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Abstract. In this paper we study the dynamics near the equilibrium point

of a family of Hamiltonian systems in the neighborhood of a 02iω resonance.

The existence of a family of periodic orbits surrounding the equilibrium is
well-known and we show here the existence of homoclinic connections with

several loops for every periodic orbit close to the origin, except the origin itself.

The same problem was studied before for reversible non Hamiltonian vector
fields, and the splitting of the homoclinic orbits lead to exponentially small

terms which prevent the existence of homoclinic connections with one loop to

exponentially small periodic orbits. The same phenomenon occurs here but we
get round this difficulty thanks to geometric arguments specific to Hamiltonian

systems and by studying homoclinic orbits with many loops.
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1. Introduction. We consider a family of real analytic Hamiltonian systems with
two degrees of freedom. We suppose that these systems admit an equilibrium, that
we take at the origin, and study the dynamics near this equilibrium.

An equilibrium is called non degenerate if the linear part of the vector field is
invertible. Real Hamiltonian vector fields with two degrees of freedom admit three
types of non degenerate equilibria: the Elliptic equilibria when there are two pairs
of purely imaginary eigenvalues, the Saddle-Center equilibria when there is one pair
of purely imaginary eigenvalues and one pair of real eigenvalues, and the Hyperbolic
equilibria when all eigenvalues have non-zero real part.

We study a family Hλ of Hamiltonians with a fixed point at the origin, whose
linear part undergoes a transversal bifurcation at λ = 0 through the stratum of
degenerate fixed points, from an elliptic fixed point to a saddle center fixed point.
We assume that the degenerate fixed point of H0 admits a pair of null eigenvalues
with a non-trivial Jordan block. This case, which is generic, is called an 02iω
resonance (see Figure 1).

Although we are interested in the description of the dynamics associated to the
saddle-center fixed point, we must distinguish two cases which are best described
by considering the elliptic side of the bifurcation. Either the quadratic part of
the Hamiltonian at the elliptic fixed point is definite, or it has index two. We
will consider only the definite case. The homoclinic phenomenon described in the
present paper does not occur in the other case.
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Figure 1. Eigenvalues of DVHλ(0) in terms of λ for a 02iω resonant equilibrium.

We only study the dynamic for the “half-bifurcation” λ > 0, i.e. we study the
dynamic in the neighborhood (in space) of a Saddle-Center fixed point in the neigh-
borhood (in term of λ) of a 02iω resonance.

1.1. Reversible 02iω resonance. The 02+iω resonance also appears in the re-
versible context, where it was extensively studied (Iooss and Kirchgassner [11],
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Lombardi [18], Iooss and Lombardi [13]) with motivations coming from waterwaves
problems . In this context, for λ > 0 sufficiently small, the Lyapunov-Devaney the-
orem ensures that the equilibrium is surrounded by a family of periodic solutions
of arbitrary small size. Lombardi [18] proved that there exists two exponentially

small functions κ1(λ) < κ2(λ) (i.e. κi(λ) = O(e−
ci
λ )) such that on one hand the

periodic orbits smaller than κ1(λ) do not admit any homoclinic reversible connec-
tion with one bump, while on the other hand there exist homoclinic connections to
each periodic orbit of size greater than κ2(λ). In particular, there is no homoclinic
connection to the origin.

These results are based on a reduction to normal forms for which all the periodic
orbits admit a homoclinic connection. The persistence of these orbits in the whole
system is studied through a careful analysis of the holomorphic continuation of
solutions in the complex field.

There does not seam to exist an analog in the reversible context of our definiteness
hypothesis.

1.2. Homoclinic orbits to a Hamiltonian Saddle-Center equilibrium. In
the Hamiltonian case, there are many works about the dynamic associated to
Saddle-Center equilibria, not necessarily in the context of the 022iω bifurcation.
Near a Hamiltonian Saddle-Center, the Lyapunov-Moser Theorem ensures that
there exists a family of periodic orbits surrounding the origin. The existence of
homoclinic connections to these periodic orbits have been investigated in many
papers, see [1, 2, 8, 9, 3, 19] for example.

In [3], a perturbation of an integrable Hamiltonian system with a saddle-center
fixed point admitting a homoclinic connection is studied. It is proved that, in the
perturbed system, all sufficiently small periodic orbits around the saddle-center
equilibrium admit a heteroclinic connection (but not the fixed point itself). These
Homoclinic orbits remain close to the homoclinic orbits of the unperturbed system,
but may have several bumps, see Figure 1.2.

Homoclinic connection h 
to 0 for the truncated 

system 

One-bump homoclinic orbits
 for the complete system 

in a tubular neighborhood of h

Two-bump homoclinic orbits
 for the complete system 

in a tubular neighborhood of h

The system is reduced to a singular poincaré return map, following Conley [6].
This Poincaré map is singular because it is taken with respect to a homoclinic loop,
and not with respect to a genuine periodic orbi. However, the singularity is tamed
thanks to local normal forms around the fixed point, due to Moser in [21]. A KAM
argument (using the integrability of the unperturbed system) then allows to reduce
the study to a bounded invariant domain, and the conclusion is obtained through
a soft area preservation argument.

In the present paper, we prove that the same behavior holds in the Hamiltonian
02iω resonance. We use a normal form Theorem to put the system in a form similar
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to the one studied in [3] and then proceed as in this paper. Each step is however
much more difficult than in [3] because we are dealing with a singular perturbation,
where the hyperbolic exponents of the fixed point converge to zero with λ.

1.3. Homoclinic orbits with several loops for the Hamiltonian 02iω reso-
nance. In this paper, we consider the Hamiltonian 02iω resonance. More precisely,
let R4 be endowed with a constant symplectic form Ω(x, y) = 〈Jx, y〉, where J is
a 4 × 4 matrix such that J t = J−1 = −J . Consider a C1 one parameter family of
analytic Hamiltonians Hλ, where λ belongs to an interval I of R. We introduce the
following Banach space of analytic functions.

Definition 1.1. Let us denote A(BRm(0, ρ),Rn) the set of analytic functions f :

BRm(0, ρ)→ Rn such that f admits a bounded analytic continuation f̃ : BCm(0, ρ)→
Cn. We define the norm ‖·‖

A
on A(BRm(0, ρ),Rn) by

‖f‖
A

:= sup
z∈BCm (0,ρ)

∥∥∥f̃(z)
∥∥∥
Cn
.

In the following we suppose that there exists ρ0 such that

H : I → A(BR4(0, ρ0),R)
λ 7→ Hλ

is a C1 map for the norm ‖·‖
A

, i.e. we assume

H ∈ C1(I,A(BR4(0, ρ0),R)). (H0)

We study the associated family of Hamiltonian vector fields VHλ
:= J∇Hλ, which

we suppose to admit a fixed point at the origin, i.e.

VHλ
(0) = 0 for all λ ∈ I. (H1)

We assume that for λ = 0, the fixed point admits a

02iω resonance. . This means that there exists a basis (u0, u1, u+, u−) of C4 in
which

DxVH0(0) =




0 1 0 0
0 0 0 0
0 0 iω0 0
0 0 0 −iω0


 . (H2)

We make an additional

assumption on Dλ(DxVHλ
(0)). which characterizes the behavior of the spec-

trum ofDxVH0(0) for λ = 0. Denote by (u∗0, u
∗
1, u
∗
+, u

∗
−) the dual basis of (u0, u1, u+, u−).

We assume that

c10 :=
〈
u∗1, D

2
x,λVHλ

(0).u0

〉
6= 0 (H3)

holds. This hypothesis will ensure that the spectrum of DxVH0(0) is as represented
in Figure 1: we do not consider the hyper-degenerate case when the double eigenva-
lue 0 stays at 0 for λ 6= 0. Hence, the origin is an elliptic fixed point when c10λ ≤ 0
and a saddle-center when c10λ ≥ 0 (we get Figure 1 when c10 > 0 ; if c10 < 0 it
holds for λ′ = −λ).

Furthermore, we make the following
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assumption on the quadratic part D2
x,xVH0(0).[x, x] of the vector field at

λ = 0. ,

c20 := −1

3

〈
u∗1, D

2
x,xVH0(0).[u0, u0]

〉
6= 0. (H4)

This hypothesis ensures that, in some sense, the quadratic part of the vector field
is not degenerate: c20 will appear in the normal form as the coefficient of the only
quadratic term. Thank to this nonzero term, we will be able to show the existence
of homoclinic orbits for the normal form while the linearized vector field does not
admit any such orbit.

In the following we focus our interest on the existence of homoclinic connections,
so we only study the half bifurcation

c10λ ≥ 0, (H5)

because in that case we work in the neighborhood of a

saddle-center fixed point. .
Finally, we assume that

ω0 > 0 (H6)

holds, which means that for the small c10λ < 0, the quadratic part of the Hamil-
tonian is a definite quadratic form.

Under these hypotheses we prove in this paper the following theorem which en-
sures that there exist homoclinic connections to all the periodic orbits surrounding
the origin provided that the homoclinic connections are allowed to admit any num-
ber of bumps. This result is stronger than the one obtained in the reversible case
since it ensures that when any number of bumps is allowed, there is no lower bound
of the size of periodic orbits admitting a homoclinic connection to them.

Theorem 1.2. Under the hypotheses (H1), . . . , (H6), there exist λ0 ≥ 0, C0 ≥ 0
and `0 ∈ N such that for all λ ≤ λ0,

1. the origin is surrounded by a family of periodic orbits P aλ , labelled by their
symplectic area a ∈ [0, a0] (Lyapunov-Moser);

2. for a ∈]0, C0λ
`0 [, every periodic orbit P aλ admits a homoclinic connection.

Note that the Theorem 1.2 only deals with homoclinic connections to periodic
orbits of arbitrary small size. It says nothing on homoclinic connections to 0. Their
existence when several bumps are allowed remains fully open. The proof suggests
(see Section 2) that the number of bumps of the homoclinic connection increases
when the area of the periodic orbits decreases, if this really happens it might pre-
vents the existence of a homoclinic connection to 0. However the theorem does not
give any link between the number of bumps and the area.

Two obstacles prevent the result of Theorem 1.2 to apply to the water waves
problem. The first obstacle is the Hypothesis (H0): the 02iω resonance appears
in the water waves problem after a centermanifold reduction, and this reduction
does not preserve the analyticity of the initial equation. The second is Hypothesis
(H6): in the water waves problem ω0 is negative, i.e. the quadratic part of the
Hamiltonian is not definite. Although analyticity may be considered a technical
hypothesis which could possibly be relaxed (although we strongly use it in the
present work), the signature hypothesis is essential. There are strong indications
that the dynamical behavior that we describe in the case ω0 > 0 does not occur in
the case ω0 < 0. In particular, we believe that the multibump homoclinics proved
to exist in the case ω0 > 0 do not exist in the waterwave case.
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1.4. Normal forms for Hamiltonian systems. The first step in the proof of
Theorem 1.2 is a normal form reduction. We give here an abstract normal from
theorem of independent interest, extending Elphick & al. [7] (see also [10]), which
was suggested to the authors by Gérard Iooss. Let R2m be endowed with the
constant symplectic form Ω(x, y) = 〈Jx, y〉 where J is a 2m× 2m real matrix such
that J t = J−1 = −J . The Hamiltonian vectorfield of the C1 function H is J∇H.
The flow of this vectorfield is called the Hamiltonian flow of H. The time-one flow
is called the Lie transform of H. This flow might not be defined on the whole
space, but, if H is C2 and has a critical point at 0, its Lie transform is defined in a
neighborhood of 0, and it is locally a symplectic diffeomorphism.

Given two functions H and G, their Poisson Bracket is defined by

{H,G} := dH(J∇G) = Ω(∇G,∇H).

Let Λ be a Banach space. We fix k ≥ 2, and consider a C1 family of Ck Hamil-
tonian functions Hλ(x). This means that the maps

(λ, x) 7→ Hλ(x), (λ, x) 7→ ∂xHλ(x), . . . , (λ, x) 7→ ∂k−1
x Hλ(x)

are C1 in a neighborhood of 0 in Λ× R2m.

Theorem 1.3 (Normal form theorem). Let Hλ be a C1 one parameter family of Ck
Hamiltonians such that DxHλ(0) = 0. We denote by H2,λ(x) = 1

2D
2
x,xHλ(0).[x, x]

the quadratic part of Hλ and by L0 the linear part at λ = 0 of the associated
Hamiltonian vector field, i.e. L0x = J∇xH2,0(x).

Then, for each ` such that k ≥ ` ≥ 2, there exists a C1 family φ`,λ of analytic
local diffeomorphisms satisfying

Dxφ`,0(0) = Id

and such that, in the neighborhood of 0 in R2m,

Hλ ◦ φ`,λ = H2,0 +N`,λ +R`,λ
where N`,λ is a real polynomial of degree at most ` whose coefficients are C1 functions
of λ, and

N`,λ(x) = O(λ|x|2 + |x|3), R`,λ(x) = o
(
|x|`
)
,

N`,λ(etL
∗
0x) = N`,λ(x) ∀t ∈ R, or equivalently {H2,0 ◦ J,N`,λ} = 0. (1)

If Hλ is a C1 family of analytic Hamiltonians, then Hλ ◦ φ`,λ and thus R`+1,λ

are C1 families of analytic Hamiltonians. The proof is given in Appendix A.

Remark 1.4. In the case of the Birkhoff normal form, the normal form N belongs
to the kernel of {H2,0, ·} while here it lies in the kernel of {H2,0 ◦ J, .}. For elliptic
fixed points, this is not different since H2,0 ◦ J = H2,0. As explained in the poof,
it is always possible to find a normal form which commutes with H2,0 ◦ J , while it
is only possible to find a normal form which commutes with H2,0 under additional
assumptions, such as semi-simplicity, which are not satisfied in the situation of the
present paper.

In the context of Theorem 1.2, the normal forms to all orders are integrable,
and admit a saddle-center fixed point with a homoclinic loop. Theorem 1.3 allows
to view the whole system as a perturbation of this integrable dynamics, which is a
context similar to the one of [3]. The proof of Theorem 1.2 then consists of checking
that the constructions of [3] still hold here. The main new difficulty is that we deal
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here with a singular perturbation, where the hyperbolic exponents of the saddle-
center fixed point converge to zero with λ. After rescaling, this causes the rotation
speed in the elliptic directions to blow up as λ goes to zero. This difficulty is the
reason for the apparition of exponentially small quantities in e. g. [18]. The present
work is not as quantitative as [18] and we do not explicitly handle exponentially
small quantities, but the singularity of the perturbation makes the implementation
of each step of the proof much harder than in [3]. However, although we do not
explicitly handle exponentially small quantities, the result obtained in the present
paper is “stronger” than the one obtained in [18] since theorem 1.2 ensures that in
the hamiltonian context and allowing several bumps for the homoclinic connections,
there is no exponentially small minimal size for the periodic orbits admitting an
homoclinic orbit to themselves.

In particular, the analysis of the return map involves a second normal form in
the neighborhood of the saddle center, due to Moser in [21]. We have to prove (see
Appendix C) that this normalization does not blow up when λ goes to 0, which
requires a whole rewriting of the proof.

List of notations.

A(BRm(0, ρ),Rn) . . . . . . . . . . . . . . . 4 ‖·‖
A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ρ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
ε, ν, µ . . . . . . . . . . . . . . . . . . . . . . . . . 10 Σ1, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
ρ′0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Fε,M0 . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Kε . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 P aε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

pcs1,ε, p
H
1 . . . . . . . . . . . . . . . . . . . . . . . 13 Cas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Ψa
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Γaε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Cau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ξΣ
1,ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Rθ, Rθ . . . . . . . . . . . . . . . . . . . . . . . . 20 k0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ε′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 h̃ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
≺ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 [·] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

2. Structure of the proof of Theorem 1.2. This section is devoted to the proof
of Theorem 1.2. The main technical steps of this proof are stated in propositions
whose proofs are postponed in the next sections of the paper.

2.1. Normalization and scaling, dynamics of the normal forms of degree
3 and n.

Normalization and scaling. Proposition 2.1 below gathers the results of nor-
malization and scaling of the Hamiltonian. Point (i) is the change of coordinates
given by the normal form Theorem 1.3. Then (iii) is a scaling in space and time :
after this scaling, the homoclinic orbits of the truncated normalized system have a
size of order 1 (see the next subsections), which allows a perturbative proof in the
neighborhood of these homoclinic orbits. We must perform the change of parameter
(ii) to have a C1 smoothness of scaling (iii).

Proposition 2.1. Under hypotheses (H0),· · · ,(H6), for all n ≥ 3, there exist ε1 >
0, ρ1 > 0 and

1. a C1 one parameter family of canonical analytic transformations of B(0, ρ1),

x = φn,λ(x̃) = x̃+O(|x̃|2), φn,λ ∈ A(BR4(0, ρ1),R4);
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2. a change of parameter C1, λ = θ(ε4) with its inverse ε4 = c10λ+ o(λ) defined
for ε ∈]− ε1, ε1[,

3. a scaling in space and time x̃ = σε(x), t = ε2 t̃;

such that in a neighborhood of the origin, for all ε ∈]− ε0, 0[∪]0, ε0[, the normalized

Hamiltonian Hε(x) := 8c2(ε)2

ε12 Hθ(ε4)

(
φn,θ(ε4)

(
σε(x)

))
is of the form

Hε(x) =
1

2

(
p2

1
− q2

1

)
+ 2
√

2(q
1
)3 +

ω(ε)

2ε2
I2 + ε2Nn,ε(q1

, I2) + ε4n−8Rn,ε(x);

where

x = (q
1
, p

1
, q

2
, p

2
), I2 = q2

2
+ p2

2
,

and ω and c2 are C1 functions of ε ∈] − ε0, ε0[ such that ω(ε) = ω0 + O(ε4) et
c2(ε) = c20 +O(ε4) with c20 6= 0.

The normal form Nn,ε is a real polynomial of degree less than n in (q
1
, q

2
, p

2
)

such that

Nn,ε(q1
, I2) = O

(
|q

1
||I2|+ ε2(|q

1
|2 + |I2|)2

)
,

and the coefficients of this polynomial are C1 functions in ε ∈] − ε0, ε0[. The re-
mainder Rn :] − ε0, ε0[ → A(BR4(0, ρ1);R) : ε 7→ Rn,ε is C1 one parameter family

of analytic Hamiltonians satisfying Rn,ε(x) = O(|x|n+1).

This proposition is proved in Section 3. From now on, we work with the Hamil-
tonian Hε.

Phase portrait for the normal form of degree 3. We first study the dynamics
of the Hamiltonian Hε truncated at degree 3

H3,ε(x) =
1

2

(
p2

1
− q2

1

)
+ 2
√

2 q3
1

+
ω(ε)

2ε2
I2,

where I2 = q2
2

+ p2
2
. The associated differential system reads




q′
1
(t) = p

1

p′
1
(t) = q

1
− 6
√

2 q2
1

q′
2
(t) = ω(ε)

2ε2 p
2

p′
2
(t) = −ω(ε)

2ε2 q
2
.

We observe that in this system, the two couples of variables (q
1
, p

1
) and (q

2
, p

2
) are

uncoupled. The solutions of the half system in (q
2
, p

2
) are

(
q

2
p

2

)
= Rω(ε)

2ε2
t

(
q

2
(0)

p
2
(0)

)
, where Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

In particular I2 is constant. Let us denote by P a0 the periodic orbits satisfying
I2 = a and (q

1
, p

1
) = (0, 0). We get the phase portrait for the half system in

(q
1
, p

1
) by drawing the energy level sets which read

{
(q

1
, p

1
),

1

2

(
p2

1
− q2

1

)
+ 2
√

2 q3
1

= α

}
=

{
(q

1
, p

1
), p

1
= ±

√
q2

1
− 4
√

2 q3
1

+ α

}
.

(2)
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We then get the phase portrait of Figure 2, in which there is an homoclinic
orbit to P a0 when α = 0, whose explicit form is

(
q

1
(t)

p
1
(t)

)
=

1√
2
√

2




1

1 + cosh(t)
− sinh(t)

(1 + cosh(t))2


 .

x

q
1

p
1

α = 0
x

q2
2
+ p2

2

P a
0

Figure 2. Phase portrait for the normal form of degree 3.

For the normal form of degree n, given that
dI2
dt = 0, we also get the entire phase

portrait, which is a deformation of the phase portrait (see Figure 2) of the normal
form of degree 3.

Linear change of coordinates and truncation at infinity. From now on,
it will be easier to work in the new coordinates (q1, p1, q2, p2), obtained by the
following canonical linear change of coordinates in which the linearized hamiltonian
system at the origin is in Jordan form :

(
q

1
p

1

)
=

1√
2

(
1 1
−1 1

)(
q1

p1

)
:= L

(
q1

p1

)
,

(
q

2
p

2

)
=

(
q2

p2

)
.

In these coordinates the Hamiltonian reads

− q1p1 + (q1 + p1)3 +
ω(ε)

2ε2
I2 + ε2Nn(q1 + p1, I2, ε) + ε4n−8Rn(x, ε), (3)

where I2 = q2
2 +p2

2 , ω is a C1 function of ε ∈]−ε0, ε0[ which reads ω(ε) = ω0+O(ε4);
the normal form Nn is a real polynomial of degree less than n in (q1, p1, q2, p2)
satisfying

Nn(q1+p1, I2, ε) = O
(
|q1+p1||I2|+ ε2(|q1+p1|2 + |I2|)2

)
,

and the coefficients of which are C1 functions of ε ∈] − ε0, ε0[ ; the remainder
Rn :] − ε0, ε0[ → A(BR4(0, ρ1);R) : ε 7→ Rn(·, ε) is a C1 one parameter family of
analytic Hamiltonians such that Rn(x, ε) = O(|x|n+1).

We cut this Hamiltonian to get a bounded flow. Let Tρ0 be a C∞ map of R such
that

Tρ0(r) =





1 for r ∈ [− 1
4ρ

2
0,

1
4ρ

2
0]

0 for |r| ≥ ρ2
0.
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We chose ρ0 such that the homoclinic orbit obtained above for the truncated system
is strictly included in B(0, 1

2ρ0). We finally consider the following Hamiltonian,

H(x, ε) = Tρ0(q21)Tρ0(p21)Tρ0(I2)
(
−q1p1+(q1+p1)3 + ω(ε)

2ε2
I2

+ε2Nn(q1+p1, I2, ε)+ε
4n−8Rn(x, ε)

)
,

which, in B(0, 1
2ρ0) is equal to the Hamiltonian (3) obtained above. This truncation

is useful to work with a bounded flow, which cannot get out of B(0, ρ0) : this will
be useful to obtain uniform upper bounds. And then with the aid of these upper
bounds we will get that, for ε sufficiently small, the solutions of interest stay in
B(0, 1

2ρ0) : these solutions will also be solutions of the initial Hamiltonian (3).
In the following, we always work with the Hamiltonian without making mention

of the cutoff function Tρ0(r), given that we will always work in B(0, 1
2ρ0).

New parameters ε, ν, µ. We introduce new parameters for the Hamiltonian,
ε := (ε, ν, µ) so that

H(x, ε) = −q1p1 + (q1 + p1)3 +
ω(ε)

2ε2
I2 + νNn(q1 + p1, I2, ε) + µνεN0Rn(x, ε). (4)

With these new parameters, we have

• for (ε, ν, µ) = (ε, 0, 0) the Hamiltonian is the normal form of degree 3 studied
above in subsection 2.1;

• for (ε, ν, µ) = (ε, ε2, 0) we have the normal form of degree n ;
• for (ε, ν, µ) = (ε, ε2, ε4n−8−(N0+2)) the complete system.

The distance from the complete system to the normal form of degree 3 and the
normal form of degree n corresponds then to the smoothness in the parameters ν
(for degree 3) and µ (for degree n), uniformly in ε. We chose N0 and n later in the
proof.

Introducing heuristically our strategy of proof. At every order n, the nor-
mal form has homoclinic connections to the origin and to each periodic orbit of the
family surrounding the origin. Moreover, if one deflects from the homoclinic tra-
jectory “inward”, one arrives in a region of space filled with trajectories periodic in
(q

1
, p

1
). In the following, we consider the complete system as a perturbation of the

normal form. The heuristic idea is then to show that if the homoclinic connection
to a periodic orbit P a is perturbated, necessarily it deflects “inward”, and then
“follows” a trajectory periodic in (q

1
, p

1
), maybe making several loops and then

finally joins the periodic orbit P a back. Such a trajectory for the complete system
would then be an homoclinic orbit with several loops.

To give a mathematical sense to the idea of “doing several loops”, a natural idea
is then to introduce an appropriate Poincaré section intersecting transversally the
homoclinic orbits of the normal form and to consider iterations of the first return
map to this section. This is our strategy in the following.

2.2. Construction of the first return map. Let us introduce the Poincaré sec-
tion

Σ1 :=
{

(q1, p1, q2, p2) ∈ R4/q1 = δ
}
,

where δ is fixed “small” : we will have several conditions of smallness on δ in the
following, but none linked to the size of ε.

To construct the first return map to Σ1, denoted by Ψε, we proceed in two main
steps, that we summarize here and detail below :
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Global map.: We use the existence of an orbit homoclinic to the origin for the
normal form of degree 3 and show by perturbation that there exists a return
to the section for a and ν small. The perturbative method works only on a
part of the homoclinic orbit which is covered in a finite period of time : we
perform this strategy for a trajectory from a second section Σ2 to the
section Σ1 (see Figure 4).

Local map.: We chose Σ2 and Σ1 close to the origin. In order to construct a
local map from Σ1 to Σ2 we find a local conjugacy to an integrable system
near the fixed point, following Moser.

Construction of a local change of coordinates, Fε.
Proposition 2.2. There exist ε0, ρ′0 < 1

2ρ0 and a family of canonical analytic
changes of coordinates

Fε(ξ1, η1, ξ2, η2) := (ϕ1,ε, ψ1,ε, ϕ2,ε, ψ2,ε)(ξ1, η1, ξ2, η2)
= (ξ1, η1, ξ2, η2) +O(|(ξ, η)|2),

defined for |ε = (ε, ν, µ)| ≤ ε0 such that the Hamiltonian H defined by (4) reads in
the new coordinates (ξ1, η1, ξ2, η2)

H
(
Fε((ξ1, η1, ξ2, η2)), ε

)
= Kε(ξ1η1, ξ

2
2 + η2

2)

= −ξ1η1 + ω(ε)
2ε2 (ξ2

2 + η2
2) +O(|(ξ1η1, ξ

2
2 + η2

2)|2),
(5)

and for all ε, Fε, F−1
ε ∈ A(BR4(0, ρ′0),R4).

Moreover, F(ε,0,0) := F0 does not depend on ε, and there exists M0 ∈ R such
that

|Fε(ξ1, η1, ξ2, η2)−F0(ξ1, η1, ξ2, η2)| ≤ νM0 (6)

for |ε| ≤ ε0. All the O correspond to upper bounds independent of ε.

The proof of this proposition and a more detailed statement are given in Appen-
dix C (Proposition C.1), using some preliminaries from Appendix B.

Remark 2.3. This proposition is a fundamental step of the proof. Unfortunately,
it requires very long and technical computations to obtain the estimate (6). The
main interest (and main difficulty in the proof) of this proposition is to deal with
the singularity in ε of the initial Hamiltonian H (see the explicit form (4)) and to
verify that despite of this singularity the estimate (6) is uniform in term of ε small.
See also the more detailed version (Proposition C.1) of this proposition in Appendix
C and the comments therein.

The form of the Hamiltonian obtained in the new coordinates allows to get the
entire phase portrait. Indeed, the flow of the associated hamiltonian system satisfies

d(ξ1η1)

dt
= 0,

d(ξ2
2 + η2

2)

dt
= 0.

Moreover,
dξ1
dt

= (∂1Kε)(ξ1η1, ξ
2
2 + η2

2) · ξ1
holds and, given that the O of equation (5) is independent of ε, we get∣∣∣∣Kε(ξ1η1, ξ

2
2 + η2

2)−
(
−ξ1η1 +

ω(ε)

2ε2
(ξ2

2 + η2
2)

)∣∣∣∣ ≤M0|(ξ1η1, ξ
2
2 + η2

2)|2. (7)

Then, up to a reduction of the radius ρ′0 if necessary (independent of ε), dξ1dt < 0 if

ξ1 > 0 and dξ1
dt > 0 if ξ1 < 0. So, the dynamics in the local coordinates (ξ1, η1, ξ2, η2)

is as draw in the phase portrait of Figure 3.
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η1

ξ2
2 + η2

2

ξ1

Figure 3. Phase portrait in local co-
ordinates (ξ1, η1, ξ2, η2).

