Alexander Gepperth

Mathieu Lefort

Thomas Hecht

Ursula Körner

Resource-efficient incremental learning in very high dimensions

come

Introduction

Incremental learning remains a challenging issue in machine learning. While it is almost self-evident to biologists that learning should be incremental, the technical realization presents baffling difficulties. First of all, incremental learning is inherently sub-optimal when it comes to optimizing an objective (or loss) function. As one can never assume to have seen all training samples at any single point during training, optimization can only take into account the examples seen up to the present moment. Furthermore, the statistics of input-output relations are usually not homogeneous for any finite dataset, so incremental learning must essentially assume non-stationary input statistics at some time scale, which raises the question of how to fuse already learned aspects of a task, without destroying them, with new ones. The latter issue is a real problem for connectionist models Fig. 1: Schema of the three-layer PROPRE architecture composed of input, induced and output representations. Initially there is a forward transmission step, propagating the information to the top-level of the hierarchy where it is decided whether a correct result was obtained. In case it was not, SOM weights are updated in the feedback step, thus leading to a representation of difficult samples in N .

of learning [START_REF] Goodfellow | An empirical investigation of catastrophic forgeting in gradient-based neural networks[END_REF] and has been termed "catastrophic forgetting", and it is clear that any feasible incremental learning algorithm needs to avoid this issue.

Biological foundations

As biological incremental learning has reached a high degree of perfection, we explicitly investigated the biological literature for hints as how to this might be achieved. Basing ourselves on observations from the basic sensory cortices, we noted that sensory representations seem to be prototypebased, where prototype-sensitive neurons are topologically arranged by similarity [START_REF] Tanaka | Inferotemporal cortex and object vision[END_REF][START_REF] David A Leopold | Norm-based face encoding by single neurons in the monkey inferotemporal cortex[END_REF][START_REF] David A Ross | Not just the norm: Exemplarbased models also predict face aftereffects[END_REF][START_REF] Erickson | Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys[END_REF]. Learning seems to act on these representations in a task-specific way, where more prototypes are allocated to sensory regions where finer discrimination is necessary [START_REF] Daniel B Polley | Perceptual learning directs auditory cortical map reorganization through top-down influences[END_REF], a mechanism which presumably gated learning through acetylcholine release in case of task failures [START_REF] Norman | The nucleus basalis and memory codes: Auditory cortical plasticity and the induction of specific, associative behavioral memory[END_REF][START_REF] Michael | The role of acetylcholine in learning and memory[END_REF]. In particular, learning seems to respect and even generate topological layout of prototypes by changing only a small subset of neural selectivities [START_REF] Rolls | The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey[END_REF], namely those neurons who previously best matched the stimuli to be learned [START_REF] Erickson | Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys[END_REF].

Model properties

We propose a three-layer neural model for incremental learning that contains a topologically organized representation of prototypes in its hidden layer (termed "induced representation"), trained by the self-organized map (SOM) algorithm [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF]. Due to the properties of SOMs, learning is always strictly local in the sense that only the prototypes that are similar to the bestmatching one are adapted, thus avoiding catastrophic forgetting. SOM learning is activated by adverse task performance, which conversely means that learning stops once the task is acquired, thus maintaining long-term stability. Classification is performed by simple linear regression from the hidden layer towards a population-coded target vector after first applying a non-linear transfer function to all hidden layer activities.

Related work

Incremental learning algorithms are especially interesting for robotics applications [START_REF] Sigaud | On-line regression algorithms for learning mechanical models of robots: a survey[END_REF], and in fact several very interesting proposals have already been made in this context [START_REF] Sigaud | On-line regression algorithms for learning mechanical models of robots: a survey[END_REF]. An especially popular algorithm in robotics is LWPR [START_REF] Vijayakumar | Incremental online learning in high dimensions[END_REF], which partitions the input spaces into receptive fields (RFs), volumes that are defined by a centroid and a covariance matrix, to which separate linear models are applied. Many other incremental algorithms, reviewed in [START_REF] Sigaud | On-line regression algorithms for learning mechanical models of robots: a survey[END_REF] partition the input space in a similar way and thus will presumably run into memory problems when input dimensionality is high, as LWPR does.

