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LOCAL AND GLOBAL WELL-POSEDNESS RESULTS FOR THE
BENJAMIN-ONO-ZAKHAROV-KUZNETSOV EQUATION

FRANCIS RIBAUD AND STEPHANE VENTO

ABSTRACT. We show that the initial value problem associated to the dispersive
generalized Benjamin-Ono-Zakharov-Kuznetsov equation
ut — DUz + Upyy = uuz, (Lz,y) €ER3, 1< a <2,

is locally well-posed in the spaces E°, s > % — %, endowed with the norm

1flles = (I{|&]* + M2>Sf||L2(]R2)- As a consequence, we get the global well-

posedness in the energy space EY/2 as soon as a > %. The proof is based on

the approach of the short time Bourgain spaces developed by Ionescu, Kenig
and Tataru [9] combined with new Strichartz estimates and a modified energy.

1. INTRODUCTION

In this paper we study a class of two-dimensional nonlinear dispersive equations
which extend the well-known Korteweg-de Vries (KdV) and Benjamin-Ono (BO)
equations. There are several ways to generalize such 1D models in order to in-
clude the effect of long wave lateral dispersion. For instance one can consider the
Kadomstev-Petviashvili (KP) and Zakharov-Kuznetsov (ZK) equations. Here we
are interested with the effect of the dispersion in the propagation direction applied
to the initial value problem for the ZK equation. More precisely we consider the
generalized g-BOZK equation

(1.1) up — DSt + Ugyy = utty,  (t,7,y) € R?

where D2 is the Fourier multiplier by ||*, 1 < o < 2. When o = 2, (1.1) is the
well-known ZK equation introduced by Zakharov and Kuznetsov in [21] to describe
the propagation of ionic-acoustic waves in magnetized plasma. We refer to [14] for
a rigorous derivation of ZK. For o = 1, equation (1.1) is the so-called Benjamin-
Ono-Zakharov-Kuznetsov (BOZK) equation introduced in [11] and [15] and has
applications to thin nanoconductors on a dielectric substrate.

We notice that (1.1) enjoys the two following conservation laws:

d d
where
M(u) = / u?dady
RQ

and
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Therefore, it is natural to study the well-posedness of g-BOZK in the functional
spaces E° and E'/2, and more generally in E* defined for any s € R by the norm

1£lle = [IKIE1" + 12)° F(& )l 22 (r2y -

Observe that E* is nothing but the anisotropic Sobolev space H**2%(R?). In par-
ticular when o = 2, then E* = H?*(R?).
Let us recall some well-known facts concerning the associated 1D model

(1.3) up — D%uy = uug, (t,r) € R2.

The Cauchy problem for (1.3), and especially the cases o = 1,2 (respectively the
BO and KdV equation), has been extensively studied these last decades, and is now
well-understood. The standard fixed point argument in suitable functional spaces
allows to solve the KdV equation at very low regularity level (see [13] for instance).
This is in sharp contrast with what occurs in the case o < 2, since it was shown by
Molinet-Saut-Tzvetkov [17] that the solution flow map for (1.3) cannot be C? in any
Sobolev spaces (due to bad low-high interactions). Therefore the problem cannot be
solved using such arguments. In view of this result, three approaches were developed
to lower the regularity requirement. The first one consists in introducing a nonlinear
gauge transform of the solution that solves an equation with better interactions (see
[20]-[8]). This method was proved to be very efficient but as pointed out in [3], it
is not clear how to find such a transform adapted to our 2D problem (1.1). The
second one was introduced very recently by Molinet and the second author [18] and
consists in an improvement of the classical energy method by taking into account
the dispersive effect of the equation. This method is more flexible with respect to
perturbations of the equation but requires that the dispersive part of the equation
does not exhibit too strong resonances. Unfortunately, the cancelation zone of the
resonance function  associated to g-BOZK (see (2.2) for the definition) seems too
large to apply this technique to equation (1.1). Finally the third method introduced
to solve (1.3) consists in improving dispersive estimates by localizing it in space
frequency depending time intervals. In the context of the Bourgain spaces, this
approach was successfully applied by Guo in [6] to solve (1.3) (see also [9] for an
application to the KP-I equation) and seems to be the best way to deal with the
g-BOZK equation.

Now we come back to the 2D problem (1.1). The initial value problem for the
ZK equation (« = 2) has given rise to many papers these last years. In particular,
Faminskii proved in [4] that it is globally well-posed in the energy space H!(R?).
The best result concerning the local well-posedness was recently independently
obtained by Griinrock and Herr in [5] and by Molinet and Pilod in [16] where they
show the LWP of (1.1) in H*(R?), s > 1/2. Similarly to the KdV equation, all
these results were proved using the fixed point procedure. Concerning the case
a = 1, using classical energy methods and parabolic regularization that does not
take into account the dispersive effect of the equation, Cunha and Pastor [3] have
proved the well-posedness of (1.1) in H*(R?) for s > 2 as well as in the anisotropic
Sobolev spaces H*1:%2(R?), so > 2, s1 > s3. Also, it was proved in [7] that the
solution mapping fails to be C? smooth in any H*1:*2(R?), s1,s, € R. Moreover
this result even extends to the case 1 < a < %.

In the intermediate cases 1 < o < 2, there is no positive results concerning the
well-posedness for (1.1). Our main theorem is the following.
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Theorem 1.1. Assume that 1 < o < 2 and 8 > 84 := % —
ug € E*, there exists a positive time T = T(||uo||gs) and a u
(1.1) 4n the class

Then for every
ique solution u to

S e

C([~T,T); E¥) N F*(T) N B(T).

Moreover, for any 0 < T' < T, there exists a neighbourhood U of ug in E* such
that the flow map data-solution

S5, U — C([=T',T'); E®),ug — u,
18 continuous.

Remark 1.1. We refer to Section 2.2 for the definition of the functional spaces
F*(T) and B*(T).

Remark 1.2. When o = 2, we recover the local well-posedness result in EY/4t =
H'/?%(R?) for ZK proved in [5] and [16]. In the case o = 1, Theorem 1.1 improves
the previous results obtained in [3].

We discuss now some of the ingredients in the proof of Theorem 1.1. We will
adapt the approach introduced by Ionescu, Kenig and Tataru [9] to our model (see
also [6]-[12] for applications to other equations). It consists in an energy method
combined with linear and nonlinear estimates in the short-time Bourgain’s spaces
F*(T) and their dual N*(T). The F*(T') spaces enjoys a X *'/%-type structure but
with a localization in small time intervals whose length is of order H 1-2 when the
space frequency (&, u) satisfies |£|* + u? ~ H. When deriving bilinear estimates in
these spaces, one of the main obstruction is the strong resonance induced by the
dispersive part of the equation. To overcome this difficulty, we will derive some
improved Strichartz estimates for free solutions localized outside the critical region
{2p% = a(a + 1)|¢]*}. Finally, we need energy estimates in order to apply the
classical Bona-Smith argument (see [1]) and conclude the proof of Theorem 1.1. To
derive such energy estimates, we are led to deal with terms of the form

PruPp(uuy),
R‘Z
where Py localizes in the frequencies {|¢|* + p? ~ H}. Unfortunately, in the two-
dimensional setting, we cannot put the x-derivative on the lower frequency term via
commutators and integrations by parts without loosing a y-derivative. Therefore,
we need to add a cubic lower-order term to the energy in order to cancel those bad
interactions.

Assuming that s, < 1, we may use the conservation laws (1.2) combined with
the embedding E'/2 — L3 (R?) to get an a priori bound of the E'Y2-norm of the
solution and then iterate Theorem 1.1 to obtain the following global well-posedness
result.

Corollary 1.1. Assume that % <a<2ands= % Then the results of Theorem
1.1 are true for T > 0 arbitrary large.

Finally, as in the one dimensional case, we show that as soon as a < 2, the
solution map S3 given by Theorem 1.1 is not of class C? for all s € R. This
implies in particular that the Cauchy problem for (1.1) cannot be solved by direct
contraction principle.
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Theorem 1.2. Fix s € R and 1 < a < 2. Then there does not exist a T > 0 such
that (1.1) admits a unique local solution defined on the interval [—T,T] and such
that the flow-map data-solution ug — u(t), t € [=T,T) is C?-differentiable at the
origin from E° to E°.

The rest of the paper is organized as follows: in Section 2, we introduce the no-
tations, define the function spaces and state some associated properties. In Section
3, we derive Strichartz estimates for free solutions of (1.1). In Section 4 we show
some L2-bilinear estimates which are used to prove the main short time bilinear
estimates in Section 5 as well as the energy estimates in Section 6. Theorem 1.1 is
proved in Section 7. We conclude the paper with an appendix where we show the
ill-posedness result of Theorem 1.2.

2. NOTATIONS AND FUNCTIONS SPACES

2.1. Notations. For any positive numbers a and b, the notation a < b means that
there exists a positive constant ¢ such that a < ¢b. By a ~ b we mean that a < b
and b < a. Moreover, if v € R, v+, respectively v—, will denote a number slightly
greater, respectively lesser, than ~.

The Fourier variables of (t,x,y) are denoted (7,&, ). Let U(t) = et?(Pi=%y)
be the linear group associated with the free part of (1.1) and set

(2.1) w(¢) = w(& p) = (&1 + 1),
(2.2) QC1,¢2) = w(C + ¢2) —w(C1) — w(C2).

Let h the partial derivatives of w with respect to ¢ :
h(§, 1) = Oew(€, 1) = (a + 1)[E]* + o,
We define the set of dyadic numbers D = {2¢,/ € N}. If 3> 0 and H = 2° € D, we
will denote by | H?| the dyadic number such that |H”| < H? < 2| H”|. In other
words we set | H? | = 2[0*] where [] is the integer part.
Let x € C§° satisfies 0 < x <1, x = 1 on [—4/3,4/3] and x(§) = 0 for |£| > 5/3.

