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GLOBAL UNIQUENESS IN AN INVERSE PROBLEM FOR TIME
FRACTIONAL DIFFUSION EQUATIONS

Y. KIAN, L. OKSANEN, E. SOCCORSI, M. YAMAMOTO

Abstract. Given (M, g), a compact connected Riemannian manifold of dimension

d > 2, with boundary ∂M , we consider an initial boundary value problem for a frac-

tional diffusion equation on (0, T )×M , T > 0, with time-fractional Caputo derivative

of order α ∈ (0, 1)∪ (1, 2). We prove uniqueness in the inverse problem of determining

the smooth manifold (M, g) (up to an isometry), and various time-independent smooth

coefficients appearing in this equation, from measurements of the solution on a subset

of ∂M at fixed time. In the “flat” case where M is a compact subset of Rd, two out

the three coefficients ρ (weight), a (conductivity) and q (potential) appearing in the

equation ρ∂αt u− div (a∇u) + qu = 0 on (0, T )× Ω are recovered simultaneously.

Keywords: Inverse problems, fractional diffusion equation, partial data, uniqueness

result.

Mathematics subject classification 2010 : 35R30, 35R11, 58J99.

1. Introduction

1.1. Statement of the problem. Let (M, g) be a compact connected Riemannian

manifold of dimension d > 2, with boundary ∂M . For a strictly positive function µ we

consider the weighted Laplace-Beltrami operator

∆g,µ := µ−1div g µ∇g,

where div g (resp., ∇g) denotes the divergence (resp., gradient) operator on (M, g), and

µ±1 stands for the multiplier by the function µ±1. If µ is identically 1 in M then ∆g,µ

coincides with the usual Laplace-Beltrami operator on (M, g). In local coordinates, we

have

∆g,µu =
d∑

i,j=1

µ−1|g|−1/2∂xi(µ|g|1/2gij∂xju), u ∈ C∞(M),
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where g−1 := (gij)16i,j6d and |g| := det g. For α ∈ (0, 2) we consider the initial boundary

value problem (IBVP)
∂αt u−∆g,µu+ qu = 0, in (0, T )×M,

u = f, on (0, T )× ∂M,

∂kt u(0, ·) = 0, in M, k = 0, ...,m,

(1.1)

with non-homogeneous Dirichlet data f . Here m := [α] denotes the integer part of α

and ∂αt is the Caputo fractional derivative of order α with respect to t, defined by

∂αt u(t, x) :=
1

Γ(m+ 1− α)

∫ t

0

(t− s)m−α∂m+1
s u(s, x)ds, (t, x) ∈ Q, (1.2)

where Γ is the usual Gamma function expressed as Γ(z) :=
∫ +∞

0
e−ttz−1dt for all z ∈ C

such that <z > 0. The system (1.6) models anomalous diffusion phenomena. In the

sub-diffusive case α ∈ (0, 1), the first line in (1.6) is usually named fractional diffusion

equation, while in the super-diffusive case α ∈ (1, 2), it is referred as fractional wave

equation.

Given two non empty open subsets Sin and Sout of ∂M , T0 ∈ (0, T ) and α ∈ (0, 2),

we introduce the function space

Hin,α,T0 := {f ∈ C [α]+1([0, T ], H
3
2 (∂M)); supp f ⊂ (0, T0)× Sin},

where we recall that [α] stands for the integer part of α. As established in Section 2,

problem (1.1) associated with f ∈ Hin,α,T0 is well posed and the partial Dirichlet-to-

Neumann (DN) map

ΛM,g,µ,q : Hin,α,T0 3 f 7→ ∂νu(T0, ·)|Sout :=
d∑

i,j=1

gijνi∂xju(T0, ·)|Sout , (1.3)

where u denotes the solution to (1.1) and ν is the outward unit normal vector field along

the boundary ∂M , is linear bounded from Hin,α,T0 into L2(Sout).

In this paper we examine the problem whether knowledge of ΛM,g,µ,q determines the

Riemannian manifold (M, g), and the functions µ and q, uniquely.

1.2. Physical motivations. Recall that fractional diffusion equations with time frac-

tional derivatives of the form (1.1) describe several physical phenomena related to

anomalous diffusion such as diffusion of substances in heterogeneous media, diffusion

of fluid flow in inhomogeneous anisotropic porous media, turbulent plasma, diffusion

of carriers in amorphous photoconductors, diffusion in a turbulent flow, a percolation
2



model in porous media, fractal media, various biological phenomena and finance prob-

lems (see [12]). In particular, it is known (e.g., [1]) that the classical diffusion-advection

equation does not often interpret field data of diffusion of substances in the soil, and as

one model equation, the fractional diffusion equation is used.

The diffusion equation with time fractional derivative is a corresponding macro-

scopic model equation to the continuous-time random walk (CTRW in short) and is

derived from the CTRW (e.g., [46, 51]).

In particular, in the case where we consider fractional diffusion equations describing

the diffusion of contaminants in a soil, we cannot a priori know governing parameters in

(1.1) such as reaction rate of pollutants. Thus for prediction of contamination, we need

to discuss our inverse problem of determining these parameters from measurements of

the flux on Sout at a fixed time t = T0 associated to Dirichlet inputs at Sin.

1.3. State of the art. Fractional derivative, ordinary and partial, differential equa-

tions have attracted attention over the two last decades. See [37, 47, 53, 57] regarding

fractional calculus, and [3, 26, 45], and references therein, for studies of partial differen-

tial equations with time fractional derivatives. More specifically, the well-posedness of

problem (1.1) with time-independent coefficients is examined in [4, 25, 52], and recently,

weak solutions to (1.1) have been defined in [36].