Contribution of this article

In this article, we will propose a model for incremental learning that can cope with scenarios where KM ∼ 10000 (K, M denoting input.output dimensionality) and beyond, and evaluate its performance on the well-known MNIST benchmark [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. We perform a comparison to LWPR that explicitly evaluates the incremental aspect of learning by training the algorithms on a subset of classes and subsequently adding the remaining classes.

Methods

The PROPRE architecture

PROPRE is an architecture composed of different algorithmic modules, rather than an algorithm in itself. One PROPRE iteration consists of the following steps, as described in [START_REF] Gepperth | Efficient online bootstrapping of representations[END_REF], where only the computation of the predictability measure λ is changed to represent the current binary classification error: input: new data is fed into the input representation I and provided to the SOM, and a new target representation T is provided projection: activity is formed in the induced representation N (see Fig. 1) by projection of I onto the SOM prototypes prediction: based on activity in N , a linear regression step is performed to produce representation P which predicts class membership evaluation: a mismatch measure is computed between P and T update: linear regression weights are updated. SOM weights are updated only if mismatch was detected. In mathematical terms, the whole model is governed by the following equations, where we denote neural activity at position y = (a, b) in a 2D representation X by z X (y, t) and weight matrices for SOM and LR, represented by their line vectors attached to target position y = (a, b) by w SOM y :

z N (y, t) = w SOM y (t) • z I (t) (1)
z P (y, t) = w LR y (t) • z I (t) (2)
λ(t) = 0 if argmax y z P (y, t) = argmax y z T (y, t), 1 else (3)
w LR y (t + 1) = w LR y (t) + 2ǫ LR z I (t) z P (t) -z T (t) (4)
w SOM y (t + 1) = norm w SOM y (t) + λ(t)ǫ SOM g σ (y -y *)(z I -w SOM y) (5) (6)
where g σ (x) is a zero-mean Gaussian function with standard deviation σ and y * denotes the position of the best-matching unit (the one with the highest activity) in N . In accordance with standard SOM training practices, the SOM learning rate and radius, ǫ SOM and σ, start at ǫ 0 , σ 0 and are exponentially decreased in order to attain their long-term values ǫ ∞ , σ ∞ at t = T conv .

LWPR

We use the LWPR algorithm as described in [START_REF] Vijayakumar | Incremental online learning in high dimensions[END_REF] using a publicly available implementation [START_REF] Vijayakumar | A library for locally weighted projection regression[END_REF].

The MNIST handwritten digit database

For all experiments, we use he publicly available MNIST classification benchmark as described in [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. It contains 10 classes, corresponding to the 10 handwritten digits from "0" to "9", see also Fig. 1. Each sample has a dimensionality of K = 28 × 28 = 784. We split the data into two sets: D 0-4 containing the digits from "0" to "4", and D 5-9 containing the remaining digits. Each set is again split, at a proportion of 5:1, into a training and a test set to measure generalization performance, giving in total four data sets: D train 0-4 (25.000 samples), D test 0-4

(5.000 samples), and analogously D train 5-9 , D test 5-9 . For training and evaluating performance on all digits, we also create the sets D train 0-9 , D test 0-9 in an analogous fashion.

Experiments

Experimental setup We conduct an identical set of experiments both for PRO-PRE and for LWPR, which is designed to measure the capability to perform incremental learning. To this effect, we present D train 0-4 for T 1 = 15000 iterations, subsequently D train 5-9 for T 2 = 15000 iterations, and lastly D train 0-9 for T 3 = 2000 iterations, which is fair to both algorithms as it allows them to converge (longer training times did not change results). At all times, we can measure generalization performance on any of the sets D test 0-9 , D test 0-4 and D test 5-9 . In order to establish a baseline performance, to be compared to offline, batch type algorithms, we also train and evaluate both algorithms on D 0-9 . We use the following parameters for PROPRE: n = 30, ǫ SOM = 0.2, ǫ LR = 0.09 n 2 , ǫ 0 = 0.8, σ 0 = 0.6n, T 1 = 4000, ǫ ∞ = 0.2 and σ ∞ = 1. Both SOM and LR weight matrices were initialized to random uniform values between -0.001 and 0.001. For PROPRE, input vectors where always normalized to have an L2 norm of 1.0 before presenting them. LWPR is parametrized as follows, using notation from [START_REF] Vijayakumar | A library for locally weighted projection regression[END_REF] for details: init alpha=0, init D =3.2 (in order to limit receptive field number to ¡ 8), diag only=0, update D=1, using default parameters everywhere else. No normalization of inputs was performed for LWPR.