Let (&) = x(&§) — x(2¢§) and for any N € D\ {1}, define pn (&) = ¢(¢{/N) and
w1 = x. For H,N € D, we consider the Fourier multipliers Py, and Py defined as

‘F(Plg\c/u)(ﬂgau) = @N(&)}—U(Tagvﬂ)a

‘F(PHU)(T’&IU') = wH(faM)]:U(Tafaﬂ),

with ¥ (&, 1) = er (I€]* + 1)
If A C R?, we denote by Py = F~'14F the Fourier projection on A.
For N, H € D\ {1}, let us define

Iv={e: 5 <l <2N), h=[-27],

and
We also define PSH = ZH1<H PH17 P>>H = Id*PSH and PNH = Id*PSH*P>>H-
We will use similarly the notation P<, P>

Let n : R* — C be a bounded measurable function. We define the pseudo-
product operator II,, on S(R?)? by

~

HW%W@=A%%U@@)QW@-
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This bilinear operator enjoys the symmetry property
(23) [ mon=[ s 0= [ 1m0
R2 R2 R2

with 171 (¢1,C) = T(C1 + G, —C2) and 172(¢1, (2) = 7(G + (2, —(1) for any real-valued
functions f, g, h € S(R?). This operator behaves like a product in the sense that it
satisfies

I, (f,9) = fgifn =1,
(2.4) oM, (f,g) = 11,(9f, g) + 1L, (f, dg),

for any f, g € S(R?) where 9 holds for 8,, or 9. Moreover, if f; € L?(R?),i=1,2,3
are localized in Ay, for some H; € D, then

3
1,1
(25) \ [t s < 1 T e
1=1

Estimate (2.5) follows from (2.3), Plancherel’s theorem and the fact that ||¢ ”%2(11&2) ~
Ha*t: for any H € D.

2.2. Function spaces. If ¢ € L?(R?) is supported in R x Ay for H € D, the space
X is defined by the norm

I6lxu =D LY2llor(r = w(€)d(r,¢)ll L2,
LeD

For a function f € L?*(R?) such that F(f) is supported in R x Ay for H € D, we
introduce the Bourgain’s space Fy localized in short time intervals of length H—#
where [ is fixed to

2
/8 =—-1 Z 0;

a
defined by the norm
(2.6) 1/ llFw = sup (1F (o1 (H (- = tm) )l -

tgER
Its dual version Ny is defined by the norm
(2.7) 1l = tSHGPRH(T*W(O +iHO) T Flor(H (- = t)) )l x-
H

Now if s > 0, we define the global F'* and N spaces from their frequency localized
version Fy and Ny by using a nonhomogeneous Littlewood-Paley decomposition
as follows

£ = > H¥(|Pu [,

HeD
113 = D HPI1Pa fIlR, -
HeD

We define next a time localized version of those spaces. For T'> 0 and Y = F* or
Y = N, the space Y (T) is defined by its norm

1f vy = it {[[fly = /- R® = R and fli_r,7jx2 = f}.
For s > 0 and 7" > 0 we define the Banach spaces for the initial data E° by
lolle = (a6 )" - Bz .
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and their intersections are denoted by E* = (., E°. Finally, the associated
energy spaces B*(T) are endowed with norm

1 5o cry = IPLFO T2, + D H* sup [[Puf(tu,)lZz,.
mep\{13 €T

2.3. Properties of the function spaces. In this section, we state without proof

some important results related to the short time function spaces introduced in the

previous section. They all have been proved in different contexts in [9]-[12]-[6].
The F'*(T) and N*(T) spaces enjoy the following linear properties.

Lemma 2.1. LetT >0 and s > 0. Then it holds that

(2.8) [fllzgs e S f o)

for all f € F5(T).

Proposition 2.1. Assume T € (0,1] and s > 0. Then we have that
(2.9) [l s
for allw € B*(T) and f € N*(T) satisfying

()

0w+ DG 0yu + Ogyyu = f on [-T,T] x R2.
We will also need the following technical results.

Lemma 2.2. Let H, H; € D be given. Then it holds that

HP? Hmfm r—wlQ) [ 166 QH QB - )| S,
LZ
7C¢
and
> 22 outr-wl©) [ lotr OH P+ H P =) S ol
L>|HB| L2

for all ¢ € Fy, .
Corollary 2.1. Let teR and H, Hy € D be such that H > Hy. Then it holds that
HPP oo s | F 1 (HP(: *ﬂ)f)l\LgC SNl P,

and

Y LPlerFlor(HP (=) Plsz, S 1],

L>|HP|

forall f € Fy,.
Lemma 2.3. Let H € D and I C R an interval. Then

ilé]%Ll/QH@L(T —w(O)FAr®) NNz @s) S NF O xw

for all f such that F(f) € Xu.
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3. STRICHARTZ ESTIMATES
For 1 <a <2 weset B=a(a+1)/2, and for 6 > 0 small enough, let us define
As ={(&p) €R? (B —0)|¢]* < p® < (B+0)[g]}-
We also consider a function p € C(R,[0,1]) satisfying p = 0 on [—3,1] and
p(&) =1 for || > 1. We set ps(&) = p(€/9) so that ps(B — kl’%) is a smooth version
of 1,43 in the sense that

2
(3.1) V(€ n) eR* xR, ps (B - é%) Lag(€, 1) = Lag(&, ),

and ps (B — %) =0 on As/p. The main result of this section is the following.

Proposition 3.1. Let N € D and § € (0,1). Assume that (p,q) satisfies % = 91—;8
and % = 152 for some 0 € [0,1) and € > 0 small enough. Then it holds that

(3-2) |1PR PasU ()|l Lz, S NOECTD=D g 2.

for any ¢ € L2(R?).

Remark 3.1. We notice that in the case a« = 2 and 6 = 1/24+, estimate (3.2) was
already used in [16] and is a direct consequence of a more general theorem related
to homogeneous polynomial hypersurfaces proved by Carbery, Kenig and Ziesler [2].

However, this result does not apply as soon as a < 2 since the symbol w defined in
(2.1) is no more homogeneous.

To prove Proposition 3.1, we will need the following result.

Lemma 3.1. Let N € D\ {1}. Then

2

i(tw T H
Li(z,y) = /R IR o (€) s (B - W) dédp

satisfies
(3.3) 1 Zellngs, S N2,
for allt € R* and § € (0,1).

Proof. First, recall that the semi-convergent integral I; may be understood as
2

: 1(tw x M
Iy(z, 1) = lim e (b€ ) F o) o\ ()< ar (1) s (B - W) dédp
. . + p—
(3.4) = Jim (L7 + 1)
with
2
2(tw x 1
(3.5) I (z,y) = /]Rz e e F oty o (€)p<nr (1) pi (B - W) dédp,

and pgt = pslg,. We are going to bound |I;°|, uniformly in z,y and M. Let
€ (0,1) be a small number to be chosen later and define

0
B ={{eR: (a+1+B-l¢]* < (1 -e)lzl},

B ={¢cR:(a+1+B+ g)|t||§|o‘ > (14 ¢)l|z|}.
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Then I;¥ may be decomposed as

2

i(tw T 12
IF(z,y) = / +/ e I EGmTEERY) o () o<t (1) pF (B - —a) dgdp
BExR J(BE)exR €]

(3.6)
= It{[l (z,y) + I;EQ(SC, Y).

We estimate I, and rewrite it as

(3.7) I (x,y) = /R e o (p) ( /B i eiw“f’ﬁ(&)ds) dp.

€

where the phase function 1 is defined by 11 (&) = x€ + t£(|€]* + p?), and where
AT (€ = on(©)p5 (B - I_SII%) Then we easily check that

(3-8) [U1(&)] Z [N + %) on BE N supp(AT).

Indeed if we assume that ¢ € BF N supp(A]), then it holds p? < (B — g)|«£|CY and
|| > @HEB02 1 e0| from which it follows |z > (1 — &)~ [t|((ar + 1)[€]* + p2).
Since ¥ (€) = @ +t((a +1)[¢]* +p?), we deduce [y (€)] 2 max(|z], [¢]((e+1)[€]* +
p?)). A similar argument leads also to (3.8) for & € BZ N supp(\; ). Moreover,
observe that

(3.9) 197 [z S HINTY ATl S 1

~ Y

ATl S N,
and
(3.10)

05 5 87 ([ 1eemde+ [ lon(ol |0 (B%)\df) <1

Using (3.8)-(3.9)-(3.10), an integration by parts yields

+
/ eiwl/\li ‘/ (eidn)//\_l d¢
BE BE V1
< Ml +/< (A7) N MY )dg
TN +p?)  Jr NN +p2) - (N +p2))?
X = IO e AT [l ]

SN R N+ 2 N+ p2))
ST + )7+ NN (N 4 pi2)) 2
SN 4 )

Coming back to (3.7) we infer

dp
3.11 IF (z,y)] < t’l/ — < N2
(3.11) Ha@ IS | oz S It

It remains to estimate I:5,. Using that

. 2 m 2 | x
3.12 /61@5# ) gy = VT —idie+if sen(e)
o1 R |t€[1/
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we get
Ify(z,y) = / ﬂei(fortf'f'a*é*% sgn())
, (B;F)chQ |t§|1/2
2

x F (o5 (B~ #))(U)ffl(wsm(y — v —u)en(§)dédudv.

Performing the change of variables u — [£|~%/2u, a dilatation argument leads to

(3.13) I5(z,y) = . F pf (B —p?)(0)F (o<m)(y — u)
iageell— s 0% 4 gne) VT i\ dud
X </(B;)Ce |t§|1/2(PN(§) ¢ | dudv.

Since p; (B — u?) € D(R), we infer

= sup () 2|J* (u,0)|

(3.14) L (2, )| < sup (v) 2 D

u,veER

/ etz Ao
(B)e

where the new phase function s is defined by ¥9 (&) = x:€ + t£|£|* — %25 + % sgn(§),
and

A2(€) = Ita\f/lz_rh ei(W*“gJW)w(&).

