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Abstract. Self-organizing map (SOM) is a powerful paradigm that
is extensively applied for clustering and visualization purpose. It is also
used for regression learning, especially in robotics, thanks to its ability
to provide a topological projection of high dimensional non linear data.
In this case, data extracted from the SOM are usually restricted to the
best matching unit (BMU), which is the usual way to use SOM for clas-
sification, where class labels are attached to individual neurons. In this
article, we investigate the influence of considering more information from
the SOM than just the BMU when performing regression. For this pur-
pose, we quantitatively study several output functions for the SOM, when
using these data as input of a linear regression, and find that the use of
additional activities to the BMU can strongly improve regression perfor-
mance. Thus, we propose an unified and generic framework that embraces
a large spectrum of models from the traditional way to use SOM, with
the best matching unit as output, to models related to the radial basis
function network paradigm, when using local receptive field as output.

1 Introduction

Self-organizing map (SOM), especially the well known Kohonen model [1], is
a powerful paradigm that is traditionally used for clustering, visualization and
data analysis in various domains [2, 3], where each unit is usually associated
with some label. It has also been used as an associative memory of motor and
visual data to learn direct and inverse models for robotic control. These models
exploit the SOM ability to cope with non linear redundant data in an adaptive
way and to be well suited for planning [4, 5]. The best matching unit (BMU)
alone is often used for computing the motor command to send in response to a
visual goal. In order to improve precision, some authors propose to extend the
Kohonen model by considering the motor commands associated to units close to
the BMU with various interpolation methods (see [4, 5] for a review). Similar
methods are also applied to time series prediction [6].

In addition to its use as an associative memory, the SOM paradigm is also
used in various feedforward and recurrent architectures to represent one data
flow before combining this representation with, for example, data from other
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modalities [7] or from previous time steps [8]. This separated and combined
multimodal processing allows the system to have online and adaptability prop-
erties which are highly desirable, especially in robotics [9, 10]. In most cases, the
BMU position is used as the relevant SOM output (see [11, 12] for example), even
if a limited number of models proposes alternative functions [7, 8, 13, 14, 15].

Targeting the use of SOM-based models for online and adaptable regression
learning, especially for multimodal and robotic purposes, this article quantita-
tively investigates the influence of the SOM output function on the system’s
performance. For that purpose, we use an unified framework combining a SOM
which processes the inputs and whose output, after passing through the output
function, feeds a linear regression step. In the next section, we introduce our
architecture and the tested output functions and in section 3, we present the
performance achieved with the different functions on a robotic control task.

2 Architecture

To study the influence of the output activity of the SOM when using it in an
integrated model, we consider the architecture depicted in figure 1 (see next sec-
tions for equations and details of each component). This architecture is designed
for online supervised learning of an input/output relationship. We already used
this processing flow in a more global unsupervised system, with another data
flow representation as the target signal, for the purpose of online and adaptable
multimodal correlation learning [10]. This article targets to be a step towards
the improvement of such models.

input          (     values)

output          (   values)

map activation          (            values)

map output          (            values)

prediction          (   values)

prediction error

bmu + neighboorhood

weights

-

fixed weights

plastic weights

learning modulation

Legend

linear regression module

SOM

weights

output function

Fig. 1: Studied architecture that couples a SOM, representing the input with
a generative learning procedure, with a learning regression step, learning the
relationship between this SOM output representation and a given output target.



2.1 Self-organizing map

In this article we use the Kohonen self-organizing map model. It is composed
of n× n units organized on a two-dimensional grid lattice. Unit prototypes are
updated with the learning rule proposed by Kohonen, with decreasing learning
rate and Gaussian neighborhood [1]. The map activation a(t) = {aij(t)}(i,j) is
equal for each unit located at position (i, j) in the map to the euclidean distance
between its prototype wS

ij(t) and the current input x(t):

aij(t) = ||wS
ij(t)− x(t)||

2.2 Output function

The SOM output activity o(t) = {oij(t)}(i,j) is the activity seen from the other
modules of an integrated architecture, here the linear regression. It is defined
by applying an output function to the map activation, i.e. for a unit at (i, j):

oij(t) = φ(a(t), θij)

with θij the set of (optional) parameters of the function φ. Note that the function
φ is the same for all the units, even if its parameters can vary from unit to unit
(although we do not make use of this possibility in this article).

We study various possible φ functions and present here three of them, inspired
by the literature, one for each of three main types of possible output functions:
global (section 2.2.1), local (section 2.2.2) and mixed local/global (section 2.2.3).

