
C.5. Then
Fe(&1,71,60,7) = Fel&1,m, E2,m2); (109)
i.e. F¢ is a real power series with real.
2. There exists K. such that

H (Fe(&,m,&,m2),8) = Ko (&1, €5 +13).

Proof of (i). In this proof we use the following notation if the power series f reads

f(x)= > apz™, then we denote
neNd

f(z) = Z apx”.
neNd
Let us define
Jl : (C4 — . (Ci
(51777%527772) = (5177771;527%)’

and denote Jy := PJyP~1. Then Jo(&, 7, &5, m5) = (€,,17,1 15,1 &,). And we get
that the equality (109) is satisfied if and only if

JoF:Jy = F. (110)
To prove that (110) holds we use the uniqueness of the F of (#ii) in Lemma C.5:
let us prove that Fg = JoF Jo verifies the conditions of (#4i) of Lemma C.5.

Condition 1: F‘§ is symplectic. From part C.1 we know that P is symplectic,
S0 it is equivalent to prove that P71F‘§P is symplectic, what holds if and only if

tDFQDF, =Q
holds. And this holds given that 7, is symplectic and €2 is real.
Condition 2: E(Fg(fl,’l’]l,fg,ng),g) is a function of 171, 12 and . Recall

that lemmas C.3, C.4, C.5, C.7 and C.9 were proved for a general Hamiltonian H
introduced in (62), and observe that the Hamiltonian

H((¢},p, db,15),€) == H(P'(d}, P, db, 1), €)

is of the form (62). Moreover, the Hamiltonian H is a real power series and from
Lemma C.5, we know that

H(F (§1,m,82,m2),€) = Ko (§1m1, &2ma).

Then a short computation leads to

E(Fé(gla m, §2a 772>7§> = E(glnla _62772)'
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Condition 3: satisfies the criteria (87). Fix ¢, and denote

FL(&1,m1,&2,m2) = (@1, V1, B, h2) (1,01, E2,10);
(&1,m,82,m2) = (1, U7, 05, ¥5) (&1, M1, &2, m2)-

|

Then we get

G1(E1,m,€2,m2) = 05 (E1,m, —in2, —1&2), Ga(r,m,E2,m2) =1 U5 (Ex,m, —in2, —1&2),

dl(fla 7717627 772) = ﬁ(flﬂ?l’ —17727 _i§2)a 1&2(5177717627772) =i 8073(6177717 _i7727 _152)

Let us express ["Dl} in terms of {%} . Let us denote
&1 &
(pT = Z am,ngrln?1§£n2n32a
m,neN?
then we obtain successively
A= X antan) @™
mTiTL:Lil
Ci(&,m, —ing, —i&a) = D@m= g gy
m,neN2
{21] G o) = D @ (=) (Gm)™ (E2m2)™
mTifL:Lil
= {?ﬂ (§1m1, —&2m2)-
Similarly, we get
A 7
7711 (&1m,&ame) = 7711 (&1m1, —&2m2),
[ G2 ] 3
& (§1m1,&amz) = _[772] (E1m1, —E€ama), (111)
'wv b T *71
7722 (&1, &ome) = — % (E1m1, —&2m2)-

Then, using the fact that F satisfies (87), we obtain that for all (w;,ws),
al[a]- [l e v ([E] - [3]) v
_ Pl Y e (2] 2 ) =
= ([ v (2] e e =o

i.e. F. satisfies the criteria (87). O

Proof of (ii). From Lemma C.5, there exists K_* such that I verifies

H(F(&1,m,82,m2),) = KZ(&m, Eamz).
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Then we obtain

H(F.(&1,m,&,m2),6) = H(PT'FIP(&1,m,&2,1m2).€)

1 1 i
= H(FI(&,m, 5(52 +in2), E(W +1i62)),€) = KZ (§&1m, %(5% +13))-
Thus (ii) holds with K. (&n1,&3 +n3) := KX (&m1, 2(63 +n3)). O

Proof of Proposition C.1. Let us prove that the family F, defined in Lemma C.11
satisfies the results claimed in Proposition C.1. Let p{ be such that pj, < py and 4p},
is a radius of convergence of the power series M of Lemma C.9 and such that pj is a
radius of convergence of Ff (recall that Lemma C.9 ensures that Fj is convergent).

And define Mg := HMHA(B(OA%))-

Then (60) holds thank to (i) of Lemma C.11 and (61) is a consequence of Lemma
C.7.

(¢) is a consequence of Lemma C.9 ; (i7) and (#i¢) hold thank to Lemma C.9
and because the monomial of degree 1 of F§(&1,m1,8&2,m2) is (§1,M1,&2,m2) and the
monomial of degree 1 of (Fg)~"(q1,p1,42,p2) is (41,P1, 42, p2)-

We get (iv) from (i) above and (vi) of Lemma B.2 ; we obtain (v) from (i) above
together with Lemma B.4 and (vi) of Lemma B.2 ; (vi) and (vii) are a consequence
of (i) and (i¢) above and of Lemma B.2-(vi) ; we get (viii) and (iz) from (vi) and
Lemma C.7. ]
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