We argue similarly to estimate I;,, except that we rewrite py (B — p?) as py (B —
u?) = (p5 (B — p?) — 1) + 1. Hence we have,

(3.15)

Iio(w,y) = /R2 Fil(ps (B—p?) = 1)(0)FH(o<nr)(y —u) </(

B

+ /R]:_l(@SM)(y —u) (/(BE)C e“"”s)

with A3(¢) = WLZT/Q@N(Q. Since py (B — p?) — 1 € D(R), estimate (3.14) together
with (3.15) lead to

(3.16) I (z,y)| + [T o(z, )| S sup ((0) 72 (1T (u,0)] + [T~ (w,0)]) + K (w)]) |

u,ve

where J~ (u,v) = [ 5. €2 A2 and K (u) = [ 5

e'¥2 )\2) dudv
s )e

) ez \s. Noticing that

(3.17) Pallzs + Asllze S NV2 [ 2,
we get
(3.18) (@, )| S NV2J 2,

which is acceptable as soon as [t| < N~(@+1)  Therefore we assume now that
[t| > N=(@+1)_ Observe that since (3.13) and (3.15) also holds for Itﬁ with (BF)¢
replaced with B, we deduce from (3.17) that

(3.19) Lo, y)| S NVt 7172,
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for any (t,z,y) € R* x R2. Differentiating the phase function we get

2

(3.20) Uh(e) = o+ o+ DUE" + o
2
(3.21) §(6) = ala+ Desgn(©le*" - 5

Let v € (0,1) be a small parameter that we will choose later, and define

Cy={eR: (1 —yala+1)[tE*"" < < (1+7)ala+ DlHlE*

u
21|

We decompose J* as

(3.22)  JE(u,v) = + €2 Ny = J (u,v) + JF (u,v).
(BF)enc,  J(BF)enCs

From the definition of C.,, we have [¢§(£)] 2 [t|{N*~1 vV l;ﬁ% for £ € C5. Moreover,

we have || Aoz~ < |t|7/2N~1/? and straightforward calculations lead to
(323) ||/\/2HL1 5 |t|71/2N71/2 + |t|73/2N7a+3/2<’U>2 + |t|73/2]\770‘/2+5/2|uv|.

The Van der Corput lemma applies and provides

(3.24)

u2

|t|N?

~1/2
|£Wmvns(mww-”v ) (Dellz= + Xlls) S N=/2Jt " (0)>.

To estimate Jli, we will take advantage of the first derivative of 12 given by (3.20).
Let £ € C. Then we easily see that

2

(o + 1)[e[¢]* + —

((a+1)+ B —yB)[t]|¢]* < e

< ((a+ 1)+ B+~B)t]|£]~.

If £ € (BXF)¢, then
a+1+B—-§/2 2
1—¢

ja+1+B-6/2
g~ 1-— = - /-
o] < il < (1- ) S

o u
(o DI + g

and if £ € (B)¢, we have

a+1+B+6§/2 _ia+1+B+4§/2 u?
—|t||&" 1 _ DY + —= ] -
Since we can always choose €,y > 0 small enough so that (1 — 6)_1$g:%32 <1

and (1 + 5)’1% > 1, we infer
/ o u? +\¢
(3.25) [V (E)| 2 |2 v [EIN v Nz O (B) NG,
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Therefore .J is estimated thanks to (3.23)-(3.25) and integration by parts as follows

o
gl = [ ey
! (BE)enc, Py
u? \ 7! u? \7?
S (e v i) Wallom + gl + (18 v 755 ) 19l el
(3.26)

ST AN ) S N7 o),
Combining (3.22)-(3.24)(3.26) we deduce
(3.27) sup ((u)=2(|J7 (u, 0)| + I~ (u,0)]) S N2t

u,ve
as desired. Estimates for K are similar, since (3.23) is replaced with
Xl ze S [~ 2NT2,
We obtain the bound

(3.28) sup |K(u)| S N“V2e~t

u,veER
Combining (3.4)-(3.5)-(3.6)-(3.11)-(3.16)-(3.27)-(3.28) we complete the proof of Lemma
3.1. O

Proof of Proposition 3.1. The case N = 1 is straightforward, therefore we assume
N > 2. Interpolating estimates (3.3) and (3.19) we get for any € € (0, 1)

e(a+1)

(3.29) ITllpee S NT2F 2 |¢)71F5.

On the other hand, we get from (3.1) that
P;\C[PAEU(t)Qﬁ = It *ry (PA§¢)
Thus, thanks to Young inequality and estimate (3.29), we infer
)

e(a+1

1P PagU(8)pll e, S N™EF2 [t 715 (| Pagdl| 1,

Ty N

for any ¢t € R*. Therefore, by interpolation with the straightforward equality
[U#)¢llrz, = l|¢]lz> we deduce that for any ¢ € [0,1),

e(at+1)

1P PagU (1)l e, < NP2 =Dt/ g 0,

Ty N~

where %—i— i =1 and % = ?9. Remark that we exclude the case 8 = 1 because the

operator P4e is not continuous on L'(R?). The previous estimate combined with

the triangle inequality and Hardy-Littlewood-Sobolev theorem lead to

PR Pac / Ut —t)ft"dt
R

(3.30) S NOElr=2)| §|

LiLzy

Ly e,
for all f € S(R?), where i—i— % =1 and % =1— 5. Estimate (3.1) is then obtained
from (3.30) by the classical Stein-Thomas argument. O

Corollary 3.1. Assumed € (0,1), H,N € D and f € Xg. Then for all s > —a/8,
it holds that

(3.31) 1Pag PNFH(N)lzs,, S NI Fllx-

toy "
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Proof. We apply Proposition 3.1 with 6 = ﬁ and obtain
1P§ PagU ()l as. S NC/D g

for any ¢ € L2(R?). Setting f*(0,&, 1) = f(0 + w(&, ), &, ) it follows then from
Minkowski and Cauchy-Schwarz in 6 that

1Pag PEF (D)o S N0 Pag PEF (1) o
SN 70,0 0
R

< NE-/oT 3 L1/2|\<pL(9)f“(t9,C)IILg<
LeD

SN flx,,

Interpolating this with the trivial bound ||F~!(f ez, < Ifllxy we conclude the

proof of Corollary 3.1. (]

We conclude this section by stating a global Strichartz estimate that will not
be used in the proof of Theorem 1.1, but that may be of independent interest for
future considerations.

Proposition 3.2. Let N € D. Assume that (p,q) satisfies i = % and 1 = %
for some 0 € [0,1]. Then it holds that

(3.32) IPEU )l Lare, S N7FEDg] L.
for any ¢ € L2(R?).

Proof. As in the proof of Proposition 3.1, it suffices to show that

Ii(z,y) = / e ST o (€)p s () dédp
R2
satisfies
[To(,y)| < NS5 17,
with an implicit constant that does not depend on M € D. Thanks to (3.12) we
may rewrite [; as

I (z,y) /]" (p<m)( </ |t§|1/2 eit2(€ @N(é)d§> du

where 12(€) = € + t&|€|* — 4t§ + 7 sgn(§) was defined in (3. 14) Since the third

derivative of 15 is given by ¥4/ (€) = ala — 1)(a + 1)t|[*2 + 2t£4, the Van der
Corput lemma implies in the case o > 1 that

| Ti( )| S (N3 N) 2~ NE [ 2/0
as desired. Now consider the case « = 1. In the region where [t| ~ ﬁ%, we get

directly that [5’| ~ [t| N1 as previously. Therefore we may assume |t| i ;‘L;S
From (3.21) we deduce |4 2 |t| which combined with the Van der Corput lemma
provides

(3-33) [, y)l S 172 (8N) T2~ N
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On the other hand, we have the trivial bound

r en(§) 1/214—1/2
< < N

Gathering (3.33)-(3.34) we infer
[To(a, )| S (N2 P3NP ) 728 o N0 50
which concludes the proof of (3.32). O
Remark 3.2. It follows by applying estimate (3.32) with 6 = 1/2 that
IPRU®l ey, SN~ D gl

Therefore, arguing as in the proof of Corollary 3.1 we infer that for oll f € Xg
such that supp F~L(f) C [0,T] x R? for some T € (0,1], we have

(3.35) IPSF (s, S N0 fllx,.

try

Consequently, (3.31) can be viewed as an improvement of estimate (3.35) since

outside the curves p? = B|¢|*, it allows to recover & derivatives instead of 75 (a—3)

derivatives in L*.

4. L? BILINEAR ESTIMATES
For H,N,L € D, let us define Dy, n 1, and Dy 1 by
(41)  Dgnr={(r.&p) eRP ey, (6,p) € Ay and |7+ w(é, )| < LY,

and
(4.2)

Dhcor ={(m,&n) €R®: () € Ay and |7+ w(&p)| < L} = | Duwr-
NeD

Proposition 4.1. Assume that H;, N;, L; € D are dyadic numbers and f; : R —
R, are L? functions fori =1,2,3.
(1) If fi are supported in Dy, co.1, fori=1,2,3, then

141
(4.3) / (s f) - fs S HEET LS filloe | Follaa ) foll e

(2) Let us suppose that Hpin < Hpmae and f; are supported in Dy, ., for
1=1,2,3. If (H;, L;) = (Hymin, Linaz) for some i € {1,2,3} then

(4.4) / (Fr f2) - f S HopldPH o Ll L2 | il ol ol o s 2
Otherwise we have
(4.5) / (s f2) - fo S HbPH 0 Ly Ll foll o o221 sl
(3) If Hpin ~ Hmaz and f; are supported in Dy, n, 1, for i =1,2,3, then
(4.6) / (i f2) - fo S N2 H b L2yl full e oll 21 sl o

Before proving Proposition 4.1 we give a technical lemma.
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Lemma 4.1. Assume 0 < 6 < 1. Then we have that

(4.7) h(C1 + C2) < [h(C1) — h(C2)| + f(d) max(h(¢1), h(C2)),
for all ¢ = (&1, 15) € R?, i = 1,2 satisfying

(4.8) (€1, 1), (&2, p2) € As

and

6162 <0 and e < O,

and where f is a continuous function on [0, 1] satisfying lims_o f(§) = 0.