There is a wide mathematical literature for inverse coefficients problems associated

with the system (1.1) when α = 1 or 2. Without being exhaustive, we refer to [11, 13,

17, 18, 20, 23, 32] for the parabolic case α = 1 and to [5, 6, 7, 8, 9, 10, 21, 34, 38, 39, 40,

43, 49, 54, 55, 56] for the hyperbolic case α = 2. In contrast to parabolic or hyperbolic

inverse coefficient problems, there is only a few mathematical papers dealing with inverse

problems associated with (1.1) when α ∈ (0, 1) ∪ (1, 2). In the one-dimensional case,

[15] uniquely determines the fractional order α and a time-independent coefficient, by

Dirichlet boundary measurements. For d > 2, the fractional order α is recovered in

[28] from pointwise measurements of the solution over the entire time span. In [52],

the authors prove stable determination of the time-dependent prefactor of the source

term. In the particular case where d = 1 and α = 1/2, using a specifically designed

Carleman estimate for (1.1), [16, 58] derive a stability estimate of a zero order time-

independent coefficient, with respect to partial internal observation of the solution. In

[41], time-independent coefficients are uniquely identified by the Dirichlet-to-Neumann

map obtained by probing the system with inhomogeneous Dirichlet boundary conditions

of the form λ(t)g(x), where λ is a fixed real-analytic positive function of the time
3



variable. Recently, [22] proved unique determination of a time-dependent parameter

appearing in the source term or in a zero order coefficient, from pointwise measurements

of the solution over the whole time interval.

1.4. Main results. The paper contains two main results. Both of them are uniqueness

results for inverse coefficients problems associated with (1.1), but related to two different

settings. In the first one, (M, g) is a known compact subset of Rd, while in the second

one, (M, g) is an unknown Riemannian manifold to be determined. The first setting

is not contained in the second one, however, since in the second case, (M, g) and all

the other unknown coefficients are assumed to be smooth, while in the first case the

regularity assumptions are relaxed considerably.

We begin by considering the case of a connected bounded domain Ω in Rd, d > 2,

with C1,1 boundary ∂Ω. Let ρ ∈ C(Ω), V ∈ L∞(Ω) and a ∈ C1(Ω) fulfill the condition

ρ(x) > c, a(x) > c, V (x) > 0, x ∈ Ω, (1.4)

for some positive constant c. For M := Ω, put

g := ρa−1Id, µ := ρ1−d/2|a|1/2, and q := ρ−1V, (1.5)

in the first line of (1.1), where Id denotes the identity matrix in Rd2 . Since (M, g) is

a Riemannian manifold with boundary such that µ|g|1/2 = ρ, gij = 0 if i 6= j, and

gii = ρ−1a for i, j ∈ {1, . . . , d}, , we have

∆g,µu = ρ−1div (a∇u), u ∈ C∞(Ω).

Therefore, (1.1) can be equivalently rewritten as
ρ∂αt u− div (a∇u) + V u = 0, in Q := (0, T )× Ω,

u = f, on Σ := (0, T )× ∂Ω,

∂kt u(0, ·) = 0, in Ω, k = 0, . . . ,m.

(1.6)

As will appear in Section 3 for any arbitrary α ∈ (0, 1) ∪ (1, 2) and T0 ∈ (0, T ), the

partial DN map

Λρ,a,V : Hin,α,T0 3 f 7→ a∂νu(T0, ·)|Sout := a∇u(T0, ·) · ν|Sout (1.7)

where u is the solution to (1.6) and ν is the outward unit normal vector to ∂Ω, is

bounded from Hin,α,T0 into L2(Sout). Our first result claims that knowledge of Λρ,a,V

uniquely determines two out of the three coefficients ρ, a, and V , which are referred as,

respectively, the density, the conductivity, and the (electric) potential.
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Theorem 1.1. Assume that Sin ∩ Sout 6= ∅ and that Sin ∪ Sout = ∂Ω. For j = 1, 2, let

ρj ∈ L∞(Ω), aj ∈ W 2,∞(Ω), and Vj ∈ L∞(Ω) satisfy (1.4) with ρ = ρj, a = aj, V = Vj.

Moreover, let either of the three following conditions be fulfilled:

(i) ρ1 = ρ2 and

∇a1(x) = ∇a2(x), x ∈ ∂Ω. (1.8)

(ii) a1 = a2 and

∃C > 0, |ρ1(x)− ρ2(x)| 6 Cdist(x, ∂Ω)2, x ∈ Ω. (1.9)

(iii) V1 = V2 and (1.8)-(1.9) hold simultaneously true.

Then, Λρ1,a1,V1 = Λρ2,a2,V2 yields (ρ1, a1, V1) = (ρ2, a2, V2).

The second result describes the identifiability properties of the Riemannian manifold

(M, g) and the functions µ ∈ C∞(M) and q ∈ C∞(M), appearing in the first line of the

IBVP (1.1), that can be inferred from ΛM,g,µ,q. It is well known that the DN map is

invariant under isometries fixing the boundary. Moreover, gauge equivalent coefficients

(µ, q) cannot be distinguished by the DN map either. Here and henceforth, (µ1, q1)

and (µ2, q2) are said gauge equivalent if there exists a strictly positive valued function

κ ∈ C∞(M) satisfying

κ(x) = 1 and ∂νκ(x) = 0, x ∈ ∂M (1.10)

such that

µ2 = κ−2µ1, q2 = q1 − κ∆g,µ1κ
−1. (1.11)

Our second statement in as follows.

