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Abstract. We propose a three-layer neural architecture for incremental
multi-class learning that remains resource-efficient even when the num-
ber of input dimensions is very high (≥ 1000). This so-called projection-
prediction (PROPRE) architecture is strongly inspired by biological in-
formation processing in that it uses a prototype-based, topologically or-
ganized hidden layers trained with the SOM learning rule controlled by a
global, task-related error signal. Furthermore, the SOM learning adapts
only the weights of localized neural sub-populations that are similar to the
input, which explicitly avoids the catastrophic forgetting effect of MLPs in
case new input statistics are presented to the architecture. As the readout
layer uses simple linear regression, the approach essentially applies lo-
cally linear models to ”receptive fields” (RF) defined by SOM prototypes,
whereas RF shape is implicitly defined by adjacent prototypes (which
avoids the storage of covariance matrices that gets prohibitive for high
input dimensionality). Both RF centers and shapes are jointly adapted
w.r.t. input statistics and the classification task. Tests on the MNIST
dataset show that the algorithm achieves compares favorably compared to
the state-of-the-art LWPR algorithm at vastly decreased resource require-
ments.

1 Introduction

Incremental learning remains a challenging issue in machine learning. While it
is almost self-evident to biologists that learning should be incremental, the tech-
nical realization presents baffling difficulties. First of all, incremental learning is
inherently sub-optimal when it comes to optimizing an objective (or loss) func-
tion. As one can never assume to have seen all training samples at any single
point during training, optimization can only take into account the examples seen
up to the present moment. Furthermore, the statistics of input-output relations
are usually not homogeneous for any finite dataset, so incremental learning must
essentially assume non-stationary input statistics at some time scale, which raises
the question of how to fuse already learned aspects of a task, without destroying
them, with new ones. The latter issue is a real problem for connectionist models
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Fig. 1: Schema of the three-layer PROPRE architecture composed of input,
induced and output representations. Initially there is a forward transmission
step, propagating the information to the top-level of the hierarchy where it is
decided whether a correct result was obtained. In case it was not, SOM weights
are updated in the feedback step, thus leading to a representation of difficult
samples in N .

of learning [1] and has been termed ”catastrophic forgetting”, and it is clear that
any feasible incremental learning algorithm needs to avoid this issue.

Biological foundations As biological incremental learning has reached a high de-
gree of perfection, we explicitly investigated the biological literature for hints as
how to this might be achieved. Basing ourselves on observations from the basic
sensory cortices, we noted that sensory representations seem to be prototype-
based, where prototype-sensitive neurons are topologically arranged by similarity
[2, 3, 4, 5]. Learning seems to act on these representations in a task-specific way,
where more prototypes are allocated to sensory regions where finer discrimi-
nation is necessary [6], a mechanism which presumably gated learning through
acetylcholine release in case of task failures [7, 8]. In particular, learning seems
to respect and even generate topological layout of prototypes by changing only
a small subset of neural selectivities [9], namely those neurons who previously
best matched the stimuli to be learned [5].

Model properties We propose a three-layer neural model for incremental learn-
ing that contains a topologically organized representation of prototypes in its
hidden layer (termed ”induced representation”), trained by the self-organized
map (SOM) algorithm [10]. Due to the properties of SOMs, learning is always
strictly local in the sense that only the prototypes that are similar to the best-
matching one are adapted, thus avoiding catastrophic forgetting. SOM learning
is activated by adverse task performance, which conversely means that learning
stops once the task is acquired, thus maintaining long-term stability. Classifi-
cation is performed by simple linear regression from the hidden layer towards a
population-coded target vector after first applying a non-linear transfer function
to all hidden layer activities.

Related work Incremental learning algorithms are especially interesting for robotics
applications [11], and in fact several very interesting proposals have already been



made in this context [11]. An especially popular algorithm in robotics is LWPR
[12], which partitions the input spaces into receptive fields (RFs), volumes that
are defined by a centroid and a covariance matrix, to which separate linear mod-
els are applied. Many other incremental algorithms, reviewed in [11] partition
the input space in a similar way and thus will presumably run into memory
problems when input dimensionality is high, as LWPR does.