Proof. Without loss of generality, we may assume

(4.9) &1>0, up >0, & <0, pue <0 and h(¢1) > h((2).
Thus, it suffices to prove that
(4.10) (a+1)(I& + &l +[&]* — (&) + 2p2(p1 + p2) < f(O)R(C).

Thanks to (4.8) and (4.9), we have that

a+1+B+6
a+1+B—§ =0

(4.11) |§2|* < g(0)[&1|* with g(0) =
This implies that
po(p + p2) < (B+06)|&|* — (B = 6)?|&| 1
< (B+0)el” — (B - 0)a&|"?
< fi()|&”
with 5
B_
On the other hand, using (4.11) again we infer
6+ 61" = lla] ~ [&l” < ROl with £26) = (96)/* ~1)" — 0

and
[o|" = 1&|" <[] < f3(0)[& " with f3(0) = g(9) =1 — 0.

Estimate (4.10) follows then by choosing f = f1 + fo + fs. O

Proof of Proposition 4.1. First we show part (1). We observe that
@ 1= ey n= [ Feh)h= [ (B h

where ﬁ(T, ¢) = fi(—=7,—(). Therefore we can always assume that L; = Ln.
Moreover, let us define ff(@,() = fi(0 + w((),¢) for i = 1,2,3. In view of the
assumptions on f;, the functions f; are supported in the sets

DYy op, ={(0,6,1) €R?: (&, ) € Ap, and |0] < Li}.

We also note that || fi||zz = Hff“Lz. Then it follows that

(413) I= / FH0r, €O F5 0 Co) FH(01 + 0 + QUG Co) o + o) s dBadCydCo.
R6
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1/2
For i = 1,2,3, we define F;(¢) = (fR ff(@,g)QdH) . Thus applying the Cauchy-
Schwarz and Young inequalities in the 6 variable we get

I's /R4 ||ff(',C1)||Lé1F2(C2)F3(§1 + (2)dCidCe

(4.14) S L}/Q/ F1(C) Fa(G2) F3(C1 + G2)dCidGa.
R4

Since ||¢]| < h(¢)= 12, estimate (4.3) is deduced from (4.14) by applying the same
arguments in the &, p variables.

Next we turn to the proof of part (2). From (4.12), we may assume H,,;, = Ha
and Lyae # L1, so that Hy < Hy ~ Hs. It suffices to prove that if g; : R? — R,
are L? functions supported in Ay, for i = 1,2 and g : R® — R, is an L? function
supported in Dlﬁqg,oo,Lg’ then

@15 Jonee) = [ (n@a(0(0.6).G -+ Gade
satisfies

(4.16) J(91,92,9) S Hy V2 HyY|g1ll 22192 2219l 2.

Indeed, if estimate (4.16) holds, let us define g¢;({;) = ff(@i,g-), i = 1,2, and
9(Q,¢) = f§ (61 + 02 + Q,¢) for 07 and 05 fixed. Hence, we would deduce applying
(4.16) and the Cauchy-Schwarz inequality to (4.13) that

S T I VHOR TP TSP

—1/2 1/4+1/25+1/2
(4.17) S HPH LYY e | f e L 5 e

which implies (4.4) and (4.5). To prove estimate (4.16), we apply twice the Cauchy-
Schwarz inequality to get that

1/2
J(91,92,9) < llg1llz2 (g2l L2 </ 9(Q(¢1,¢2), G+ C2)2dC1dC2> :

AHI XAH2
Then we change variables ({7, ¢5) = (¢ + 2, (2), so that

1/2
(4.18) J(g1,92,9) < llg1llz2llgzl 22 </ 9(Q(¢ —Cé,Cé),C{)QdC{d<é> :

~Hq XAHZ

Making the change of variable (¢1, 1, €2, p2) = (€ 1}, (] — 3 C3), 1), and noting
that the Jacobi determinant satisfies

|0, (1 = €2, ) = [A(G1 = €3) = h(G3)| ~ Himaa,

we get

Sy (e} e

1/2
J(91,92:9) < H;1/2||91||L2||g2||L2 </R 9(52,«51,u1)2d€1du1d§2duz> ;

which lead to (4.16) after integrating in us.
Now we show part (3) and assume that the functions ff are supported in the
sets

Dlﬁr{ini,Li = {(9,5,#) € Rg : 5 S IN-;) (f,u) € AH1 and |9| < Ll}
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In order to simplify the notations, we will denote (3 = (3 + (2. We split the
integration domain in the following subsets:

Dy = {(61,(1,02,C2) €R®: Vi € {1,2,3}, pf < |&[*},
_ 6 . : . .
Dy ={(01,(1,02,(2) e R°\ Dy : 11;1%13 [&ipi| < 11252% |&itil T,

2
Dy = RO\ U D;.
j=1

Then, if we denote by I/ the restriction of I given by (4.13) to the domain D;, we

have that
3
I=> 1.
=1

FEstimate for I. From (4.12) we may assume Ly,q, = L3. Since Hpin ~ Hpaz, it
follows that N,,in ~ Npaz and

(¢, @) = (161 + &1 (&G + &) — [G]6 — [&1%E) + (&1 + &) (1 + p2)® — &pf — Eopts
(4.19)

= (|61 + &l (& + &) — [&1|%6 — 1€2]%E) + 2up2(&r + &) + &3 + Eapd

~ NO¢+1

max

in the region D;. We infer that I is non zero only for Lz > N2T1 and it suffices
to show that

1/2 1/4 y1/2
(4.20) LS N H o L2 P el £ e £ e

min’Tmin"med

Arguing as in (4.14) we obtain estimate (4.20).

Estimate for I. By definition of Ds, there exists ¢ € {1,2,3} such that [£]|* <
pZ. It follows that for any j € {1,2,3}, we have |§;|* < Hj ~ H; ~ p? and
therefore NS .. < maxi<j<s u?. Moreover observe that since Nyae ~ Nmeq and

maxi<;<3 |[Lj| ~ med1§j§3|uj|, it holds that

Jax [§j5] ~ max, |§] max |;].
From (4.12) we may alwa‘ys assume min1§j§3 |§jﬂj| = |£1,u1| and maxi<;<3 |£j,uj| =
|€2p12]. We deduce that in Ds, it holds
1+2
10, Q1 — G35 G3)| = 2[€1p1 — E2pt2] 2 Nimas
where (C{a Cé) = (Cl +<25 <2> Changing the variable (51; M1, 52; ,U'Q) = (517 /’L/la géa Q(C{ -
¢4, ¢5)) in (4.18) we infer

1

1/2
J2(91,92,9) S Nmde *llg1ll 22l g2l 22 (/ 9(#2,51,M1)2d§1du1d§2du2> ;
R2x In, xR

where J3 is the restriction of the integral J defined by (4.15) to the domain Ds.
This leads to
I S Nl Ellalofiall full 2l f2l 22 sl e,

~ *Ymax med

which is acceptable since NoA < g/t gi/4

~ min’
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Estimate for I3. First we notice that in D3, we have

N2, ~ N2 < min p? ~ max u?.

mar .~ gi<s 1<i<3

Let 0 < § < 1 be a small positive number such that f(§) = ﬁ where f is defined

in Lemma 4.1. We split again the integration domain D3 in the following subsets:
Dy = {(01,C1,02,C2) € D3 = (1,2 € As},
Di = {(01,(1,02,C2) € D3 : (2,3 € As},
D3 = {(61,¢1,02,¢2) € D3 = (1,3 € As},

3
Dy =Ds )\ | Di.
j=1
Then, if we denote by Ig the restriction of I3 to the domain Dg, we have that

4
Iy = Zlg.
j=1

Estimate for I. We consider the following subcases.
(1) Case {&1&2 > 0 and pype > 0}. We define

Dyt = {(61,¢1,02,G2) € Dy &1& > 0 and pypip > 0}

and denote by I; ! the restriction of I} to the domain Dé’l. We observe
from (4.19) that

Linaz 2 1915, G)| 2 Novia

max

in the region Dé’l. Therefore, it follows arguing exactly as in (4.20) that

(4.21) L S NGRHME LY LY2 | fll e ol e | £l e

max min"~med

(2) Case {&1&2 > 0 and pipe < 0} or {£1&2 < 0 and pipe > 0}, We define

Dy? = {(61,(1,02,G2) € D§ : &162 > 0, prapra < 0 or £16 < 0, paprz > 0}
and denote by Ié’Q the restriction of I3 to the domain Dé’Q. Observe that
10, 2(C1 — G55 Ca)| = 2/&1p1 — Eapua| 2 Ny tal?
in the region D§’2, where ((],¢%) = (G + ¢2,¢2). Thus, arguing as in the
proof of (4.16), we get that the restriction of J to Dy~ satisfies
T(91,92.9) S Nnal g1l z2 gl c2llgl o2,
which leads to

—a 4
(4.22) L% S NGSP2HNY ALY LY | fll el foll e N foll e,

max min~“med

since N2/4 < HYA ~ g/t

min*

(3) Case {&1&2 < 0 and pyp2 < 0}. We define

Dy = {(01,¢1,02,C2) € DS : €165 < 0 and pypg < 0}
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and denote by I; * the restriction of I} to the domain D§’3. We observe
due to the frequency localization that there exists some 0 < v < 1 such
that

(4.23) |h(C1) — h(C2)| = ymax(h(C1), h(¢2))

in D§’3. Indeed, if estimate (4.23) does not hold for all 0 < v < —k= then

1000
estimate (4.7) with f(d) = would imply that

T000
1
h(¢s) < 200 max(h(¢1), h(¢2))

which would be a contradiction since Hin ~ Himaz. Thus we deduce from
(4.23) that

10,21 — €2, Gl = [h(G1) = h(G2)] R Himaa

in the region Dy*, where (¢}, ¢}) = (C1 + 2, C2). We can then reapply the
arguments in the proof of (4.16) to show that

—a 4
(4.24) L S NGSPPHNY LY DY | full e | ol 2] o 2

max min“med
Estimate for I3 and I3. The estimates for these terms follow the same lines as for
1.
Estimate for I3. Without loss of generality, we can assume that (1,(s € R?\ As.
Then we may take advantage of the improved Strichartz estimates derived in Section
3. We deduce from Plancherel’s identity and Holder’s inequality that

I3 S sl (Lroy ag f1) % (g ag f2) |22 S I sl |Pas F=H (1)l pall Pac F = (f2) | s
We conclude from Corollary 3.1 that

_a 1/2
I3 S NGO L2 L2 | fll el foll o2 N fll e,

med

which is acceptable since N%{li <H 1/4 U

min*

As a consequence of Proposition 4.1, we have the following L? bilinear estimates.
Corollary 4.1. Assume that H;, N;, L; € D are dyadic numbers and f; : R® — R
are L? functions fori=1,2,3.