Theorem 1.2. For j = 1, 2, let (Mj, gj) be two compact and smooth connected Rie-

mannian manifolds of dimension d > 2 with the same boundary, and let µj ∈ C∞(Mj)

and qj ∈ C∞(Mk) satisfy µj(x) > 0 and qj(x) ≥ 0 for all x ∈ Mj. Let Sin, Sout ⊂ ∂M1

be relatively open and suppose that Sin ∩ Sout 6= ∅. Suppose, moreover, that g1 = g2,

µ1 = µ2 = 1 and ∂νµ1 = ∂νµ2 = 0 on ∂M1. Then, ΛM1,g1,µ1,q1 = ΛM2,g2,µ2,q2 yields that

(M1, g1) and (M2, g2) are isometric and that (µ1, q1) and (µ2, q2) are gauge equivalent.
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1.5. Comments. Notice that the absence of global uniqueness result manifested in

Theorems 1.1 (in the sense that only two of the three coefficients ρ, a, and V , are

recovered) and 1.2 (where the metric g is determined up to an isometry and (µ, q) are

identified modulo gauge transformation) arises from one or several natural obstructions

to identification in the system under investigation, each of them being induced by an

invariance property satisfied by (1.1).

The first obstruction, which can be found both in Theorems 1.1 and 1.2, is due

to the invariance of (1.1) under the group of gauge transformations given by (1.11).

Indeed, given a strictly positive function κ ∈ C∞(M) satisfying (1.10), we observe for

any (µ1, q1) and (µ2, q2) obeying (1.11), that

∆g,µ2(κw) = κ∆g,µ1w + δκw, w ∈ C∞(M),

where δ := κ−1∆g,µ1κ−2κ−2(∇gκ,∇gκ)g, and (·, ·)g denotes the inner product on (M, g).

In particular, taking w = κ−1 we get the simpler expression δ = −κ∆g,µ1κ
−1. Finally,

taking w = u, where u is the solution to (1.1) associated with µ = µ1 and q = q1, we

find that

(∂αt −∆g,µ2 + q2)(κu) = κ(∂αt −∆g,µ1 + q1)u = 0.

Since our assumptions (1.10) on κ imply that ∂ν(κu) = ∂νu and κu = u on (0, T )×∂M ,

we find that ΛM,g,µ1,q1 = ΛM,g,µ2,q2 . This proves that the DN map is invariant under the

group of gauge transformations

(µ, q) 7→ (κ−2µ, q − κ∆g,µκ
−1)

parametrized by strictly positive functions κ ∈ C∞(M) satisfying (1.10). Notice that

the conditions g1 = g2, µ1 = µ2 = 1 and ∂νµ1 = ∂νµ2 = 0 imposed on ∂M1 in Theorem

1.2 are analogous to (1.9) in Theorem 1.1. Moreover, the above mentioned invariance

property of the system indicates that the result of Theorem 1.1, where two of the three

coefficients ρ, a, and V , are simultaneously identified while keeping the third one fixed,

is the best one could expect.

The second obstruction arises from the fact that (1.1) is invariant with respect to

changes of coordinates. That is, if Φ : M →M is a diffeomorphism fixing the boundary

∂M then ΛM,g,µ,q = ΛM,Φ∗g,µ,q where Φ∗g is the pullback of g by Φ.
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To our best knowledge, the results of this article are the most precise so far, about

the recovery of coefficients appearing in a time fractional diffusion equation from bound-

ary measurements. We prove recovery of a wide class of coefficients from partial bound-

ary measurements that consist of an input on the part Sin of the boundary and obser-

vation of the flux at the part Sout for one fixed time t = T0 ∈ (0, T ). Our results extend

the ones contained in the previous works [15, 16, 28, 41, 58] related to this problem.

Another benefit of our approach is its generality, which makes it possible to treat the

case of a smooth Riemannian manifold, and the one of a bounded domain with weak

regularity assumptions on the coefficients.

Notice that (1.6) associated with α = 1 is the usual heat equation, in which case

Theorem 1.1 is contained [13, 14]. We point out that the strategy used in [13, 14] for

the derivation of Theorem 1.1 with α = 1, cannot be adapted to the framework of

time fractional derivative diffusion equations of order α ∈ (0, 1) ∪ (1, 2). This is due to

the facts that a solution to a time fractional derivative equation is not described by a

semi-group, and that there is only limited smoothing property, and no integration by

parts formula or Leibniz rule, with respect to the time variable, in this context. As a

consequence, the analysis developped in this text is quite different from the one carried

out by [13, 14].

Notice from Theorem 1.2 that the statement of Theorem 1.1 still holds true for

smooth coefficients in a smooth domain, under the weaker assumption Sin ∩ Sout 6=
∅. Nevertheless, in contrast to Theorem 1.2 where we focus on the recovery of the

Riemaniann manifold and the metric, the main interest of Theorem 1.1 lies in the weak

regularity assumptions imposed on the unknown coefficients of the inverse problem under

consideration. In the same spirit, we point out with Theorem 5.3 below, that the result

of Theorem 1.2 remains valid when Sin ∩ Sout = ∅, in the special case where µ = 1 and

q = 0, and assuming a Hassell-Tao type inequality [27].

The key idea to our proof is the connection between the DN map associated with

(1.1) and the boundary spectral data of the corresponding elliptic Schrödinger operator.