Results Results are given in Tab. 1 and show that baseline performance of both algorithms is roughly comparable, with a slight edge to PROPRE. Both algorithms convincingly avoid catastrophic forgetting since performance on D test 0-9 after successive training on D train 0-4 and D train 5-9 is >> 10% which we would expect in case the digits 0-4 had been forgotten. In both cases performance improves

PROPRE LWPR ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ train set test set D test 0-9 D test 0-4 D test 5-9 D test 0-9 D test 0-4 D test 5-9 D train 0-9 90% x x 83% x x D train 0-4 43% 95% x 44% 93% x D train 5-9 80 x x 71 x x D train 0-9 85 x x 80 x x%
Table 1: Performance evaluation of PROPRE and LWPR on MNIST data. First row: performance on D test 0-9 when both algorithms are trained on all classes simultaneously, e.g., on D train 0-9 . Rows 3,4,5: performance when successively training on D train 0-4 (row 3), D train 5-9 (row 4) and, for a small interval on D train 0-9 (row 5).

when performing a short retraining on D train 0-9 . For PROPRE, this is because linear regression models for D train 0-4 are no longer fully valid after training on D train 5-9 , and retraining can help fix this. Similarly, for LWPR, some classes share receptive fields and therefore the associated linear models are no longer fully valid after training on D train 0-4 and need to be readjusted.

Discussion

Generally, LWPR had to be parametrized very carefully in order not to exceed the computer memory limits, allowing at most 8 receptive fields per output dimension. This is because, for K input dimensions, a single receptive field in LWPR requires roughly 5K 2 floating point values, mainly in order to store the covariance matrix and keep track of data statistics. As LWPR allocates RFs independently for each of M output dimensions, the overall memory requirements are O(5M K 2) which gets problematic for large K as it is the case for MNIST(K = 28 2). Limiting RF creation surely limited LWPR's ability to exert its full potential on this benchmark; on the other hand, it is a fair comparison because both algorithms were executed on the same computer (Ubuntu Linux, 2 GB RAM, CoreI7 processor) and had to make do with the same resources. PROPRE suffered from no memory limitations since, for a fixed size n × n of the induced representation N , PROPRE requires Kn 2 + n 2 M = n 2 (K + M) floating point values for storing the weight matrices. If we compare the baseline performance of both algorithms to the performances of other algorithms on MNIST, we find that PROPRE performs better than some but significantly worse than the best algorithms, whereas LWPR (with these specific parameters) performs worse than even linear models. For the case of PROPRE, this is the price to pay for online and incremental learning capacity, as already amply discussed in [START_REF] Vijayakumar | Incremental online learning in high dimensions[END_REF]. For LWPR, it can be concluded that in the present form it is unsuited for this kind of input/output dimensionalities. The fact that LWPR is intended to perform regression and not classification does not influence memory requirements, and in addition classification is a special case of regression even if the reverse does not hold.

We have presented an algorithm for resource-efficient incremental learning that draws its efficiency from principles of biological information processing. We showed that it compares favorably with the quasi-standard algorithm for incremental learning, LWPR, when tested on a standard machine learning benchmark while requiring only a fraction of computational, and above all, memory resources. What is more, the bulk of computation is contained in the SOM projection implemented by a matrix multiplication, which is an operation that can is easily parallelized. Therefore, not only memory consumption hut also runtime speed can be very low when using PROPRE. Next steps will include tests on robotic applications (e.g., online learning of forward and inverse models) as well as a hierarchical versions the architecture with multiple stacked induced representations N for improving computational power.

* Thomas Hecht gratefully acknowledges financial support by the French Armaments Procurement Agency (DGA) and Ecole Polytechnique.