η1

ξ1

F−1
ε (Σ1)

 domain and range of 

Ψ2

Ψ2

F−1
ε (Σ2)

ξ2
2 + η2

2

Figure 4. Global return map Ψ2.

Global map, from a second section Σ2 to Σ1. We define Σ2 by defining its
range in coordinates (ξ1, η1, ξ2, η2),

Σ2 := Fε ({(ξ1, η1, ξ2, η2) ∈ BR4(0, ρ′0)/η1 = δ}) .

By a perturbative method in the neighborhood of the homoclinic orbit to the
origin of the normal form of degree 3, we show the existence of a Poincaré map Ψ2

following the flow from Σ2 to Σ1. Precisely, denoting by φ(t, x, ε) the flow of the
hamiltonian system associated to H(·, ε), we show the following proposition, which
gives moreover the upper bound (8) useful later :

Proposition 2.4. For δ sufficiently small, there exist T−(δ) < T+(δ) such that for
all (q1, p1, q2, p2) in

Σ2 ∩ Fε
({

(ξ1, η1, ξ2, η2)/0 ≤ ξ1 ≤
1

16
δ,
√
ξ2
2 + η2

2 ≤
1

2
δ

})
,

there exists an unique TL((q1, p1, q2, p2), ε) ∈ [T−(δ), T+(δ)] satisfying

φ(TL((q1, p1, q2, p2), ε), (q1, p1, q2, p2), ε) ∈ Σ1 ∩ B(0, δ).

Moreover, denoting by

Ψ2((q1, p1, q2, p2), ε) := φ(TL((q1, p1, q2, p2), ε), (q1, p1, q2, p2), ε)

there exists M2 such that
∣∣Ψ2,q2((q1, p1, q2, p2), ε)2+Ψ2,p2((q1, p1, q2, p2), ε)2−(q2

2+p2
2)
∣∣ ≤ µνεN0M2T

+(δ).
(8)

The proof of this proposition is given in section 4.3.

Existence of the first return map to Σ1. Observing the phase portrait in the
neighborhood of the origin in the local coordinates (ξ1, η1, ξ2, η2) (Figure 3), we see
that the Poincaré map from Σ1 to Σ2 exists if and only if η1 is positive. Given that
in these coordinates, the center-stable manifold to the origin is the hyperplane {η1 =
0}, we get that in coordinates (q1, p1, q2, p2), the domain of existence corresponds
to being “on the right side” of the center-stable manifold of the origin (see Figure
5).

Precisely, we show the following
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x

Σ1

Fε

q1ξ1

η1

q2
2 + p2

2ξ2
2 + η2

2
F−1

ε (Σ1)

x

x

x

x

F−1
ε (Σ2)

Σ2
W cs(0) W cs(0)

p1

domain of Ψε

Figure 5. Position of the domain of the Poincaré map and W cs(0).

Proposition 2.5. It is possible to define a first return map

Ψ : Σ1 ∩ Fε
(
{(ξ1, η1, ξ2, η2)/0 < η1 ≤

1

24
δ,
√
ξ2
2 + η2

2 ≤ δ}
)
×]− ε0, ε0[3→ Σ1.

A more detailed version of this proposition and its proof are given in part 4.3
(Proposition 4.2).

2.3. Construction of an invariant curve for the first return map using a
KAM theorem. From now on, we will not need to distinguish ν from ε, we work
now with

ε = (ε, ν, µ) = (ε, ε2, µ).

In this section, we fix one periodic orbit P and prove that the restriction of Ψ to
the energy level set of P can be expressed as a diffeomorphism of an annulus of
R2. Then we construct an invariant curve for this diffeomorphism with the aid of
a KAM theorem. This curve will be useful later in part 2.4 to bound the iterations
of the map Ψ, and then to conclude that Wu(P ) and W s(P ) intersect each other.

The maps Ψa and their expression as diffeomorphisms of an annulus
of R2. Thank to the canonical change of coordinates Fε of Proposition 2.2, we
have a precise labelling of the periodic orbits in the neighborhood of 0. Indeed, in
coordinates (ξ1, η1, ξ2, η2) we have the family of periodic orbits

{(0, 0, ξ2, η2)/ξ2
2 + η2

2 = a},
labelled by their symplectic area a. Then, we denote

P aε := Fε
(
{(0, 0, ξ2, η2)/ξ2

2 + η2
2 = a}

)
. (9)

In particular, given that Fε is canonical, the symplectic area of P aε is also a.
Let us denote by Ψa the restriction of Ψ to the energy level set of P a, i.e. to

Σ1 ∩ {H = H(P a)} = {(q1, p1, q2, p2)/q1 = δ,H((q1, p1, q2, p2), ε) = H(P aε , ε)}
(see Figure 6). Proposition 2.6 below states that Ψa can be considered as a diffeo-
morphism of a disc of R2.

Proposition 2.6. Let us define the curve

Cas := Σ1 ∩W cs(0) ∩ {H = H(P a)}.
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Σ1

q1

√
q22 + p22

x

xP a

p1

{H = H(P a)}

Figure 6. Intersection of the energy level set {H = H(P a)} with
the section Σ1.

Domain of

Ca
sΓa

ε

√
cδ1ε

√
c2δ1εCte√aε

√
c1δ1ε

x x x x

p2

Ψa
ε

q2

Figure 7. Invariant curve Γaε and size of the annulus used in
the proof.

There exists c, c0 such that, for a ≤ c0δ
2ε2, the restriction Ψa of Ψ to the energy

level set {H = H(P a)} reads as a diffeomorphism

Ψa
ε : {(q2, p2)/q2

2 +p2
2 ≤ cδ2ε2, (q2, p2) outside of Cas } → {(q2, p2), q2

2 +p2
2 ≤ ω0δ

2ε2}.

The proof of this Proposition is in Part 5.5.

Existence of an invariant curve. We prove now the existence of invariant
curves for each diffeomorphism Ψa

ε . This will be possible by an appropriate choice
of some parameters : in this part, we chose and fix the order n of the normal form
and the power N0 of ε in the Hamiltonian expressed with the three parameters
ε = (ε, ν, µ) (see (4) above), and also a value µ as a power of ε. Here is the part of
the proof where the normal form is the most fully used. Precisely, we show in this
subsection the following

Proposition 2.7. There exist `0 and ε0, c1, c2 such that for ε ≤ ε0, a ≤ ε3`0+1, µ ≤
ε4`0+1 and n ≥ 2(`0 +2), N0 ≥ 4`0 +5, the map Ψa

ε := Ψa
(ε,ε2,ε4`0+1)

has an invariant

curve Γaε in the annulus of R2 {(q2, p2)/I2 ∈ [c1δ
2ε2, c2δ

2ε2]}.

Proof. The rest of this subsection is devoted to the proof of this proposition. For
that purpose, we use the following KAM theorem stated by Moser [20] :
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Theorem 2.8 (KAM theorem). Let

Φ : R/2πZ× [a, b] → R/2πZ× R
(q, ρ) 7→ (q + α(ρ) + F (q, ρ), ρ+G(q, ρ)).

We assume that the map Φ is exact and that there exists m0 > 0 such that for all
ρ,

1

m0
≤ dα

dρ
(ρ) ≤ m0. (10)

Then there exist `0 ∈ N and δ0(m0) > 0 such that if

|F |C0 + |G|C0 ≤ δ0(m0) and |α|C`0 + |F |C`0 + |G|C`0 ≤ m0

are verified, then Φ admits an invariant curve of the form

{(q, ρ) = (q′ + f(q′), ρ0 + g(q′)), q′ ∈ R/2πZ} , (11)

where f , g are C1 functions.

The following Proposition 2.9 will involve (proof below) that, with an appropriate

choice of the parameters, the maps Ψ̂a
ε (which are the maps Ψa

ε after a change of

coordinates, given in subsection 6.3) satisfy the hypothesis of the KAM theorem
[20] applying it with

Ψ̂a
(ε,ε2,0) : (q, ρ) 7→ (q + αaε(ρ), ρ),

Ψ̂a
(ε,ε2,µ) : (q, ρ) 7→ (q + αaε(ρ) + F aε (q, ρ), ρ+Gaεq, ρ)).

Proposition 2.9. (see Figure 7) There exist c0, c1, c2 and m0 > 0 such that for ε
sufficiently small, for all a ∈ [0, c0δ

2ε2] and all k ≤ E(N0−1
4 )− 1, in the annulus

{(q2, p2)/I2 ∈ [c1δ
2ε2, c2δ

2ε2]},

the Ψ̂a
ε satisfy

1. the map Ψ̂a
(ε,ε2,µ) is exact;

2. −m0 ≤
∂αaε
∂ρ
≤ − 1

m0
;

3. |αaε |Ck ≤ mk;

4.
∣∣∣F aε

∣∣∣
Ck

+
∣∣∣Gaε

∣∣∣
Ck
≤ m0 ·

(
a2

ε6k
+

µ

ε4k

)
.

The proof of this proposition is given in section 6.
Recall that after the normalization until degree n, in Proposition 2.1, we had

ε4n−8 in the expression of H, that we rewrote ε4n−8 = µνεN0 when we introduced
the parameters µ and ν. We recall also that we have already chosen the value of ν,
ν = ε2, at the beginning of subsection 2.3. We now chose the values of n and N0 : we
apply the normalization Proposition 2.1 with n := 2`0 + 3 and chose N0 := 4`0 + 1.
Then necessarily µ = ε4`0+1, and for a ≤ ε3`0 Proposition 2.9 implies that the
hypotheses of the KAM theorem are satisfied in the annulus I2 ∈ [c1δ

2ε2, c2δ
2ε2]

for all the maps Ψ̂a
ε . Then there exists a curve Γaε of the form (11) in the annulus

I2 ∈ [c1δ
2ε2, c2δ

2ε2], invariant by the map Ψa
ε = Ψa

(ε,ε2,ε4`0+1)
. �
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2.4. Proof of Theorem 1.2. This subsection is devoted to the proof of Theorem
1.2, using the notations and results contained in the previous parts. Let us fix a
and ε, and consider the unstable manifold Wu(P a) of the periodic orbit P a.

Our first aim is to verify that Wu(P a) does intersect Σ1, and moreover that this
intersection is in the neighborhood of (δ, 0, 0, 0) in which Σ1 ∩ {H = H(P a)} is a
graph and also inside the invariant curve Γaε . More precisely we prove below that
for a and ε sufficiently small, Wu(P a) hits the set

Σ1 ∩ B(0, δ) ∩ {(ξ1, η1, ξ2, η2)/ξ2
2 + η2

2 ≤
1

4
c1δ

2ε2}; (12)

To prove this, we use that in the coordinates (ξ1, η1, ξ2, η2), the unstable manifold
of P a is the tube

{(ξ1, η1, ξ2, η2) ∈ R4/ξ1 = 0, ξ2
2 + η2

2 = a},

whose intersection with the hyperplane {(ξ1, η1, ξ2, η2)/η1 = δ} = F−1
ε (Σ2) is the

circle {(0, δ, ξ2, η2)/ξ2
2 + η2

2 = a}. Then for a ≤ δ2 we can use the map Ψ2 of
Proposition 2.4, which maps Σ2 onto Σ1 : this way, we get that Wu(P a) intersects
Σ1 ∩ B(0, δ) (see Figure 8). Using moreover the estimate (8) of Proposition 2.4, we
get that for a < c1δ

2ε2 and for ε sufficiently small, Wu(P a) intersects Σ1 in the set
(12).

δ1

η1

ξ1

F−1
ε (Σ1)

 domain and range of 

W s(P a)

W i(P a)

Ψ2

Ψ2

P a Ca
s

Ca
i

F−1
ε (Σ2)

Figure 8. Wu(P a) and Σ1 intersect.

Ca
s

Ca
i

(Ψa)N (Ca
i )

(Ψa)N
a
ε (Ca

i )

(Ψa)N1(Ca
i )

(Ψa)N2(Ca
i )

Γa
ε

Figure 9. Iterations of the map Ψa on the curve Cau.
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Denoting by Cau the curve representing in (q2, p2)-coordinates the intersection
Wu(P a) ∩ Σ1, we then have two possible alternatives :

• first option : Cau and the curve Cas of the stable manifold intersect in this
case, the proof of the existence of an homoclinic connection to P a

is completed,
• second option : Cau and Cas do not intersect.

Let us consider the second option. We know that both curves have the same
symplectic area a, so Cau cannot be entirely contained inside Cas . Necessarily, Cau is
then outside of Cas .

And we proved that Ψa
ε is defined on the set (12) outside of the curve Cas , so we

can consider Ψa
ε(Cai ). Moreover, we know that for a and ε sufficiently small, the

interior of the curve Γaε of Proposition 2.7 above maps onto the interior of Γaε with
the map Ψa

ε . Then Ψa
ε(Cai ) is also a curve whose symplectic area is a and contained

inside Γaε . We again have two possible options:

• first option : Ψa
ε(Cai ) and Cas intersect, in this case, the proof of the exis-

tence of an homoclinic connection with two loops to P a is completed,
• second option : Ψa

ε(Cai ) is outside Cas , and then belongs to the domain of Ψa
ε .

Then we iterate this process. Since Cau is defined as the first intersection of
Wu(P a) and Σ1, for all N (Ψa

ε)N (Cai ) and Cau can not intersect. As Ψa
ε is a diffeo-

morphism (and then is invertible), then for all N1, N2, (Ψa
ε)N1(Cai ) and (Ψa

ε)N2(Cai )
do not intersect. Iterating this process N0 times, the set of the (Ψa

ε)N (Cai ) for
N ≤ N0 cover a surface whose area is N0 · a. And this surface is inside the curve
Γaε , whose area is finite. Then, the process must stop for one Na

ε , i.e. necessarily
there exists one N = Na

ε ∈ N for which (Ψa
ε)N (Cai ) and Cas intersect (see Figure 9).

And this means that there exists an homoclinic connection with Na
ε loops

to the periodic orbit P aε . �

Remark 2.10 ((about the importance of Hypothesis (H6))). The Hypothesis (H6)
is explicitly used below in the proof of Lemma 5.3, and we use this Lemma to prove
the existence of Ψa

ε

outside. of the curve Cas in Proposition 2.6 above (if hypothesis (H6) was not
verified, the domain would be inside the curve). And the latter is crucial to allow
the iterations of the first return map when the curves do not intersect (see Section
2.4).

In the heuristic picture of the strategy outlined above in Section 2.1, the Hy-
pothesis (H6) is what allows to state that if the homoclinic trajectory deflects, it
deviates

inwards. (“interior” in the (q1, p1) coordinates).

3. Normal form and scaling: Proof of Proposition 2.1. This section is de-
voted to the proof of Proposition 2.1. We proceed in three main steps, constructing
the three maps of (i), (ii) and (iii) in the proposition.

Step 1. Consequences of the Normal Form Theorem 1.3. Under Hypothe-
ses (H1), · · · , (H6), it is possible to find appropriate coordinates in R4 such that x,
Hλ and Ω read

x = (q
1
,p

1
,q

2
,p

2
), Hλ(x) :=

1

2
p2

1
+

1

2
ω0(q2

2
+ p2

2
) +O(λ|x|2 + |x|3),
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and Ω(x,y) = 〈Jx,y〉 , where

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

We apply Theorem 1.3 to the family of Hamiltonians Hλ(x) and get the existence
of a canonical transformation x = φn,λ(x̃) such that

H̃λ(x̃) = Hλ(φn,λ(x̃)) =
1

2
p̃2

1 +
1

2
ω0(q̃2

2 + p̃2
2) + Ñn,λ(x̃) + R̃n,λ(x̃),

where the rest R̃n,λ(x̃) is a C1-one parameter family of analytic Hamiltonians sat-

isfying R̃n,λ(x̃) = O
(
|x̃|n+1

)
and where Ñn,λ is a real polynomial of degree ≤ n

satisfying Ñn,λ(x̃) = O(λ|x̃|2 + |x̃|3) and

Ñn,λ(q̃1, p̃1 + tq̃1, Rω0t(q̃2, p̃2)) = Ñn,λ(q̃1, p̃1, q̃2, p̃2) for all t ∈ R, (13)

with

Rω0t =

(
cosω0t − sinω0t
sinω0t cosω0t

)
.

Setting t = 2π
ω0
`, ` ∈ Z in (13) and pushing ` to ∞, we get that necessarily Ñn,λ

does not depend on p̃1, i.e.

Ñn,λ(q̃1, p̃1, q̃2, p̃2) = Ñ o

n,λ(q̃1, q̃2, p̃2).

Then identifying R2 and C via (q̃2, p̃2) 7→ (z2 = q̃2 + ip̃2, z2 = q̃2− ip̃2) and defining

M̃o

n,λ(q̃1, z2, z2) = Ñ o

n,λ(q̃1, q̃2, p̃2), identity (13) reads

M̃o

n,λ(q̃1, e
iω0tz2, e

−iω0tz2) = M̃o

n,λ(q̃1, z2, z2) pour tout t ∈ R.

Then, setting t = − argz2
ω0

and t = − argz2
ω0

+ π, we obtain

M̃o

n,λ(q̃1, z2, z2) = M̃o

n,λ(q̃1, |z2|, |z2|) = M̃o

n,λ(q̃1,−|z2|,−|z2|),

which ensures that M̃o

n,λ(q̃1, z2, z2) = H̃n,λ(q̃1, |z2|2) where (q̃1, I2) 7→ H̃n,λ(q̃1, I2)
is a real polynomial. Hence

Ñn,λ(q̃1, p̃1, q̃2, p̃2) = Ñ o

n,λ(q̃1, q̃2, p̃2) = H̃n,λ(q̃1, q̃
2
2 + p̃2

2).

Hence we have proved the existence of a C1 one parameter family of canoni-

cal analytic transformations x = φn,λ(x̃) such that close to the origin H̃λ(x̃) =
Hλ(φn,λ(x̃)) reads

H̃λ(x̃) =
1

2
p̃2

1 +
1

2
ω0(p̃2

2 + q̃2
2) + H̃n,λ(q̃1, p̃

2
2 + q̃2

2) + R̃n,λ(x̃),

where the rest R̃n,λ(x̃) is a C1 one parameter family of analytic Hamiltonians sat-

isfying R̃n,λ(x̃) = O
(
|x̃|n+1

)
and where H̃n,λ is a real polynomial with respect to

(q̃1, p̃
2
2 + q̃2

2) of degree less than n with respect to (q̃1, p̃2, q̃2), whose coefficients are

C1 functions of λ. Moreover, H̃n,λ satisfies

H̃n,λ(q̃1, p̃
2
2 + q̃2

2) = O
(
λ(q̃2

1 + p̃2
2 + q̃2

2) + (|q̃1|+ |q̃2|+ |p̃2|)3
)
.
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Step 2. Change of parameter λ. Expanding H̃n,λ we get that H̃λ(x̃) reads

H̃λ(x̃) = 1
2 p̃

2
1 + 1

2 ω̃(λ)(q̃2
2 + p̃2

2)− 1
2 c̃1(λ)q̃2

1 + c̃2(λ)q̃3
1 + c̃3(λ)q̃1(q̃2

2 + p̃2
2)

+Q̃
n,λ

(q̃1, p̃
2
2 + q̃2

2) + R̃n,λ(x̃),

where

Q̃
n,λ

(q̃1, p̃
2
2 + q̃2

2) = O
(

(|q̃1|+ |q̃2|+ |p̃2|)4
)
,

and where c̃1, c̃2, c̃3 and ω̃ are C1 functions of λ satisfying ω̃(0) = ω0, c̃1(λ) =
c10λ+ o(λ), c̃2(0) = c20. Moreover,

because of hypotheses (H2), (H3) et (H4). and ω0, c10 and c20 are different
from 0.

Finally, since we only consider in this paper the “half bifurcation” corresponding
to c10λ > 0 (hypotheses (H3) and (H5)), the Implicit Function Theorem ensures
that the identity

ε̃2 = c̃1(λ) = c10λ+ o(λ)

can be inverted in a neighborhood of the origin, i.e. λ = θ̃(ε̃2) where θ̃ is a function
of class C1.

Step 3. Scaling. We perform a scaling in space and time suggested by the normal
form of order 3. Indeed, for any n, the normal form part of the Hamiltonian admits
an homoclinic connection to 0 which depends on ε̃. Moreover, for n = 3 this

homoclinic connection h̃ε̃ can computed explicitly and has the form

h̃ε̃(t̃) = (ε̃2 qh1 (ε̃ t̃), ε̃3 ph1 (ε̃ t̃), 0, 0).

To study the dynamics close to this homoclinic connection, it is more convenient
to rescale the system so that the rescaled normal form of order 3 of the rescaled
Hamiltonian admits an homoclinic connection which does not depend on ε̃. So we
perform the following scaling in space and time

q̃1 = 1
2
√

2c̃2(ε̃)
ε̃2q

1
, q̃2 = 1

2
√

2c̃2(ε̃)
ε̃

5
2 q

2
, t = ε̃ t̃,

p̃1 = 1
2
√

2c̃2(ε̃)
ε̃3p

1
, p̃2 = 1

2
√

2c̃2(ε̃)
ε̃

5
2 p

2
.

(14)

This scaling is a conformal mapping which is well defined for ε̃ small since c̃2(ε̃) =
c20 + O(ε̃2) and since by hypothesis (H4), c20 6= 0 holds. Note that the change
of coordinates on (q̃1, p̃1, q̃2, p̃2) is not canonical. Nevertheless, together with the
scaling in time, for ε̃ 6= 0 the rescaled differential system is an Hamiltonian system
whose Hamiltonian reads

8c̃2(ε̃)

ε̃6
H̃ε̃(

1
2
√

2c̃2(ε̃)
ε̃2q

1
, 1

2
√

2c̃2(ε̃)
ε̃3p

1
, 1

2
√

2c̃2(ε̃)
ε̃

5
2 q

2
, 1

2
√

2c̃2(ε̃)
ε̃

5
2 p

2
).

Moreover, to work with regular functions of the parameter, and because of the
square root in the scaling we also perform a last change of parameter

ε2 = ε̃.
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For ε ∈] − ε0, 0[ ∪ ]0, ε0[ with ε0 =
√
ε̃0, we get for x = (q

1
, p

2
, q

2
, p

2
) the rescaled

Hamiltonian

Hε(x) =
8c̃2(ε̃)

ε̃12
H̃ε2(σε(x))

=
1

2
p2

1
− 1

2
q2

1
+ 2
√

2q3
1

+
ω(ε)

2ε2
(q

2
2 + p

2
2) (15)

+ε2Nn,ε(q1
, q2

2
+ p2

2
) + ε4n−8Rn,ε(x),

where Nn,ε is a polynomial of degree less than n with respect to (q
1
, q

2
, p

2
) whose

coefficients are C1 functions of ε and which satisfies

Nn,ε(q1
, q2

2
+ p2

2
) := 1

ε2ε12

[
c̃3(ε2)ε14q

1
(q2

2
+ p2

2
) + Q̃n,ε2

(
ε4q

1
, ε10(q2

2
+ p2

2
)
)]
,

= O
(
|q

1
||q2

2
+ p2

2
|+ ε2(|q

1
|2 + |q2

2
+ p2

2
|)2
)
.

Recall finally that R̃n,ε̃ is a C1 one parameter family of analytic Hamiltonians sat-

isfying R̃n,ε̃(x̃) = O
(
|x̃|n+1

)
for all ε̃ in ]− ε̃0, ε̃0[. Thus the explicit formula

Rn,ε(x) :=
1

ε12ε4n−8
R̃n,ε2( 1

2
√

2c̃2(ε2)
ε4q

1
, 1

2
√

2c̃2(ε2)
ε6p

1
, 1

2
√

2c̃2(ε2)
ε5q

2
, 1

2
√

2c̃2(ε2)
ε̃5p

2
)

ensures that Rn,ε(x) is a C1 family of the parameter ε. �

4. Existence of the first return map on Σ1 : Proof of Propositions 2.4 and
2.5. This section is devoted to the proof of Propositions 2.4 (given in subsections
4.2) and 2.5 (given in Part 4.3). The previous subsections 4.1 is devoted to the
proof of a lemma used to prove these propositions.

4.1. Smoothness of the flow apart from the rotation. The following lemma
will be the key to prove the smoothness of the first return map, and is a consequence
of the Normal Form Theorem applied up to degree n. This lemma is first used in a
weak way (the C1 smoothness is sufficient) in the proof of Proposition 2.4 below.

Lemma 4.1. Denote

Rθ :=

(
I O
O Rθ

)
:=




1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


 ,

and let φ(t, (q1, p1, q2, p2), ε, ν, µ) be the flow of the Hamiltonian

H((q1, p1, q2, p2), ε, ν, µ) = −q1p1 +
ω(ε)

2ε2
(q2

2 + p2
2) +

1

2
(q1 + p1)3

+νNn(q1 + p1, q
2
2 + p2

2, ε) (16)

+νµεN0Rn((q1, p1, q2, p2), ε).

Then
φ(t, (q1, p1, q2, p2), ε, ν, µ) = Rω(ε)

2ε2
t
φ̃(t, (q1, p1, q2, p2), ε, ν, µ),

where φ̃ belongs to

C1
(
]− ε0, ε0[3, Ck0(R5)

)
, where k0 := E

(
N0 − 1

4

)
,

meaning in particular that φ̃ is C1 with respect to (t, (q1, p1, q2, p2), ε, ν, µ) and Ck0
with respect to (t, (q1, p1, q2, p2), ν, µ).
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Proof. Denoting

φ̃(t, (q1, p1, q2, p2), ε, ν, µ) := R−ω(ε)

2ε2
t
φ(t, (q1, p1, q2, p2), ε, ν, µ),

given that (q1, p1) and (q2
2 + p2

2) are preserved by the rotation Rω(ε)

2ε2
t
, φ̃ is then the

flow of the nonautonomous Hamiltonian

H̃(t, (q1, p1, q2, p2), ε, ν, µ) = −q1p1 +
1

2
(q1 + p1)3 + νNn(q1 + p1, q

2
2 + p2

2, ε)

+νµεN0Rn((q1, p1, Rω(ε)

2ε2
t
(q2, p2), ε).

Thus φ̃ has the smoothness of ∇XH̃, and in the definition of H̃ all is C∞ in terms
of (t, (q1, p1, q2, p2), ν, µ) and C1 with respect to (t, (q1, p1, q2, p2), ε, ν, µ), except
Rω(ε)

2ε2
t
(q2, p2) (when ε = 0). But the derivatives of Rω(ε)

2ε2
t

read

D(q2,p2)(Rω(ε)

2ε2
t
(q2, p2)) = Rω(ε)

2ε2
t
(q2, p2), (17)

∂

∂t
(Rω(ε)

2ε2
t
(q2, p2)) =

ω(ε)

2ε2
ΩRω(ε)

2ε2
t
(q2, p2),

∂

∂ε
(Rω(ε)

2ε2
t
(q2, p2)) =

2ε2ω′(ε) + 4εω(ε)

4ε4
ΩRω(ε)

2ε2
t
(q2, p2).

We then get the estimate

∣∣∣∇XRn(q1, p1, Rω(ε)

2ε2
t
(q2, p2), ε)

∣∣∣
Ck

= O
ε→0

(
1

ε4k

)
.

So ∇X
(
νµεN0Rn((q1, p1, Rω(ε)

2ε2
t
(q2, p2), ε)

)
is a Ck-function in the neighborhood of

ε = 0 as soon as 4k + 1 ≤ N0. �

4.2. Existence of the global map from Σ2 to Σ1 : Proof of Proposition
2.4. Let us introduce

Σ−1 :=
{

(q1, p1, q2, p2) ∈ R4/q1 = δ − 1
2δ
}
,

Σ+
1 :=

{
(q1, p1, q2, p2) ∈ R4/q1 = δ + 1

2δ
}
.

We proceed in several steps.

Step 1. Case ε = (ε, 0, 0). Let us prove the existence of some T±(ξ1, δ) such
that for all (ξ1, η1, ξ2, η2) in

F−1
0 (Σ2) ∩

{
(ξ1, η1, ξ2, η2)/0 ≤ ξ1 ≤

1

16
δ,
√
I2 ≤

1

2
δ

}
,

φ(T±(ξ1, δ),F0(ξ1, δ, ξ2, η2), (ε, 0, 0)) belongs to Σ±1 .
To prove this, we first recall that when ε = (ε, 0, 0) the flow and F0 are uncoupled

and that φq1,p1(., ., ε, 0, 0) and F0 do not depend of ε (see Part 2.1 for the flow and
Proposition 2.2 for F0). From these facts, we get first that if the T± exist, they are
independent of (ξ2, η2) and ε. Let us prove their existence working with the

restriction of the flow to the (q1, p1)-plane. .
We then use the phase portrait drawn in Part 2.1: let us study
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which of the orbits hit Σ−1 and Σ+
1 . . For that purpose, we work first in the

(q
1
, p

1
) coordinates of Part 2.1 and use the parameter α of (2). For δ sufficiently

small, if an orbit hits Σ−1 , then it necessarily hits also Σ+
1 . Let us denote by αδ the

parameter of the orbit passing through the point (q
1
, p

1
) = (

√
2

2 δ, 0), which reads

also (q1, p1) = ( 1
2δ,

1
2δ). Then the orbits labelled by any α ∈ [αδ, 0] hits Σ−1 . A

short computation gives

αδ = −1

2
δ2(1− 4δ).