Contribution of this article In this article, we will propose a model for incremen-
tal learning that can cope with scenarios where KM ∼ 10000 (K,M denoting
input.output dimensionality) and beyond, and evaluate its performance on the
well-known MNIST benchmark [13]. We perform a comparison to LWPR that
explicitly evaluates the incremental aspect of learning by training the algorithms
on a subset of classes and subsequently adding the remaining classes.

2 Methods

2.1 The PROPRE architecture

PROPRE is an architecture composed of different algorithmic modules, rather
than an algorithm in itself. One PROPRE iteration consists of the following
steps, as described in [14], where only the computation of the predictability
measure λ is changed to represent the current binary classification error:
input: new data is fed into the input representation I and provided to the
SOM, and a new target representation T is provided projection: activity is
formed in the induced representation N (see Fig. 1) by projection of I onto the
SOM prototypes prediction: based on activity in N , a linear regression step is
performed to produce representation P which predicts class membership eval-

uation: a mismatch measure is computed between P and T update: linear
regression weights are updated. SOM weights are updated only if mismatch was
detected. In mathematical terms, the whole model is governed by the following
equations, where we denote neural activity at position ~y = (a, b) in a 2D repre-
sentation X by zX(~y, t) and weight matrices for SOM and LR, represented by
their line vectors attached to target position y = (a, b) by wSOM

~y :

zN(~y, t) = wSOM

~y (t) · zI(t) (1)

zP (~y, t) = wLR

~y (t) · zI(t) (2)

λ(t) = 0 if argmax~yz
P (~y, t) = argmax~yz

T (~y, t), 1 else (3)

wLR

~y (t+ 1) = wLR

~y (t) + 2ǫLRzI(t)
(

zP (t)− zT (t)
)

(4)

wSOM

~y (t+ 1) = norm
(

wSOM

~y (t) + λ(t)ǫSOMgσ(~y − ~y∗)(zI − wSOM

~y )
)

(5)

(6)

where gσ(~x) is a zero-mean Gaussian function with standard deviation σ and ~y∗

denotes the position of the best-matching unit (the one with the highest activity)
in N . In accordance with standard SOM training practices, the SOM learning



rate and radius, ǫSOM and σ, start at ǫ0, σ0 and are exponentially decreased in
order to attain their long-term values ǫ∞, σ∞ at t = Tconv.

2.2 LWPR

We use the LWPR algorithm as described in [12] using a publicly available
implementation[15].

2.3 The MNIST handwritten digit database

For all experiments, we use he publicly available MNIST classification benchmark
as described in [13]. It contains 10 classes, corresponding to the 10 handwritten
digits from ”0” to ”9”, see also Fig. 1. Each sample has a dimensionality of K =
28× 28 = 784. We split the data into two sets: D0−4 containing the digits from
”0” to ”4”, and D5−9 containing the remaining digits. Each set is again split,
at a proportion of 5:1, into a training and a test set to measure generalization
performance, giving in total four data sets: Dtrain

0−4 ( 25.000 samples), Dtest
0−4

( 5.000 samples), and analogously Dtrain
5−9 , Dtest

5−9. For training and evaluating
performance on all digits, we also create the sets Dtrain

0−9 , Dtest
0−9 in an analogous

fashion.

3 Experiments

Experimental setup We conduct an identical set of experiments both for PRO-
PRE and for LWPR, which is designed to measure the capability to perform
incremental learning. To this effect, we present Dtrain

0−4 for T1 = 15000 iterations,
subsequently Dtrain

5−9 for T2 = 15000 iterations, and lastly Dtrain
0−9 for T3 = 2000

iterations, which is fair to both algorithms as it allows them to converge (longer
training times did not change results). At all times, we can measure generaliza-
tion performance on any of the sets Dtest

0−9, D
test
0−4 and Dtest

5−9. In order to establish
a baseline performance, to be compared to offline, batch type algorithms, we
also train and evaluate both algorithms on D0−9. We use the following param-
eters for PROPRE: n = 30, ǫSOM = 0.2, ǫLR = 0.09

n2 , ǫ0 = 0.8, σ0 = 0.6n,
T1 = 4000, ǫ∞ = 0.2 and σ∞ = 1. Both SOM and LR weight matrices were
initialized to random uniform values between -0.001 and 0.001. For PROPRE,
input vectors where always normalized to have an L2 norm of 1.0 before pre-
senting them. LWPR is parametrized as follows, using notation from [15] for
details: init alpha=0, init D =3.2 (in order to limit receptive field number to
¡ 8), diag only=0, update D=1, using default parameters everywhere else. No
normalization of inputs was performed for LWPR.