2.2.1 Global: Best matching unit (BMU)

The SOM output activity corresponds to the BMU, with coordinates (i∗, j∗),
which is the usual way to define SOM representation (see [11, 12] e.g.):

oij(t) = φ(a(t)) =

{
1 if (i, j) = (i∗, j∗)
0 otherwise

2.2.2 Local: Gaussian similarity

The output activity of each unit depends only on the activation of this unit and
is equal to a Gaussian similarity, as proposed in [8], with σ′ its variance:

oij(t) = φ(a(t), σ′) = e−
aij(t)

2

2σ′2

From a biological point of view, this output activity corresponds to overlap-
ping receptive fields in the input space which are similar to what we can observe
in visual areas. From a machine learning perspective, the complete proposed
architecture corresponds to an online version of the radial basis function net-
work (RBFN) paradigm [16] with Gaussian basis functions whose centers are
placed with the SOM algorithm. RBFN is an universal approximator as proved
in [17] but to our knowledge, the influence of the algorithm used for placing basis
function centers on the model performance was not yet reviewed.



2.2.3 Mixed local/global: Softmax

The output activity takes into account local and global activation. It is equal
to a softmax function on a similarity measure (such as in [14]), here chosen
Gaussian, with σ′ the Gaussian variance and p an integer power:

oij(t) = φ(a(t), σ′, p) =

(
e−

aij(t)
2

2σ′2

)p

max
(i′,j′)

(
e−

a
i′j′ (t)

2

2σ′2

)p

Decreasing the softmax power parameter p leads to consider more units in
the SOM output and provides a gradual change from a best matching unit rep-
resentation (p→∞) to a Gaussian similarity one (p = 1), except for the normal-
ization, closing the gap between the two previously described output functions.

2.3 Linear regression

Each output value of the linear regression module, that computes the prediction
p(t) = {pk(t)}k made by the whole system, is equal to:

pk(t) =
∑
(i,j)

wL
kij(t)oij(t)

with wL
kij(t) the weight between the unit at position (i, j) in the SOM and the

k-th value of the prediction.
For an online architecture, the weights can be updated with an online version

of linear regression. In practice, in this article, this linear regression is computed
offline because this suppresses the stochasticity of the online version, thus pro-
viding a fair comparison between the tested output functions without having to
perform a large amount of trials.

3 Experiments

3.1 Protocol

We test the influence of the output function in our architecture on the direct
model learning of a simulated robotic arm (see figure 2). 100000 motor com-
mands are generated uniformly in the motor space and current joint angles and
corresponding spatial egocentric position of the effector were recorded every 0.5
seconds during the movements leading to 232462 data samples. The model is
trained on a randomly chosen subset containing 90% of the data, the other 10%
are used for testing its generalization ability.

We first train the 20× 20 SOM, that we fix after checking that it is unfold,
and then perform the offline linear regression on all learning examples with the
different output functions. The variance of the Gaussian similarity is fixed to
200 for every output function tested. This value offers a good trade-off between
the average system’s performance and the spread of activity in the SOM.
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Fig. 2: Seven degrees of freedom compliant arm (a2 from Meka Robotics).

3.2 Results

The system error is computed as the average euclidean distance between the
predicted and the real spatial position of the effector over the 25830 testing ex-
amples. The average performance over 10 different SOMs, learned with random
initialization, depending on the output function used are presented in figure 3.

BMU
Gaussian Softmax
similarity p = 1 p = 10 p = 25 p = 100

error
7.6± 1.5 1.04± 0.3 1.14± 0.3 2.09± 0.5 4.47± 1.3 7.08± 1

(mm)

Fig. 3: Average error (in mm) depending on the SOM output function used.

We can clearly observe that the choice of the SOM output function has a
high influence on the system’s regression performance. Using all activities in the
map (Gaussian similarity) leads to a 7 times lower prediction error than con-
sidering only the BMU. The softmax provides a large spectrum of performances
interpolating between the two other functions when gradually changing the pa-
rameter p. This seems reasonable as softmax is close to the two other functions
for extremal values of p (see section 2.2.3). However, it can be a worthwhile func-
tion for using SOM in an integrated architecture by providing various trade-offs
between the system’s performance and compression of output information.

4 Conclusion and perspectives

In this article, we study how the SOM output activity, when using it in a feed-
forward architecture, influences the system’s regression performance. We tested
three SOM output functions, defined on the set of distance to prototypes of all
units, in an unified architecture: the best matching unit (which is the tradi-
tional way to use SOM inherited from its application to classification problems),
Gaussian similarity (leading to a system related to the radial basis function net-
work paradigm) and softmax on Gaussian similarity (providing a spectrum of
functions between the two first). Results obtained on the learning of a simu-
lated robotic arm direct model clearly show that considering activities additional
to the best matching unit significantly increases the system’s regression perfor-
mance, reducing the error by up to 7 times. These results indicate that the
choice of the SOM output activity (which is independent from the prototype



learning rule) is definitively an important point when using SOM in a feedfor-
ward architecture, which seems unfortunately underestimated in the literature.

This article is a first step towards the use of SOM-based architectures for
regression learning, closing the gap between the traditional use of SOM for clas-
sification and algorithms from the machine learning field. Of course, our archi-
tecture can be used with other functions proposed in the artificial neural network
field (see [18] for a review) and a deeper study will be necessary to determine the
advantages and drawbacks of each function. Moreover, this work opens interest-
ing perspectives to study how SOM-based algorithms can bring topological and
adaptability properties to the machine learning field while keeping reasonable
regression performances.
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