This ingredient has already been used by several authors in the context of hyperbolic

(see e.g. [31, 32, 38, 39, 40]), parabolic (see e.g. [14, 32]), and dynamical Schrödinger

(see e.g. [32]) equations. Nevertheless, to our best knowledge, there is no such approach

for time fractional diffusion equations, available in the mathematical literature. Once

the connection between the DN map and the boundary spectral data is established, we

obtain Theorems 1.1 and 1.2 by applying a Borg-Levinson type inverse spectral result

(see e.g. [14, 19, 30, 31, 33, 35, 50]).
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1.6. Outline. The paper is organized as follows. The next three sections are devoted

to the study of the inverse problem associated with (1.6) in a bounded domain, while

the last section contains the analysis of the inverse problem associated with (1.1) on a

Riemannian manifold.

More precisely, we establish a connection between Theorem 1.1 and a Borg-Levinson

type inverse spectral result in the first part of Section 2. In the second part, we introduce

mathematical tools used in the analysis of the direct problem associated with (1.6),

which is carried out in Section 3. Then we define the partial DN map Λρ,a,V at the end

of Section 3, and complete the proof of Theorem 1.1 in Section 4. Finally, Section 5

contains the proofs of Theorem 1.2, and the stronger result stated in Theorem 5.3 in

the particular case where µ = 1 and q = 0.

2. The settings

In this section, we begin the analysis of the inverse problem associated with (1.6),

which is the purpose of Theorem 1.1. We first establish the connection between Theorem

1.1 and a suitable version of the Borg-Levinson inverse spectral theorem.

2.1. Borg-Levinson type inverse spectral problem and Theorem 1.1. Let us

start by defining the boundary spectral data used by the Borg-Levinson type inverse

spectral theory.

Boundary spectral data. Given a positive constant c, we assume that ρ ∈ L∞(Ω)

satisfies ρ(x) > c > 0 for a.e. x ∈ Ω, so the scalar product

〈u, v〉ρ :=

∫
Ω

ρ(x)u(x)v(x)dx, u, v ∈ L2(Ω),

is equivalent to the usual one in L2(Ω). We denote by L2
ρ(Ω) the Hilbertian space L2(Ω)

endowed with 〈·, ·〉ρ.

Next, for a nonnegative V ∈ L∞(Ω), and for a ∈ C1(Ω) fulfilling a(x) > c > 0 for

every x ∈ Ω, we introduce the quadratic form

h[u] :=

∫
Ω

(
a(x)|∇u(x)|2 + V (x)|u(x)|2

)
dx, u ∈ Dom(h) := H1

0 (Ω),

and consider the operator H generated by h in L2
ρ(Ω). Since ∂Ω is C1,1, H is self-adjoint

in L2
ρ(Ω) and acts on its domain as

Hu := ρ−1 (div (a∇u) + V u) , u ∈ Dom(H) := H1
0 (Ω) ∩H2(Ω), (2.1)

according to [24, Theorem 2.2.2.3].
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By the compactness of the embedding H1
0 (Ω) ↪→ L2

ρ(Ω), the spectrum σ(H) of the

operator H is purely discrete. Let {λn; n ∈ N∗} be the non-decreasing sequence of the

eigenvalues (repeated according to multiplicities) of H. Furthermore, we introduce a

family {ϕn; n ∈ N∗} of eigenfuctions of the operator H, which satisfy

Hϕn = λnϕn, n ∈ N∗, (2.2)

and form an orthonormal basis in L2
ρ(Ω). Notice that each ϕn is a solution to the

following Dirichlet problem :
−div (a∇ϕn) + V ϕn = λnρϕn, in Ω,

ϕn = 0, on ∂Ω,∫
Ω
ρ(x) |ϕn(x)|2 dx = 1,

(2.3)

Put ψn := (a∂νϕn)|∂Ω for every n ∈ N∗. Following [13, 14, 31], we define the boundary

spectral data associated with (ρ, a, V ), as

BSD(ρ, a, V ) := {(λn, ψn); n > 1}.

A strategy for the proof of Theorem 1.1. We first recall from [14, Corollaries 1.5,

1.6 and 1.7] the following Borg-Levinson type theorem.

Proposition 2.1. Under the conditions of Theorem 1.1, assume that either of the three

assumptions (i), (ii) or (iii) is verified. Then BSD(ρ1, a1, q1) = BSD(ρ2, a2, q2) entails

that (ρ1, a1, q1) = (ρ2, a2, q2).

In view of the inverse spectral result stated in Proposition 2.1, we may derive the

claim of Theorem 1.1 upon showing that two sets of admissible coefficients (ρj, aj, Vj),

j = 1, 2, have same boundary spectral data, provided their boundary operators Λρj ,aj ,Vj

coincide. Otherwise stated, the proof of Theorem 1.1 is a byproduct of Proposition 2.1

combined with the coming result :

Theorem 2.2. For j = 1, 2, let Vj ∈ L∞(Ω), ρj ∈ L∞(Ω) and aj ∈ C1(Ω) satisfy

(1.4) with ρ = ρj, a = aj, V = Vj. Then Λρ1,a1,V1 = Λρ2,a2,V2 implies BSD(ρ1, a1, V1) =

BSD(ρ2, a2, V2), up to an appropriate choice of the eigenfunctions of the operator H1

defined in (2.1) and associated with (ρ, a, V ) = (ρ1, a1, V1).

Therefore, we are left with the task of proving Theorem 2.2.
9



2.2. Technical tools.

Fractional powers of H. Since H is a strictly positive operator, for all s > 0, we can

define Hs by

Hsh =
+∞∑
n=1

〈h, ϕn〉λsnϕn, h ∈ D(Hs) =

{
h ∈ L2(Ω) :

+∞∑
n=1

|〈h, ϕn〉|2 λ2s
n <∞

}

and we consider on D(Hs) the norm

‖h‖D(Hs) =

(
+∞∑
n=1

|〈h, ϕn〉|2 λ2s
n

) 1
2

, h ∈ D(Hs).