Results Results are given in Tab. 1 and show that baseline performance of
both algorithms is roughly comparable, with a slight edge to PROPRE. Both
algorithms convincingly avoid catastrophic forgetting since performance onDtest

0−9

after successive training on Dtrain
0−4 and Dtrain

5−9 is >> 10% which we would expect
in case the digits 0-4 had been forgotten. In both cases performance improves



PROPRE LWPR
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

train set

test set
Dtest

0−9 Dtest
0−4 Dtest

5−9 Dtest
0−9 Dtest

0−4 Dtest
5−9

Dtrain
0−9 90% x x 83% x x

Dtrain
0−4 43% 95% x 44% 93% x

Dtrain
5−9 80 x x 71 x x

Dtrain
0−9 85 x x 80 x x%

Table 1: Performance evaluation of PROPRE and LWPR on MNIST data. First
row: performance onDtest

0−9 when both algorithms are trained on all classes simul-
taneously, e.g., on Dtrain

0−9 . Rows 3,4,5: performance when successively training
on Dtrain

0−4 (row 3), Dtrain
5−9 (row 4) and, for a small interval on Dtrain

0−9 (row 5).

when performing a short retraining on Dtrain
0−9 . For PROPRE, this is because

linear regression models for Dtrain
0−4 are no longer fully valid after training on

Dtrain
5−9 , and retraining can help fix this. Similarly, for LWPR, some classes share

receptive fields and therefore the associated linear models are no longer fully
valid after training on Dtrain

0−4 and need to be readjusted.

4 Discussion

Generally, LWPR had to be parametrized very carefully in order not to exceed
the computer memory limits, allowing at most 8 receptive fields per output di-
mension. This is because, for K input dimensions, a single receptive field in
LWPR requires roughly 5K2 floating point values, mainly in order to store the
covariance matrix and keep track of data statistics. As LWPR allocates RFs
independently for each of M output dimensions, the overall memory require-
ments are O(5MK2) which gets problematic for large K as it is the case for
MNIST(K = 282). Limiting RF creation surely limited LWPR’s ability to exert
its full potential on this benchmark; on the other hand, it is a fair comparison
because both algorithms were executed on the same computer (Ubuntu Linux,
2 GB RAM, CoreI7 processor) and had to make do with the same resources.
PROPRE suffered from no memory limitations since, for a fixed size n×n of the
induced representation N , PROPRE requires Kn2+n2M = n2(K+M) floating
point values for storing the weight matrices. If we compare the baseline perfor-
mance of both algorithms to the performances of other algorithms on MNIST,
we find that PROPRE performs better than some but significantly worse than
the best algorithms, whereas LWPR (with these specific parameters) performs
worse than even linear models. For the case of PROPRE, this is the price to pay
for online and incremental learning capacity, as already amply discussed in [12].
For LWPR, it can be concluded that in the present form it is unsuited for this
kind of input/output dimensionalities. The fact that LWPR is intended to per-
form regression and not classification does not influence memory requirements,
and in addition classification is a special case of regression even if the reverse
does not hold.



5 Conclusion

We have presented an algorithm for resource-efficient incremental learning that
draws its efficiency from principles of biological information processing. We
showed that it compares favorably with the quasi-standard algorithm for incre-
mental learning, LWPR, when tested on a standard machine learning bench-
mark while requiring only a fraction of computational, and above all, memory
resources. What is more, the bulk of computation is contained in the SOM
projection implemented by a matrix multiplication, which is an operation that
can is easily parallelized. Therefore, not only memory consumption hut also
runtime speed can be very low when using PROPRE. Next steps will include
tests on robotic applications (e.g., online learning of forward and inverse models)
as well as a hierarchical versions the architecture with multiple stacked induced
representations N for improving computational power.
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