It remains now to

get back to (q1, p1)-coordinates. and then to the local coordinates (ξ1, η1).
Firstly, from the study of the phase portraits, we get that the condition α ≤ 0
means in local coordinates that ξ1 ≥ 0. Let us then study the condition α ≥ αδ, by
studying the orbit labelled by αδ, in the neighborhood of Σ2.

On Σ2, η1 = δ is satisfied ; let us work in a domain a little larger in (q1, p1)
coordinates

{(q1, p1), q1 ≥ 0, p1 ∈ [
1

2
δ,

3

2
δ]}, (18)

and look for a condition on q1 which ensures that (q1, p1) belongs to an orbit satisfy-
ing α ≥ αδ. We consider the orbit α = αδ more precisely on the half part satisfying
p

1
≥ 0, thus we obtain

q
1
∈ [
√

2
1

2
δ,
√

2
3

2
δ].

From the equation p
1

=
√
q2

1
− 4
√

2q3
1

+ αδ of the orbit labelled by αδ, we compute

a lower bound of q1 on this orbit. Let us denote by qαδ1 (q
1
) a graph description of

the orbit ; for q
1

in [
√

2 1
2δ,
√

2 3
2δ], we get

qαδ1 (q
1
) =

1√
2

(q
1
−
√
q2

1
− 4
√

2q3
1

+ αδ) =
1√
2

4
√

2q3
1
− αδ

q
1

+
√
q2

1
− 4
√

2q3
1

+ αδ

≥ 1

12
δ.

Thus we obtain that if q1 ∈ [0, 1
12δ] and p1 ∈ [ 1

2δ,
3
2δ], then (q1, p1) belongs to an

orbit labelled by α ≥ αδ.
Finally. , with the aid of (vi) of Proposition C.1, and given that I2 is preserved
by the flow, we get that for δ sufficiently small, all the points

(q1, p1, q2, p2) ∈ Σ2 ∩ F0

(
{(ξ1, η1, ξ2, η2) ∈ R4, 0 ≤ ξ1 ≤

1

16
δ,
√
ξ2
2 + η2

2 ≤
1

2
δ}
)

belong to orbits hitting Σ−1 and Σ+
1 , which achieves the proof of existence of

T±(ξ1, δ) as claimed above.

Step 2. Upper and lower bounds for T±(ξ1, δ). (these bounds are useful to
get back to the general case ν, µ 6= 0, see Step 3). Step 1 ensures the existence of
the T±(ξ1, δ). T

− and T+ are also locally defined by the Implicit Equations

φq1(T±,F0(ξ1, δ, 0, 0), (ε, 0, 0)) = δ ± 1

2
δ.

As in Step 2, we get the equivalent Implicit Equation

φ̃q1(T±,F0(ξ1, δ, 0, 0), (ε, 0, 0)) = δ ± 1

2
δ. (19)
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Let us prove that (19) satisfies the hypotheses of the Ck0 implicit function theorem
in the neighborhood of each (T±(ξ10, δ), ξ10). On one hand, the result of Lemma
4.1 ensures that this equation is Ck0 . On the other hand,

∂T φ̃q1(T, (q1, p1, q2, p2), (ε, 0, 0)) = ∂p1H(φ̃(T, (q1, p1, q2, p2), (ε, 0, 0)), (ε, 0, 0)),

where

∂p1H((q1, p1, q2, p2), (ε, 0, 0)) = −q1 +
3

2
(q1 + p1)2

and

φ̃q1(T±(ξ10,F0(ξ10, δ, 0, 0), (ε, 0, 0)))

= δ ± 1
2δ
∣∣∣φ̃p1(T±(ξ10,F0(ξ10, δ, 0, 0), (ε, 0, 0)))

∣∣∣ ≤ δ

hold because of the definition T±. Then the Implicit Functions Theorem applies
for δ sufficiently small. This ensures that T± are continuous with respect to ξ1, and
thus bounded.

Step 3. Existence of TL(X, ε). From Step 1, we know that

φq1(T−(ξ1, δ),F0(ξ1, δ, ξ2, η2), (ε, 0, 0)) =
1

2
δ, (20)

φq1(T+(ξ1, δ),F0(ξ1, δ, ξ2, η2), (ε, 0, 0)) =
3

2
δ. (21)

Recall that (q1, p1) are preserved by the Rθ, so that φq1 = φ̃q1 . And Step 2 ensures
that there exists T−(δ) and T+(δ) such that for all ξ1

T−(δ) ≤ T−(ξ1, δ), T
+(ξ1, δ) ≤ T+(δ).

Then, from the C1-smoothness of φ̃q1 (Lemma 4.1 for N0 ≥ 3), together with (iv)
of Proposition C.1, we obtain that for ν and µ sufficiently small,

φq1(T−(ξ1, δ),F0(ξ1, δ, ξ2, η2), ε) ∈ [
1

4
δ,

3

4
δ], (22)

φq1(T+(ξ1, δ),F0(ξ1, δ, ξ2, η2), ε) ∈ [
5

4
δ,

7

4
δ]. (23)

Thus we get the existence of TL(X, ε) thank to the Intermediate Value Theorem.

Step 4. Uniqueness of TL. For that purpose, it is sufficient to show that in the
set {

(q1, p1, q2, p2)/
1

4
δ ≤ q1 ≤

7

4
δ, |p1| ≤ δ,

√
I2 ≤ δ

}
,

the flow satisfies dq1
dt < 0. And indeed

dq1

dt
= −q1 +

3

2
(q1 + p1)2 + ν∂p1(Nn(q1 + p1, q

2
2 + p2

2, ε) (24)

+µεN0Rn((q1, p1, q2, p2), ε))

≤ − 1

32
δ +

3

2
9δ2 +Mν.

Then, for ν and δ sufficiently small, dq1dt < 0, which ensures the uniqueness of TL.
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Step 5. Upper bound (8). We use that the trajectories of the flow satisfy
∣∣∣∣
d(q2

2 + p2
2)

dt

∣∣∣∣ =
∣∣µνεN0(p2∂p2 − q2∂q2)Rn((q1, p1, q2, p2), ε)

∣∣

≤ MµνεN0 for (q1, p1, q2, p2) ∈ B(0, ρ0).

Given that TL(F−1
ε (q1, p1, q2, p2), ε) ≤ T+(δ), we get the upper bound (8) claimed

above. �

4.3. Existence and smoothness of the entire first return map: Proof of
Proposition 2.5. The following Proposition is a more detailed version of Propo-
sition 2.5.

Proposition 4.2. There exists a first return map

Ψ : Σ1 ∩ Fε
(
{(ξ1, η1, ξ2, η2)/0 < η1 ≤ 1

24δ,
√
ξ2
2 + η2

2 ≤ δ}
)
×]− ε0, ε0[3→ Σ1

(p1, q2, p2, ε) 7→ Rω(ε)

2ε2
T (p1,q2,p2,ε)

φ̃(T (p1, q2, p2, ε), (δ, p1, q2, p2), ε),

where T belongs to C1
(
]− ε0, ε0[3, Ck0(R3)

)
with k0 defined in Lemma 4.1.

Moreover, denoting Ψ = (Ψq1 , · · · ,Ψp2), there exists M such that for ε and δ
sufficiently small,

∣∣Ψq2((p1, q2, p2), ε)2 + Ψp2((p1, q2, p2), ε)2 − (q2
2 + p2

2)
∣∣ ≤ νMδ3 (25)

holds on the domain of Ψ.

Proof of the existence. As mentioned in part 2.2, observing the local phase portrait
in coordinates (ξ1, η1, ξ2, η2) in B(0, ρ′0), the local map from Σ1 to Σ2 is very simple,
following the level sets

{(ξ1, η1, ξ2, η2)/ξ1η1 = Cte, ξ2
2 + η2

2 = Cte}.
This local map exists on the set {(ξ1, η1, ξ2, η2)/0 < η1 ≤ δ}. We want to compose
this local map with the global map Ψ2 of Proposition 2.4 whose domain is

Σ2 ∩ Fε
(
{(ξ1, η1, ξ2, η2)/0 ≤ ξ1 ≤

1

16
δ,
√
ξ2
2 + η2

2 ≤ δ}
)
.

Then we need to trim the domain of the local map so that its range is included in
the domain of Ψ2. Since ξ2

2 + η2
2 and ξ1η1 are conserved by the flow, it is sufficient

to restrict the local map to trajectories for which ξ2
2 + η2

2 ≤ δ2 and |ξ1η1| ≤ δ 1
16δ.

We proved in Lemma 5.2 that if |η1| ≤ 2δ and
√
q2
2 + p2

2 ≤ 2δ then

ξ1 = ξΣ
1 (η1, ξ2, η2) ≤ 3

2
δ.

So it is sufficient to trim the domain of the local map to the set

0 < η1 ≤ δ and |η1| ≤ δ,
√
q2
2 + p2

2 ≤ δ and η1 ≤
2

3

1

16
δ =

1

24
δ,

and get then the domain of Ψ stated in the Proposition.

Proof of the smoothness. We showed above the existence of T (p1, q2, p2, ε). Recall
that T is locally defined by the implicit equation given by the intersection with Σ1:

φq1(T, (δ, p1, q2, p2), ε) = δ.
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Recall that φq1 = φ̃q1 , so that we get the equivalent implicit equation

φ̃q1(T, (δ, p1, q2, p2), ε) = δ. (26)

Let us prove that (26) satisfies the hypotheses of the Ck0 implicit function theorem in
the neighborhood of each (T (p10, q20, p20, ε0), p10, q20, p20, ε0). If they are fulfilled,
we can construct a Ck0 map T ∗(p1, q2, p2, ε), and the uniqueness of the first return
ensures that T = T ∗ and finally that T is Ck0 . The result of Lemma 4.1 ensures
that this equation is Ck0 . Let us prove that all ((q1, p1, q2, p2), ε) in

Σ1 ∩ Fε
(
{(ξ1, η1, ξ2, η2)/0 < η1 ≤

1

24
δ,
√
ξ2
2 + η2

2 ≤ δ}
)
×]− ε0, ε0[3,

satisfies ∂T φ̃q1(T, (q1, p1, q2, p2), ε) 6= 0. We have

∂T φ̃q1(T, (q1, p1, q2, p2), ε) = ∂p1H(φ̃(T, (q1, p1, q2, p2), ε), ε),

where

∂p1H((q1, p1, q2, p2), ε) = −q1 +
3

2
(q1 + p1)2 + ν∂p1Nn(q1 + p1, q

2
2 + p2

2, ε)

+µνεN0∂p1Rn((q1, p1, q2, p2), ε)).

Given that we work in B(0, ρ0) (see the truncature in Part 2.1), ∂p1Nn and ∂p1Rn
are uniformly bounded. Moreover,

φ̃q1(T (p1, q2, p2, ε), (δ, p1, q2, p2), ε) = δ,∣∣∣φ̃p1(T (p1, q2, p2, ε), (δ, p1, q2, p2), ε)
∣∣∣ ≤ δ

hold because of the definition T and the range of Ψ2 (Proposition 2.4). Then

∂T φ̃q1(T (p10, q20, p20, ε0), p10, q20, p20, ε0) ≤ −δ +
3

2
(2δ)2 +Mν < 0

holds for δ < 1
6 and ν sufficiently small.

Proof of the estimate (25). Recall how Ψ was constructed (proof of the existence
above). We use two previous results: on one hand, in local coordinates the flow
preserves ξ2

2 + η2
2 , and on the other hand the estimate (8) gives an upper bound of

the variation of q2
2 + p2

2 by the map Ψ2.
To complete the proof, we moreover compute estimates of the difference between

ξ2
2 + η2

2 and q2
2 + p2

2 on Σ1 and Σ2 by the changes of coordinates Fε and F−1
ε . We

detail the proof for Fε on Σ2 ; we more precisely need estimates for (ξ1, η1, ξ2, η2)
in the domain of Ψ2. Recall that we denote Fε := (ϕ1,ε, ψ1,ε, ϕ2,ε, ψ2,ε) ; (viii) and
(ix) of Proposition C.1 allows to get that, for all (ξ1, η1, ξ2, η2) ∈ B(0, ρ′0),

∣∣ϕ2,ε(ξ1, η1, ξ2, η2)2 + ψ2,ε(ξ1, η1, ξ2, η2)2 − (ξ2
2 + η2

2)
∣∣

≤M0ν|(ξ1, η1, ξ2, η2)|2(2M0ν|(ξ1, η1, ξ2, η2)|2 + |ξ2|+ |η2|).
For (ξ1, η1, ξ2, η2) in the domain of Ψ2, we then obtain

∣∣ϕ2,ε(ξ1, η1, ξ2, η2)2 + ψ2,ε(ξ1, η1, ξ2, η2)2 − (ξ2
2 + η2

2)
∣∣ ≤ νM′0δ3. (27)

The same strategy for the change of coordinates F−1
ε in the domain of Ψ allows to

achieve the proof of (25). �
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5. Restrictions of the first return map seen as diffeomorphisms of an
annulus of R2 : Proof of Proposition 2.6. This part is devoted to the proof of
Proposition 2.6. The proof itself is in Part 5.5. The previous parts are devoted to
the proof of lemmas useful for the proof: in Parts 5.1 and 5.2 we prove respectively
that the center-stable manifold W cs(0) and Σ1 locally read as a graphs. In Part 5.3
we prove two lemmas concerning the geometry of the different energy level sets on
W cs(0). And in Part 5.4 we prove that the level sets {H = H(P aε )} locally read as

graphs and give a description of its position with respect to the graph of W cs(0),
thank to the lemmas of the previous part. Finally, with the aid of all these graphs
we can prove Proposition 2.6.

From now on, we only need two of the three parameters ε = (ε, ν, µ) : we only
study the influence of the remainder on the dynamic (we explained it in Part 2.1
when we introduced the parameters ε, ν, µ). Thus we introduce the notation

ε′ := (ε, ε2, µ).

5.1. In Σ1, the center-stable manifold W cs(0) reads as a graph.

Lemma 5.1. For δ sufficiently small, there exists an analytic function pcs1,ε such
that

W cs
ε (0) ∩ Σ1 ∩ B(0, δ) =

{
(q1, p1, q2, p2)/q1 = δ, p1 = pcs1,ε(q2, p2)

}
.

Moreover, in B(0, δ), pcs1,ε satisfies

F−1
ε (δ, p1, q2, p2) ∈ {η1 > 0} ⇔ p1 > pcs1,ε(q2, p2). (28)

Proof. We proceed in three steps.

Step 1. existence. Recall that we denote F−1
ε := (ϕ−1,ε, ψ

−
1,ε, ϕ

−
2,ε, ψ

−
2,ε). For

δ ≤ ρ′0, for any (δ, p1, q2, p2) in B(0, δ) the equivalence

(δ, p1, q2, p2) ∈W cs
ε (0) ⇐⇒ ψ−1,ε(δ, p1, q2, p2) = 0, (29)

holds. Then, statement (vii) of Proposition C.1 ensures the existence of M0 inde-
pendent of ε such that

|ψ−1,ε(q1, p1, q2, p2)− p1| ≤ M0|(q1, p1, q2, p2)|2 for all (q1, p1, q2, p2) ∈ B(0, ρ′0).

So for δ sufficiently small (independently of ε), for all (q2, p2) ∈ B(0, δ), we get

ψ−1,ε(δ,−δ, q2, p2) < 0 < ψ−1,ε(δ, δ, q2, p2).

Then the Intermediate value Theorem ensures the existence of a pcs1,ε(q2, p2) ∈ [−δ, δ]
such that

ψ−1,ε(δ, p
cs
1,ε(q2, p2), q2, p2) = 0.

Step 2. uniqueness and smoothness. We use the implicit equation (29). Dif-
ferentiating (iii) of Proposition C.1 with respect to p1 we get the existence of a
convergent power series M1 (convergent on a ball B(0, ρ′0)) independent of ε such
that

∂p1(ψ−1,ε(q1, p1, q2, p2)− p1) ≺ (q1+p1+q2+p2)M1(q1+p1+q2+p2).

See Appendix B for definitions and properties of the relation ≺.
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Then, if δ ≤ ρ′0, for all (q1, p1, q2, p2) ∈ B(0, δ),
∣∣∂p1(ψ−1,ε(q1, p1, q2, p2)− p1)

∣∣ ≤ 4δM1(4δ).

So for δ sufficiently small ∂p1ψ
−
1,ε > 0 in B(0, δ). Thus, for any fixed (q2, p2), the

function p1 7→ ψ−1,ε(δ, p1, q2, p2) is strictly increasing, and then we get the uniqueness

of the pcs1,ε(q2, p2) of Step 1. Moreover, the fact that ∂p1ψ
−
1,ε is nonzero allows to

apply the analytic Implicit Function Theorem to Equation (29) in the neighborhood
of any fixed (δ, pcs1,ε(q2, p2), q2, p2) : we then obtain the analyticity of pcs1,ε.

Step 3. (28). holds given that the function p1 7→ ψ−1,ε(δ, p1, q1, p1) is increasing.
�

5.2. Σ1 as a graph in local coordinates (ξ1, η1, ξ2, η2).

Lemma 5.2. For ε, ν, µ < ε0 and δ sufficiently small, there exists an analytic map
ξΣ
1,ε defined on the domain BR3(0, 2δ) := {(η1, ξ2, η2)/|η1| ≤ 2δ,

√
ξ2
2 + η2

2 ≤ 2δ}
satisfying

F−1
ε (Σ1)∩B(0, 2δ) =

{
(ξ1, η1, ξ2, η2)/ξ1 = ξΣ

1,ε(η1, ξ2, η2), (η1, ξ2, η2) ∈ BR3(0, 2δ)
}
.

Proof. The proof is very similar to the proof of Lemma 5.1, so we only detail what
is different.

Step 1. Existence. Recall that we denote Fε = (ϕ1,ε, ψ1,ε, ϕ2,ε, ψ2,ε). As in the
Step 1 of Lemma 5.1’s proof, thank to the result (vi) of Proposition C.1, we prove
that for δ, ε sufficiently small,

ϕ1,ε(
1

2
δ, η1, ξ2, η2)− δ < 0 < ϕ1,ε(

3

2
δ, η1, ξ2, η2)− δ

holds for any fixed (η1, ξ2, η2) in BR3(0, 2δ). We obtain the existence of pcs1,ε(η1, ξ2, η2)

in ] 1
2δ,

3
2δ[ thank to the Intermediate Value Theorem.

Step 2. Uniqueness and smoothness. We proceed as in Step 2 of Lemma 5.1’s
proof, showing with the aid of (ii) of Proposition C.1 that for δ sufficiently small

∂ξ1ϕ1,ε(ξ1, η1, ξ2, η2) > 0

holds for all ξ1 in ] 1
2δ,

3
2δ[ and all (η1, ξ2, η2) in BR3(0, 2δ). �

5.3. Positions of the W s(P a) on the graph of W cs(0). The following lemma
ensures that the energy of P a is strictly increasing in term of a.

Lemma 5.3. There exist a0, ε1 > 0 and a convergent power series M1 such that
for all ε, ν, µ < ε1 and all a, a′ < a0

1.
∣∣H(P aε , ε)− ω(ε)

ε2 a
∣∣ ≤ ν

ε2 a
2M1(a) holds

2. if a < a′ then H(P aε , ε) = Kε(0, a) < H(P a
′

ε , ε) = Kε(0, a
′).

Proof. Recall that Kε was introduced in (5), and P aε was defined by (9), so that for

any fixed (ξ2,a, η2,a) such that ξ2
2,a + η2

2,a = a

H(P aε , ε) = H(Fε(0, 0, ξ2,a, η2,a), ε) = Kε(0, a).
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Denoting
Fε −F0 := ν(ϕ′1,ε, ψ

′
1,ε, ϕ

′
2,ε, ψ

′
2,ε)

and using the particular form of F0 stated in Proposition C.1, we get

Fε(0, 0, ξ2,a, η2,a) = (0, 0, ξ2,a, η2,a) + ν(ϕ′1,ε, ψ
′
1,ε, ϕ

′
2,ε, ψ

′
2,ε)(0, 0, ξ2,a, η2,a). (30)

Let us denote

H(q1, p1, q2, p2, ε) = −q1p1 +
ω(ε)

2ε2
(q2

2 + p2
2) +H3(q1, p1, q2, p2, ε).

H3 is of order 3 in term of q1 and is C1 in term of ε = (ε, ν, µ). Thus H3 admits a
convergent upper bound for ≺ uniformly in ε. So do ϕ′1,ε, ψ

′
1,ε, ϕ

′
2,ε, ψ

′
2,ε as stated in

(i) of Proposition C.1. We finally obtain the existence of a convergent power series
M1 independent of ε such that

H(Fε(0, 0, ξ2, η2), ε)− ω(ε)

2ε2
(ξ2

2 + η2
2) ≺ ν

ε2
M3(ξ2, η2). (31)

Moreover, thank to the particular form of Kε = H(Fε(·), ε) stated in (60), we get
thatM3 can be chosen of order 4 and as a power series of ξ2

2 +η2
2 . Thus there exists

a convergent power series M1 such that

Kε(0, a)− ω(ε)

2ε2
a ≺ ν

ε2
a2M1(a), (32)

which achieves the proof of (i) of the lemma. As a consequence of (32), there exist
a0 and a real M1 such that

∂aKε(0, a)|a=0 =
ω(ε)

2ε2
, for all a ≤ a0, ∂2

aKε(0, a)|a ≤
ν

ε2
M1. (33)

So, given that ω(0) > 0 (Hypothesis (H6)) for ν sufficiently small (this small size is
independent of ε) and a < a′ ≤ a0,

H(P a
′

ε , ε)−H(P aε , ε) = Kε(0, a
′)−Kε(0, a) > 0. (34)

�

Remark 5.4. Hypothesis (H6) only appears in this lemma ! But in an essential
way (to derive (34) from (33)).

We introduce in the following lemma the diffeomorphism gε which is the restric-
tion of Fε to Σ1 ∩W cs(0), seen as a map from R2 onto R2 thank to the graph form
of W cs(0) stated in Lemma 5.1. The following result gives a hint on how the stable
manifolds W s(P a) of the P a intersects with Σ1 (recall that they are in W cs(0)).
Observe that in the (q2, p2) coordinates, these intersections are the images through
gε of the circles of area a. The following Lemma describes some properties of the
ranges of the circles through the map gε.

Lemma 5.5. Let Ca := {(ξ2, η2)/ξ2
2 + η2

2 = a} circle of area a in R2, and let us
introduce

gε : BR2(0, 1
2δ) → R2

(ξ2, η2) 7→ (ϕ2,ε, ψ2,ε)(ξ
Σ
1,ε(0, ξ2, η2), 0, ξ2, η2),

where we recall the notation (ϕ1,ε, ψ1,ε, ϕ2,ε, ψ1,ε) = Fε. Then for δ and ν suffi-
ciently small,

(a): gε(Ca) is a Jordan curve,
(b): if a < a′ then gε(Ca) is inside gε(Ca′).
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Proof of (a). Given that Ca is a Jordan curve it is sufficient to show that gε is an

homeomorphism from BR2(0, 1
2δ) to gε(BR2(0, 1

2δ)). For this purpose, let us prove
that the map

g−ε : (q2, p2) 7→ (ϕ−2,ε, ψ
−
2,ε)(δ, p

cs
1,ε(q2, p2), q2, p2)

is the inverse function of gε, where (ϕ−1,ε, ψ
−
1,ε, ϕ

−
2,ε, ψ

−
2,ε) = F−1

ε .

We first verify that g−ε is well defined on gε(BR2(0, 1
2δ)). On one hand, Lemma

5.1 and Proposition C.1 ensures that g−ε is well defined if
√
q2
2 + p2

2 ≤ δ and

(δ, pcs1,ε(q2, p2), q2, p2) is in B(0, ρ′0), and that |pcs1,ε(q2, p2)| ≤ δ. On the other hand,

thank to Lemma 5.2 and (vi) of Proposition C.1, we get that for ν sufficiently small
gε(BR2(0, 1

2δ)) ⊂ B(0, δ). Then g−ε ◦ gε is well-defined for small values of ν and

2δ ≤ ρ′0.

Let us prove now that g−ε ◦ gε is equal to identity. From the definitions of ξΣ
1,ε

and gε and given that

Fε(ξΣ
1,ε(0, ξ2, η2), 0, ξ2, η2) ∈W cs(0)

(because η1 = 0), we get that

(δ, pcs1,ε(gε(ξ2, η2)), gε(ξ2, η2)) = (ϕ1,ε, ψ1,ε, ϕ2,ε, ψ2,ε)(ξ
Σ
1,ε(0, ξ2, η2), 0, ξ2, η2).

Thus

g−ε ◦ gε(ξ2, η2) = (ϕ−2,ε, ψ
−
2,ε)(Fε(ξΣ

1,ε(0, ξ2, η2), 0, ξ2, η2)) = (ξ2, η2).

This achieves the proof of (a).

Proof of (b). Let us first show that gε preserves the areas. Indeed, let C be a curve

of BR2(0, 1
2δ). We denote by A(C) the symplectic area of C in R2 endowed with the

restriction of Ω to R2. Given that the curves of R4

{(ξ1, η1, ξ2, η2)/ξ1 = ξΣ
1,ε(0, q2, p2), η1 = 0, (ξ2, η2) ∈ gε(C)}

{(q1, p1, q2, p2)/q1 = δ, p1 = pcs1,ε(q2, p2), (q2, p2) ∈ C},

are respectively subsets of {(ξ1, η1, ξ2, η2)/η1 = 0} and of {(q1, p1, q2, p2)/q1 = δ},
their areas are respectively A(gε(C)) and A(C). So, given that Fε is symplectic and
thus area-preserving, we get

A(gε(C)) = A({(ξ1, η1, ξ2, η2)/ξ1 = ξΣ
1,ε(0, q2, p2), η1 = 0, (ξ2, η2) ∈ gε(C)})

= A(Fε({(ξ1, η1, ξ2, η2)/ξ1 = ξΣ
1,ε(0, q2, p2), η1 = 0, (ξ2, η2) ∈ gε(C))})

= A({(q1, p1, q2, p2)/q1 = δ, p1 = pcs1,ε(q2, p2), (q2, p2) ∈ C}) = A(C).

So gε is area-preserving.

The result (a) ensures that gε(Ca′) divides gε(BR2(0, 1
2δ)) into two connected

subsets. Given that gε is an homeomorphism (see the proof of (a)), gε(C 1
2 δ

) belongs

to one of these subsets and gε(Ca) to the other. Area preservation ensures that
gε(C 1

2 δ
)’s area is greater than gε(Ca′)’s area, so gε(Ca) is inside gε(Ca′) and gε(C 1

2 δ
)

is outside.
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5.4. In Σ1, the energy level set of P a reads as a graph ; position of this
graph with respect to the graph of W cs(0).

Lemma 5.6. Let us define

h̃ε(q
2
2 + p2

2, a) :=
ω(ε)

2ε2
(q2

2 + p2
2)−H(P aε , ε).

For δ sufficiently small and a ≤ 1
2δ

2, for ε sufficiently small, there exists pH1,ε such
that
{

(q1, p1, q2, p2)/H((q1, p1, q2, p2), ε) = H(P aε , ε)
}
∩ Σ1 ∩ B(0, δ)

∩
{

(q1, p1, q2, p2)/|h̃ε(q2
2 + p2

2, a)| ≤ δ2
}

=
{

(q1, p1, q2, p2)/q1 = δ, p1 = pH1,ε(q2, p2, a), (q2, p2) ∈ BR2(0, δ), |h̃ε| ≤ δ2
}

Moreover, pH1,ε reads

pH1,ε(q2, p2, a) := p̃1
H(q2, p2, h̃ε(q

2
2 + p2

2, a), ε), (35)

with p̃1
H analytic with respect to (q2, p2, h) and C1 with respect to ε ; more precisely

p̃1
H belongs to C1(]− ε0, ε0[3,A) (see Definition 1.1 of Part 1).

Proof. We proceed in two main steps.