Two parameters Mittag-Leffler function. Let α and β be two positive real numbers.

Following [57, Section 1.2.1, Eq. (1.56)], we define the Mittag-Leffler function associated

with α and β, by the series expansion

Eα,β(z) =
+∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C. (2.4)

In the particular framework of this paper, where α ∈ (0, 2), we recall for further reference

from [57, Theorem 1.4] the three following useful estimates.

The first estimate, which holds for any α ∈ (0, 2) and β ∈ R∗+, claims that there

exists a constant c > 0, depending only on α and β, such that we have

|Eα,β(−t)| 6 c

1 + t
, t ∈ R∗+. (2.5)

The second estimate applies for α = β ∈ (0, 2) and states for every θ ∈ (πα/2, πα),

that

|Eα,α(z)| 6 c

1 + |z|2
, (2.6)

whenever z ∈ C \ {0} satisfies |arg(z)| ∈ [θ, π]. Here c is a positive constant depending

only on α and θ. In contrast to (2.5), which is explicitly stated at formula (1.148) of

[57, Theorem 1.6], estimate (2.6) follows from the asymptotic behavior of Eα,α(z) as

|z| → +∞ given by formula (1.143) of [57, Theorem 1.4]. Indeed, formula (1.143) of

[57, Theorem 1.4] implies that for |arg(z)| ∈ [θ, π] we have

Eα,β(z) = − z−1

Γ(α− β)
+ O
|z|→+∞

(
|z|−2

)
and using the fact that z−1

Γ(α−β)
= 0 for α = β we deduce (2.6).
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Finally, the third estimate we shall need in the derivation of Theorem 1.1, follows

readily from (2.6) and reads:

|Eα,α(−t)| 6 c

1 + t2
, t ∈ R∗+. (2.7)

An a priori elliptic estimate. In what follows, we shall make use several times of the

following result.

Lemma 2.3. Let ρ ∈ L∞(Ω), a ∈ C1(Ω) and V ∈ L∞(Ω) fulfill (1.4). Then there exists

a constant c > 0, such that the estimate

+∞∑
n=1

λ−2
n

∣∣∣∣∫
∂Ω

g(x)ψn(x)dx

∣∣∣∣2 6 c‖g‖2
H3/2(∂Ω), (2.8)

holds whenever g ∈ H3/2(∂Ω).

Proof. We first prove that the boundary value problem −div (a∇v) + V v = 0, in Ω,

v = g, in ∂Ω,
(2.9)

admits a unique solution v ∈ H2(Ω). To do that, we refer to [42, Section 1, Theorem

8.3] and pick G ∈ H2(Ω) satisfying G = g on ∂Ω and the estimate

‖G‖H2(Ω) 6 C‖g‖H3/2(∂Ω). (2.10)

Here and in the remaining of the proof C denotes a positive constant that does not

depend on g. Evidently v is a solution to (2.9) if and only if w = v −G is a solution to −div (a∇w) + V w = FG, in Ω,

w = 0, in ∂Ω,
(2.11)

where FG := − (−div (a∇G) + V G). Since H is boundedly invertible in L2(Ω) and

ρ−1FG ∈ L2(Ω), then w = H−1(ρ−1FG) ∈ Dom(H) = H1
0 (Ω) ∩ H2(Ω) is the unique

solution to (2.11), and we have

‖w‖H2(Ω) 6 C‖FG‖L2(Ω). (2.12)

Here we used the fact, arising from the strict ellipticity of H (see [24, Sections 2.2, 2.3,

and 2.4]), that the graph norm of H is equivalent to the usual norm in H2(Ω). Therefore,

v = w +G ∈ H2(Ω) is the unique solution to(2.9) and we derive from (2.10) and (2.12)

that

‖v‖H2(Ω) 6 C‖g‖H3/2(∂Ω). (2.13)
11



Now, in view of (2.9), we get for each n ∈ N∗ that

0 = 〈−div (a∇v) + V v, ϕn〉 = 〈v,Hϕn〉ρ +

∫
∂Ω

g(x)ψn(x)dx,

upon integrating by parts twice. This and (2.2) yield that

vn := 〈v, ϕn〉ρ = −λ−1
n

∫
∂Ω

g(x)ψn(x)dx, n ∈ N∗. (2.14)

Finally, putting the Parseval identity
∑+∞

n=1 |vn|2 = ‖v‖2
ρ together with (2.13)-(2.14), we

obtain (2.8). �

3. Analysis of the direct problem

In this section we rigorously define the DN map (1.7), which requires that the direct

problem associated with (1.6) be preliminarily examined. Next we relate the DN map

(1.7) to the BSD.

We start with the sub-diffusive case α ∈ (0, 1).

Proposition 3.1. Let α ∈ (0, 1), ρ ∈ L∞(Ω), a ∈ C1(Ω) and V ∈ L∞(Ω) fulfill (1.4),

and let f ∈ C1([0, T ];H
3
2 (∂Ω)) satisfy f(0, ·) = 0 in ∂Ω. Then, there exists a unique

solution u ∈ C([0, T ], L2(Ω)) to the boundary value problem (1.6). Moreover, we have

u ∈ C((0, T ], H2γ(Ω)) for any γ ∈ (0, 1).