(1) If f; are supported in Dy, .1, fori=1,2,3, then

LJ’,l
(4.25) 11Dpy ey (F1 % f2)lln2 S HZad L2 | full iz | foll o

(2) Let us suppose that Hyin < Hpar and f; are supported in Dy, oo 1, for
i=1,2,3. If (Hi, L;) = (Hmin, Lmaz) for some i € {1,2,3}, then

(4.26) 11Dy oy (1% f2)llnz S H Y2 HYA L2 LY2 0 fll 2]l fo -

mazx min~—“min"~“max

Otherwise, we have

(4.27) 104y ey (F1 % f2)ll2 S HplZHYA L2 L2 1| fill o | foll 2.

mazx min—“min""“med

(8) If Hppin ~ Hppaw and f; are supported in Dy, N, 1, for i =1,2,3, then
(428)  Mbuy gy (1 # f)lli2 S Nt H LT L2 L2 il 2 fol e

max min med~max

Proof. Corollary 4.1 follows directly from Proposition 4.1 by using a duality argu-
ment. ]
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5. SHORT TIME BILINEAR ESTIMATES
Proposition 5.1. (1) If s> 1/4, T € (0,1] and u,v € F*(T), then
(5.1) 10z (uv)llavs(ry S lulles(ryllvll paros oy + llull paro+ vl ps -
(2) If s> 1/4, T € (0,1], u € FO(T) and v € F*(T), then

(5.2) ||az(uv)||N0(T) S ||u||F0(T)||U||F5(T)-
We split the proof of Proposition 5.1 into several technical lemmas.

Lemma 5.1 (low x high — high). Assume that H, Hy, Hy € D satisfy Hy < H ~
Hy. Then,

4
(5.3) 1Pe 0 (v Mg S HY s, | v, 012, | oy

for all upg, € Fu, and vy, € Fp,.

Proof. First observe from the definition of Ny in (2.6) that

(5:4) |1 Prds(umvim) vy S sup [[(r = w(Q) +iH) " HY *1ay, - frr * g2 | X
R

tg€

where
fr, =1 F (o1 (HP (- = tm))um,)|
gr, = | F(@(HP (- = tu))om,)|-

Now we set

fry 1) (7, 0) = < s | (T — w(C)) fa, (1, 0),
fru,0(7,.¢) = or(T — w(Q)) fa, (7, C),
for L > [H?| and we define similarly gg, ;, for L > |H?|. Thus we deduce from

(5.4) and the definition of Xy that

(5.5)

1Pr O (ur, v we S sup HY* >~ L7Y2|1py, o foy iy * G L | 22,
tn€R L,L1,Lo>|HA

where Dy oo, 1, is defined in (4.2). Here we use that since |(7—w(¢)+iH?)™1| < H=,
the sum for L < |H?| appearing implicitly on the RHS of (5.4) is controlled by
the term corresponding to L = | H?| on the RHS of (5.5). Therefore, according to
Corollary 2.1 and estimate (5.5) it suffices to prove that

(5'6) Hl/a Z L_1/2||1DH,00,L 'fH17L1 * 9H27L2||L2
L>[HA |
1/4+1/2 1/2
S H LY\ frr o\l e2 Ly g, o o2

with Lq, Ly > LHBJ Using that é — g — % = 0, this is a consequence of estimates

(4.26)-(4.27). O

Lemma 5.2 (high x high — high). Assume that H, Hy, Hy € D satisfy H ~ Hy ~
Hy > 1. Then,

(5.7) 1P 0 (wrr, vz, I S HY D up, |, 10 Py

for all ug, € Fr, and vy, € Fy,.
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Proof. Arguing as in the proof of Lemma 5.1, it is enough to prove that

(58) N Z L71/2|‘]‘DH,N,L 'le,leLl * gH27N2,L2||L2
L2017

1/2 1/2
S HYD L) firy vy 22 g v, 12
where frr, Ny, and g, N, .1, are localized in Dy, n,.1;, with L, L1, Ly > | H? | and

N, N1, Ny < HY. Observe that the sums over N, Ny, Ny are easily controlled by

log(H'/*) < H*. Using that 1 — L>0and - g — 3 =0, this is a consequence

of estimate (4.28) in the case L = Luin Or Limed ~ Limasz. Otherwise, we have
Limaz ~ Q] < H'% so that the sum over L is bounded by H°* and (5.8) still
holds. O

Lemma 5.3 (high x high — low). Assume that H, Hy, Hy € D satisfy H < Hy ~
Hy. Then,

5_1 . (-1)+
(5.9) | Prr 0z (wr, vi, )| vy S H3 ™« Hy Nwr, |, (V7 | Py
for all ug, € Fr, and vy, € Fy,.

Proof. Let v : R — [0,1] be a smooth function supported in [—1,1] with the
property that

ZWQ(x—m):L Vr € R.
meZ

We observe from the definition of Ny in (2.7) that

(5'10) HPHaﬂE(quUHz)HNH
SHY sup ||(r—w(Q) +iH ) A, Y fEorgm|
b ek mIS(Hi/H)P o
where
fit = [Flor(HP (- = tu))y(HY (- = ti) = m)um, ),
and
gt = [F(@(H (- = tm))y(H (- = ta) = m)o,)|.
Now, we set
:fllaLHfJ (1,0) = P<|H? (T — w(C))fgl (7,0,
f;[nl,L(Ta g) = (pL(T - W(C))fl?]ll (Ta C)a
for L > |H/| and we define similarly 91,1, for L > |H 5|, Thus we deduce from
(5.4) and the definition of Xy that
(5'11) HPHaﬂE(quUHz)HNH

1 — E E —1/2
/S H /a Sup HlﬁH ﬁ L / ||1DH,co,L ' f}‘[nl,Ll * ggQ,L2||L2'
tgER,MEZ LGDLLLzZLHﬁ
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Therefore, according to Lemma 2.2 and estimate (5.11) it suffices to prove that
1_ _
(512) H="PH] Y L2 py ey fif 1y * G all2e
LeD
5_1 . (X-1)+ 1/2 1/2
ST L 1 e s 9 e

with Ly, Ly > | H | in order to prove (5.9). As in the proof of Lemma 5.1, estimate
(5.12) follows from (4.26)-(4.27) and the fact that L,qe ~ max(Loed, [€2]). O

Lemma 5.4 (lowxlow — low). Assume that H, Hy, Hy € D satisfy H, Hy, Hy < 1.
Then,
(5'13) ||PH61(UH1UH2)HNH 5 ||U’H1 ||FH1 ||UH2 HFH2 )
for all ug, € Fr, and vy, € Fy,.
Proof. Arguing as in the proof of Lemma 5.1, it is enough to prove that

_ 1/2 1/2
(514) D L7 Npy s - frnrn * grrallce S L2 a2y g a2

LeD

where fp, 1, and gu, r, are localized in Dy, oo r,, With L1, Lo € D, which is a
direct consequence of estimate (4.25). O
Proof of Proposition 5.1. We only prove part (1) since the proof of estimate (5.2)
follows the same lines. We choose two extensions u and v of u and v satisfying
(5.15) lullps < 2||ullpsery and |[0]|7s < 2[|v]|ps(y-
We have from the definition of A*(T") and Minkowski inequality that

o\ 1/2

10: (uwo)llnecry S | D H? | D 1P, om, )l

H Hy,Ha

Let us denote

Ay ={(Hy,Hy) €eD?: H< Hy ~ Hy},
Ay = {(Hy,Hy) €D?: Hy < H ~ Hy},
Az = {(Hy,Hy) € D?: Hy < H ~ Hy},
Ay ={(Hy,Hy) €D?: H ~ Hy ~ Hy > 1},
As = {(Hy,Hy) € D*: H Hy, Hy < 1}.

Due to the frequency localization, we have

||81(UU)||NS(T) < 25: ( Z HQS( Z ||PH61(aH15H2)”NH)2)1/2

j=1 HeD (Hy,H2)€EA;

(5.16) = isj

To handle the sum S, we use estimate (5.9) to obtain that
(5.17)

s 1/4 ~ ~ 2\ 1/2
s 2 (X m( X B e, lom e, ) ) S

HeD Hi>H
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Estimate (5.3) leads to

. 1/an _ 2\ 1/2 _ _
(5:18) S25 (D H=( Y H awllew, Fullra) ) S llposs 10
HeD H{<H

Fs.

Similarly we deduce by symmetry that
(5.19) Sz S lullpe 0]l paso+

Next it follows from estimate (5.7) and Cauchy-Schwarz inequality that

a0l pasa+.