Step 1. Existence. Let us denote H3 := H −H2 where H2 is the quadratic part
of H. We get

H(δ, p1, q2, p2, ε) = H(P aε , ε)⇐⇒ h̃ε(q
2
2 + p2

2, a) = δp1 −H3(δ, p1, q2, p2, ε). (36)

We first consider h as an independent variable, i.e. we consider the equation

h = δp1 −H3(δ, p1, q2, p2, ε), (37)

From the explicit expression of H3 for ν = 0 and given that H3 is C1 with respect
to ν and all its variables, for δ and ν sufficiently small, we get that

δ · 2δ −H3(δ, 2δ, q2, p2, ε, ν, µ) ≥ δ2, δ · (−2δ)−H3(δ,−2δ, q2, p2, ε, 0, µ) ≤ −δ2.

Thus the Intermediate Value Theorem ensures that the equation (37) admits a
solution p̃1

H(q2, p2, h, ε) ∈ [−δ, δ] when |h| ≤ δ2.

Step 2. Uniqueness and smoothness. From the explicit form of H3 when
ν = 0 and given that H3 is C1 with respect to ν and all its variables, we get that
for δ and ν sufficiently small, for |p1| ≤ δ,

∂p1(δp1 −H3(δ, p1, q2, p2, ε)) ≥
1

2
δ > 0.

Considering the implicit equation (37) and proceeding like in the Step 2 of Lemma
5.1’s proof, we then get the uniqueness and the analyticity of p̃1

H . �

The following lemma is a refinement of Lemma 5.6: it gives an expression of the
domain of pH1 in terms of (q2, p2, a) and a description of the position of the graph
pH1 with respect to pcs1,ε.
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Lemma 5.7. There exists c0 such that for δ sufficiently small and for a ≤ c0δ2ε2,
the function pH1 satisfies

{H=H(P a)} ∩ Σ1 ∩ B(0, δ) ∩ {(q1, p1, q2, p2)/I2 ≤
1

2
ω0δ

2ε2}

=

{
(q1, p1, q2, p2)/q1 = δ, p1= pH1 (q2, p2, a), I2 ≤

1

2
ω0δ

2ε2

}

Moreover, for all (q2, p2) ∈ gε(BR2(0, δ)), pH1,ε(q2, p2, a) > pcs1,ε(q2, p2) holds if and
only if

(q2, p2) is outside of Cas := {(q2, p2)/pH1 (q2, p2, a) = pcs1,ε(q2, p2)}. (38)

p1

¶H = H(P a)♦

W cs(0)

we are in Σ1

W s(P a )
q2

p2

pH
1 (q20 p20)

x

x

pcs
1 (q20 p20)

W s(P a)

Figure 10. In Σ1, positions of the energy level set {H = H(P a)} and of the
center-stable manifold W cs(0).

Proof of the domain of pH1 . Recall that

|h̃ε(q2
2 + p2

2, a)| = |ω(ε)

2ε2
(q2

2 + p2
2)−H(P aε , ε)|.

On one hand, given that ω is continuous, for ε sufficiently small we get

I2 ≤
1

2
ω0δ

2ε2 =⇒ |ω(ε)

2ε2
(q2

2 + p2
2)| ≤ 1

2
δ2.

On the other hand, from (i) of Lemma 5.3, we get

|H(P aε , ε)| ≤
∣∣H(P aε , ε)−

ω(ε)

2ε2
a
∣∣+
∣∣ω(ε)

2ε2
a
∣∣ ≤ a2M1(a) +

∣∣ω(ε)

2ε2
a
∣∣.

So, there exists c0 such that if a ≤ c0ε
2δ2 then |H(P aε , ε)| ≤ 1

2δ
2. This proves the

expression of the domain of pH1 claimed in the lemma, given that if I2 ≤ 1
2ω0δ

2ε2

and a ≤ c0ε2δ2 then |h̃ε(q2
2 + p2

2, a)| ≤ δ2. �

Proof of the equivalence (38). Recall that gε was defined in Lemma 5.5. First, let
us prove that Cas = gε(Ca). For that purpose, we work on the intersection of the

domains of pH1,ε and pcs1,ε. We consider then q2, p2, a such that I2 ≤ ω0δ
2ε2 and

a ≤ c0δ2ε2. Using Lemma 5.3, for ε sufficiently small we get that

(δ, pcs1,ε(q2, p2), q2, p2) ∈ {(q1, p1, q2, p2)/H((q1, p1, q2, p2), ε) = H(P aε , ε)}
⇐⇒ Kε(0, (g

−1
ε (q2, p2))2

q2 + (g−1
ε (q2, p2))2

p2) = Kε(0, a).

⇐⇒ g−1
ε (q2, p2) ∈ Ca,
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which proves that Cas = gε(Ca).

Let us consider a fixed value (q20, p20) outside of gε(Ca) and suppose that more-
over (q20, p20) belongs to gε(BR2(0, δ)). Then Lemma 5.5 ensures that there exists
a′ > a such that (q20, p20) ∈ gε(C′a). Thus given that Cas = gε(Ca), the proof will be
achieved if we show

pH1,ε(q2, p2, a
′) < pH1,ε(q2, p2, a). (39)

Recall that pH1,ε is defined by (36), i.e.

ω(ε)

2ε2
(q2

2 + p2
2)−H(P aε , ε) = δpH1,ε(q2, p2, a)−H3(δ, pH1,ε(q2, p2, a), q2, p2, ε). (40)

Recall also that we proved in the Step 2 of Lemma 5.6’s proof that

p1 7→ δp1 −H3(δ, p1, q2, p2, ε)

is strictly increasing for |p1| ≤ δ. Finally, Lemma 5.3 ensures that H(P aε , ε) <

H(P a
′

ε , ε), so that (39) is a consequence of (40). This achieves the proof of (38). �

5.5. Proof of Proposition 2.6. Let us define

Ψa
ε : {(q2, p2)/q2

2 + p2
2 ≤ cδ2ε2, (q2, p2) outside of Cas }→{(q2, p2)/q2

2 + p2
2 ≤ ω0δ

2ε2}

(q2, p2) 7→
(

Ψε

)

(q2,p2)

(pH1 (q2, p2, a), q2, p2).

We proceed in several steps.

Step 1. Let us prove first that for any c, for ε sufficiently small, the set
{

(q1, p1, q2, p2)/q1 = δ, 0 < p1 − pcs1,ε(q2, p2) ≤ 1

24M0
δ, q2

2 + p2
2 ≤ cδ2ε2

}
(41)

is a subset of Ψ’s domain.
Firstly, the equivalence (28) of Lemma 5.1 ensures that

pcs1,ε(q2, p2) < p1 ⇒ η1 > 0.

Secondly, let us prove that

|p1 − pcs1,ε(q2, p2)| ≤ 1

24M0
δ ⇒ |ψ−1,ε(δ, p1, q2, p2)| ≤ 1

24
δ; (42)

where we recall that F−1
ε = (ϕ−1,ε, ψ

−
1,ε, ϕ

−
2,ε, ψ

−
2,ε). On one hand, the definition of

pcs1,ε ensures that ψ1,ε(δ, p
cs
1,ε(q2, p2), q2, p2) = 0, and on the other hand from Lemma

B.3 we get that

ψ−1,ε(δ, p1, q2, p2)− ψ−1,ε(δ, pcs1,ε(q2, p2), q2, p2)

≺ |∂p1ψ−1,ε|(δ, |pcs1,ε|(q2, p2) + p1, q2, p2)|p1 − pcs1,ε(q2, p2)|.
Then, from Lemma B.2 and (iii) of Proposition C.1, we obtain

|ψ−1,ε(δ, p1, q2, p2)− ψ−1,ε(δ, pcs1,ε(q2, p2), q2, p2)| ≤ M0|p1 − pcs1,ε(q2, p2)|.
This achieves the proof of (42).

Finally, for c and δ sufficiently small,

q2
2 + p2

2 ≤ cδ2ν ⇒
√
ξ2
2 + η2

2 ≤ δ.
Indeed, this result is a consequence of (vii) of Proposition C.1.
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Step 2. domain of Ψa
ε . Let us prove now that for c sufficiently small, the set

Σ1 ∩ {H = H(P aε )} ∩
{

(q1, p1, q2, p2)/(q2, p2) is outside of Cas , q2
2 + p2

2 ≤ cδ2ε2
}

is a subset of the set (41), and then also of Ψ’s domain.
Firstly, observe that (38) ensures that

(q2, p2) outside of Cas ⇒ pH1 (q2, p2, a) > pcs1,ε(q2, p2).

Secondly, let us show that for c and ε sufficiently small,

q2
2 + p2

2 ≤ cδ2ε2 ⇒ pH1 (q2, p2, a)− pcs1,ε(q2, p2) ≤ 1

24M0
δ.

On one hand, we know that on the curve Cas , pH1 (q2, p2, a)−pcs1,ε(q2, p2) = 0. On the
other hand, from the definition of pcs1,ε, we get that

Dpcs1,ε(q2, p2) = −
D(q2,p2)ψ

−
1,ε

∂p1ψ
−
1,ε

(δ, pcs1,ε(q2, p2), q2, p2).

and so (iii) of Proposition C.1 allows to obtain that

|Dpcs1,ε(q2, p2)| ≤ 2

for δ sufficiently small. From the definition (36) of pH1 we get in a similar way that

|Dq2,p2p
H
1 (q2, p2, a)| ≤ C

ε
.

Thus we obtain that

q2
2 + p2

2 ≤ cδ2ε2 ⇒ |pH1 (q2, p2, a)− pcs1,ε(q2, p2)| ≤
(

2 +
C

ε

)√
cδε.

So, for c sufficiently small, the result claimed in the summary above holds.

Step 3. range of Ψa
ε . Let us prove that the image of (41) through Ψ is a subset

of the set where the energy level set {H = H(P aε )} reads as the graph of pH1 .

From Proposition 2.4, we already know that the range of Ψ is a subset of B(0, δ).
Let us show that the image of (41) is a subset of

{(q1, p1, q2, p2), I2 ≤
1

2
ω0δ

2ε2}.

From (25) with ν = ε2, we get that if I2 ≤ cδ2ε2 then

|ω(ε)

2ε2
(Ψq2((q1, p1, q2, p2), ε)2 + Ψp2((q1, p1, q2, p2), ε)2)| ≤M(c+ δ)δ2.

So the result claimed in the summary of the main steps above holds for c and δ
sufficiently small. �

6. Construction of an invariant curve for the restrictions of the first
return map with the aid of a KAM theorem: Proof of Proposition 2.9.
This section is entirely devoted to the proof of Proposition 2.9.

In this part we consider a ≤ c0δ2ε2, and work in annulus of the form

{(q2, p2)/I2 = q2
2 + p2

2 ∈ [c1(δ)δε2, c2(δ)δε2]},
where c1, c2 are lower than the c of Ψa

ε ’s domain (see Proposition 2.6): the choice
of c1, c2 is made in Lemma 6.5. Here is an outline of the proof of Proposition
2.9:
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• Parts 6.1 and 6.2 are devoted to the proof of estimates concerning the Ψa
ε .

The results (ii) and (iii) will be the consequences of the estimates on the
Ψa

(ε,ε2,0) showed in Part 6.1, and (iv) a consequence of the upper bounds of

Ψa
(ε,ε2,µ) −Ψa

(ε,ε2,0) computed in Part 6.2 .

• In

Part 6.3, we introduce the changes of coordinates which transforms Ψa
ε into

Ψ̂a
ε . The proof of (ii), (iii) and (iv) follows directly from the results of Parts

6.1 and 6.2.

Part 6.4. is devoted to the proof of (i).

6.1. Estimates for the first return map Ψa
(ε,ε2,0) of the normal form. In this

part, we give first in Lemma 6.1 an explicit form of the Ψa
(ε,ε2,0) in polar coordinates.

We then use this form to compute upper and lower bounds. Up to the change of
coordinates that we will perform in Part 6.3, Lemma 6.2 states the upper bound
(iii) of Proposition 2.9 and Lemma 6.5 is the result (ii). The latter lemma requires
the proof of the two preliminary results of Lemmas 6.3 and 6.4.

Lemma 6.1. In polar coordinates, Ψa
(ε,ε2,0) reads

(Ψa
θ,(ε,ε2,0),Ψ

a
r,(ε,ε2,0))(θ, r) = (θ + Θ(r, a, ε), r),

with

Θ(r, a, ε) =
ω(ε)

2ε2
T (pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0))

+ε

∫ T (pH1(ε,ε2,0)(r,0,a),r,0,(ε,ε2,0))

0

∂2Nn((φq1+φp1)(s, (δ, pH1(ε,ε2,0)(r, 0, a), r, 0), ε), r, ε)ds,

where pH1 (ε,ε2,0)(r cos θ, r sin θ, a) and T (p1, r cos θ, r sin θ, (ε, ε2, 0)) (recall that T was

defined in Proposition 4.2) are independent of θ.

Proof. Recall that for µ = 0, the Hamiltonian system reads




q′1(t) = −p1 + 3
2 (q1 + p1)2 + ε2∂1Nn(q1 + p1, q

2
2 + p2

2, ε),
p′1(t) = q1 − 3

2 (q1 + p1)2 − ε2∂1Nn(q1 + p1, q
2
2 + p2

2, ε),

q′2(t) = ω(ε)
2ε2 p2 + ε2∂2Nn(q1 + p1, q

2
2 + p2

2, ε)p2,

p′2(t) = −ω(ε)
2ε2 q2 − ε2∂2Nn(q1 + p1, q

2
2 + p2

2, ε)q2.

(43)

This system satisfies
d

dt
(q2

2 + p2
2) =

d

dt
I2 = 0.

Then, the (q1, p1) component of the flow reads φ(q1,p1)(t, (q1, p1, I20), ε) for a fixed

value I2 = I20. So for q20, p20 such that q2
2
0 + p2

2
0 = I20,

(
q2

p2

)
(t) = Rθ(t,I20,ε)

(
q20

p20

)
,

where

θ(t, I20, ε) :=
ω(ε)

2ε2
t+

∫ t

0

ε2∂2Nn((φq1 + φp1)(s, (q1, p1, I20), ε), I2, ε)ds.

The result claimed by Lemma 6.1 follows, up to the proof that the functions
pH1 (ε,ε2,0)(r cos θ, r sin θ, a) and T (p1, r cos θ, r sin θ, (ε, ε2, 0)) are independent of θ.
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Indeed, pH1 (ε,ε2,0) is defined as the unique pH1 such that

H((δ, pH1 , q2, q2), (ε, ε2, 0)) = H(P a(ε,ε2,0), (ε, ε
2, 0))

⇔ δpH1 −
1

2
(δ + pH1 )2 − ε2Nn(δ + pH1 , r

2, ε) =
ω(ε)

2ε2
r2 −H(P a(ε,ε2,0), (ε, ε

2, 0)).

where the latter equation is independent of θ. Similarly, T is defined by

φ̃q1(T, (δ, p1, q2, p2), (ε, ε2, 0)) = δ,

where from the form (43) of the hamiltonian system we know that the (q1, p1)
component of the flow reads φ(q1,p1)(t, (q1, p1, I20), ε). Then, the definitions of pH1
and T are independent of θ and we get the result. �

Lemma 6.2. There exists M such that for 0 ≤ a ≤ c0 and r2 ∈ [c1δ
2ε2, c2δ

2ε2],
for all k ≤ k0 = E(N0−1

4 ), Θ satisfies

∣∣∂krΘ(r, a, ε)
∣∣ ≤ M

εk+2
.

Proof. On one hand, from the result of Lemma 4.1 the explicit formula of Θ in
Lemma 6.1 reads

Θ(r, a, ε) = ω(ε)
2ε2 T (pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0))

+ε2F
(
T (pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0)), pH1(ε,ε2,0)(r, 0, a), r, ε

)
,

(44)
with F and T in C1(]− ε0, ε0[, Ck0). On the other hand, recall that

pH1 ,ε′(q2, p2, a) = p̃1
H(q2, p2, h̃ε′(q

2
2 + p2

2, a), ε′), (45)

where p̃1
H belongs to C1(]− ε0, ε0[3,A). Thus the only irregularity is in

h̃ε′(r
2, a) =

ω(ε)

2ε2
r2 −H(P aε′ , ε

′)

for ε = 0. And we check that there exists M1 such that for k ≤ k0 and r2 ∈
[c1δ

2ε2, c2δ
2ε2], ∣∣∣∂kr h̃ε′(r2, a)

∣∣∣ ≤ M1

εk

holds. Finally, we obtain the existence of M such that for k ≤ k0 and r2 ∈
[c1δ

2ε2, c2δ
2ε2],

∣∣∂krΘ(r, a, ε)
∣∣ ≤ M

εk+2
.

�
To prove (ii) of Proposition 2.9, we need a lower bound of ∂rΘ. In view of

the explicit form of Θ obtained in Lemma 6.1, we first compute estimates of T in
Lemma 6.3 below and then of pH1 in the following Lemma 6.4.

Lemma 6.3. For the truncated Hamiltonian

H((q1, p1, q2, p2), (ε, 0, 0)) = −q1p1 +
1

2
(q1 + p1)3 +

ω(ε)

2ε2
(q2

2 + p2
2),

the time T of first return to the section satisfies

∂p1T ((q1, p1, q2, p2), (ε, 0, 0)) = ∂p1T
0(p1) < 0.
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Proof. In the coordinates (q
1
, p

1
) (see Part 2.1), the truncated Hamiltonian reads

1

2
(p2

1
− q2

1
) +

1

2
q3

1
+
ω(ε)

2ε2
(q2

2 + p2
2).

Recall that q2
2 + p2

2 is constant, so that the flow follows the level sets

1

2
(p2

1
− q2

1
) +

1

2
q3

1
= −α⇔ p

1
= ±

√
q2

1
− q3

1
− α.

We get periodic orbits when 0 < α < 4
27 and the homoclinic orbit for α = 0. Let us

denote by (q
1
(t), p

1
(t), q2(t), p2(t)) the periodic solution associated with α and by

τ(α) its period. Then p
1
( 1

2τ(α)) = 0, and q
1
(0) and q

1
( 1

2τ(α)) are the two positive

roots of z2 − z3 − α. And 1
2τ(α) satisfies

1

2
τ(α) =

∫ 1
2 τ(α)

0

p
1
(t)

√
q

1
(t)2 − q

1
(t)3 − α

dt =

∫ q
1
( 1
2 τ(α)):=z2(α)

q
1
(0):=z1(α)

1√
z2 − z3 + α

dz

given that q′
1
(t) = p

1
(t). By studying the map z 7→ z2 − z3, we obtain that

∂αz1(α) > 0 and ∂αz2(α) < 0 for all α ∈]0, 4
27 [. This proves that ∂ατ(α) < 0, and

thus that ∂p1T
0(p1) < 0. �

Lemma 6.4. Let c1, c2 be two fixed positive reals satisfying c2 − c1 > 4δ.
Let us introduce c′′1 , c

′′
2 such that c1 < c′′1 < c′′2 < c2 − 4δ and define

c1 :=
4c′′1
ω0

, c2 :=
4c′′2
ω0

.

Then there exist c0 such that for all ε sufficiently small, for all a ∈ [0, c0δ
2ε2] and

r2 ∈ [c1δ
2ε2, c2δ

2ε2],

pH1(ε,ε2,0)(r, 0, a) ∈ [c1δ, c2δ], ∂hp̃1
H ≥ 1

2
δ > 0.

Moreover, on this domain, h̃ε′ satisfies h̃ε′(r
2, a) ∈ [c1δ

2, (c2 − 4δ)δ2].

Proof. Recall that Lemma 5.6 defines p̃1
H and asserts that it is C1.

Step 1. Case ε = (ε, ν = 0, µ = 0). Let us introduce c′1, c
′
2 such that

c1 < c′1 < c′′1 < c′′2 < c′2 − 4δ < c2 − 4δ.

In the case considered in this step, p̃1
H is defined by

δp̃1
H − 1

2
(δ + p̃1

H)3 = h.

Recall also that on its domain, |p̃1
H | ≤ δ holds. From these two results we get that,

on one hand

∂hp̃1
H(r, 0, h, (ε, 0, 0)) ≥ 1

δ
> 0 (46)

holds on the domain of p̃1
H . And on the other hand, for all h in [c′1δ

2, (c′2 − 4δ)δ2],

p̃1
H(r, 0, h, a, ν = 0) ∈ [c′1δ, c

′
2δ]. (47)
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Step 2. Case ε = (ε, ε2, 0). Given that p̃1
H is C1 in term of ν and ε, from (47)

we get that for ε sufficiently small, for all h in [c′1δ
2, (c′2 − 4δ)δ2],

p̃1
H(r, 0, h, a, (ε, ε2, 0)) ∈ [c1δ, c2δ].

and from (46) we obtain

∂hp̃1
H(r, 0, h, (ε, ε2, 0)) ≥ 1

2δ
> 0.

Recall that

h̃ε′(r
2, a) =

ω(ε)

2ε2
r2 −H(P aε′ , ε

′).

The choice of c1, c2 ensures that for ε sufficiently small if r2 belongs to [c1δ
2ε2, c2δ

2ε2]

then ω(ε)
2ε2 r

2 is in [c′′1δ
2, c′′2δ

2]. And Lemma 5.3 with ν = ε2 ensures that

∣∣∣H(P aε′ , ε
′)
∣∣∣ ≤ ω(ε)

2ε2
a+

ε2

ε2
M0a

2.

So, for c0 sufficiently small, if a ≤ c0δ2ε2, then

∣∣∣H(P aε′ , ε
′)
∣∣∣ ≤ min(c′′1 − c′1, (c′2 − 4δ)− c′′2)δ2.

�

Lemma 6.5. If N0 ≥ 5, there exist c0, c1, c2 and m,M > 0 such that for ε suffi-
ciently small, for all a ∈ [0, c0δ

2ε2] and all r2 ∈ [c1δ
2ε2, c2δ

2ε2],

−M
ε3
≤ ∂rΘ(r, a, ε) ≤ −m

ε3
.

Moreover, we can chose c1, c2 satisfying

Mδ < c1 < c2 ≤ c,

with the constant c introduced in Proposition 2.6 and M is the constant of the upper
bound (25).

And there exist c1, c2 such that on this domain, h̃ε′ and pH1 satisfies

h̃ε′(r
2, a) ∈ [c1δ

2, (c2 − 4δ)δ2], pH1 (ε,ε2,0)(r, θ, a) ∈ [c1δ, c2δ]. (48)

Proof. The existence of M (without conditions on a and r) is a direct consequence
of Lemma 6.2 for k = 1, given that we suppose N0 ≥ 5.

In order to prove the existence of m, we use the form (44) of Θ together with
the form (45) of pH1 : Θ reads

Θ(r, a, ε) =
ω(ε)

2ε2
T (pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0)) + ε2F̃

(
h̃ε′(r

2, a), r, ε
)
,
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where T and F̃ belong to C1(] − ε0, ε0[, Ck0). Differentiating with respect to r we
get

∂rΘ(r, a, ε)

=
ω(ε)

2ε2
∂p1T (pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0))×(

∂hp̃1
H(r, 0, a, (ε, ε2, 0))∂rh̃ε′(r

2, a)+∂rp̃1
H(r, 0, a, (ε, ε2, 0))

)
+
ω(ε)

2ε2
∂rT (pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0))

+ε2
(
∂hF̃

(
h̃ε′(r

2, a), r, ε
)(ω(ε)

2ε2
r
)
+∂rF̃

(
h̃ε′(r

2, a), r, ε
))
, (49)

=
ω(ε)

2ε2
∂p1T (pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0))∂hp̃1

H(r, 0, a, (ε, ε2, 0))∂rh̃ε′(r
2, a) +O

(
1

ε2

)
,

where (49) holds because ∂p1T, ∂rp̃1
H , ∂rT, ∂hF̃ , ∂rF̃ are continuous and for any

fixed choice of c0, c1, c2, h̃ε′ is bounded and Lemma 6.4 ensures that pH1 is also.
Let us show that the principal part in (49) admits an upper bound of the form

−m
ε3 for an appropriate choice of c0, c1 and c2. For that purpose, we use Lemmas

6.3 and 6.4.
On one hand, Lemma 6.3 ensures that ∂p1T

0(p1) < 0 when p1 > p1(δ). Then,
given that T is C1, for any set {p1 ∈ [c1δ, c2δ]}, there exists m such that ∂p1T

0 ≤
−2m on this set. For ε, µ sufficiently small, we get

∂p1T (p1, q2, p2, ε) ≤ −m < 0 for all p1 ∈ [c1δ, c2δ].

Let us chose c1, c2 satisfying moreover

4
c2 − 4δ

ω0
< c, c1 < c2 + 4δ, Mδ <

4c1
ω0

,

where M is the constant of the upper bound (25). On the other hand, with this
choice of c1, c2, Lemma 6.4 ensures that there exists c0, c1 and c2 satisfying c1, c2 ≤ c
and c1 > Mδ such that for all a ∈ [0, c0δ

2ε2] and r2 ∈ [c1δ
2ε2, c2δ

2ε2],

pH1(ε,ε2,0)(r, 0, a) ∈ [c1δ, c2δ] ∂hp̃1
H(r, 0, a, (ε, ε2, 0)) ≥ 1

2δ
> 0.

Moreover, for r2 ∈ [c1δ
2ε2, c2δ

2ε2]

∂rh̃ε′(r
2, a) = 2

ω(ε)

2ε2
r ≥ √c1

ω(ε)

ε
δ > 0.

We finally obtain that for a ∈ [0, c0δ
2ε2] and r2 ∈ [c1δ

2ε2, c2δ
2ε2],

ω(ε)

2ε2

∂T

∂p1
(pH1(ε,ε2,0)(r, 0, a), r, 0, (ε, ε2, 0))

∂p̃1
H

∂h
(r, 0, a, (ε, ε2, 0))

∂h̃ε′

∂r
(r2, a)

≤ −mω(ε)2√c1
ε3

,

which, together with (49) achieves the proof of the Lemma. �

6.2. Upper bound Ck of Ψa
(ε,ε2,µ)−Ψa

(ε,ε2,0). Given that the KAM theorem of [20]

(see Theorem 2.8 in part 2.3) is stated in polar coordinates, we need the following
lemma, which gives upper bounds of the polar form (Ψa

θ(θ, r),Ψa
r(θ, r)) of Ψa in
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terms of (Ψa
q2(q2, p2),Ψa

p2(q2, p2)). This computation relies on the fact that we
work on the domain

{(q2, p2)/q2
2 + p2

2 ∈ [c1δ
2ε2, c2δ

2ε2]},
which is away from 0.

Lemma 6.6. If (p1, q2, p2, ε
′) belongs to the domain of Ψ and c1δ

2ε2 ≤ q2
2 + p2

2 ≤
c2δ

2ε2, then

Ψ(q2,p2)(p1, q2, p2, ε
′) = Ψr(p1, q2, p2, ε

′)RΨθ(p1,q2,p2,ε′),

where Ψr is Ck0 and in R/2πZ,

Ψθ(p1, q2, p2, ε
′) ≡ ω(ε)

ε2
T (p1, q2, p2, ε

′) + φ̃θ(T (p1, q2, p2, ε
′), (δ, p1, q2, p2), ε′),

holds with T and φ̃θ Ck0 in C1(] − ε0, ε0[3, Ck0) and there exists M such that for

every variable x of φ̃,

∣∣∣∂jxφ̃θ
∣∣∣ ≤ M

εj

(
j∑

k=0

|∂jxφ̃q2 |+ |∂jxφ̃p2 |
)
.

Proof. Thank to the upper bound (25) of Proposition 4.2 (with ε = ε2), there
exists M such that if (p1, q2, p2, ε

′) is in the domain of Ψ and (q2, p2) satisfies
{(q2, p2)/q2

2 + p2
2 ∈ [c1δ

2ε2, c2δ
2ε2]} then

Ψ(p1, q2, p2, ε
′) ∈

{
(q1, p1, q2, p2)/q2

2 + p2
2 ∈ [(c1δ

2 −Mδ3)ε2, (c2δ
2 +Mδ3)ε2]

}
.