Proof. With reference to [42, Section 1, Theorem 8.3] we pick F ∈ C1([0, T ], H2(Ω))

satisfying F = f on Σ. Then, it is apparent that u is a solution to (1.6) if and only if

v := u− F is a solution to the IBVP
ρ∂αt v − div (a∇v) + V v = G, in Q,

v = 0, on Σ,

v(0, ·) = v0, in Ω,

(3.1)

where G := −(ρ∂αt F − ∇ · a∇F + V F ) and v0 := −F (0, ·). Applying the Laplace

transform to (3.1) we find through basic computations similar to the ones used in the

derivation of [52, Theorems 2.1 and 2.2], that

v(t, ·) = S0(t)v0 +

∫ t

0

S(s)G(t− s, ·)ds, t ∈ (0, T ), (3.2)

where we have set

S0(t)h :=
+∞∑
n=1

Eα,1(−λntα)〈h, ϕn〉ϕn and S(t)h := tα−1

+∞∑
n=1

Eα,α(−λntα)〈h, ϕn〉ϕn, (3.3)

12



for every t ∈ (0, T ) and h ∈ L2(Ω). Further, in view of (2.5), we have

‖S0(t)h‖2
H2(Ω) =

+∞∑
n=1

λ2
nEα,1(−λntα)2 |〈h, ϕn〉|2

6 C
+∞∑
n=1

t−2α |〈h, ϕn〉|2 = Ct−2α‖h‖2
L2(Ω), (3.4)

where C is a positive constant that is independent of t and h. The convergence of the

series appearing in the right hand side of (3.4) being uniform with respect to t ∈ [ε, T ],

for any fixed ε ∈ (0, T ), then t 7→ S0(t)h ∈ C([ε, T ], H2(Ω)). And since ε is arbitrary in

(0, T ), we ned up getting that

t 7→ S0(t)h ∈ C((0, T ], H2(Ω)). (3.5)

Similarly, we obtain for all t ∈ (0, T ) and h ∈ L2(Ω) that

‖S(t)h‖2
H2γ(Ω) = t2(α−1)

+∞∑
n=1

λ2γ
n Eα,α(−λntα)2 |〈h, ϕn〉|2

6 C
+∞∑
n=1

t−2(1−α(1−γ)) |〈h, ϕn〉|2 = Ct−2(1−α(1−γ))‖h‖2
L2(Ω). (3.6)

As a consequence we have t 7→
∫ t

0
S(s)G(t − s, ·)ds ∈ C([0, T ], H2γ(Ω)), since G ∈

C([0, T ], L2(Ω)). This, (3.2) and (3.5) yield that v, and hence u, is lying in C((0, T ], H2γ(Ω)).

We turn now to proving that limt→0 ‖u(t)‖L2(Ω) = 0, or equivalently that limt→0 ‖v(t)−
v0‖L2(Ω) = 0. With reference to (3.2), we shall actually establish that

lim
t→0
‖S0(t)v0 − v0‖L2(Ω) = lim

t→0

∥∥∥∥∫ t

0

S(s)G(t− s)ds
∥∥∥∥
L2(Ω)

= 0. (3.7)

This can be achieved upon recalling from (3.3) that

‖S0(t)v0 − v0‖2
L2(Ω) =

∑
n=1

(Eα,1(−λntα)− 1)2 |〈v0, ϕn〉|2, t ∈ (0, T ), (3.8)

noticing that lim
t→0

(Eα,1(−λntα)− 1) = 0 for every n ∈ N∗, and taking advantage of the

fact that the series in the right hand side of (3.8) convergences uniformly with respect

to t ∈ (0, T ), as we have

|Eα,1(−λntα)− 1| 6 c

1 + λntα
+ 1 6 c+ 1, t ∈ (0, T ), n ∈ N∗,

by (2.5). Further, since∥∥∥∥∫ t

0

S(s)G(t− s)ds
∥∥∥∥
L2(Ω)

6
∫ t

0

‖S(t)G(t− s)‖H2γ(Ω)ds

13



6 C

∫ t

0

s−1+α(1−γ)‖G(t− s, ·)‖L2(Ω)ds

6 (C/α(1− γ))tα(1−γ)‖G‖C([0,T ],L2(Ω)), t ∈ (0, T ),

by (3.6), we end up getting (3.7). This terminates the proof since v, and hence u, is

uniquely defined by (3.2). �

In view of Proposition 3.1, for α ∈ (0, 1) and for any f ∈ C1([0, T ], H
3
2 (∂Ω))

such that f(0, ·) = 0 on ∂Ω and all γ ∈ (0, 1), there exists a unique solution u ∈
C([0, T ], L2(Ω)) ∩ C((0, T ], H2γ(Ω)) to (1.6). Thus, taking γ ∈ (3/4, 1), we see that the

mapping

a∂νu : [0, T ]× ∂Ω 3 (t, x) 7→ a(x)∂νu(t, x) := a(x)∇u(t, x) · ν(x),

where ν denotes the outward unit normal vector to ∂Ω, is well defined in C((0, T ], L2(∂Ω)).

From this result we deduce for all α ∈ (0, 1) that the operator Λρ,a,V is bounded from

Hin,α,T0 into L2(Sout).

Further, arguing as above, we derive the following result in the super-diffusive case

α ∈ (1, 2).

Proposition 3.2. Let α ∈ (1, 2), ρ ∈ L∞(Ω), a ∈ C1(Ω) and q ∈ L∞(Ω) fulfill (1.4),

and let f ∈ C2([0, T ];H
3
2 (∂Ω)) satisfy f(0, ·) = ∂tf(0, ·) = 0 in ∂Ω. Then, there exists

a unique solution u ∈ C([0, T ], L2(Ω)) to the boundary value problem (1.6). Moreover,

we have u ∈ C((0, T ], H2γ(Ω)) for any γ ∈ (0, 1).