1/2
(5.20) S4§<Z H28H<1/2>+||aﬂ||%H|6H||%H> <l
HeD

Finally it is clear from estimate (5.13) that
(5.21) S5 < llull po [0 ro-
Therefore we conclude the proof of (5.1) gathering (5.16)-(5.21). O

6. ENERGY ESTIMATES

The aim of this section is to derive energy estimates for the solutions of (1.1)
and the solutions of the equation satisfied by the difference of two solutions of (1.1).
In order to simplify the notations, we will instead derive energy estimates on the
solutions v of the more general equation

(6.1) 01w — D3 030 + Opyyv = €10, (uv),
where u solves
(6.2) Oru — DG 0yt + Ogyytt = 205 (u1us).

Here we assume c1, ¢ € R* and that all the functions u, v, u1, us are real-valued.
Let us define our new energy by

63)  Ea(0)t) = IPav®lfsgen + A" [ T (Penut) o®)Puolt)

for any H € D\ {1} and where 7 is a bounded function uniformly in H that will
be fixed later. Finally we set

(6.4) Ef(0) = [|ProO)|Fa@ey + Y sup  H¥[Ex(v)(tn)].
Hep\{1} tHE[-TT]

Note that for the integral in (6.3) to be non zero, the first occurrence of the
function v must be localized in Apy.
First, we show that if s > 0, the energy Ef.(v) is coercive.

Lemma 6.1. Let s > 0, 0 < T < 1 and u,v,u1,us € B*(T) be solutions of
(6.1)-(6.2) on [0,T). Then it holds that

(6.5) [0y S B3 (0) + [[ull pocr) 0]
Proof. We infer from (6.4), the definition of B*(T') and the triangle inequality that

2
B*(T)

(6.6) |lv]

Bery SER()+ Y. sup  H™!
Hep\{1} €T T]

/}R2 (I, (P< ru, v) Peo)(t)
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Thanks to estimate (2.5), we have

(6.7) H*!

[ P v) o))
R
< H* 7 H> T3 | Pegu(tn) || 2| Pegv(ta)l| 2 | Pav(te) | 2.

Since —1 + 5= + 1+ < 0, we deduce estimate (6.5) for s > 0 gathering (6.6)-(6.7)
and using Cauchy-Schwarz. O

Proposition 6.1. Assume s > s, andT € (0,1]. Then if u,v,uy,us € C([-T,T); E*)
are solutions of (6.1)-(6.2), we have that

(6.8)
E7(v) S (I+luol o) [lvol

Botllull oot ¢y 0] %‘S(T)+|‘UHFS+SQ+(T)HU”F“(T)HU”FS(T)

+ (lulls ) + llurll ey luzll e ()]
and
(6.9) Ep(v) < 1+ fluollmo)llvollFo + lull oot (r) [0l Fo(r)
+ (lulBeas ¢y + lwall oo+ @y luzll Boat () 10l Bo (-
Moreover in the case where uw = v it holds that
(6.10) E7(u) S (14 [luollgo)lluol
The following result will be of constant use in the proof of Proposition 6.1.

Lemma 6.2. Assume that T € (0,1], Hy, Hy, H3 € D and that u; € Fy, for
i=1,2,3.
(1) In the case Hypin < Hpas it holds that

/ Hn(ul,’MQ)’LLg
[0,T] xR2

(2) If F(u;) are supported in R x Iy, xR fori=1,2,3 and Hypin, ~ Hppas then

/ Hn(ul,’MQ>’M3
[0,T] xR2

Remark 6.1. Observe that in the right-hand side of (6.11), we have Hn_%;ml Vv

1 1
H,(mi)Jr = Hﬁm; as soon as a < 2. The lost of HYE —in the particular case o = 2
is due to the localization in [0,T)].

e+l peect oy llull

1_1 _1
(6.11) sm%v%£+$HUwM

(6.12) < N-o/2pls 4)+HHquFH

max min

Proof. From (2.3) we may always assume Hy < Hy < Hjz. We first prove estimate
(6.11). Let v : R — [0,1] be a smooth function supported in [—1,1] with the
property that

Z v (x — =1, Vz e R

meZ
Then it follows that

(6.13)

SO

\WISHB

/[OT] i, I, (w1, u2)us
T %
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with
(6.14)

Iy =

/3 II,, ('y(Hgt — m)l[oﬂul, ’y(Hgt — m)l[O,T]UQ) 'y(Hgt — m)1[07T]U3 .
-

Now we observe that the sum on the right-hand side of (6.13) is taken over the two
disjoint sets

A={m € Z:y(Hjt —m)lg = y(Hyt —m)},
and

B={mecZ: ’y(Hgt —m)l1 # ’y(Hgt —m) and ’y(Hgt —m)lj,1) # 0}

To deal with the sum over A, we set

fITZ,LHéaJ = (‘DSLH;?J (T - w(C))|f(7(H§t - m)ui)|a
and

fin = ou(r = w(O)F (y(Ht = m)us)|, L > [HS],

for each m € A and ¢ € {1,2,3}. Therefore, we deduce by using Plancherel’s
identity and estimates (4.4)-(4.5) that

TS 3 Lee g11L1 gziz ’ }1”37L3
I < sup Hy || (i * f ) f
meA R3

meA L1,Lo,L3>|HY |

3
b 4
S swp Hy* mHUTL S L2 e
me

i=1lr,> \_HEJ
This implies together with Corollary 2.1 that

3

m 1-1..1/4

(6.15) ST < Hy T H T il -
meA i=1

Now observe that #5 < 1. We set

gt = en(r — w(O)F(Y(HEt — m)L yus)|

for i € {1,2,3}, L € D and m € B. Then, we deduce using again (4.4)-(4.5) as well
as Lemma 2.3 that

Spgsw S [ (G o) o

meB meBLl,Lg,LgG]DJ
3
—1/2 ;,1/4 ~1/2 /2 m
< sup Hy /“H, Z L. H sup L;""|lg7, 1,2
meB Li,LgL3eD i—1 L;eD
erLam“‘max(Lme,iv\Q\)

3

(=1/2)+ ¢71/4
(6.16) S Hy H " T il o, -
1=1

We deduce estimate (6.11) gathering (6.13)-(6.16). Finally, the proof of (6.12) fol-
lows the same lines by using (4.6) instead of (4.4)-(4.5). We also need to interpolate
(4.6) with (4.3) to get

e

1 1 43 l—e 1—¢
/3(f1 * f2) ' f3 S N;uié2H74rLL::L(2a+4)€Lf7{i2an2edLm2aI
R
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for € € (0,1). With this estimate in hand, we are able to control the contribution
of the sum in the region B. O

Proof of Proposition 6.1. Let v,u,ui,us € C([=T,T], E>) be solutions to (6.1)-
(6.2). We choose some extensions v, u, Uy, Uz of v,u,u1, uz respectively on R? sat-
isfying [|0]|ps S [0l Fe(rys [ullre S ull ey and [|@illpe S [Jusl|psr) for i = 1,2.

We fix s > s, and set o € {0,s}. Then, for any H € D\ {1}, we differentiate
En(v) with respect to ¢ and deduce using (6.1)-(6.2) as well as (2.4) that

(6.17) %gH(U) = T () + Lot (v) + N (v)
with
Ty (v) = —2¢1 /]R2 Py (uv)Pyo,,
Ly(w)=—-H" /R2 11, (P« (—D3 0y + Opyy)u, v) Pro
- H! /R2 IL, (P« g, (—Dg 0y + Opyy)v) Prv
- H! /Rz I, (P« e, ) Py (— D2 0y + Oy )0,
and
Nu() =coH™ / (P 0z (uru2),v) Pro
+cH™ / n(P<r, 0y (uv)) Prv

+cH™ / n(Pe pr, v) POy (uv)

= Nig (v) + N (v) + N (v).

Now we fix tyy € [T, T]. Without loss of generality, we can assume that 0 < tgy <
T. Therefore we obtain integrating (6.17) between 0 and ¢y that

(6.18) €a(v)(tr)] < |Er (0)(0)] + /OH(IH(U)JrEH(vHNH(v))dt

Using Holder and Bernstein inequalities, the first term in the right-hand side of
(6.18) is easily estimated by

(6.19) Y H¥IER()(0)] S (1+ Juollgo) lvoll e
HeD\{1}

Next we estimate the second term in the right-hand side of (6.18).
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Estimates for the cubic terms. By localization considerations, we obtain

IH(U) = —201 - PH(P<<H’LL’U)PH’Uz — 201 /]RZ PH(’LLP<<H’U)PH’Uz

—2c1/ Py (PupuPeopv) Puvy — 21 Y / Py (PP, v) Pru,
R? Hys>H R

= ZI}_I(’U)

Note that in the case where u = v, we have Zr;(v) = Z%(v). Clearly we get by
estimate (6.12) that

ty
1_1 _ ~ ~ ~
/ I})}(v)dt}S > H =D NgN, P2 | P PR ll £y | Pt PR, Bl £ | P PR O
0 N1,Na,N3SHY/@

< H5H|| Po gl o | Porr®ll £y | PO

which combined with Cauchy-Schwarz inequality yields
ta
/ T3 (v)dt
0

Similarly, we get applying estimate (6.11) that

(6.20) > sup H*

S ||U||F8a+(T)||UH%o(T)'
Hep\ {1} tH E0T]

ty
1_9q o ~ ~ ~
/ I;;(wdt}s S BT HYAHY | Pyl g, | Pot O, | PO
0 Hy>H

From this and Cauchy-Schwarz inequality we infer

(6.21) Z sup H*
mep\{1} tr €107

ty
[ Th ] < e il
In the case u # v we estimate Z% (v) thanks to Lemma 6.2 by

ty
/ Iﬁ(v)dt‘i > H* Y| Pogullpy | Pa, vl p | Pavl|
0 Hi<H

so that

(6.22) > sup H*

tH
/ Iif(v)dt\ < ullpesear ey 10l poczy oo (-
HE]D)\{I} tHE[O,T] 0

Therefore, it remains to estimate Z3,(v) + Lg(v) in the case u # v and 27 (v) +
L (v) when u = v. Using a Taylor expansion of 1y we may decompose Z (v) as