(50)
On one hand, Lemma 6.5 ensures that c1 > Mδ, thus, denoting

Ψr(p1, q2, p2, ε
′) :=

√
Ψq2(p1, q2, p2, ε′)2 + Ψp2(p1, q2, p2, ε′)2,

Ψr is Ck0 as Ψ. On the other hand, recall that

Ψ(p1, q2, p2, ε
′) = Rω(ε)

ε2
T (p1,q2,p2,ε′)

φ̃(T (p1, q2, p2, ε
′), (δ, p1, q2, p2), ε′),

so

Ψθ ≡
ω(ε)

ε2
T (p1, q2, p2, ε

′) + φ̃θ(T (p1, q2, p2, ε
′), (δ, p1, q2, p2), ε′),

where φ̃θ is defined by

φ̃q2 + iφ̃p2

φ̃r
= eiφ̃θ . (51)

And (50) ensures that |φ̃r|2 ≥ (c1 −Mδ)δ2ε2, then if x is any variable of φ̃, we get
∣∣∣∂xφ̃θ

∣∣∣ ≤ 1√
(c1 −Mδ)δε

(
|∂xφ̃q2 |+ |∂xφ̃p2 |

)
.

Differentiating (51) many times, we obtain the upper bounds claimed above for the

higher order derivatives of φ̃θ. �

Lemma 6.7. For a,ε,µ sufficiently small and 0 ≤ k ≤ k0,
∣∣Ψa

r(r, θ, (ε, ε2, µ))−Ψa
r(r, θ, (ε, ε2, 0))

∣∣
Ck ≤

(
a2 +

µ

εk

)
M,

∣∣Ψa
θ(r, θ, (ε, ε2, µ))−Ψa

θ(r, θ, (ε, ε2, 0))
∣∣
Ck ≤

(
a2

εk+2
+

µ

εk+1

)
M.
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Proof. To compute an upper bound of
∣∣∣Ψa

(ε,ε2,µ) −Ψa
(ε,ε2,0)

∣∣∣
Ck

, we firstly wanted to

use an upper bound of ∂µΨa
(ε,ε2,µ) together with the Mean Value Theorem. Unfor-

tunately, Ψa
(ε,ε2,µ) is not smooth with respect to µ because of

h̃(ε,ε2,µ)(r
2, a) =

ω(ε)

ε2
r2 −H(P a(ε,ε2,µ), (ε, ε

2, µ)),

Indeed, P aε is defined as P aε := Fε(Ca) and Fε = F(ε,ε,µ) is not smooth with respect
to µ. So in the following we are going to use ∂µ together with the Mean Value
Theorem as soon as it is possible, and we will complete by a use of ∂h together with
an upper bound of |h̃(ε,ε2,µ)(r

2, a)− h̃(ε,ε2,0)(r
2, a)|.

From Lemma 5.3, for a < a0 and ε, µ sufficiently small we get the upper bound

|h̃(ε,ε2,µ)(r
2, a)− h̃(ε,ε2,0)(r

2, a)| =
∣∣∣H(P a(ε,ε2,0), (ε, ε

2, 0))−H(P a(ε,ε2,µ), (ε, ε
2, µ))

∣∣∣
≤M0a

2.

On one hand, recall that from the definitions of Ψa (p.32) and from the form
(35) of pH1,ε, Ψa

r reads

Ψa
r(r, θ, (ε, ε2, µ))

= Ψr

(
p̃1
H(r cos θ, r sin θ, h̃(ε,ε2,µ)(r

2, a), (ε, ε2, µ)), r cos θ, r sin θ, (ε, ε2, µ)
)

:= Ψ̃a
r(r, θ, h̃(ε,ε2,µ)(r

2, a), (ε, ε2, µ))

where Ψr and p̃1
H belong to C1(]− ε0, ε0[3, Ck0) and thus so is the new function Ψ̃a

r

for r2 ∈ [c1δ
2ε2, c2δ

2ε2] and a ≤ c0δ
2ε2. Recall also that Lemma 6.4 ensures that

h̃(ε,ε2,µ) is bounded on this domain. Then we get that for any j + ` ≤ k0,
∣∣∣∂jr∂`θΨ̃a

r(r, θ, h̃(ε,ε2,µ)(r
2, a), (ε, ε2, µ))− ∂jr∂`θΨ̃a

r(r, θ, h̃(ε,ε2,µ)(r
2, a), (ε, ε2, 0))

∣∣∣

≤ sup
r2∈[c1δ

2ε2,c2δ
2ε2]

h∈[c1δ
2,c2δ

2]

∣∣∣∂h
(
∂jr∂

`
θΨ̃

a
r(r, θ, h, (ε, ε2, µ))

)∣∣∣ |h̃(ε,ε2,µ)(r
2, a)−h̃(ε,ε2,0)(r

2, a)|

+ sup
r2∈[c1δ

2ε2,c2δ
2ε2]

h∈[c1δ
2,c2δ

2]

∣∣∣∂µ
(
∂jr∂

`
θΨ̃

a
r(r, θ, h̃(ε,ε2,0)(r

2, a), (ε, ε2, µ))
)∣∣∣ · µ.

And given that |∂irh̃(ε,ε2,µ)(r
2, a)| ≤ M

εi (see the proof of Lemma 6.2), we obtain

∣∣Ψa
r(r, θ, (ε, ε2, µ))−Ψa

r(r, θ, (ε, ε2, 0))
∣∣
Ck ≤

(
a2 +

µ

εk

)
M.

On the other hand, recall that Ψa
θ(r, θ, (ε, ε2, µ)) reads

ω(ε)

2ε2
T (p̃1

H(r cos θ, r sin θ, h̃(ε,ε2,µ)(r
2, a), (ε, ε2, µ)), q2, p2, (ε, ε

2, µ))

+ φ̃θ(T (p̃1
H(r cos θ, r sin θ, h̃(ε,ε2,µ)(r

2, a), (ε, ε2, µ)),

q2, p2, (ε, ε
2, µ)), (δ, p1, q2, p2), (ε, ε2, µ))

where T and p̃1
H belong to C1(] − ε0, ε0[3, Ck0). From Lemma 6.6 and given that

φ̃q2,p2 belongs Ck0 , with the same computations as that of the upper bounds of
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Ψa
r(r, θ, (ε, ε2, µ)), we get

∣∣Ψa
θ(r, θ, (ε, ε2, µ))−Ψa

θ(r, θ, (ε, ε2, 0))
∣∣
Ck ≤ M

ε

(
a2 +

µ

εk

)
+

M
√
ν
k

(
a2 +

µ

εk

)
,

≤ M ′
(

a2

εk+2
+

µ

ε2k+2

)
.

�

6.3. Change of coordinates, proof of (ii), (iii) and (iv) of Proposition 2.9.

Change of coordinates. Denoting by
[

1
ε2

]
the integer part of 1

ε2 , let us define

ε̄ :=
1[
1
ε2

] , (52)

and perform the following change of coordinates.

(θ, r) :=

(
1

ε̄
q,
√
ε̄ρ

)
, q ∈ R/2πZ, ρ2 ∈ ε2

ε̄
[c1δ

2, c1δ
2].

Observe that 1 − ε2 ≤ ε2

ε̄ ≤ 1. Let us denote by Ψ̂a
ε the map Ψa

ε expressed in

those new coordinates. Thus Ψ̂a
ε is defined for ρ2 ∈ [c1δ

2, (1 − ε2)c2δ
2], i.e. for ε

sufficiently small Ψ̂a
ε is defined on a set ρ2 ∈ [c1δ

2, d1δ
2] independent of ε. Ψ̂a

ε reads

Ψ̂a
(ε,ε2,µ)(q, ρ) =

(
q + ε̄Θ(

√
ε̄ρ, a, ε) + ε̄(Ψa

(ε,ε2,µ) −Ψa
(ε,ε2,0))θ(

1

ε̄
q,
√
ε̄ρ) ,

ρ+
1√
ε̄

(Ψa
(ε,ε2,µ) −Ψa

(ε,ε2,0))θ(
1

ε̄
q,
√
ε̄ρ)

)
,

:=
(
q + αaε(q, ρ) + F a(ε,ε2,µ)(q, ρ), r +Ga(ε,ε2,µ)(q, ρ)

)
. (53)

Proof of (ii) of Proposition 2.9.

∂ρα
a
ε = ε̄

√
ε̄∂rΘ(

√
ε̄ρ, a, ε).

From Lemma 6.5 and the definition of d1, we get that for ρ2 ∈ [c1δ
2, d1δ

2],

−M
ε3
ε̄
√
ε̄ ≤ ∂αaε

∂ρ
≤ −m

ε3
ε̄
√
ε̄.

Observe that from the definition (52) of ε̄, we get that 1 ≤ ε̄
ε2 ≤ 2 if ε2 ≤ 1

2 . We
then obtain

−2
√

2M ≤ ∂αaε
∂ρ
≤ −m;

so (ii) holds with m0 = max(2
√

2M, 1
m ).

Proof of (iii) of Proposition 2.9. Given that if ρ2 ∈ [c1δ
2, d1δ

2] then r2 ∈ [c1δ
2ε2,

c2δ
2ε2], Lemma 6.2 ensures that for k ≤ k0,
∣∣∣∣
∂kαaε
∂ρk

(q, ρ)

∣∣∣∣ =

∣∣∣∣ε̄
√
ε̄
k ∂Θ

∂r
(
√
ε̄ρ, a, ε)

∣∣∣∣ ≤ ε̄
√
ε̄
k M

εk+2
≤
√

2
k
M for ε ≤ 1

2
.
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Proof of (iv) of Proposition 2.9. Lemma 6.7 ensures that for i+ j ≤ k ≤ k0,

∣∣∣∂iq∂jρF a(ε,ε2,µ)(q, ρ)
∣∣∣ = ε̄

√
ε̄
j

ε̄i

∣∣∣∣∂iθ∂jr(Ψa
(ε,ε2,µ) −Ψa

(ε,ε2,0))θ(
1

ε̄
q,
√
ε̄ρ)

∣∣∣∣ ,

≤ ε̄

√
ε̄
j

ε̄i
M ·

(
a2

εi+j+2
+

µ

ε2(i+j+1)

)
≤M ·

(
a2

ε3k
+

µ

ε6k

)
;

and
∣∣∣∂iq∂jρGa(ε,ε2,µ)(q, ρ)

∣∣∣ = ε̄

√
ε̄
j

ε̄i

∣∣∣∣∂iθ∂jr(Ψa
(ε,ε2,µ) −Ψa

(ε,ε2,0))r(
1

ε̄
q,
√
ε̄ρ)

∣∣∣∣ ,

≤ ε̄

√
ε̄
j

ε̄i
M ·

(
a2 +

µ

εi+j

)
≤M ·

(
a2

ε2k−2
+

µ

ε6k−4

)
.

So finally, for 0 ≤ k ≤ k0 − 1,
∣∣∣F a(ε,ε2,µ)

∣∣∣
Ck

+
∣∣∣Ga(ε,ε2,µ)

∣∣∣
Ck
≤M ·

(
a2

ε3k
+

µ

ε6k

)
.

�

6.4. Proof of (i) of Proposition 2.9: The Ψ̂a are exact maps. We first prove

that the Ψ̂a are area-preserving maps (Lemma 6.8), and then that for every Ψ̂a

there exist some Jordan curves intersecting their range through Ψ̂a (Lemma 6.9).
These two results together ensures that (i) of Proposition 2.9 holds.

Lemma 6.8. Ψ̂a
ε is an area-preserving map.

Proof. Ψa
ε is symplectic given that it is a first return map associated to a Hamil-

tonian flow. Moreover, we verify that the change of coordinates

ϕ : (ρ, q) 7→ (
√
ε̄ρ,

1

ε̄
q)

is symplectic. Then Ψ̂a
ε is symplectic and thus area-preserving. �

Lemma 6.9. We fix ∆ > 0.
For ε sufficiently small with respect to ∆, every Jordan curve C in the set

{(q, ρ)/ρ2 ∈ [c′1δ
2, d1δ

2]}
and of the form

C = {(q, ρ), ρ = f(q)} with for all q ∈ R/2πZ, |f ′(q)| ≤ ∆,

intersects its range Ψ̂a
ε(C).

Proof of an upper bound for the map Ψa
ε . Firstly, we prove that there exists a

constant M ′′ such that the upper bound∣∣∣(Ψ̂a
ε)ρ(q, ρ)− ρ

∣∣∣ ≤M ′′µεN0 (54)

holds in the domain {(q, ρ)/ρ2 ∈ [c1δ
2, d1δ

2]}. For that purpose, we use two results:

•1. in the coordinates (q2, p2), there exists M such that on the domain B(0, ρ0)
the flow of H(., (ε, ε2, µ)) satisfies

∣∣∣∣
d(q2

2 + p2
2)

dt

∣∣∣∣ ≤MµεN0+2;
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2. on the domain {(θ, r)/r2 ∈ [c1δ
2ε2, c2δ

2ε2]} the time T of first return to Σ1

is bounded: this is the consequence of the Ck-smoothness of T (p1, q1, p2, ε)
together with the fact that pH1 is bounded on this domain thank to (48) of
Lemma 6.5.

From (i) and (ii) we derive that
∣∣∣(Ψa

ε)q2(q2, p2, a)2 + (Ψa
ε)p2(q2, p2, a)2 − (q2

2 + p2
2)
∣∣∣ ≤MµεN0+2(Sup|T |)

≤M ′µεN0+1.

Thus in polar coordinates we get∣∣∣(Ψa
ε)r(r, θ, a)2 − r2

∣∣∣ ≤M ′µεN0+2.

⇔
∣∣∣(Ψa

ε)r(r, θ, a)− r
∣∣∣
∣∣∣(Ψa

ε)r(r, θ, a) + r
∣∣∣ ≤M ′µεN0+2.

⇒
∣∣∣(Ψa

ε)r(r, θ, a)− r
∣∣∣ ≤M ′′µεN0+1 given that r ≥ √c1δε.

Which, in coordinates (q, ρ) reads
∣∣∣(Ψa

ε)r(r, θ, a)− r
∣∣∣ =

∣∣∣∣(Ψa
ε)ρ(

1

ε̄
q,
√
ε̄ρ)−

√
ε̄ρ

∣∣∣∣ =
∣∣∣
√
ε̄(Ψ̂a

ε)r(q, ρ)−
√
ε̄ρ
∣∣∣ .

This completes the proof of (54).

Proof of Lemma 6.9. Consider a curve C as described in the statement of the
Lemma. From (54) we get that Ψ̂a

ε(C) is in the tube

{(q, ρ), ρ ∈ [f(q)−M ′′µεNo, f(q) +M ′′µεNo]}
(see Figure 11) whose area admits the upper bound 2M ′′µεNo·(length of the curve
C). Where the length of C reads

∫ 2π

0

√
f ′(q)2 + f(q)2dq ≤ 2π(∆ +

√
d1).

x

x

x

x

x

C

Ψ̂a
ε (C)

√
d1δ1

√
c1δ1

2M µεNo

Ψ̂a
ε (C)

impossible

Figure 11. Range of C through Ψ̂a
ε .

Suppose that Ψ̂a
ε(C) ∩ C = ∅ holds. Given that C is a Jordan curve, so is Ψ̂a

ε(C),
and then their inside and outside sets are well-defined. From Lemma 6.8 we get that
their inside sets have the same area, and thus necessarily Ψ̂a

ε(C) is in the outside
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set of C. Then Ψ̂a
ε(C) is in the tube {(q, ρ), ρ ∈ [f(q), f(q) + M ′′µεNo]}, and so is

its inside set whose area is greater than πc1.
So for µ, ε sufficiently small with respect to c1, d1 and ∆ the area of the tube

is lower than the area of the curve Ψ̂a
ε(C), so that necessarily Ψ̂a

ε(C) ∩ C 6= ∅ is
impossible. �

A. Appendix. Proof of Theorem 1.3. This appendix is devoted to the proof of
Theorem 1.3 used in Part 3. We thank Gérard Iooss who suggested us this version
of the Normal Form Theorem and the main ideas of its proof. We denote by E`
the finite dimensional vector space of homogeneous polynomials of degree ` on R2m.
We denote by F` ⊂ E` the subspace of homogeneous polynomial satisfying (1). So
F` is the space of polynomials appearing in the normal form.

The property of the space F` that is used in the proof is that F` is a supplement
of the image of the linear operator

S 7→ {H2,0, S}
from E` to itself, which is called the Homological operator. This will be established
below in step 3. Any other supplement could be used as well, and the choice made
in Theorem 1.3 is not canonical.

Proof. We begin with a summary of the strategy of proof.
Strategy of proof. We perform the proof by induction on ` ≥ 2. We set
φ1,λ = Id and construct a C1 family of local analytic symplectic diffeomorphisms
φ`,λ = φ`−1,λ ◦ ϕ`,λ for each ` ≥ 2, where ϕ`,λ as the Lie transform (the time one
Hamiltonian flow) of a homogeneous polynomial S`,λ of degree ` whose coefficients
are C1 functions of λ. In view of step 2.1 below, such a homogeneous Hamiltonian
generates a Lie transform ϕ`,λ which is a C1 family of local analytic symplectic
diffeomorphisms. Assume that, for some ` ≤ k,

Hλ ◦ φ`−1,λ = H2,0 +N`−1,λ +R`−1,λ

where N`−1,λ is a polynomial of degree at most ` − 1 of the form (1) and whose
coefficients are C1 functions of λ, and where R`−1,λ = o(|x|`−1). Then R`−1,λ is
a C1 family of Ck Hamiltonians hence there exists a C1 curve P`,λ in E` such that
R`−1,λ = P`,λ + R`,λ, with R`,λ = o(|x|`). The iterative step consists in finding a
Hamiltonian S`,λ which is a homogeneous polynomial of degree ` whose coefficients
are C1 functions of λ in such a way that the corresponding Lie transform ϕ`,λ
satisfies the equation

Hλ ◦ φ`−1,λ ◦ ϕ`,λ = H2,0 +N`−1,λ +N`,λ +R`,λ, (55)

with N`,λ ∈ F` and R`,λ = o(|x|`). We then define N`,λ := N`−1,λ +N`,λ.
The case ` = 2, which is just a problem of deformations of linear systems, is a bit

specific, we detail it in Step 1 below. We then study in Step 2.1 how a C1 family
of homogeneous Hamiltonians of degree ` ≥ 3 generates a C1 family of analytic Lie
transforms. This allows to solve the iterative equation in degree ` ≥ 3 in Step 2.2:
We prove the existence of C1 curves N`,λ and S`,λ in F` and E` satisfying (55). The
equations for ` = 2 and ` ≥ 3 involve the same linear operator S 7→ {H2,0, S} on E`,
called the homologic operator. We study this operator in Step 3, where we prove
that F` as defined by (1) is a complementary space of its image. This property is
used in Step 1 and Step 2.2.
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Step 1. Normalization at order 2. The initial Hamiltonian Hλ reads

Hλ = H2,λ +R2,λ = H2,0 + P2,λ +R2,λ,

where P2,λ is a homogenous polynomial of degree 2 whose coefficients are C1 func-
tions of λ verifying P2,0 ≡ 0, and R2,λ = o(|x|2).

We consider a family of linear symplectic diffeomorphisms ϕ2,λ obtained (for each
λ) as the time one Hamiltonian flow of a family quadratic Hamiltonians S2,λ. The
gradient ∇S2,` is a linear map, that we identify with its matrix (whose coefficients
are C1 functions of λ) so that

S2,λ(x) =
1

2
〈∇S2,λx, x〉

and
ϕ2,λ = exp(J∇S2,λ),

which is a matrix whose coefficients are C1 functions of λ. By keeping only the
quadratic term in (55), we obtain the equation

(H2,0 + P2,λ) ◦ exp(J∇S2,λ) = H2,0 +N2,λ. (56)

Note in this expression that the composition ◦ is not a product of linear maps, but
the composition of a quadratic form with a linear map. We rewrite this equation as

N2,λ −F2(P2,λ, S2,λ) = 0, (56)

where F2 : E2 × E2 → E2 is the analytic map given by

F2(P, S) = (H2,0 + P ) ◦ exp(J∇S)−H2,0.

The map S 7→ ∇S is just the isomorphism which to a quadratic form associates its
matrix times two. The map F2 satisfies

F2(0, 0) = 0, ∂PF2(0, 0) · P = P, ∂SF2(0, 0) · S = {H2,0, S}.
To compute the last derivative, just observe that

∂SF2(0, 0) · S(x) = ∂t
(
H2,0 ◦ eJ∇tS

)
(x) = ∂t

(
H2,0 ◦ etJ∇S(x)

)
= {H2,0, S}(x),

where the time derivatives are taken at t = 0.
Let F2 be a complementary space of the image of the linear map S 7→ {H2,0, S}

on E2, and let G2 be a complementary space of its kernel. We will see in step 3 that
we can take for F2 the space of quadratic Hamiltonians satisfying (1). The map

(N,S) 7→ N − ∂SF2(0, 0) · S
is an isomorphism from G2 × F2 to E2. By the implicit function theorem, the
equation

N −F2(P, S) = 0

can thus be solved by (N(P ), S(P )) ∈ F2 × G2 for each small P ∈ E2. Moreover
the map P 7→ (N(P ), S(P )) is analytic near the origin. We now set

N2,λ = N(P2,λ), S2,λ = S(P2,λ).

These matrices are C1 functions of λ, and they solve (56).

Step 2.1. Lie transform. Each element S ∈ E`, ` ≥ 3 generates a Lie transform
ϕS which is an analytic local symplectic diffeomorphism of R2m satisfying

ϕS(x) = x+ J∇S(x) +O(|x|`). (57)

For each bounded open set B` ⊂ E`, there exists ρ > 0 such that the map S 7→ ϕS
is C1 on B` with values in A(BR2m(0, ρ),R2m).
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As a consequence of (57), given a Hamiltonian H ∈ Ei, we have

H ◦ ϕS = H + {H,S}+O(|x|i+`−1). (58)

To prove that the map S 7→ ϕS is C1 we first consider the differential equation

∂tψtS = J∇S ◦ ψtS
with initial data ψ0S = Id on the Banach space A(BR2m(0, 1),R2m). The map
(S, ψ) 7→ J∇S ◦ ψ is C1. Considering S as a parameter, we apply the Cauchy-
Lipschitz Theorem and obtain the existence of a solution (t, S) 7→ ψtS = ψ(t, S)
which is C1 on ]−T, T [×U` for some T > 0 and some neighborhood U` of the origin
in E`.

Let us now consider, for ρ > 0, the homothety θ : x 7→ x/ρ of R2m. The map
ψ 7→ ψ ◦ θ is a linear isometry between A(BR2m(0, 1),R2m) and A(BR2m(0, ρ),R2m).
The map

(t, S) 7→ ϕtS := ρψ
(
ρ(`−2)/2t, ρ(`−2)/2S

)
◦ θ = ρψρ`−2tS ◦ θ

is defined on ]− ρ1−`/2T, ρ1−`/2T [×ρ1−`/2U . We observe that ϕ0S = Id, and that

∂tϕtS = ρ(`−2)/2∂tψ(
(
ρ(`−2)/2t, ρ(`−2)/2S

)
◦ θ = ρ`−1J∇S ◦ψρ`−2tS ◦ θ = J∇S ◦ϕtS

since ∇S is homogeneous of degree ` − 1. As a consequence ϕtS is the time t
Hamiltonian flow of S. If ρ is chosen small enough, then the map (t, S) 7→ ϕtS is
defined and C1 on ] − 2, 2[×B`, hence the map S 7→ ϕS is a C1 on B`, with values
in A(BR2m(0, ρ),R2m).

Step 1.2. Equation at order ` ≥ 3. We are assuming that

Hλ ◦ φ`−1,λ = H2,0 +N`−1,λ + P`−1,λ +R`,λ

In view of (58), we get that

Hλ ◦ φ`−1,λ ◦ ϕ`,λ = H2,0 +N`−1,λ + P`,λ + {H2,0 +N2,λ, S`,λ}+ o(|x|`).
By keeping only the terms or order ` in (55), we get the equation

N`,λ − {H2,0 +N2,λ, S`,λ} = P`,λ. (59)

We write this equation under the form

N`,λ −F`(λ, S`,λ) = 0,

with F`(λ, S) = {H2,0 +N2,λ, S}+ P`,λ. Obviously, ∂SF`(0, 0) · S = {H2,0, S}.
Let F` be a complementary space of the image of the linear map S 7→ {H2,0, S}

on E`, and let G` be a complementary space of its kernel. We will see in step 3
that we can take for F` the space of quadratic Hamiltonians satisfying (1). By the
implicit function theorem, the equation

N −F`(λ, S) = 0

has a unique small solution (N`,λ, S`,λ) in F` × G`, which is a C1 function of λ
near λ = 0. Then, the Lie transform ϕ`,λ of S`,λ is a C1 family of local analytic
diffeomorphisms which solves (55).

Step 3. Study of the homological operator. We have used above that F`, as
defined by (1), complements the image of the homological operator

A : S 7→ {H2,0, S}
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in E`. Any other complementary space could be used as well, but the relatively
simple definition of F` makes it a good choice. In many situation, the kernel

K` := {N ∈ E`| N ◦ etL0 = N ∀t}
of the homological operator turns out to also complement its image. The normal
form can then be obtained in this space. In the case of Birkhoff normal forms,
we have F` = K`. In the case of interest in the present paper, however, it is not
possible to reduce the system to a normal form in K`.

Let us now prove that F` is always a complementary space of the image of the
homological operator. For that purpose we define, for any pairs of polynomials
S, S′ : R2m → R lying in E` the inner product given by

〈S, S′〉` = S(∂x) · S′|x=0.

For multi-indices α1, · · · , α2m and β1, · · · , β2m, we have
〈
xα1

1 ·. . .· xα2m
2m , xβ1

1 ·. . .· xβ2m

2m

〉
`

= α1! · · ·α2m! δα1,β1 · · · δα2m,β2m

where δαj ,βj = 1 if αj = βj and 0 otherwise. The product 〈., .〉` thus defines
an Euclidean structure on E`, and the standard base of E` is orthogonal for this
structure. Let us set

H∗2,0 := −H2,0 ◦ J,
in such a way that L∗0 = (J∇H2,0)∗ = J∇H∗2,0.

We claim that the adjoint of the homological operator A is A∗(S) = {H∗2,0, S}.
This implies that F` = Ker A∗, and then that F` complements the image of A,
which is what we wanted to prove.

Let us finally prove the claim. For each linear map T of R2m, each index i, and
each smooth function fon R2m, we have

S(∂x) · (f ◦ T ) =
(
S ◦ T ∗(∂x) · f

)
◦ T

as can be proved by induction on the degree ` of S. Here T ∗ is the adjoint of T for
the standard Euclidean structure on R2m. We deduce that

〈S ◦ T, S′〉` = 〈S, S′ ◦ T ∗〉`
for each S and S′ in E`. We now compute

〈A∗S, S′〉 = 〈AS′, S〉 =
〈
∂t(S

′ ◦ etL0)|t=0, S
〉

= ∂t

〈
S′ ◦ etL∗0 , S

〉
|t=0

= ∂t

〈
S ◦ etL∗0 , S′

〉
|t=0

=
〈
∂t(S ◦ etL

∗
0 ), S′

〉
|t=0

=
〈
{H∗2,0, S}, S′

〉
,

which proves the claim. �

B. Appendix. Definition of ≺ and technical lemmas. In this appendix we
define the relation ≺ on the set of formal power series, and state a few properties
of this relation. The proofs are left to the reader (the complete proofs are in the
Appendix B of [15]).

Definition B.1. Let f and g be two formal power series on C, with d variables.
We denote them

f(x1, · · · , xd) =
∑

n∈Nd
anx

n1
1 · · ·xndd :=

∑

n∈Nd
anx

n, g(x1, · · · , xd) =
∑

n∈Nd
bnx

n.
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We define ≺ by f(x1, · · · , xd) ≺ g(x1, · · · , xd) if and only if

∀n ∈ Nd, bn ∈ R+ and |an| ≤ bn.
We define also

|f | (x) :=
∑

n∈Nd
|an|xn,

max
≺
{f, g}(x) :=

∑

n∈Nd
max{|an|, |bn|}xn.

Lemma B.2. Let f and g be two formal power series from Cd to C.

1. f ≺ g if and only if |f | ≺ g.
2. If f ≺ g then

∀i ≤ d, ∂xif ≺ ∂xig.
3. Let d′ < d and y = (y1, · · · , yd′). Consider f and g for

x = (x1, · · · , xd) = (y1, y1, · · · , y1, · · · , yd′ , · · · , yd′),
that we denote f̃(y) and g̃(y). Then

f(x) ≺ g(x)⇒ f̃(y) ≺ g̃(y).

4. When d = 1. If f is a convergent power series of order n0, then there exist
two positive constants c and γ such that

f(x) ≺ c xn0

1− γx ;

and more precisely, if f ∈ A(BC(0, ρ),C) (see Definition 1.1), then

f(x) ≺
‖f‖
A

ρn0

xn0

1− 1
ρx
.

5. If 0 ≺ f(x) ≺ g(x), then

1

1− f(x)
≺ 1

1− g(x)
.