Fix α ∈ (1, 2). We deduce from Proposition 3.2 that for all γ ∈ (3/4, 1) and all

f ∈ C2([0, T ], H
3
2 (∂Ω)) verifying f(0, ·) = ∂tf(0, ·) = 0 on ∂Ω, there exists a unique

solution u ∈ C([0, T ], L2(Ω)) ∩ C((0, T ], H2γ(Ω)) to (1.6). Therefore, the mapping

a∂νu : [0, T ]× ∂Ω 3 (t, x) 7→ a(x)∂νu(t, x),

is well defined in C((0, T ], L2(∂Ω)), and the operator Λρ,a,V is bounded from Hin,α,T0

into L2(Sout).

3.1. Normal derivative representation formula. In view of deriving the represen-

tation formula of Λρ,a,V given in Proposition 3.4, we start by establishing the following

technical result..
14



Lemma 3.3. Let α ∈ (0, 1)∪(1, 2). For ρ, a and q as in Proposition 3.1 and f ∈ Hin,α,T0,

the solution u to (1.6) reads

u(t, ·) =
∞∑
n=1

un(t)ϕn, (3.9)

for each t ∈ [0, T ], where un(t) := 〈u(t, ·), ϕn〉ρ expresses as

un(t) = −
∫ t

0

sα−1Eα,α(−λnsα)

(∫
∂Ω

f(t− s, x)ψn(x)dσ(x)

)
ds. (3.10)

Proof. The identity (3.9) follows readily from the fact that u is lying in C([0, T ], L2(Ω))

and that {ϕn; n ∈ N∗} is an orthonormal basis of L2
ρ(Ω). Next, upon extending f

by zero outside [0, T ] × ∂Ω, i.e. putting f(t, x) := 0 for (t, x) ∈ (T,+∞) × ∂Ω, and

denoting by u the solution to (1.6) in (0,+∞) × Ω, we compute for all n ∈ N∗, the

Laplace transform L[un](p) of un which is well defined for p ∈ R∗+ according to estimate

(2.6) and Proposition 3.1, 3.2. We get

L[un](p) =

∫ +∞

0

un(t)e−ptdt =

∫
Ω

ρ(x)

(∫ +∞

0

u(t, x)e−ptdt

)
ϕn(x)dx = 〈L[u](p, .), ϕn〉ρ,

(3.11)

through standard computations. Since L[∂αt u](p) = pαL[u](p), by [57, Eq. (2.140)] and

the third line of (1.6), we deduce from (3.11) upon applying the Laplace transform on

both sides of the first line in (1.6), that

pαL[un](p) = 〈pαL[u](p, .), ϕn〉ρ = −〈−div (a∇L[u](p))+ qL[u](p), ϕn〉, p ∈ R∗+. (3.12)

Thus, applying the Green formula in the right hand side of (3.12), we get for each

p ∈ R∗+ that

pαL[un](p) = −λn〈L[u](p), ϕn〉ρ −
∫
∂Ω

L[f ](p, x)ψn(x)dσ(x).

As a consequence we have

L[un](p) = −(pα + λn)−1L
[∫

∂Ω

f(·, x)ψn(x)dσ(x)

]
(p), p ∈ R∗+,

for every n ∈ N∗. This, [57, Eq. (1.80)] and the injectivity of the Laplace transform,

yield (3.10). �

We turn now to proving the main result of this section.
15



Proposition 3.4. Let α ∈ (0, 1) ∪ (1, 2) and let ρ, a, and V , be as in Proposition 3.1.

Pick f ∈ Hin,α,T0, where T0 ∈ (0, T ) is fixed, and let u be the solution to (1.6). Then,

for a.e. x ∈ ∂Ω, we have

a(x)∂νu(T0, x) =

∫ T0

0

sα−1

(
∞∑
n=1

Eα,α(−λnsα)

(∫
∂Ω

f(T0 − s, y)ψn(y)dσ(y)

)
ψn(x)

)
ds.

(3.13)

Proof. Let us first establish for each s ∈ (0, T0) that the series
∑+∞

n=1 γn(s)ϕn, where

γn(s) := −sα−1Eα,α(−λnsα)

(∫
∂Ω

f(T0 − s, y)ψn(x)dσ(x)

)
, n ∈ N∗, (3.14)

converges in H2(Ω). Actually, since the domain of the operator H is continuously

embedded in H2(Ω), it is enough to check that
∑+∞

n=1 λnγn(s)ϕn converges in L2
ρ(Ω).

This can be achieved with the help of (2.7). Indeed, in view of (3.14) we get through

elementary computations that

|γn(s)| 6 cs−(1+α)λ−2
n

∣∣∣∣∫
∂Ω

f(T0 − s, y)ψn(x)dσ(x)

∣∣∣∣ , s ∈ (0, T0), n ∈ N∗, (3.15)

where c is the same as in (2.7). This entails

+∞∑
n=1

λ2
n|γn(s)|2 6 C2

αs
−2(1+α)

(
+∞∑
n=1

λ−2
n

∣∣∣∣∫
∂Ω

f(T0 − s, y)ψn(x)dσ(x)

∣∣∣∣2
)

6 c2s−2(1+α)‖f(T0 − s, ·)‖2
H3/2(∂Ω), s ∈ (0, T0), (3.16)

upon applying Lemma 2.3 with g = f(T0 − s, ·), for some constant c > 0, independent

of s and f . As a consequence
∑+∞

n=1 λnγn(s)ϕn converges in L2
ρ(Ω) for every s ∈ (0, T0),

and hence
∑+∞

n=1 γn(s)ϕn converges in H2(Ω).