Th(v) = —2c1/

Pe guPyoPru, — 201H*1/a/ 1L, (P itz v) Prv,
R2 R2

—2c;H™! /R I, (P prttyy, v) P, — 2e1H ™! /R ), (P i1y, vy ) Prrvy

= ZI}L}(U)
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where 7;, 1 = 1,2, 3 are bounded uniformly in H and defined by

061 + &o|™ + (Opa + N2)2) a0
H

1
(1) = —iatrs ! [ jogs + &l sgu(oes + &)y (
0

1 N )
772(C1,C2)=—2/0 9@’(|9‘£1+€2| ‘If'{(em + p2) )dG

1 N ,
773(§1,C2)=—2/0 90’(|9§1+€2| 2(9/11 + p2) )d@

To estimate the contribution of Zi}(v), we integrate by parts and use (6.11) to
obtain

tu 141
(6.23) /O I}f(v)dt‘ﬁ > (H=T'VHEDNHE | Py, | Pl 3y

Hi<H

Estimates for Z}?(v) and Z3(v) are easily obtained thanks to (6.11):

w20 || @i+ 2

< S 1Y Y (HE T VHE DN EY Y Pyl |y, | Pooll gy | Paol py -
H{<H

Combining estimates (6.23)-(6.24) we infer

3 ty .
3 / Th(v)dt
i=170

Note that due to the lack of derivative on the lowest frequencies term P<<Hu
Lemma 6.2 does not permit to control the term Z}(v) without loosing a Ha~
factor. This is why we modify the energy by adding the cubic term in (6.3). Let
us rewrite L (v) as Z? | L4 (v) with

(6.25) Z sup H?*

S lullpsat @y 0l me @y 0]l po
Hep\ {1}t El0T]

Ly (v)=—H" / n(P<r(—Dg 0y + Opyy)u, v) Pro,

L3 (v)=H"! (IL,, (P« gru, D2 0,v) Py + 11, (P ru, v) Py DO, v)
]R2
and

[,3 =—-H~ / 0 (P HU, Vgyy ) Prv + I (P« U, V) PrUgyy) -

After a few integrations by parts, we obtain thanks to (2.4) that
L3 (v) =—2H" / n(P< vy, vy)Prv, — H™ / (P iy, V) Prrvy,

+ H™ / n (P HUz, Uyy) PrU.

Choosing n = 7%7}3, a cancellation occurs and we get

TH W)+ L3 (v) =H™ / (P i, Vyy ) Prrv — H™ / (P 5y, ) Prrvg

— £31 532( )
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In the case u = v, it suffices to set n = —ﬁn to obtain 2Z# (v) + L3 (v) =

L3 (v) + L32(v). Now we use estimate (6.11) to bound the terms £3}(v), £3? as
well as £} (v). We get that

[ @i+ 20 + chiona

1

< S BN HY HHHY +He Y HE T VHE DN EY | Pyl by, | Pervl py | Paoll e
H{<H

It follows that

(6.26)

sup H?°

ty
JARC: ORI +c}q<v>>dt\ < I
mep\{1} tu €107 0

F5a+(T)||UHFU(T)HU||F<’(T)-

Finally to deal with £% (v), we integrate by parts and use that

1
161+ & — |62 = 0451/ |0&1 + &2| " sgn(0& + &2)db.
0
We deduce
L3 (w)=—-H" [ (D2,(Pcpu,vy) — I, (P<gu, D2vy)) Pyo

]RQ
fol/ I, (P« iz, v) Py D2
]RZ

— —H_l/a/ 11,5 (P gtg, Vo ) PrY — H_l/ II,, (P« Hug, v)Pe D3 v,
R2 R2
with )
(G1,G) = i1 [ jo6s + ol sgn(6s + ).
0

Noticing that 7 is bounded on A¢ g x Ay we easily get from Lemma 6.2 that

(6.27) > sup H¥
Hep\{1} tHE0T]

Gathering (6.20)-(6.27) we conclude

tH
/0 L%Av)dt\ < all et oy [0l 2o 1ol 2.

(6.28) Z sup H?*
mep\{1} t#E0T]
S (lul

/OtH(IH(U) + £H(U))dt‘

Feat () |Vl Fo(r) + Ul potsat )|Vl Focr)) V] Fo ()
Estimates for the fourth order terms. We get using (2.5) and Holder inequality that

_ 1141
NEI S Y H'He HE 0| Pry (wrus)|| 2 || Porrol| g2 ]| Prrol| 2
Hi<H

33
S Y HE U (IPemulls| Pomnyuzllps + | Pomyunllneuzll o) | Parol 2| Prrol| e
H\<H
Noticing that

3 3 7 _5
> HE | Puyuillpsers, S Y Hi NP uilligrz, S luillpeas(r),

T Hxy T “xy
H,€D Hi€D
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we deduce
ty

(629) > sup H™

Hep\{1} 1 E0T]
Finally we evaluate the contribution of N3, (v) since by (2.3), the term N7 (v) could
be treated similarly. We perform a dyadic decomposition on u and v to obtain

Ny(w) =cH™ / n(P<rt, v)Proy (Peruv) +c1H™ / n(P<rt, V) Py (uPg pv)

N}{(U)dt‘ S ||U1||BSa+(T)||U2||BSa+(T)HU||2Ba(T)-

toH Y / (P, 0) Per 0 (P, uPeo g, v)
H\>H
= N (v) + N () + N (v).
By using estimate (2.5) we infer that
a4
NF ()] S Z H== HE 5| Pyl 2| Poproll 2 | Py uPegro| 2

Hi,Ho<H

1_ 1
S Y HF N Paulle Pl el Pl
H, ,Ho<H

from which we deduce

(6.30) > sup H¥
Hep\ {1} tHE[0T]

/ N )dt‘ < Jlul?

Bsat(T) HUHBU

Then, observe that N32(v) = N3t (v) in the case u = v. Arguing as above we get
for u # v that

1 _ L_;’_l L_;’_l
NF ()] S Z Ha " Hee " HZ 4| Pryul| g2 || Posrul | p2 | Pasroll o2 | Pe o]l 2
H, ,Hy<H
It follows that

(6.31) sup
mep\{1} tr €107

and at the E*-level

ty
/O Né%)dt} < sy 1ol

(6.32) Z sup H*
mep\{1} {1 €T

ty
/ fo(v)dt] < Nl 012

Finally we use similar arguments to bound N3?(v) and we obtain

tH
(6.33) S swp B Nz%)dt\5|u|235a+<T>||v|2Bo<T>
Hep\{1} tHE0T]
Gathering (6.30)-(6.33) we deduce
tH

sup NH@)dt\ < (g (ry szl ey 1 Bms ) 0oy
HED\{I}tHE[O’T] 0
and

tu
sup H NH@)dt\5<||u1|menumwn llelBe.
tg €[0,7)

HeD\{1}
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which combined with (6.18)-(6.19) and (6.28) concludes the proof of Proposition
6.1. (]

7. PROOF OF THEOREM 1.1.

The proof of Theorem 1.1 closely follows the proof of existence and uniqueness
given in [12]. We start with a well-posedness result for smooth initial data ug in
E* = H°(R?). This result can be easily obtained with a parabolic regularization
of (1.1) by adding an extra term —eAwu and going to the limit as ¢ — 0. We refer
the reader to [10] for more details.

Theorem 7.1. Assume that ug € E>. Then there exist a positive time T and
a unique solution uw € C([-T,T); E*®) of (1.1) with initial data u(0,.) = ug(.).
Moreover T = T(||ug||g3) s a nonincreasing function of ||up|| gz and the flow-map
18 continuous.

7.1. A priori estimates for F* solutions.

Theorem 7.2. Assume that s > so. For any M > 0 there exists T =T(M) > 0
such that, for all initial data ug € E* satisfying ||uo| g < M, the smooth solution
u given by Theorem 7.1 is defined on [T, T] and moreover

(7.1) ue C([-T,T; E)  and ||ullrers < |luollms -
To obtain Theorem 7.2 we will need the following result proved in [12].

Lemma 7.1. Assume that s > 0, T > 0 and u € C([-T,T]; E*). Consider for
0<T'<T

(7.2) A (u) = max (||u|

5y, 102 (2)nz, ) -

The map T — A%, is nondecreasing, continuous on [0,T) and moreover
7.3 lim A%, (u)=0.

(7.3) Jim A7 (u)

Proof of Theorem 7.2 First note that we can always assume that the initial
data up have a small E®-norm. Indeed, if u(t,z,y) is a solution of (1.1) then
ur(t,z,y) = MM TVt Aoz \V/2y) is a solution of (1.1) on the time interval
[0, \=(+1/) T with initial data uy (0, 2,y) = Au(A/*z, \/?y). On the other hand,
one can easily check that

1

3_ L S
(7.4) [ux(0, 2, y)[[ e S A2 72 (1+ A7) [[w(0, 2, 9) || &=

-1 3 1y-1
and then, choosing A\ ~ e(i-2s) HuoHSE‘*S %) we see that ux(0,.) belongs to

B?(e) the ball of E® centered at the origin with radius e. Hence it is enough to
prove that if ux(0,.) € B*(¢), Theorem 7.2 holds with 7" = 1. This will prove the
result with T'(|[uo| =) ~ [Juo|| gt/ @ B/471/ 2D,

In view of those considerations, we take now ug € E* N B%(e) and let u €
C([-T,T]; E*) be the solution of (1.1) given by Theorem 7.1 (with 0 < T < 1).
Then gathering the linear estimate (2.9), Proposition 5.1, (6.5) and (6.10) we get

(7.5) A (w)? < (1 + [luoll mo)lluollZe + (A5(u) + A5 (u)?)AZ (u)?

for all B > s > s,. Using (7.5) with 8 = s, a continuity argument and that
7}in(l)/\,f(u) =0, we have A%(u) < e as soon as ||ugl|lgs < €. By estimate (2.9)
—
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together with the short time estimate (5.1) it follows then that for ||ug|/gs < ¢,
(7.6) I (u) = max ([|lull 5., lullrz) S € -

Then Lemma 2.1, estimates (2.9), (5.1) and (7.5) lead to
(7.7) lull s < T(w) S lluoll s

for all 5 > s as soon as ||ug||gs < e. Using this above estimate with § = 3 we can
apply Theorem 7.1 a finite number of time and thus extend the solution u of (1.1)
on the time interval [—1, 1].