6. If f ≺ g and g ∈ A(BCd(0, ρ),C), then f ∈ A(BCd(0, ρ),C) and

‖f‖
A
≤ ‖g‖

A
.

Lemma B.3. Let F be a scalar formal power series of the variables (x1, · · · , xd),
with positive coefficients, and Φ, Ψ be two vectorial formal power series

Φ(x1, · · · , xd) = (φ1, · · · , φd)(x1, · · · , xd),
Ψ(x1, · · · , xd) = (ψ1, · · · , ψd)(x1, · · · , xd).

Then we have the upper bound

F (Φ + Ψ)− F (Φ) ≺ |DF |(|Φ|+ |Ψ|).|Ψ|,
where we use the notation

|DF |(|Φ|+ |Ψ|).|Ψ| :=
d∑

i=1

|∂xiF |(|Φ1|+ |Ψ1|, · · · , |Φd|+ |Ψd|).|Ψi|.
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Lemma B.4. We consider a family of formal power series of the form

Fν(Y ) := (Fν,1(y1, · · · , yd), · · · , Fν,d(y1, · · · , yd)) = (y1, · · · , yd) +O(|Y |2)

such that F0 is convergent and there exist N ∈ N and a convergent power series M
such that for all j = 1, · · · , d,

Fν,j − F0,j ≺ ν(y1 + · · ·+ yd)
NM(y1 + · · ·+ yd)

holds ; we moreover suppose that Fν is invertible and denote

F−1
ν (Y ) :=

(
F−ν,1, · · · , F−ν,d

)
(Y ).

Then there exists a convergent power series M1 such that for all j = 1, · · · , d
F−ν,j − F−0,j ≺ ν(y1 + · · ·+ yd)

NM1(y1 + · · ·+ yd)

holds.

C. Appendix. Construction of a local canonical change of coordinates:
Proof of Prop. 2.2. This appendix is devoted to the proof of the Proposition C.1
below, which is a more general and detailed version of Proposition 2.2.

This proposition gives some estimates on the dependence of a change of coordi-
nates Fε in term of some parameters ε := (ε, ν, µ). For fixed values of the parameter
ε the existence of the change of coordinates Fε is already well-known, it is a theo-
rem of Moser [21] together with a result of Russmann [22]. The main result here is
that under some assumptions, the singularity in ε in the quadratic part of the initial
Hamiltonian does not affect the bounds (i)− (ix) (they are all independent of ε).

This proposition plays a crucial part in the proof of Theorem 1.2, points (i) and
(ii) being the pivotal results. These results allow in particular to get fine properties
of many objects such as the center-stable and center-unstable manifolds or the
energy level sets, given that these objects are very simple in the (ξ1, η1, ξ2, η2)-
coordinates.

Indeed, these results play a big role in the proof of Proposition 2.6: at each step
of the proof, we use local properties, local being in the spatial sense or for small
values of the parameter ν, and we have to verify that the local neighborhoods do
not tends to an empty set or do not move too much when ε goes to 0. For instance,
consider Lemma 5.1 in which we claim that the center-stable manifoldW cs(0) can be
expressed locally as the graph of a map pcs1,ε. The results of Proposition C.1 ensures

that this graph expression holds for ε, ν, µ small, in a neighborhood (namely B(0, δ))
independent of ε, ν and µ.

Knowing precisely these neighborhoods is important then to perform a pertur-
bative method (namely KAM theorem with the perturbative parameter µ, see Part
6) in a fixed annulus.

Proposition C.1. Let us consider a family of real analytic Hamiltonians H in
A(BR4(0, ρ),R) of the form

H((q1, p1, q2, p2), ε) = −α1q1p1 +
α2(ε)

ε2
(q2

2 + p2
2) +h(q1, p1) + νR′((q1, p1, q2, p2), ε),

where ε = (ε, ν, µ). We suppose that α2 is a continuous function verifying α2(0) 6= 0
and that R(., ε) is a C1-family of analytic functions, and

h(q1, p1) = O(|(q1, p1)|3), R((q1, p1, q2, p2), ε) = O(|(q1, p1, q2, p2)|3).
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Then, there exist ε0, ρ′0 and a family of canonical changes of coordinates

Fε =
(
ϕ1,ε, ψ1,ε, ϕ2,ε, ψ2,ε

)

defined for |ε| ≤ ε0 such that the Hamiltonian in the new coordinates (ξ1, η1, ξ2, η2)
reads

H
(
Fε(ξ1, η1, ξ2, η2), ε

)
= Kε(ξ1η1, ξ

2
2 + η2

2)

= −ξ1η1 + ω(ε)
2ε2 (ξ2

2 + η2
2) +O(|(ξ1η1, ξ

2
2 + η2

2)|2),
(60)

and such that for all ε, Fε and F−1
ε belong to ∈ A(BR4(0, ρ′0),R4), and for ε :=

(ε, 0, 0), F(ε,0,0) is independent of ε and is of the form

F(ε,0,0)(ξ1, η1, ξ2, η2) := F0(ξ1, η1, ξ2, η2) = (ϕ1,0(ξ1, η1), ψ1,0(ξ1, η1), ξ2, η2). (61)

Moreover we have the following estimates (recall that ≺ is defined in Appendix
B): there exists a power series of one variableM, convergent on B(0, 4ρ′0) such that

1. (Fε −F0)(ξ1, η1, ξ2, η2) ≺ ν(ξ1+η1+ξ2+η2)2M(ξ1+η1+ξ2+η2),
2. Fε(ξ1, η1, ξ2, η2)− (ξ1, η1, ξ2, η2) ≺ (ξ1+η1+ξ2+η2)2M(ξ1+η1+ξ2+η2),
3. F−1

ε (q1, p1, q2, p2)− (q1, p1, q2, p2) ≺ (q1+p1+q2+p2)2M(q1+p1+q2+p2).

And there exists a real M0 satisfying

4. |Fε(ξ1, η1, ξ2, η2)−F0(ξ1, η1, ξ2, η2)| ≤ νM0,

5. |F−1
ε (q1, p1, q2, p2)−F−1

0 (q1, p1, q2, p2)| ≤ νM0,

6. |Fε(ξ1, η1, ξ2, η2)− (ξ1, η1, ξ2, η2)| ≤ M0|(ξ1, η1, ξ2, η2)|2,
7. |F−1

ε (q1, p1, q2, p2)− (q1, p1, q2, p2)| ≤ M0|(q1, p1, q2, p2)|2,

8. |ϕ2,ε(ξ1, η1, ξ2, η2)− ξ2| ≤ νM0|(ξ1, η1, ξ2, η2)|2,
9. |ψ2,ε(ξ1, η1, ξ2, η2)− η2| ≤ νM0|(ξ1, η1, ξ2, η2)|2.

for all (ξ1, η1, ξ2, η2) in B(0, ρ′0) and all (q1, p1, q2, p2) in B(0, ρ′0).

Plan of the proof. Proving this fair dependence in term of the parameters re-
quires to perform again each step of the existence proofs of Moser and Russmann,
to verify the effect of the singularity in term of ε at each step of the construction
of Fε. This is a very long and technical work given that Fε is firstly constructed
as a formal power series, by induction on the coefficients, so that at each step we
compute the estimates by the method of majorant series.

Section C.1: complex variables: We compute a change of coordinates which
diagonalize the linear part of the vector field, but also leads to complex vari-
ables. We detail this classical change of coordinates in order to prove at the
end of the proof (in Part C.5) that the final change of coordinate is real.

Section C.2: non canonical changes of coordinates: We first consider the
family of changes of coordinates Fε, which are not canonical. For fixed values
of ε, they are the changes of coordinates constructed by Moser [21]. The
construction of the final canonical changes of coordinates relies on the Fε, and
so do the estimates of Proposition C.1. So, in Part C.2, we compute estimates
on the dependence of Fε with respect to ε.

Section C.3: introduction of the canonical changes of coordinates:
We then introduce the family of canonical changes of coordinates F ∗ε . For
fixed values of ε, they nearly are the changes of coordinates constructed by
Russmann [22]. We moreover prove in this part the particular form of F ∗(ε,0,0)

(in order to get (61)).
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Section C.4: estimate (i) on the canonical changes of coordinates:
We prove that the Fε satisfy an estimate of the form of (i) of Proposition
C.1.

Section C.5: back to R and proof of the final form of the Proposition
Gathering the previous results and getting back in R, we can finally prove the
Proposition C.1.

C.1. Diagonalization / complex variables. We first perform the following com-
plex canonical change of coordinates

q′1
p′1
q′2
p′2

 =

(
I O
O P

)
q1
p1
q2
p2

 := P


q1
p1
q2
p2

 , where P =
1√
2

(
1 i
i 1

)
.

Let us construct first the changes of coordinates F ∗ε in C4, and at the end (see

subsection C.5) define Fε := P−1F ∗ε P. The Hamiltonian in the new coordinates
reads

H((x1, y1, x2, y2), ε)

= −α1x1y1 − i
α2(ε)

ε2
x2y2 + h(x1, y1) + νR((x1, y1, x2, y2), ε). (62)

with α1, α2 ∈ R. The associated Hamiltonian system reads




ẋ1 = α1x1 + ∂y1h(x1, y1) + ν∂y1R((x1, y1, x2, y2), ε)
ẏ1 = −α1y1 − ∂x1h(x1, y1)− ν∂x1R((x1, y1, x2, y2), ε)

ẋ2 = iα2(ε)
ε2 x2 + ν∂y2R((x1, y1, x2, y2), ε)

ẏ2 = −iα2(ε)
ε2 y2 − ν∂x2

R((x1, y1, x2, y2), ε).

(63)

Let us denote it by




ẋ1 = α1x1 + f1,0(x1, y1) + νf1,ε((x1, y1, x2, y2))
ẏ1 = −α1y1 + g1,0(x1, y1) + νg1,ε((x1, y1, x2, y2))

ẋ2 = iα2(ε)
ε2 x2 + νf2,ε((x1, y1, x2, y2))

ẏ2 = −iα2(ε)
ε2 y2 + νg2,ε((x1, y1, x2, y2)).

(64)

Note that for i = 1, 2, the families (fi,ε)ε and (gi,ε)ε are C1-families of the space(
A(BC4(0, ρ1),C), ‖·‖

∞

)
, given that ε 7→ R(·, ε) is C1 on A(BC4(0, ρ1),C).

C.2. First family Fε, not canonical. Let us firstly introduce the following no-
tation:

Definition C.2. Let φ(x1, y1, x2, y2) be a formal power series from C4 to C, of the
form

φ(x1, y1, x2, y2) =
∑

m,n∈N2

cm,nx
m1
1 yn1

1 xm2
2 yn2

2 .

Let us define the “sub”-power series, from C2 to C, made of the sum of all the
monomials of φ satisfying m1 = n1 and m2 = n2,

[φ] (ω1, ω2) :=
∑

n∈N2

cn,nω
n1
1 ωn2

2 .

We first fix ε and state the following lemma

Lemma C.3. Consider a Hamiltonian of the form (62) with α1, α2 real satisfying
the assumptions of Proposition C.1. Then
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(i): for all ε there exist a formal power series

(x1, y1, x2, y2) = F̃ε(ξ1, η1, ξ2, η2) = (ϕ̃1,ε, ψ̃1,ε, ϕ̃2,ε, ψ̃2,ε)((ξ1, η1, ξ2, η2)),

and formal power series of 2 variables ãi,ε and b̃i,ε for i = 1, 2 satisfying

F̃ε(x, ε) = x+O(|x|2),

ã1,ε(ω1, ω2) = α1 +O((ω1, ω2)), ã2,ε(ω1, ω2) = iα2(ε)
ε2 +O((ω1, ω2)),

b̃1,ε(ω1, ω2) = −α1 +O((ω1, ω2)), b̃2,ε(ω1, ω2) = −iα2(ε)
ε2 +O((ω1, ω2)),

such that in the new coordinates (ξ1, η1, ξ2, η2), the hamiltonian system reads





ξ̇1 = ã1,ε(ξ1η1, ξ2η2)ξ1
η̇1 = b̃1,ε(ξ1η1, ξ2η2)η1

ξ̇2 = ã2,ε(ξ1η1, ξ2η2)ξ2
η̇2 = b̃2,ε(ξ1η1, ξ2η2)η2.

(65)

(ii): for all ε, we have existence and uniqueness of the formal power series F̃ε,

ãi,ε et b̃i,ε of (i) if

[
ϕ̃1,ε

ξ1

]
,

[
ψ̃1,ε

η1

]
,

[
ϕ̃2,ε

ξ2

]
,

[
ψ̃2,ε

η2

]
(66)

are any 4 given power series of the form 1 +O(ω1, ω2).

(iii): If F̃ε is a formal power series satisfying (i), then F̃ε
′

also satisfies (i) if
and only there exist some formal power series Φi,Ψi such that

Φi(ω1, ω2) = 1 +O((ω1, ω2)),
Ψi(ω1, ω2) = 1 +O((ω1, ω2)),

F̃ε
′
(ξ, η) = F̃ε

(
Φ1(ξ1η1, ξ2η2)ξ1,Ψ1(ξ1η1, ξ2η2)η1,

Φ2(ξ1η1, ξ2η2)ξ2,Ψ2(ξ1η1, ξ2η2)η2

)
.

(iv): Necessarily, a1,ε = −b1,ε et a2,ε = −b2,ε.
(v): Moreover, if the 4 power series (66) are convergent power series, then F̃ε,

ãi,ε and b̃i,ε are convergent, i.e. there exists a disk on which they are analytic.

Proof. in the statement of this lemma, (v) is in fact the direct consequence, in our
case, of the result stated by Moser [21]. And (i)−(iv) are the steps of his proof (still
applied to our particular case): (i) and (ii) correspond to his Part 2, (iv) is the
lemma stated in his Part 3 and (iii) is the Step I of the proof of the latter lemma.
Point (v) is proved in his Part 4. We state here explicitly these steps of his proof
because we use it below.

Morser’s proof relies on the fact that system in the new coordinates is of the
form (65) if and only if F̃ε satisfies





α1ϕ̃1,ε+f1,0(ϕ̃1,ε, ψ̃1,ε)+νf1,ε(F̃ε) = ∆12 ϕ̃1,ε

−α1ψ̃1,ε+g1,0(ϕ̃1,ε, ψ̃1,ε)+νg1,ε(F̃ε) = ∆12 ψ̃1,ε

iα2(ε)
ε2 ϕ̃2,ε + νf1,ε(F̃ε) = ∆12 ϕ̃2,ε

−iα2(ε)
ε2 ψ̃2,ε + νg1,ε(F̃ε) = ∆12 ψ̃2,ε,

(67)
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where we denote

∆12 :=
(
ã1,ε(ξ1η1, ξ2η2)D1 + ã2,ε(ξ1η1, ξ2η2)D2

)

D1 := ξ1∂ξ1 − η1∂η1 ,

D2 := ξ2∂ξ2 − η2∂η2 .

(68)

�

Lemma C.4. Let us denote by Fε = (ϕ1,ε, ψ1,ε, ϕ2,ε, ψ2,ε), ai,ε the formal power
series satisfying

[
ϕ1,ε

ξ1

]
= 1 =

[
ψ1,ε

η1

]
=

[
ϕ2,ε

ξ2

]
=

[
ψ2,ε

η2

]
, (69)

whose existence and uniqueness are asserted in Lemma C.3 (ii). They have the
following properties

(i): F(ε,0,0) and a1,(ε,0,0) are independent of ε. Let us denote them by a1,0 and

F(ε,0,0) := F0 = (ϕ1,0, ψ1,0, ϕ2,0, ψ2,0),

Moreover, they read

F0(ξ1, η1, ξ2, η2) = (ϕ1,0(ξ1, η1), ψ1,0(ξ1, η1), ξ2, η2)

a1,(ε,0,0)(ω1, ω2) = a1,0(ω1), a2,(ε,0,0)(ω1, ω2) = i
α2(ε)

ε2
.

(ii): There exist a convergent power series M such that for every ε ≤ ε0,

(Fε − F0)(ξ1, η1, ξ2, η2) ≺ ν(ξ1+η1+ξ2+η2)2M(ξ1+η1+ξ2+η2).

Proof of (i). Let us consider System (67) with ν = µ = 0 and prove that there
exists a solution F(ε,0,0) independent of ε and of the form required in (i). Given
that the uniqueness of such F(ε,0,0) and a1,(ε,0,0) was established in Lemma C.3 (ii),
this will prove (i).

With the system (67) together with the ansatz

Fε(ξ1, η1, ξ2, η2) =
(
ϕ1,ε(ξ1, η1), ψ1,ε(ξ1, η1), ξ2, η2

)

a1,ε(ω1, ω2) = a1,ε(ω1), a2,ε(ω1, ω2) = i
α2(ε)

ε2
,

and using the particular form of the operators D1 and D2 (defined in (68)), we get




α1ϕ1,ε(ξ1, η1)+f1,0(ϕ1,ε(ξ1, η1), ψ1,ε(ξ1, η1)) = a1,ε(ξ1η1)D1ϕ1,ε(ξ1, η1)
−α1ψ1,ε(ξ1, η1)+g1,0(ϕ1,ε(ξ1, η1), ψ1,ε(ξ1, η1)) = a1,ε(ξ1η1)D1ψ1,ε(ξ1, η1)

iα2(ε)
ε2 ξ2 = iα2(ε)

ε2 ξ2
−iα2(ε)

ε2 η2 = iα2(ε)
ε2 (−η2).

(70)

Only the two first equations remain. To prove that there exist such ϕ1,ε, ψ1,ε, a1,ε

we moreover use (iv) of Lemma C.3: we are going to prove that there exist a1,ε(ξ1η1)
and b1,ε(ξ1η1) solving the following system 71, and we will conclude thank to (iv)
which asserts that −b1,ε = a1,ε.
{

α1ϕ1,ε(ξ1, η1)+f1,0(ϕ1,ε, ψ1,ε) =
(
a1,ε(ξ1η1)ξ1∂ξ1 + b1,ε(ξ1η1)η1∂η1

)
ϕ1,ε(ξ1, η1)

−α1ψ1,ε(ξ1, η1)+g1,0(ϕ1,ε, ψ1,ε) =
(
a1,ε(ξ1η1)ξ1∂ξ1 + b1,ε(ξ1η1)η1∂η1

)
ψ1,ε(ξ1, η1).

(71)
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Our aim is to prove the existence of such formal power series ϕ1,ε, ψ1,ε, a1,ε and b1,ε.
Denote them by

ϕ1,ε(ξ1, η1) := ξ1 +

+∞∑

N=2

ϕN1 (ξ1, η1), ψ1,ε(ξ1, η1) := ξ1 +

+∞∑

N=2

ψN1 (ξ1, η1),

a1,ε(ω1) := α1 +

+∞∑

N=1

aN1 (ω1), b1,ε(ω1) := −α1 +

+∞∑

N=1

bN1 (ω1).

where the ϕN1 , ψ
N
1 , a

N
1 and bN1 are homogeneous polynomials of degree N . System

(71) at degree N ≥ 2 read then

α1ϕ
N
1 − α1D1ϕ

N
1 − ξ1aN−1

1 = FN (ϕM1 , ψM1 , aM−1
1 ,M < N), (72)

−α1ψ
N
1 − α1D1ψ

N
1 − η1b

N−1
1 = GN (ϕM1 , ψM1 , aM−1

1 ,M < N). (73)

Observe that the kernel of the operator (Id−D1) is the vector space generated by the
monomials of the form ξ1(ξ1η1)n1 , and is a bijection of the vector space generated by

all the other monomials. We then prove the existence of the ϕN1 , ψ
N
1 , a

N−1
1 et bN−1

1

by induction: on one hand, for ξ1a
N
1 (ξ1η1) we take the sum of all the monomials of

the form ξ1(ξ1η1)n1 in the polynomial −FN (ϕM1 , ψM1 , aM−1
1 ,M < N), and do the

same for bN1 . And on the other hand, for ϕN1 (ξ1, η1) we chose the antecedent of

FN (ϕM1 , ψM1 , aM−1
1 ,M < N)− ξ1aN−1

1 (ξ1η1)

by the operator (Id − D1) in the vector space generated by the monomials which
are note of the form ξ1(ξ1η1)n1 . We do the same with ψN1 , without monomials of
the form η1(ξ1η1)n1 .

Then the solution Fε satisfies the properties stated (i) ; indeed: on one hand[
ϕ1,ε

ξ1

]
= 1 =

[
ψ1,ε

η1

]
given that ϕ1,ε has only one monomial of the form ξ1(ξ1η1)n1 ,

which is ξ1. And on the other hand (ϕ1,(ε,0,0), ψ1,(ε,0,0), a1,(ε,0,0), b1,(ε,0,0)) solves the
system (71) which is independent of ε. And by the uniqueness stated in Lemma
C.3 (ii), we get that (ϕ1,(ε,0,0), ψ1,(ε,0,0), a1,(ε,0,0), b1,(ε,0,0)) are independent of ε. �

Proof of (ii). Let us denote

F ′ε = (ϕ′1,ε, ψ
′
1,ε, ϕ

′
2,ε, ψ

′
2,ε) :=

1

ν
(Fε − F0), a′i,ε :=

1

ν
(ai,ε − ai,0).

In the following proof, we use the absolute value and the maximum associated with
the order relation ≺, which are introduced in Definition B.1. We proceed in several
steps.

Step 1. System (75) satisfied by the F ′ε. Fε and F0 satisfy (67) (with ε for

the former, and (ε, 0, 0)) for the latter). We substract those 2 systems and divide
by ν, and then use the explicit expression of a2,0, ϕ1,0, ψ1,0, ϕ2,0, ψ2,0, which implies
in particular that

D2ϕ1,0 = 0 = D2ψ1,0 = D1ϕ2,0 = D1ψ2,0.
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We then get the following system satisfied by F ′ε





(
α1−α1D1−iα2(ε)

ε2 D2

)
ϕ′1,ε−ξ1a′1,ε

= (a1,0−α1)D1ϕ
′
1,ε+

(
a′1,εD1+a′2,εD2

)
(ϕ1,0−ξ1+νϕ′1,ε)

−f1,ε(F0+νFε)+
1
ν

(
f1,0(ϕ1,0, ψ1,0)−f1,0(ϕ1,0+νϕ′1,ε, ψ1,0+νψ′1,ε)

)

(the same with ψ)(
iα2(ε)
ε2 −α1D1−iα2(ε)

ε2 D2

)
ϕ′2,ε−ξ2a′2,ε

= (a1,0−α1)D1ϕ
′
2,ε+

(
a′1,εD1+a′2,εD2

)
νϕ′2,ε−f2,ε(F0+νF ′ε)

(the same with ψ).
(74)

This system can be understood as an infinity of equalities of coefficients of power
series, and then as equalities of the absolute values of coefficients. Moreover, observe
that in the term of the left hand side, ξ1a

′
1,ε(ξ1η1, ξ2η2) is made of monomials

of the form ξ1(ξ1η1)n1(ξ2η2)n2 and
(
α1(I−D1)−iα2(ε)

ε2 D2

)
ϕ′1,ε does not have any

monomial of the form ξ1(ξ1η1)n1(ξ2η2)n2 .
Then, from each equality of (74), we get two inequalities, and obtain the following

system

∣∣∣(α1(I−D1)−iα2(ε)

ε2
D2

)
ϕ′1,ε

∣∣∣≺∣∣∣∣(a1,0−α1)D1ϕ
′
1,ε+

(
a′1,εD1+a′2,εD2

)
(ϕ1,0−ξ1+νϕ′1,ε)

−f1,ε(F0+νFε)+
1
ν

(
f1,0(ϕ1,0, ψ1,0)−f1,0(ϕ1,0+νϕ′1,ε, ψ1,0+νψ′1,ε)

)∣∣ ,∣∣ξ1a′1,ε∣∣ ≺ ∣∣∣∣(a1,0−α1)D1ϕ
′
1,ε+

(
a′1,εD1+a′2,εD2

)
(ϕ1,0−ξ1+νϕ′1,ε)

−f1,ε(F0+νFε)+
1
ν

(
f1,0(ϕ1,0, ψ1,0)−f1,0(ϕ1,0+νϕ′1,ε, ψ1,0+νψ′1,ε)

)∣∣ ,
the same with the 3 other equations of (74)

(75)

Step 2. An upper bound Mε of F ′ε. We introduce two families of formal power
series

Mε(ξ1, η1, ξ2, η2) := max
≺

{
max
≺

(D1ϕ
′
1,ε, D2ψ

′
1,ε)+

∣∣∣
[
ϕ′1,ε

]∣∣∣ ,

max
≺

(D1ψ
′
1,ε, D2ψ

′
1,ε) +

∣∣∣
[
ψ′1,ε

]∣∣∣

max
≺

(D1ϕ
′
2,ε, D2ψ

′
2,ε)+

∣∣∣
[
ϕ′2,ε

]∣∣∣ ,

max
≺

(D1ψ
′
2,ε, D2ψ

′
2,ε) +

∣∣∣
[
ψ′2,ε

]∣∣∣
}

Aε(ω1, ω2) := max
≺

{
a′1,ε, a

′
2,ε

}
.

Let us prove that
∣∣∣ϕ′1,ε

∣∣∣ ≺Mε. We denote

ϕ′1,ε(ξ1, η1, ξ2, η2) :=
∑

m,n∈N2

c(m,n)ξ
m1
1 ηn1

1 ξm2
2 ηn2

2 . (76)
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Then

max
≺

(D1ϕ
′
1,ε, D2ψ

′
1,ε)+

∣∣∣
[
ϕ′1,ε

]∣∣∣

=
∑

m,n∈N2

|c(m,n)|max {|m1−n1|, |m2−n2|, 1} ξm1
1 ηn1

1 ξm2
2 ηn2

2 .

≺ ∑
m,n∈N2

|c(m,n)|ξm1
1 ηn1

1 ξm2
2 ηn2

2 =
∣∣∣ϕ′1,ε

∣∣∣ (ξ1, η1, ξ2, η2).
(77)

So
∣∣∣ϕ′1,ε

∣∣∣ ≺ Mε. With the same method one can check that Mε is also an upper

bound of
∣∣ψ1,ε

∣∣ ,
∣∣ϕ2,ε

∣∣ and
∣∣ψ2,ε

∣∣.

Step 3. Lower bounds of the left hand side terms of (75) in term of
Mε. Let us show that there is the following lower bound for the left hand part of
equation (75)

min

{ |α1|
4
,
α2(ε)

2ε2

}
·
(

max
≺

(D1ϕ
′
1,ε, D2ϕ

′
2,ε)+

∣∣∣
[
ϕ′1,ε

]∣∣∣
)

≺
∣∣∣∣
(
α1(I−D1)−i

α2(ε)

ε2

)
ϕ′1,ε

∣∣∣∣ . (78)

Indeed, using notation (76), the term of the right hand side of (78) satisfies

∣∣∣∣
(
α1(I −D1)−i

α2(ε)

ε2

)
ϕ′1,ε

∣∣∣∣ (ξ1, η1, ξ2, η2)

�
∑

m,n∈N2

|c(m,n)|
2

(
|α1(1−(m1−n1))|+|α2(ε)

ε2
(m2−n2)|

)
ξm1
1 ηn1

1 ξm2
2 ηn2

2

given that α1, α2 are real. And we already computed the term of the left hand side
of (78) (see (77)). So, (78) will be proved if we show that, for all m,n ∈ N2,

min

{ |α1|
4
,
α2(ε)

2ε2

}
|c(m,n)|max {|m1−n1|, |m2−n2|, 1}

≤ |c(m,n)|
2

(
|α1(1−(m1−n1))|+|α2(ε)

ε2
(m2−n2)|

)
.

holds. We consider two different cases: firstly, if m1 = n1 + 1 and m2 = n2, then
c(m,n) = 0. Indeed, from the definition of Fε we get

[
ϕ′1,ε
ξ1

]
=

1

ν

([
ϕ1,ε

ξ1

]
−
[
ϕ1,0

ξ1

])
=

1

ν
(1− 1) = 0.

Secondly, if m1 6= n1 + 1 or m2 6= n2, we then get the result using that |1− (m1 −
n1)| ≥ 1 or |m2 − n2| ≥ 1. Hence

|α1||1− (m1 − n1)|+
∣∣∣∣
α2(ε)

ε2

∣∣∣∣ |m2 − n2| ≥ min{|α1|,
∣∣∣∣
α2(ε)

ε2

∣∣∣∣} · 1.
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The proof of (78) is then completed. And with the same method, we obtain the
same type of inequalities for ψ′1,ε, ϕ

′
2,ε, ψ

′
2,ε, and finally get

min

{ |α1|
4
,
α2(ε)

2ε2

}
Mε

≺ max
≺

(∣∣∣∣
(
α1(I−D1)−i

α2(ε)

ε2

)
ϕ′i,ε

∣∣∣∣ ,
∣∣∣∣
(
α1(I−D1)−i

α2(ε)

ε2

)
ψ′i,ε

∣∣∣∣
)

Step 4. Upper bounds of the right hand side terms of (75) in term of Mε.
From now on, taking (ξ1, η1, ξ2, η2) = (ω, ω, ω, ω), we consider all the power series
as power series of one variable ω. The inequalities ≺ are preserved by this change
of variables. Given that ϕ1,0, ψ1,0, ϕ2,0, ψ2,0 and a1,0 − α1 are convergent power
series (by Lemma C.3) without term of degree 0, and that f1,0, g1,0 are convergent
without terms of degree 0 and 1, Lemma B.2 ensures the existence of c, γ such that

ϕi,0(ω, ω, ω, ω), ψi,0(ω, ω, ω, ω) ≺ c ω

1− γω , a1,0(ω2)− α1 ≺ c
ω2

1− γω ,(79)

f1,0, g1,0(ω, ω) ≺ c ω2

1− γω . (80)

f1,ε, g1,ε, f2,ε et g2,ε are C0 in term of ε in the space
(
A(BC4(0, ρ1),C), ‖·‖

A

)
, so

that there exists an uniform upper bound in term of A· uniform en ε. Moreover,
the f1,ε, g1,ε, f2,ε and g2,ε do not have any monomial of degree 0 or 1. Then we get
(with larger c and gamma if necessary)

f1,ε, g1,ε, f2,ε, g2,ε(ω, ω, ω, ω) ≺ c ω2

1− γω . (81)

Let us compute upper bounds, in term of Mε(ω, ω, ω, ω) and Aε(ω
2, ω2), of the

terms of the right hand side of (75). We use Lemma B.3 to obtain the last of the
following inequalities.

∣∣(a1,0 − α1)D1ϕ
′
1,ε

∣∣(ω, ω, ω, ω) ≺ c ω2

1− γωMε(ω, ω, ω, ω);

∣∣∣
(
a′1,εD1+a′2,εD2

)
(ϕ1,0−ξ1+νϕ′1,ε)

∣∣∣ ≺ Aε(ω2, ω2)

(
2νMε(ω, ω, ω, ω) + c

ω2

1− γω

)
;

∣∣f1,ε(Fε(ω, ω, ω, ω))
∣∣ ≺ |f1,ε|

(
|ϕ1,0|+· · ·+|ψ2,0|+ν(|ϕ′1,ε|+· · ·+|ψ′2,ε|), · · ·

)

≺ c

(
4c ω

1−γω+4νMε(ω, ω, ω, ω)
)2

1− γ
(

4c ω
1−γω + 4νMε(ω, ω, ω, ω)

) ;

1

ν

(
f1,0(ϕ1,0, ψ1,0)− f1,0(ϕ1,ε, ψ1,ε)

)

≺ 1
ν |Df1,0|

(
|ϕ1,0|+|ψ1,0|+ν(|ϕ′1,ε|+|ψ′1,ε|)

)
· ν(|ϕ′1,ε|+|ψ′1,ε|)

≺ c 2c ω
1−γω+2νMε(ω,ω,ω,ω)

1−γ(2c ω
1−γω+2νMε(ω,ω,ω,ω))

2Mε(ω, ω, ω, ω).
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Step 5. An inequation independent of ε satisfied by Mε. We come back
to system (75) and use the lower bounds of the terms of the left hand side (Step 3)
and the upper bounds of the right hand side (Step 4). Taking the maximum of the
terms of the left hand side, we obtain

Mε ≺ c ω2

1−γωMε+Aε
(
2νMε+c

ω2

1−γω

)
+c

(
4c ω

1−γω+4νMε

)2
1−γ

(
4c ω

1−γω+4νMε

) + c
2c ω

1−γω+2νMε

1−γ
(
2c ω

1−γω+2νMε

)2Mε

ωAε ≺ c ω2

1−γωMε+Aε
(
2νMε+c

ω2

1−γω

)
+c

(
4c ω

1−γω+4νMε

)2
1−γ

(
4c ω

1−γω+4νMε

) + c
2c ω

1−γω+2νMε

1−γ
(
2c ω

1−γω+2νMε

)2Mε.

(82)

We introduce

Nε(ω) := Mε(ω, ω, ω, ω) + ωAε(ω
2, ω2).

Moreover, given that ϕ1,ε, ψ1,ε, ϕ2,ε and ψ2,ε do not have any monomial of degree
0 or 1 and the ai,ε of degree 0, necessarily, Nε read Nε = ω2N ′ε(ω), where N ′ε is a

formal power series. We aim now at showing an upper bound of N ′ε independent of

ε. And from system (82) we get that there exist c′ and γ′ such that for ν ≤ 1 N ′ε
satisfies

N ′ε ≺ c′
c′ω

1− γωN
′
ε + 2ωN ′2ε + c′

(
c

1−γω + ωN ′ε

)(
c

1−γω + 2ωN ′ε

)

1−γ′
(

cω
1−γω + ω2N ′ε

) . (83)

N ′ε satisfies then a functional inequality independent of ε.

Step 6. Construction of a convergent majorant series Z. We aim now at
constructing a convergent power series Z satisfying

Z(ω) = c′
c′ω

1− γωZ(ω) + 2ωZ2 + c′

(
c

1−γω + ωZ
)(

c
1−γω + 2ωZ

)

1−γ′
(

cω
1−γω + ω2Z

) , (84)

and such that Z(0) ≥ N ′ε(0). Indeed, from (83), by induction on the coefficients of
Nε and Z we will then obtain

N ′ε(ω) ≺ Z(ω),

so that Z will be the convergent upper bound independent of ε that we are looking
for.

And by the analytic implicit functions theorem applied to equation (84) in the
neighborhood of ω = 0, we get the existence of a such Z: indeed, for ω = 0, equation
(84) read

Z − cc′ = 0,

where ∂Z(Z − cc′) = 1 6= 0 for all Z. And, up to a choice of larger c and c′ in (83)
if necessary, cc′ ≥ N ′ε(0) is satisfied because N ′ε(0) is uniformly bounded in term of

ε for ε ≤ ε0 given that all the analytic functions defining N ′ε are C0 in term of ε. So

we get the existence of a convergent power series Z such that N ′ε(ω) ≺ Z(ω). Then,

Mε(ω, ω, ω, ω) ≺ ω2Z(ω), Aε(ω
2, ω2) ≺ ωZ(ω)
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hold, and thus

Mε(ξ1, η1, ξ2, η2) ≺Mε(ξ1+η1+ξ2+η2, · · · , ξ1+η1+ξ2+η2) ≺ (ξ1+η1+ξ2+η2)2Z(ξ1+η1+ξ2+η2)

and the same for Aε. Finally thank to Step 2, we get

|ϕ′1,ε|, |ψ′1,ε|, |ϕ′2,ε| and |ψ′2,ε|(ξ1, η1, ξ2, η2) ≺ (ξ1+η1+ξ2+η2)2Z(ξ1+η1+ξ2+η2),

|a′i,ε|(ξ1, η1, ξ2, η2) ≺ (ξ1+η1+ξ2+η2)Z(ξ1+η1+ξ2+η2).

�

C.3. The canonical family F ∗ε : Construction, properties of F ∗0 . In this
part, the first Lemma C.5 states the existence of a family of canonical changes of
coordinates F ∗ε verifying a criteria, and then Lemma C.7 gives the main properties
of F ∗0 . Thank to the criteria, in next section we will prove that the F ∗ε are conver-
gent and we will show that F ∗ε − F ∗0 admits upper bounds of the type claimed in
Proposition C.1. The appropriate choice of the criteria will also allows to prove in
Part C.5 that the Fε are real. Our criteria (87) is very close to the one used by
Rssmann [22] but slightly different in order to obtain a real change of coordinates.

Lemma C.5. For all ε,

(i): There exists some canonical formal power series

F̃ε(ξ1, η1, ξ2, η2) = (ξ1, η1, ξ2, η2) +O(|(ξ1, η1, ξ2, η2)|2), (85)

and a Hamiltonian formal power series of 2 variables Kε such that

H(F̃ε((ξ1, η1, ξ2, η2)), ε) = Kε(ξ1η1, ξ2η2) = −α1ξ1η1 − i
α2(ε)

ε2
ξ2η2 + · · · (86)

(ii): If F̃ε satisfies (i), then F̃ε
′

also satisfies (i) if and only if there exists a
formal power series S(ω1, ω2) such that

F̃ε
′
(ξ, η)=F̃ε (Φ1(ξ1η1, ξ2η2)ξ1,Ψ1(ξ1η1, ξ2η2)η1,Φ2(ξ1η1, ξ2η2)ξ2,Ψ2(ξ1η1, ξ2η2)η2)

holds, where we denote

Φi(ω1, ω2) := e∂ωiS(ω1,ω2), Ψi(ω1, ω2) := e−∂ωiS(ω1,ω2).

(iii): There exists a unique canonical formal power series denoted F ∗ε =

(ϕ∗1,ε, ψ
∗
1,ε, ϕ

∗
2,ε, ψ

∗
2,ε) satisfying (i) and verifying the criteria

ω1

([
ϕ∗1,ε
ξ1

]
(ω1, ω2)−

[
ψ∗1,ε
η1

]
(ω1, ω2)

)
+ iω2

([
ϕ∗2,ε
ξ2

]
(ω1, ω2)−

[
ψ∗2,ε
η2

]
(ω1, ω2)

)
=0.

(87)

Remark C.6. Taking the values a1,ε(ω1, ω2) = ∂ω1
Kε(ω1, ω2) and a2,ε(ω1, ω2) =

∂ω2
Kε(ω1, ω2), we see that (i) of this lemma is a particular case of Lemma C.3.

Proof of (i). We construct F̃ε with the aid of a generatrix function, i.e. we construct

a formal power series Wε and define F̃ε by the implicit equation

F̃ε(∂η1Wε(x, η), η1, ∂η2Wε(x, η), η2) = (x1, ∂x1
Wε(x, η), x2, ∂x2

Wε(x, η)).

In order to obtain F̃ε of the form (85) we look for Wε of the form

Wε(x, η) = Wε(x1, η1, x2, η2) = x1η1 + x2η2 +O(|(x, η)|3).
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Then, the formal power series Wε and Kε verify (86) if and only if

H((x1, ∂x1
Wε(x, η), x2, ∂x2

Wε(x, η)), ε)

= Kε(∂η1Wε(x, η), η1, ∂η2Wε(x, η), η2), (88)

with Kε of the form

Kε(ξ1, η1, ξ2, η2) = Kε(ξ1η1, ξ2η2) = −α1ξ1η1 − i
ω(ε)

ε2
+O(|(ξ1, η1, ξ2, η2)|3).

Let us denote

Wε(x, η) :=
∑

N≥2

WN
ε (x, η), H(x, y, ε) :=

∑

N≥2

HN
ε (x, y), Kε(ξ, η) :=

∑

N≥2

KN
ε (ξ, η);

where WN
ε ,H

N
ε ,K

N
ε are homogeneous polynomials of degree N . Then (88) is sat-

isfied if and only if for all N ≥ 2,

α1D1W
N
ε (x, η) + i

α2(ε)

ε2
D2W

N
ε (x, η)−KN

ε (x, η) = FN (WM
ε ,KM

ε ,M < N),

where FN only depends of the WM
ε ,KM

ε for M < N and where we denote D1 =
x1∂x1 − η1∂η1 , and D2 = x2∂x2 − η2∂η2 .

Given that α1 and α2 are real, observing the images of the monomials, we get

that (α1D1 + iα2(ε)
ε2 D2) is a bijection of the set of formal power series without

monomials of the form (x1η1)m(x2η2)n. Thus, we construct the WN
ε and KN

ε by
induction, choosing at the step N :

KN
ε (x1η1, x2η2) =

[
FN (WM

ε ,KM
ε ,M < N)

]
(ξ1η1, ξ2η2)

WN
ε (x1, η1, x2, η2) = (α1D1 + i

α2(ε)

ε2
D2)−1 (89)

(
FN (WM

ε ,KM
ε ,M < N)−KN

ε (x1η1, x2η2)
)
.

Proof of (ii). This is nearly the result proved by Rssmann [22] in its part 3: he
shows that the change of coordinates

(ξ1, η1, ξ2, η2) 7→ (Φ1(ξ1η1, ξ2η2)ξ1,Ψ1(ξ1η1, ξ2η2)η1,Φ2(ξ1η1, ξ2η2)ξ2,Ψ2(ξ1η1, ξ2η2)η2)

is canonical if and only if Φi and Ψi are of the form stated in (ii). Using the result
of [21] here above in (iii) of Lemma C.3 we then achieve the proof of (ii).

Proof of (iii). Let us fix one F̃ε satisfying (i). From (ii), we get that F ∗ε solves

(iii) if and only if on one hand there exists a formal power series S(ω1, ω2) such
that

F ∗ε = F̃ε
(

e∂ω1
S(ξ1η1,ξ2η2)ξ1, e

−∂ω1
S(ξ1η1,ξ2η2)η1, e

∂ω2
S(ξ1η1,ξ2η2)ξ2, e

−∂ω2
S(ξ1η1,ξ2η2)η2

)
,

(90)

and on the other hand, denoting F ∗ε = (ϕ∗1,ε, ψ
∗
1,ε, ϕ

∗
2,ε, ϕ

∗
1,ε), the criteria (87) is

verified, i.e.

ω1

([
ϕ∗1,ε
ξ1

]
(ω1, ω2)−

[
ψ∗1,ε
η1

]
(ω1, ω2)

)
+iω2

([
ϕ∗2,ε
ξ2

]
(ω1, ω2)−

[
ψ∗2,ε
η2

]
(ω1, ω2)

)
= 0.

Let us show that for this F̃ε there exists a unique S such that F ∗ε satisfies those

two conditions (except S(0, 0) that does not need to be unique). Denoting F̃ε :=
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(ϕ̃1,ε, ψ̃1,ε, ϕ̃2,ε, ψ̃2,ε), from (90) we get for i = 1, 2
[
ϕ∗i,ε
ξi

]
(ω1, ω2) = e∂ωiS(ω1,ω2)

[
ϕ̃i,ε
ξi

]
(ω1, ω2),

[
ψ∗i,ε
ηi

]
(ω1, ω2) = e−∂ωiS(ω1,ω2)

[
ψ̃i,ε
ηi

]
(ω1, ω2),

Recall that F̃ε(ξ1, η1, ξ2, η2) = (ξ1, η1, ξ2, η2) + O(|(ξ1, η1, ξ2, η2)|2), thus
[
ϕ̃i,ε
ξi

]
=

1 + · · · and
[
ψ̃i,ε
ηi

]
= 1 + · · · . Then (87) holds if and only if

−2(ω1∂ω1+iω2∂ω2)S = ω1

[
(e∂ω1

S−(1+∂ω1S))+
([
ϕ̃1,ε

ξ1

]
−1
)

e∂ω1
S

−(e−∂ω1S−(1−∂ω1
S))−

([
ψ̃1,ε

η1

]
−1
)

e−∂ω1S
]

+iω2

[
(e∂ω2S−(1+∂ω2

S))+
([
ϕ̃2,ε

ξ2

]
−1
)

e∂ω2S

−(e−∂ω2S−(1−∂ω2
S))−

([
ψ̃2,ε

η2

]
−1
)

e−∂ω2S
]
.

(91)

Recall that S(0, 0) does not need to be unique to complete the proof. Let us choose
S(0, 0) = 0 and denote

S(ω1, ω2) :=
∑

N≥1

SN (ω1, ω2),

where the SN are homogeneous polynomials of degree N . Then (91) reads
{
−2(ω1∂ω1

+iω2∂ω2
)S1 = 0,

−2(ω1∂ω1+iω2∂ω2)SN = FN (SM , 1 ≤M < N) for N ≥ 2.
(92)

Computing the images of the monomials through the operator (ω1∂ω1
+iω2∂ω2

), we
observe that it is invertible on the set of formal power series without monomial of
degree 0. Then 92 allows to construct S without monomial of degree 0 in a unique
way. �

The following Lemma gives a more precise description of F ∗(ε,0,0).

Lemma C.7. F ∗(ε,0,0) is independent of ε ; then we denote it F ∗(ε,0,0) = F ∗0 . More-

over F ∗0 is of the form

F ∗0 (ξ1, η1, ξ2, η2) =
(
ϕ∗1,0(ξ1, η1), ψ∗1,0(ξ1, η1), ξ2, η2

)
. (93)

Proof. We proceed in 2 main steps.

Step 1. Construction of a F̃(ε,0,0) independent of ε, of the form (93).
Following the strategy of proof of (i) of Lemma C.5, it is sufficient to prove that we
can construct W(ε,0,0) and K(ε,0,0) of the form

W(ε,0,0)(x, η) = x1η1+x2η2+W ′(x1, η1), K(ε,0,0)(ω1, ω2) = −α1ω1−i
α2(ε)

ε2
+K ′(ω1).

We use the particular form of H when ν = 0 (see (62)). Denoting D1 = x1∂x1 −
η1∂η1 , we obtain that W(ε,0,0) and K(ε,0,0) satisfy (i) of Lemma C.5 if and only if

−α1D1W
′(x1, η1) = K ′((x1 + ∂η1W

′(x1, η1))η1)−h(x1, η1 + ∂x1W
′(x1, η1)). (94)
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Note that this equation is independent of ε. Let us show that we can construct such
W ′ and K ′. Denote

W ′(x1, η1) =
∑

N≥3

W ′N (x1, η1), K ′(ω1)
∑

N≥2

K ′N (ω1),

where the W ′N ,K ′N are homogeneous polynomials of degree N . At degree N , (94)
reads

−α1D1W
′N (x1, η1)−K ′N (x1η1) = FN (W ′M ,K ′M ,M < N).

Recall that α1 6= 0. As in the proof of (i) of Lemma C.5, α1D1 in invertible on the
set of formal power series without monomials of the form (x1η1)m, and we get the
existence proceeding by induction with the same strategy.

Step 2. Construction of F ∗(ε,0,0) independent of ε and of the form (93).

Following the strategy of construction of the proof of (iii) of Lemma C.5, it is
sufficient to prove that we can construct

F ∗(ε,0,0) = F̃(ε,0,0)

(
e∂ωiS(ε,0,0)(ξ1η1,ξ2η2)ξi, e

−∂ωiS(ε,0,0)(ξ1η1,ξ2η2)ηi; i = 1, 2
)
,

with the F̃(ε,0,0) = F̃0 of Step 1 above, and

S(ε,0,0)(ω1, ω2) = S0(ω1).

Given that F̃0 is of the form (93), the criteria (87) reads

ω1

(
e∂ω1

S0(ω1)

[
ϕ̃1,0

ξ1

]
(ω1)− e−∂ω1S0(ω1)

[
ψ̃1,0

η1

]
(ω1)

)
= 0

⇔ −2ω1∂ω1
S0(ω1) = ω1

[
(e∂ω1

S0(ω1)−(1+∂ω1
S0(ω1)))+

([
ϕ̃1,0

ξ1

]
−1

)
e∂ω1

S0(ω1)

−(e−∂ω1
S0(ω1)−(1−∂ω1S0(ω1)))−

([
ψ̃1,0

η1

]
−1

)
e−∂ω1

S0(ω1)

]
.

This equation is independent of ε and admits a unique solution S0(ω1) : the proof
is similar to that of (iii) of Lemma C.5. �

C.4. Upper bound of F ∗ε − F ∗0 . In this part, we state in the Lemma C.9 that
F ∗ε −F ∗0 admits an upper bound of the form of those of Proposition C.1. But firstly,
we prove the technical Lemma C.8 which will be useful to prove Lemma C.9.

Lemma C.8. Let Φ be a vectorial formal power series of the form

Φ:(ξ1, η1, ξ2, η2) 7→(Φ1(ξ1η1, ξ2η2)ξ1,Ψ1(ξ1η1, ξ2η2)η1,Φ2(ξ1η1, ξ2η2)ξ2,Ψ2(ξ1η1, ξ2η2)η2) ,

where Φ1,Ψ1,Φ2,Ψ2 are formal power series satisfying

Φ1(0, 0) = 1 = Ψ1(0, 0) = Φ2(0, 0) = Ψ2(0, 0).

Then there exist some formal power series Φ−1 ,Ψ
−
1 ,Φ

−
2 ,Ψ

−
2 such that

Φ−1:(ξ1, η1, ξ2, η2) 7→
(
Φ−1(ξ1η1, ξ2η2)ξ1,Ψ

−
1(ξ1η1, ξ2η2)η1,Φ

−
2(ξ1η1,ξ2η2)ξ2,Ψ

−
2(ξ1η1, ξ2η2)η2

)
.
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Proof. Let us denote the inverse of Φ

Φ−1 : (ξ1, η1, ξ2, η2) 7→
(

Φ̃1(ξ1, η1, ξ2, η2), Ψ̃1(ξ1, η1, ξ2, η2), Φ̃2(ξ1, η1, ξ2, η2), Ψ̃2(ξ1, η1, ξ2, η2)
)
.

We want to prove that Φ̃1 reads ξ1Φ−(ξ1η1, ξ2η2), i.e. that all the monomials of

the formal power series Φ̃1 are of the form (ξ1η1)n1(ξ2η2)n2ξ1. This is equivalent to
show that

(ξ1∂ξ1 − η1∂η1)Φ̃1 = Φ̃1, and (ξ2∂ξ2 − η2∂η2)Φ̃1 = 0.

Writing similar conditions on Ψ̃1, Φ̃2, Ψ̃2, we get that Lemma C.8 holds if and only
if Φ satisfies

DΦ−1(ξ1, η1, ξ2, η2)




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0







ξ1
η1

ξ2
η2


 =




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


Φ−1(ξ1, η1, ξ2, η2),

(95)
and

DΦ−1(ξ1, η1, ξ2, η2)




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1







ξ1
η1

ξ2
η2


 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1


Φ−1. (96)

We know that Φ verifies those two criteria (95) and (96). Let us prove then that
Φ−1 satisfies (95) (same proof for (96)). From (95) verified by Φ at (ξ1, η1, ξ2, η2) =
Φ−1(ξ′1, η

′
1, ξ
′
2, η
′
2) and using

DΦ−1(ξ1, η1, ξ2, η2) = (DΦ(Φ−1(ξ1, η1, ξ2, η2)))−1,

we get

DΦ ◦Φ−1(ξ′1, η
′
1, ξ
′
2, η
′
2)




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


Φ−1(ξ′1, η

′
1, ξ
′
2, η
′
2)

=




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


Φ ◦Φ−1(ξ′1, η

′
1, ξ
′
2, η
′
2).

And this implies the result (95). �

Lemma C.9. For all ε ∈] − ε0, ε0[, the formal power series F ∗ε is a convergent
series. Moreover there exists a convergent power series M such that

F ∗ε − F ∗0 ≺ ν(ξ1+η1+ξ2+η2)2M(ξ1+η1+ξ2+η2). (97)

Proof. To show that the F ∗ε are convergent, the strategy is the same as that of

Rssmann [22], even if here we use a criterium (87) different from his. Here we only
prove the upper bound (97).
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The first key ideas of this proof are the similar upper bound proved for Fε in
Lemma C.4 (ii) and the result (iii) of Lemma C.3 which allows to express F ∗ε in
term of Fε : there exist a vectorial formal power series

Φε : (ξ1, η1, ξ2, η2) 7→
(
Φ1,ε(ξ1η1, ξ2η2)ξ1,Ψ1,ε(ξ1η1, ξ2η2)η1,Φ2,ε(ξ1η1, ξ2η2)ξ2,Ψ2,ε(ξ1η1, ξ2η2)η2

)

where Φi,ε(ω1, ω2) = 1 + · · · and Ψi,ε(ω1, ω2) = 1 + · · · , such that

Fε = F ∗ε ◦Φε.

Then, in this proof we will split Φε into a product of maps of the form

Fε = F ∗ε ◦

:=Φ̃ε︷ ︸︸ ︷(
(ξi, ηi) 7→ (Φ̃i,εξi, Ψ̃i,εηi)

)
◦

:=hε︷ ︸︸ ︷(
(ξi, ηi) 7→(Φi,εΨi,εξi, ηi)

)

= F ∗ε ◦
(
(ξi, ηi) 7→(e∂ωiSξi, e

−∂ωiSηi)
)

︸ ︷︷ ︸
:=(ϕ̌1,ε,ψ̌1,ε,ϕ̌2,ε,ψ̌2,ε)

◦
(
(ξi, ηi) 7→(eŜi,εξi, e

−Ŝi,εηi)
)

︸ ︷︷ ︸
:=fε

◦gε,

where gε :
(
(ξi, ηi) 7→(Φi,εΨi,εξi, ηi)

)
dnd Sε, Ŝi,ε, Φ̃i,ε, Ψ̃i,ε,Φi,ε,Ψi,ε are power

series of two variables (ω1, ω2) = (ξ1η1, ξ2η2).

Remark C.10. This factorization of F ∗ε is the same as that used by Rssman [22]
in his proof: he proves that F ∗ε converges by showing that every map of the factor-
ization converges. In our proof below, we recall how these maps are constructed,
but

we consider that their convergence for all fixed ε is a known fact. .

Here is an outline of the proof:

Step 1.: We define hε and compute an estimate of hε − h0 ;

Step 2.: We introduce Φ̃ε and prove that it reads

Φ̃ε : (ξi, ηi) 7→ (eSi,ε(ξ1η1,ξ2η2)ξi, e
−Si,ε(ξ1η1,ξ2η2)ηi);

Step 3.: We show that the Siε read

Si,ε = Ŝi,ε + ∂ωiSε,

and prove an upper bound of fε − f0 ;

Step 4.: We introduce (ϕ̌1,ε, ψ̌1,ε, ϕ̌2,ε, ψ̌2,ε) and show an estimate of Sε − S0.

The key argument of Steps 1, 2 and 3 is that F ∗ε is symplectic. Step 4 relies on the
criterium satisfied by F ∗ε . Let us now detail these steps.

Step 1. Let us define

hε : (ξ1, η1, ξ2, η2) 7→
(
(Φ1,ε·Ψ1,ε)(ξ1η1, ξ2η2)ξ1, η1, (Φ2,ε·Ψ2,ε)(ξ1η1, ξ2η2)ξ2, η2

)
.

Given that F ∗ε is symplectic, , tDF ∗ε ΩDF ∗ε = Ω holds and thus

tDFεΩDFε = tDΦε
tDF ∗ε ΩDF ∗εDΦε = tDΦεΩDΦε.
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Considering two of the coefficients of these matrix, we get

∂η1ϕ1,ε∂ξ1ψ1,ε−∂η1ψ1,ε∂ξ1ϕ1,ε+∂η1ϕ2,ε∂ξ1ψ2,ε−∂η1ψ2,ε∂ξ1ϕ2,ε

= −∂ω1

(
Φ1,εΨ1,εω1

)

∂η2ϕ1,ε∂ξ2ψ1,ε−∂η2ψ1,ε∂ξ2ϕ1,ε+∂η2ϕ2,ε∂ξ2ψ2,ε−∂η2ψ2,ε∂ξ2ϕ2,ε

= −∂ω2

(
Φ2,εΨ2,εω2

)
,

(98)

with Fε := (ϕ1,ε, ψ1,ε, ϕ2,ε, ψ2,ε) and where Φi,ε,Ψi,ε are formal power series of two
variables (ω1, ω2) = (ξ1η1, ξ2η2).

On one hand, from the result (ii) of Lemma C.4 we get the existence of a con-
vergent power series M1 such that

∂ξ1(Fε − F0)(ξ1, η1, ξ2, η2) ≺ ν(ξ1+η1+ξ2+η2)M1(ξ1+η1+ξ2+η2),

and obtain similar upper bounds for ∂ξ2(Fε −F0) and for the ∂ηi(Fε −F0). On the
other hand, Lemma C.3(v) ensures that F0 converges.

Thus, substracting (98) for ε from (98) for ε = (ε, 0, 0), we get the existence of a
convergent power series M2 such that

∂ωi(Φi,εΨi,εωi)− ∂ωi(Φi,0Ψi,0ωi) ≺ νM2(ω1+ω2).

From which we finally obtain the existence of a convergent power series Mh such
that

hε − h0 ≺ ν(ξ1+η1+ξ2+η2)Mh(ξ1+η1+ξ2+η2).

Step 2. Let us define

Φ̃ε := Φε ◦ h−1
ε .