7.2. L?-Lipschitz bounds and uniqueness. Let us consider two solutions
and ug defined on [T, T, with initial data ¢ and @2 and assume moreover that

(7.8) 0 € B5(e) and T3 (w)<e,i=1,2

If we define the function v by v = u; — ug, we see that v is a solution of (6.1) with
u = uy + uy and moreover u solves (6.2) with a nonlinear term which is u? + u3.
It follows then from (6.5), (6.9), (2.9), the short time estimate (5.2) together with
the smallness assumptions (7.8) that

(7.9) I7(v) < ller — p2llL2ee) -
With this L?-bound in hand we can now state our uniqueness result.

Proposition 7.1. Let s > s,. Consider uy and ug two solutions of (1.1) in
C([-T.1); E5)NB*(T)NF*(T) for someT > 0. If u1(0,.) = u2(0,.), then us = us
on the time interval [T, T].

Proof. Let be C' = max (I'f(u1), 5 (uz2)). We consider the same dilatations
u; » of u; as in the proof of Theorem 7.2. As previously, they are solutions
of (1.1) on [~T",T"] with T/ = \=0+V)T and with initial data u; (0, z,y) =
Au(0, Moz, )\1/2y). Then since we have

(7.10) luin(0, )| S A4 COL 4 XY usa (0, )=

and
(7.11)
lwinllLes 2o + lwiallzern S N1+ X%) (Juinllng me + luial

(7.12) S ON/AT/ @) (1 4 23

Be(T))

Choosing A\ small enough we get

(7.13) HuMHL;o,E Se, and |luialps(ry Se-
We prove now that for T < T small enough, we also have
(7.14) Hui,/\HFS(T) Se.

Since ||ui || ps(ry < C, we can always find H € D such that

(7.15) 1P izl pspy S 1P>mUNPe(r) < €, 0=1,2.
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Moreover since |[u .7 < C|lull 2 gs, we infer from (2.9), Holder inequality and
T
the Sobolev embedding E* «— H'/?(R?) — L*(R?) (since s > 1/2) that

(7.16) IP<muilpg < lluillsg + 1P<a0s(ui )2 g

(7.17) < luinllsg +TV2HS Y Pepr(uf )l nzsz
(7.18) < 5JFT1/2H5+1/a||ui,/\||%;.f’L‘;y

(7.19) e+ TV2H Y uin L e -

This leads to

(7.20) ||P§Hui,A||F; <e+ TI/QHSH/QHUMH%?HUZ

(7.21) < e+ TPH Y Juga ] e

(7.22) <92,

by choosing T small enough. Gathering estimates (7.13), (7.15) and (7.20), we
thus obtain that the smallness condition (7.8) holds, which shows that u; = ug on
[~T,T] (since (7.9) holds). Using the same argument a finite number of time we
obtain that u; = ug on [-7",T’] and so on [—T,T] by dilatation.

7.3. Existence. Let s, < s < 3 and ug € F®. By scaling considerations we can
always assume that ug € B*(¢). Following [12] we are going to use the Bona-Smith
argument to obtain the existence of a solution u with ug as initial data.

Consider p € S(R?) with [ p(z,y)dzdy = 1 and [2'y/p(z,y)dedy = 0 for
0<i<[s]+1,0<j <[s]+1,1 <i+jandlet us define py = ATV p(AV @z A/2y).
Then following [1] we have

Lemma 7.2. Let s >0, ¢ € E® and oy = px * p. Then,

(7.23) loallzsrs S A llpllp , V6 <0,
and
(7.24) lox — @llgs—s =0 (/\5) , V8 €0,9].

Consider now the smooth initial data ugx = px * ug. Since ug \ € H*®(R?) for
any A > 0, by Theorem 7.1, there exist T > 0 and an unique solution u of (1.1) such
that uy € C([~Tx,Ty]; H>*(R?)) with initial data ux(0,.) = ug . Note first that
from (7.23) we have |lux ol g < ||uo| ps < . Hence following the proof of Theorem
7.2, the sequence (uy) can be extended on the interval [—1, 1] and moreover

£ SAT fugl

S 5+
(7.25) T5(up) < Cllunollps Se and T77° (uy) < [luo | peted

Then we get from (7.9) and (7.24) that for 0 < X < A,

Es -

(7.26) F?(U)\ — U)\/) 5 ||UO7)\ — UO,/\/HLZ(RZ) = 0()\5) .

Moreover, from estimates (2.9), (5.1), (6.8) we see that, for s > s,,

2

ES
ersJr ersJr 0 s

(7.28) + (77 (ua) + T (ua)) T (ux — un )T (ux — ux)

(7.29) + (05 (ux)? + T (ux ) )0 (ua — u)?,

(727)  T§(un—un)?® S (1 + Jluox — uon | go)lluox — o
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which leads to

(7.30) T5(ux —un)® £ uox — o[l + (037 (un) + 157 (wn)) T (s — ux)
Thus we have

(7.31) lux —uxllzeeps STT(un —ux) = 0if X = 0.

This proves that the sequence (u)) converges in the norm I'§ to a solution u of
(1.1), which ends the proof.

7.4. Continuity of the flow map. We refer to [12] for the continuity of the flow-
map, which follows easily now from the results given in the previous subsections
together with Theorem 7.1

8. APPENDIX.

In this section we prove our C? ill-posedness result for initial data in E* (for all
s € R) when 1 < o < 2. This extends previous results in [7] where the ill-posedness
of (1.1) is proved in E*, for all s € R, assuming that o < 4/3. This result has to be
viewed as an extension of the well-known result in [17] where the C? ill-posedness
in H*°(R) (for all s € R) of the one dimensional generalized Benjamin-Ono equation
Oru + D%u, = uu, is proved for all a € [1,2].

Following [17], we see that it is enough to build a sequence of functions fx such
that, for all s € R,

(5.1) 1wl <€
and
s i | [ oo Owenoemde] =

Es

Let N large enough, v < 1 and 0 < € < 1 such that v* < 1. Let us now define the
subsets of R2,

(83) Qf = [7/257] X [785 278] and Q; = [Na N + 7] X [778/27 778] .
Then define Q] = —QF and Q; = —QF. We consider fy defined through its

Fourier transform by

(8:4) F(Q) =773 (1950 + 10, Q) +77F N (14 (O + 14, () -

Clearly the sequence fy is real valued and moreover (8.1) holds by obvious calcu-
lations. Consider now

In(to,y) = / Ut — YU InU ) ()]

Standard calculations leads then to

= | eilestura(c) e
In /]R PO P Q)N €~ 6) ey

with Q((1,¢ — ¢1) = w(() — w(¢1) — w(¢ — ¢1). By localization considerations,
observe now that Iy can be rewritten as the sum of eight terms with disjoint
supports corresponding to each different interactions in the nonlinear term. Hence,

d¢dgy
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considering only the low-high interaction 1+ Q) oF (¢€), it will be enough to prove
that (8.2) holds where F(Iy) is now replaced by

eitQ(¢1,{—C1) _ 1

FIN)(t, Q) =y~ I N—aseitw ()¢ déy -

GeQT ¢—¢1eqQd m
We claim now that for ¢; € Qf, ¢ — (1 € QF and v = o(N), then it holds,

(8.5) ¢ ¢ = Q)| ~ AN

Recall first that

QG,¢—¢) = [€1E]" =&l = (E=&)|E= &+ [ =& pT— (=& ) (u—p)?] = T+IT .

. Contribution I
By virtue of the mean value theorem we infer that there exists 6 € [ — &,¢]
such that

E1E1" = (€ = &)IE — & = (o + 1)I&0]

which leads to
(8.6) S161% = (€ = &)IE = &[] ~ANT,
Moreover, recalling that |£1| ~ v = o(N) we have
(8.7) [€1]&1|*] ~~2FT = o(N) .
Then gathering (8.6) and (8.7) we obtain
(8.8) I~yN®.
. Contribution II

Since ¢; € Qf and ¢ — EQg,thenNJrggggNJrQ'yand %yggugf
which leads to

1
(8.9) 1726 (N + %) <GP <y (N+29) .

On the other hand, since ( — ¢; € Q3 we have

1
(8.10) V(N4 S (€= &) —m)* < =N
In the same way, since (; € Qf we have
(8.11) Erpg| ~ T

Then gathering (8.9),(8.10) and (8.11) we infer that

(8.12) II = O(y**2) .

Then (8.5) follows from (8.8) together with (8.12).
Choosing now v = N~(+9) for some § > 0, it follows from (8.5) that

et UC1,C—=C1) _ q
QC1,¢—C1)

[~
which lead then to
(8.13) ||INH2ES Z 772(1+5)N72as+2|t|,71+s(Na + ,725)2572(1+5)-
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Thus, choosing e(a) and §(«) small enough, we have

~

lim |[Iy]%: > lim [¢{{N2y'F > lim [g|N2moms@r) =0 — 4o
N—+o0 N —+o0 N—+o0

for all o € [1,2[ and for all s € R. This ends the proof of (8.2).
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