Given that Φε and hε are both of the form

(ξi, ηi) 7→ (fi(ξ1η1, ξ2η2)ξi, gi(ξ1η1, ξ2η2)ηi)

with fi(ω1, ω2) = 1 + · · · , gi(ω1, ω2) = 1 + · · · , Lemma C.8 ensures that Φ̃ε is also

of this form, i.e. there exist Φ̃i,ε = 1 + · · · , Ψ̃i,ε = 1 + · · · such that

Φ̃ε : (ξi, ηi) 7→
(

Φ̃i,ε(ξ1η1, ξ2η2)ξi, Ψ̃i,ε(ξ1η1, ξ2η2)ηi

)
.

Let us show that for i = 1, 2, Φ̃i,ε and Ψ̃i,ε satisfy

Φ̃i,ε(ω1, ω2)Ψ̃i,ε(ω1, ω2) = 1. (99)

From the definition Φ̃ε ◦ hε = Φε of Φ̃ε, we get that for i = 1, 2
{

Φ̃i,ε
(
Φ1,εΨ1,ε(ω1, ω2)ω1,Φ2,εΨ2,ε(ω1, ω2)ω2

)
Φi,εΨi,ε(ω1, ω2) = Φi,ε(ω1, ω2)

Ψ̃i,ε

(
Φ1,εΨ1,ε(ω1, ω2)ω1,Φ2,εΨ2,ε(ω1, ω2)ω2

)
= Ψi,ε(ω1, ω2).

and then, for i = 1, 2

Φ̃i,ε
(
Φ1,εΨ1,εω1,Φ2,εΨ2,εω2

)
Ψ̃i,ε

(
Φ1,εΨ1,εω1,Φ2,εΨ2,εω2

)
Φi,εΨi,εωi = Φi,εΨi,εωi.

Given that Φ1,εΨ1,ε(ω1, ω2) = 1 + · · · and Φ2,εΨ2,ε(ω1, ω2) = 1 + · · · , the map

(ω1, ω2) 7→ (Φ1,εΨ1,εω1,Φ2,εΨ2,εω2)

is invertible, and we then obtain

Φ̃i,ε(ω1, ω2)Ψ̃i,ε(ω1, ω2)ωi = ωi,
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which achieves the proof of (99). Introducing Si,ε := ln(Φ̃i,ε), Φ̃i,ε reads

Φ̃i,ε(ω1, ω2) = eSi,ε(ω1,ω2), Ψ̃i,ε(ω1, ω2) = e−Si,ε(ω1,ω2).

Step 3. Given that F ∗ε is symplectic and Fε ◦ h−1
ε = F ∗ε ◦ Φ̃ε, we get

tD(Fε ◦ h−1
ε )ΩD(Fε ◦ h−1

ε ) =t DΦ̃εΩDΦ̃ε. (100)

Considering the coefficients of this matrix and denoting

F̃ε =
(
ϕ̃1,ε, ψ̃1,ε, ϕ̃2,ε, ψ̃2,ε

)
= Fε ◦ h−1

ε

we obtain

∂ξ2 ϕ̃1,ε∂ξ1 ψ̃1,ε−∂ξ2 ψ̃1,ε∂ξ1 ϕ̃1,ε+∂ξ2 ϕ̃2,ε∂ξ1 ψ̃2,ε−∂ξ2 ψ̃2,ε∂ξ1 ϕ̃2,ε

= η1η2(∂ω2
S1,ε−∂ω1

S2,ε). (101)

From Step 1 above and (ii) of Lemma C.4, together with Lemma B.4, we get that

F̃ε reads

F̃ε = F̃0 + νF̃ ′ε,

where F̃ ′ε has an convergent upper bound for≺, uniform in term of ε. Then Equation

(101) is of the form

R0(ω1, ω2) + νRε(ω1, ω2) = ∂ω2
S1,ε(ω1, ω2)−∂ω1

S2,ε(ω1, ω2),

where R0 is convergent and Rε is uniformly bounded for ≺. Let us define then

Ŝ1,ε(ω1, ω2) :=

∫ ω2

0

(R0 + νRε)(ω1, t)dt, Ŝ2,ε(ω1, ω2) ≡ 0,

and

fε : (ξ1, η1, ξ2, η2) 7→
(

eŜ1,ε(ξ1η1,ξ2η2)ξ1, e
−Ŝ1,ε(ξ1η1,ξ2η2)η1, e

Ŝ2,ε(ξ1η1,ξ2η2)ξ2, e
−Ŝ2,ε(ξ1η1,ξ2η2)η2

)
.

From these definition, the Ŝi,ε and fε are also of the form

Ŝi,ε := Ŝi,0 + νŜ′i,ε, fε = f0 + νf ′ε

with the Ŝ′i,ε and f ′ε bounded for ≺ by a convergent power series independent of ε.

Moreover, the Si,ε − Ŝi,ε verify then

∂ω2
(S1,ε − Ŝ1,ε)− ∂ω1

(S2,ε − Ŝ2,ε) = 0. (102)

Let us define

Sε(ω1, ω2) :=

∫ ω1

0

(S1,ε − Ŝ1,ε)(t, ω2)dt+

∫ ω2

0

(S2,ε − Ŝ2,ε)(0, t)dt;

thank to (102), Sε satisfies

∂ω1
Sε = S1,ε − Ŝ1,ε, ∂ω2

Sε = S2,ε − Ŝ2,ε.
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Step 4. Gathering the results of Steps 1 to 3 and using Lemma B.4, we get that
F ∗ε reads

F ∗ε = Fε ◦ h−1
ep ◦ f−1

ε

(
e−∂ω1

Sεξ1, e
∂ω1

Sεη1, e
−∂ω2

Sεξ2, e
∂ω2

Sεη2

)

:= (ϕ̌1,ε, ψ̌1,ε, ϕ̌2,ε, ψ̌2,ε)
(
e−∂ω1

Sεξ1, e
∂ω1

Sεη1, e
−∂ω2

Sεξ2, e
∂ω2

Sεη2

)
(103)

where

(ϕ̌1,ε, ψ̌1,ε, ϕ̌2,ε, ψ̌2,ε) = (ϕ̌1,0, ψ̌1,0, ϕ̌2,0, ψ̌2,0) + ν(ϕ̌′1,ε, ψ̌
′
1,ε, ϕ̌

′
2,ε, ψ̌

′
2,ε), (104)

with (ϕ̌′1,ε, ψ̌
′
1,ε, ϕ̌

′
2,ε, ψ̌

′
2,ε) have a convergent upper bound for ≺ independent of ε.

Let us now study Sε. We proceed in several steps.

Step 4.1. Consequence of Criterium (87): equation satisfied by S′ε :=
1
ν (Sε − S0). With the notation (103), observe that F ∗ε satisfies the criterium (87)
if and only if

ω1

(
e−∂ω1

Sε

[
ϕ̌1,ε

ξ1

]
(ω1, ω2)− e∂ω1

Sε

[
ψ̌1,ε

η1

]
(ω1, ω2)

)

+ iω2

(
e−∂ω2Sε

[
ϕ̌1,ε

ξ1

]
(ω1, ω2)− e∂ω2Sε

[
ψ̌1,ε

η1

]
(ω1, ω2)

)
= 0.

The same calculations as those of the proof of Lemma C.5(iii) (to obtain equation
(91)) lead to the equivalent equation

−2(ω1∂ω1
+iω2∂ω2

)Sε = ω1

[
(e−∂ω1

Sε−(1−∂ω1
Sε))+

([
ϕ̌1,ε

ξ1

]
−1
)

e−∂ω1
Sε

−(e∂ω1
Sε−(1+∂ω1Sε))−

([
ψ̌1,ε

η1

]
−1
)

e∂ω1
Sε
]

+iω2

[
(e−∂ω2

Sε−(1−∂ω2
Sε))+

([
ϕ̌2,ε

ξ2

]
−1
)

e−∂ω2
Sε

−(e∂ω2
Sε−(1+∂ω2Sε))−

([
ψ̌2,ε

η2

]
−1
)

e∂ω2
Sε
]
.

Writing this latter equation for ε and for ε = (ε, 0, 0), we get that S′ε := 1
ν (Sε−S0)

satisfies

−2(ω1∂ω1
+iω2∂ω2

)S′ε = ω1

[
1

ν
(e−∂ω1Sε−e−∂ω1S0)+∂ω1

S′ε+

[
ϕ̌′1,ε
ξ1

]
e−∂ω1Sε



68 TIPHAINE JÉZÉQUEL, PATRICK BERNARD AND ERIC LOMBARDI

+

([
ϕ̌1,0

ξ1

]
−1

)
1

ν
(e−∂ω1Sε−e−∂ω1S0)

1

ν
(e∂ω1

Sε−e∂ω1
S0)+∂ω1

S′ε

−
[
ψ̌′1,ε
η1

]
e∂ω1

Sε−
([

ψ̌1,0

η1

]
−1

)
1

ν
(e∂ω1

Sε−e∂ω1
S0)

]

+ iω2

[
1

ν
(e−∂ω2

Sε−e−∂ω2
S0)+∂ω2

S′ε+

[
ϕ̌′2,ε
ξ2

]
e−∂ω2

Sε

+

([
ϕ̌2,0

ξ2

]
−1

)
1

ν
(e−∂ω2Sε−e−∂ω2

S0)

− 1

ν
(e∂ω2

Sε−e∂ω2
S0)+∂ω2S

′
ε−
[
ψ̌′2,ε
η2

]
e∂ω2

Sε

−
([

ψ̌2,0

η2

]
−1

)
1

ν
(e∂ω2Sε−e∂ω2S0)

]
.

(105)

In order to obtain a majorant series of the S′ε, we define

Vi,ε(ω1, ω2) := |∂ωiSε|(ω1, ω2), Vε(ω) := V1,ε(ω, ω) + V2,ε(ω, ω),

and compute a majorant series of the Vε with the aid of (105).

Step 4.2. Lower bound of the left hand term of (105). Let us denote

Sε :=
∑

n1,n2∈N
an1,n2

ωn1
1 ωn2

2 .

Then

ωiVi,ε(ω1, ω2) =
∑

n1,n2∈N
ni|an1,n2

|ωn1
1 ωn2

2 ,

|ω1∂ω1Sε + iω2∂ω2Sε| =
∑

n1,n2∈N
|n1 + in2||an1,n2 |ωn1

1 ωn2
2 .

Given that ni ≤ |n1 + in2|, we get

ωiVi,ε ≺ |ω1∂ω1
Sε + iω2∂ω2

Sε|(ω1, ω2). (106)

Step 4.3. Existence of an upper bound of the right hand term of (105).
of the form

2∑

i=1

ωi
(
G1
i (ω1, ω2) +G2

i (ω1, ω2, V1,ε, V2,ε)
)
, (107)

where G1
i , G

2
i are convergent power series independent of ε and G1

i is an homoge-
neous polynomial of degree 1 and G2

i is of order more than 2. To show that, let us
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compute successively upper bounds of each right hand side term of (105):

1

ν
(e−∂ωiSε−e−∂ωiS0)− 1

ν
(e−∂ωiSε−e−∂ωiS0) + 2∂ωiS

′
ε

= − 2
ν (sinh(∂ωiSε)− sinh(∂ωiSε)) + 2∂ωiS

′
ε

= −2∂ωiS
′
ε

∞∑
p=1

2p∑
k=0

(∂ωiSε)
k(∂ωiS0)2p−k

(2p+1)!

≺ 2Vi,ε
∞∑
p=1

(2p+1)(|∂ωiS0|+νVi,ε)2p

(2p+1)!

≺ 2Vi,ε(|∂ωiS0|+ Vi,ε)
∞∑
p=0

(|∂ωiS0|+Vi,ε)2p

(2p+2)! ;

(the last inequality holds for ν ≤ 1), where the last upper bound is of the form G2
i

given that S0 is convergent and independent of ε.
Given that ϕ̌1,ε is of the form (104), there exists a convergent seriesM indepen-

dent of ε such that
∣∣∣∣
[
ϕ̌′1,ε
ξ1

]
e−∂ω1Sε

∣∣∣∣ (ω1, ω2) =

∣∣∣∣
[
ϕ̌′1,ε
ξ1

]
+

[
ϕ̌′1,ε
ξ1

]
(e−∂ω1Sε − 1)

∣∣∣∣ (ω1, ω2)

≺ (ω1+ω2)M(ω1, ω2)(1 + (e|∂ω1
Sε|(ω1,ω2) − 1))

≺ (ω1+ω2)M(0, 0)+(ω1+ω2)(M(ω1, ω2)−M(0, 0)
+M(ω1, ω2)(exp−1) ◦ (|∂ω1S0|+V1,ε)

which is of the form (107) given that for all ε, |∂ωiSε|(0, 0) = 0 holds because

∂ωiSε(0, 0) = Si,ε(0, 0)− Ŝi,ε(0, 0) = Si,ε(0, 0),

where

eSi,ε(ω1,ω2) = Φε(ω1, ω2) = 1 + · · · .

We get similarly an upper bound of

[
ψ̌′1,ε
η1

]
e∂ω1Sε .

Finally,
∣∣∣∣
[
ϕ̌1,0

ξ1

]
− 1

∣∣∣∣
1

ν

∣∣e−∂ω1
Sε − e−∂ω1

S0
∣∣

≺
∣∣∣∣
[
ϕ̌1,0

ξ1

]
−1

∣∣∣∣
1

ν
|−∂ω1

Sε−(−∂ω1
S0)| e|∂ω1Sε|+|∂ω1S0| by Lemma B.3

≺
∣∣∣∣
[
ϕ̌1,0

ξ1

]
−1

∣∣∣∣V1,ε e2|∂ω1
S0|+V1,ε for ν ≤ 1,

which is of the form G2
i .

Step. Equation of construction of the majorant series Z. Gathering the
results of Steps 4.1, 4.2 and 4.3, we obtain that Vε satisfies

ωVε(ω) ≺ ω
(
G1

1(ω, ω)+G1
2(ω, ω)

+G2
1(ω, ω, Vε(ω), Vε(ω))+G2

2(ω, ω, Vε(ω), Vε(ω))
)

Hence

Vε(ω) ≺ cω + c
(ω + Vε(ω))2

1− γ(ω+Vε(ω))
(108)
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by (iv) of Lemma B.2.
Let us construct a convergent power series Z(ω) such that

Z(ω) = cω + c
(ω + Z(ω))2

1− γ(ω+Z(ω))
,

and prove by induction on the coefficients of the series that Vε ≺ Z(ω).

Step 4.5. Initialization of the induction (if existence of Z). Thank to
(108) the proof by induction works if we prove the initialization. At degree 1 in
(ω1, ω2), (105) reads

2(ω1∂ω1
+ iω2∂ω2

)(S′ε)1 = 0

given that the right hand side (105) is of the form (107). Thus the degree 1 term
of S′ε, (S′ε)1 vanishes. At degree 2 in (ω1, ω2), (105) gives

2(ω1∂ω1
+ iω2∂ω2

)(S′ε)2 =

2∑

i=1

ωi

([
ϕ̌′1,ε
ξ1

]

1

−
[
ψ̌′1,ε
η1

]

1

)
;

where the right hand side term is uniformly bounded. Thus, there exists α inde-
pendent of ε such that

ω(Vε)1(ω) ≺ αω2.

Step 4.6. Existence of Z. To satisfy the initialization assumption, we look for
Z satisfying

Z(ω) = cω + c
(ω + Z(ω))2

1− γ(ω + Z(ω))
and Z(ω) = ωZ1(ω), with Z1(0) ≥ α;

i.e. we look for Z1 such that

Z1 · (1− γω(1 + Z1))− c(1− γω(1 + Z1))− cω(1 + Z1)2 = 0⇐⇒ F(Z1, ω) = 0.

This equation, independent of ε, satisfies the assumptions of the analytic Implicit
Functions Theorem in the neighborhood of (ω,Z1) = (0, α). Thus we get the exis-
tence of the analytic function Z1, i.e. a convergent power series in the neighborhood
of 0.

Choosing S′ε(0, 0) = 0 (possible because only the derivatives of S′ε are in the

definition of F ∗ε ), we obtain the upper bound

S′ε(ω1, ω2) ≺ S′ε(0, 0) + ω1V1,ε(ω1, ω2) + ω2V2,ε(ω1, ω2)

≺ (ω1+ω2)Vε(ω1+ω2)

≺ (ω1+ω2)Z1(ω1+ω2),

where Z1 is a convergent power series independent of ε.

Step 5. Conclusion of the Lemma’s proof. F ∗ε reads

F ∗ε = Fε ◦ h−1
ε ◦ f−1

ε ◦
(
(ξi, ηi) 7→ (e−∂ωiSεξi, e

∂ωiSεηi))
)
.

And thank to Lemma B.4 and to the results of the previous steps, this is a product
of formal power series of the form Rε = R0 + νR′ε where R0, Rε are convergent and
admit a convergent upper boundM independent of ε. Thus F ∗ε is also of this form

R0 + νR′ε. Moreover, F ∗ε is defined as

F ∗ε (ξ1, η1, ξ2, η2) = (ξ1, η1, ξ2, η2) + · · · , F ∗0 (ξ1, η1, ξ2, η2) = (ξ1, η1, ξ2, η2) + · · · ,
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so that we can chose the upper bound of F ∗ε − F ∗0 without monomials of degree 0
and 1 ; i.e. there exists a convergent power series M such that

(F ∗ε − F ∗0 )(ξ1, η1, ξ2, η2) ≺ ν(ξ1+η1+ξ2+η2)2M(ξ1+η1+ξ2+η2).

�

C.5. Back in R4, proof of Proposition C.1.

Lemma C.11. 1. Define Fε := P−1F ∗ε P, where F ∗ε was introduced in Lemma
C.5. Then

Fε(ξ1, η1, ξ2, η2) = Fε(ξ1, η1, ξ2, η2); (109)

i.e. Fε is a real power series with real.
2. There exists Kε such that

H
(
Fε(ξ1, η1, ξ2, η2), ε

)
= Kε(ξ1η1, ξ

2
2 + η2

2).

Proof of (i). In this proof we use the following notation if the power series f reads
f(x) =

∑
n∈Nd

anx
n, then we denote

f(x) :=
∑

n∈Nd
anx

n.

Let us define
J1 : C4 → C4

(ξ1, η1, ξ2, η2) 7→ (ξ1, η1, ξ2, η2)
,

and denote J2 := PJ1P−1. Then J2(ξ′1, η
′
1, ξ
′
2, η
′
2) = (ξ′1, η

′
1, i η

′
2, i ξ

′
2). And we get

that the equality (109) is satisfied if and only if

J2F
∗
ε J2 = F ∗ε . (110)

To prove that (110) holds we use the uniqueness of the F ∗ε of (iii) in Lemma C.5:

let us prove that F̌ε := J2F
∗
ε J2 verifies the conditions of (iii) of Lemma C.5.

Condition 1: F̌ε is symplectic. From part C.1 we know that P is symplectic,

so it is equivalent to prove that P−1F̌εP is symplectic, what holds if and only if

tDFεΩDFε = Ω

holds. And this holds given that Fε is symplectic and Ω is real.

Condition 2: H(F̌ε(ξ1, η1, ξ2, η2), ε) is a function of ξ1η1, ξ2η2 and ε. Recall
that lemmas C.3, C.4, C.5, C.7 and C.9 were proved for a general Hamiltonian H
introduced in (62), and observe that the Hamiltonian

H((q′1, p
′
1, q
′
2, p
′
2), ε) := H(P−1(q′1, p

′
1, q
′
2, p
′
2), ε)

is of the form (62). Moreover, the Hamiltonian H is a real power series and from
Lemma C.5, we know that

H(F ∗ε (ξ1, η1, ξ2, η2), ε) = Kε(ξ1η1, ξ2η2).

Then a short computation leads to

H(F̌ε(ξ1, η1, ξ2, η2), ε) = Kε(ξ1η1,−ξ2η2).



72 TIPHAINE JÉZÉQUEL, PATRICK BERNARD AND ERIC LOMBARDI

Condition 3: F̌ε satisfies the criteria (87). Fix ε, and denote

F̌ε(ξ1, η1, ξ2, η2) := (ϕ̌1, ψ̌1, ϕ̌2, ψ̌2)(ξ1, η1, ξ2, η2);

F ∗ε (ξ1, η1, ξ2, η2) := (ϕ∗1, ψ
∗
1 , ϕ
∗
2, ψ
∗
2)(ξ1, η1, ξ2, η2).

Then we get

ϕ̌1(ξ1, η1, ξ2, η2) = ϕ∗1(ξ1, η1,−iη2,−iξ2), ϕ̌2(ξ1, η1, ξ2, η2) = i ψ∗2(ξ1, η1,−iη2,−iξ2),

ψ̌1(ξ1, η1, ξ2, η2) = ψ∗1(ξ1, η1,−iη2,−iξ2), ψ̌2(ξ1, η1, ξ2, η2) = i ϕ∗2(ξ1, η1,−iη2,−iξ2).

Let us express

[
ϕ̌1

ξ1

]
in terms of

[
ϕ∗1
ξ1

]
. Let us denote

ϕ∗1 :=
∑

m,n∈N2

αm,nξ
m1
1 ηn1

1 ξm2
2 ηn2

2 ,

then we obtain successively
[
ϕ∗1
ξ1

]
=

∑

m2=n2
m1=n1+1

αm,n(ξ1η1)n1(ξ2η2)n2 ,

ϕ∗1(ξ1, η1,−iη2,−iξ2) =
∑

m,n∈N2

αm,n(−i)m2+n2ξm1
1 ηn1

1 ηm2
2 ξn2

2

[
ϕ̌1

ξ1

]
(ξ1, η1, ξ2, η2) =

∑

m2=n2
m1=n1+1

αm,n(−i)2n2(ξ1η1)n1(ξ2η2)n2

=

[
ϕ∗1
ξ1

]
(ξ1η1,−ξ2η2).

Similarly, we get

[
ψ̌1

η1

]
(ξ1η1, ξ2η2) =

[
ψ∗1
η1

]
(ξ1η1,−ξ2η2),

[
ϕ̌2

ξ2

]
(ξ1η1, ξ2η2) = −

[
ψ∗2
η2

]
(ξ1η1,−ξ2η2), (111)

[
ψ̌2

η2

]
(ξ1η1, ξ2η2) = −

[
ϕ∗2
ξ2

]
(ξ1η1,−ξ2η2).

Then, using the fact that F ∗ε satisfies (87), we obtain that for all (ω1, ω2),

ω1

([
ϕ̌1

ξ1

]
−
[
ψ̌1

η1

])
(ω1, ω2) + iω2

([
ϕ̌2

ξ2

]
−
[
ψ̌2

η2

])
(ω1, ω2)

= ω1

([
ϕ∗1
ξ1

]
−
[
ψ∗1
η1

])
+ iω2

([
ϕ∗2
ξ2

]
−
[
ψ∗2
η2

])
(ω1,−ω2) = 0,

i.e. F̌ε satisfies the criteria (87). �

Proof of (ii). From Lemma C.5, there exists Kε∗ such that F ∗ε verifies

H(F ∗ε (ξ1, η1, ξ2, η2), ε) = K∗ε (ξ1η1, ξ2η2).
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Then we obtain

H(Fε(ξ1, η1, ξ2, η2), ε) = H(P−1F ∗ε P(ξ1, η1, ξ2, η2), ε)

= H(F ∗ε (ξ1, η1,
1√
2

(ξ2 + iη2),
1√
2

(η2 + iξ2)), ε) = K∗ε (ξ1η1,
i

2
(ξ2

2 + η2
2)).

Thus (ii) holds with Kε(ξ1η1, ξ
2
2 + η2

2) := K∗ε (ξ1η1,
i
2 (ξ2

2 + η2
2)). �

Proof of Proposition C.1. Let us prove that the family Fε defined in Lemma C.11
satisfies the results claimed in Proposition C.1. Let ρ′0 be such that ρ′0 < ρ0 and 4ρ′0
is a radius of convergence of the power seriesM of Lemma C.9 and such that ρ′0 is a
radius of convergence of F ∗0 (recall that Lemma C.9 ensures that F ∗0 is convergent).
And define M0 := ‖M‖

A(B(0,4ρ′0))
.

Then (60) holds thank to (ii) of Lemma C.11 and (61) is a consequence of Lemma
C.7.

(i) is a consequence of Lemma C.9 ; (ii) and (iii) hold thank to Lemma C.9
and because the monomial of degree 1 of F ∗0 (ξ1, η1, ξ2, η2) is (ξ1, η1, ξ2, η2) and the
monomial of degree 1 of (F ∗0 )−1(q1, p1, q2, p2) is (q1, p1, q2, p2).

We get (iv) from (i) above and (vi) of Lemma B.2 ; we obtain (v) from (i) above
together with Lemma B.4 and (vi) of Lemma B.2 ; (vi) and (vii) are a consequence
of (i) and (ii) above and of Lemma B.2-(vi) ; we get (viii) and (ix) from (vi) and
Lemma C.7. �
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[4] G. D. Birkhoff, Dynamical Systems, A.M.S. Coll. Publications, vol. 9, (1927), reprinted 1966.

[5] C. Conley, Twist mappings, linking, analyticity, and periodic solutions which pass close to
an unstable periodic solution, in Topological Dynamics (Sympos, Colorado State Univ., Ft.

Collins, Colo., 1967), Benjamin, New York, 1968, 129–153.
[6] C. Conley, On the ultimate behavior of orbits with respect to an unstable critical point. I

Oscillating, asymptotic and capture orbits, Journ. Diff. Eqns., 5 (1969), 136–158.

[7] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet and G. Iooss, A simple global character-
ization for normal forms of singular vector fields, Physica D, 29 (1987), 95–127.

[8] C. Grotta Ragazzo, Irregular dynamics and homoclinic orbits to Hamiltonian Saddle-Centers,

Comm. Pure App. Math. L,

50. (1997), 105–147.

[9] C. Grotta Ragazzo, On the stability of double homoclinic loops, Comm. Math. Phys., 184
(1997), 251–272.

[10] M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite

Dimensional Dynamical Systems, Springer Verlag London, Ltd., London; EDP Sciences, Les

Ulis, 2011.
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Nähe einer Gleichgewichtslösung, Math. Annalen, 154 (1964), 285–300.

[23] S. M. Sun, Non-existence of truly solitary waves in water with small surface tension, Proc.
Roy. London A, 455 (1999), 2191–2228.

Received September 2014; revised September 2015.

E-mail address: tiphaine.jezequel@univ-rennes1.fr

E-mail address: patrick.bernard@ens.fr

E-mail address: lombardi@math.univ-toulouse.fr

http://www.ams.org/mathscinet-getitem?mr=MR1209977&return=pdf
http://dx.doi.org/10.1006/jdeq.1993.1022
http://www.ams.org/mathscinet-getitem?mr=MR662490&return=pdf
http://dx.doi.org/10.1016/0022-0396(82)90058-4
http://www.ams.org/mathscinet-getitem?mr=MR1463796&return=pdf
http://dx.doi.org/10.1007/s002050050029
http://dx.doi.org/10.1007/s002050050029
http://www.ams.org/mathscinet-getitem?mr=MR1770093&return=pdf
http://dx.doi.org/10.1007/BFb0104102
http://www.ams.org/mathscinet-getitem?mr=MR1150399&return=pdf
http://dx.doi.org/10.1007/BF01048157
http://dx.doi.org/10.1007/BF01048157
http://www.ams.org/mathscinet-getitem?mr=MR0147741&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0096021&return=pdf
http://dx.doi.org/10.1002/cpa.3160110208
http://www.ams.org/mathscinet-getitem?mr=MR0179409&return=pdf
http://dx.doi.org/10.1007/BF01362565
http://dx.doi.org/10.1007/BF01362565
http://www.ams.org/mathscinet-getitem?mr=MR1702734&return=pdf
http://dx.doi.org/10.1098/rspa.1999.0399
mailto:tiphaine.jezequel@univ-rennes1.fr
mailto:patrick.bernard@ens.fr
mailto:lombardi@math.univ-toulouse.fr

	1. Introduction
	2. Structure of the proof of Theorem 1.2
	3. Normal form and scaling: Proof of Proposition 2.1
	4. Existence of the first return map on 1 : Proof of Propositions 2.4 and 2.5
	5. Restrictions of the first return map seen as diffeomorphisms of an annulus of R2 : Proof of Proposition 2.6
	6. Construction of an invariant curve for the restrictions of the first return map with the aid of a KAM theorem: Proof of Proposition 2.9
	A. Appendix. Proof of Theorem 1.3
	B. Appendix. Definition of  and technical lemmas
	C. Appendix. Construction of a local canonical change of coordinates: Proof of Prop. 2.2
	REFERENCES