Next, since supp f ⊂ (0, T0)×Sin, it is apparent that s 7→ s−(1+α)‖f(T0−s, ·)‖H3/2(∂Ω) ∈
L1(0, T0), and similarly, we see from (3.16) that s 7→

∑N
n=1 λnγn(s)ϕn ∈ L1(0, T0;L2

ρ(Ω))

for every N ∈ N∗, as we have∥∥∥∥∥
N∑
n=1

λnγn(s)ϕn

∥∥∥∥∥
ρ

=

(
N∑
n=1

λ2
n|γn(s)|2

)1/2

6 Cs−(1+α)‖f(T0 − s, ·)‖H3/2(∂Ω), s ∈ (0, T0),

with C > 0, independent of s and N . Therefore, s 7→
∑+∞

n=1 γn(s)ϕn ∈ L1(0, T0;H2(Ω))

by (3.16) and Lebesgue dominated convergence theorem, and the identity

+∞∑
n=1

(∫ T0

0

γn(s)ds

)
ϕn =

∫ T0

0

(
+∞∑
n=1

γn(s)ϕn

)
ds, (3.17)
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holds in H2(Ω). Recalling from Lemma 3.3 that u(T0, ·) =
∑+∞

n=1

(∫ T0
0
γn(s)ds

)
ϕn in

L2
ρ(Ω), then by uniqueness of the limit, we end up getting from (3.17). Moreover, the

identity

u(T0, ·) =

∫ T0

0

(
+∞∑
n=1

γn(s)ϕn

)
ds, (3.18)

holds in H2(Ω).

Finally, we obtain (3.13) from the continuity of the trace map w ∈ H2(Ω) 7→
∂νw|∂Ω ∈ L2(∂Ω) by mimicking all the steps of the derivation of (3.18). �

4. Proof of Theorem 2.2

The proof is divided into 4 steps.

Step 1: Set up. For j = 1, 2, let Hj be the operator defined by (2.1) with ρ = ρj,

a = aj and V = Vj, and let {λj,n;n ∈ N∗} be the strictly increasing sequence of the

eigenvalues of Hj. For each n ∈ N∗, we denote by mj,n ∈ N∗ the algebraic multiplicity of

the eigenvalue λj,n and we introduce a family {ϕj,n,p; p = 1, . . . ,mj,n} of eigenfunctions

of Hj, which satisfy

Hjϕj,n,p = λj,nϕj,n,p,

and form an orthonormal basis in L2
ρj

(Ω) of the algebraic eigenspace of Hj associated

with λj,n (i.e. the linear sub-space of L2
ρj

(Ω) spanned by {ϕj,n,p, p = 1, . . . ,mj,n}).
Further, we put for a.e. (x, y) ∈ ∂Ω,

Θj,n(x, y) :=

mj,n∑
p=1

ψj,n,p(x)ψj,n,p(y), where ψj,n,p := (a∂νϕj,n,p)|∂Ω.

Then, with reference to (1.7) and Proposition 3.4, it holds true for every f ∈ Hin,T0 that

Λρj ,aj ,Vjf =

∫ T0

0

sα−1

(
+∞∑
n=1

Eα,α(−λj,nsα)

(∫
∂Ω

f(T0 − s, y)Θj,n(·, y)dσ(y)

))
ds.

From this and the assumption Λρ1,a1,V1 = Λρ2,a2,V2 then follows for a.e. x ∈ Sout, that∫ T0

0

sα−1

(
+∞∑
n=1

∫
∂Ω

(Eα,α(−λ1,ns
α)Θ1,n(x, y)− Eα,α(−λ2,ns

α)Θ2,n(x, y)) f(T0 − s, y)dσ(y)

)
ds = 0.

(4.1)

In view of the integrand appearing in the left hand side of (4.1), we introduce for every

h ∈ H3/2(∂Ω) such that supph ⊂ Sin, the following function

Fj,h(z, x) :=
+∞∑
n=1

Eα,α(−λj,nz)

(∫
Sin

Θj,n(x, y)h(y)dσ(y)

)
, z ∈ C, x ∈ Sout. (4.2)
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Then, the identity (4.1) being valid for every f ∈ Hin,T0 , we find upon taking f(t, x) =

g(t)h(x), for (t, x) ∈ (0, T0) × Sin, where g is arbitrary in C∞0 (0, T0) and h ∈ H3/2(∂Ω)

is, as above, supported in Sin, that

F1,h(s
α, x) = F2,h(s

α, x), s ∈ (0, T0), x ∈ Sout. (4.3)

Step 2: Analytic continuation. We start by establishing the following technical result.

Lemma 4.1. Fix θ0 ∈ (πα/2, πα) and pick h ∈ H3/2(∂Ω) satisfying supph ⊂ Sin. Then,

both L2(Sout)-valued functions z 7→ Fj,h(z, ·), j = 1, 2, defined in (4.2), are holomorphic

in the sub-domain Dθ0 := {z ∈ C \ {0}; |arg(z)| < π − θ0}.

Proof. Let j be either 1 or 2. Bearing in mind that∫
Sin

Θj,n(·, y)h(y)dσ(y) =

mj,n∑
p=1

(∫
Sin

h(y)ψj,n,p(y)dσ(y)

)
ψj,n,p, n ∈ N∗,

we see upon arguing as in the derivation of Proposition 3.4, that it is enough to show

that the L2
ρ(Ω)-valued function

Gj(z) :=
+∞∑
n=1

Eα,α(−λj,nz)

(∫
Sin

h(y)ψj,n(y)dσ(y)

)
λj,nϕn, (4.4)

is holomorphic in Dθ0 .

Further, as α ∈ (0, 2) and |arg(−z)| ∈ [θ0, π], we invoke (2.6) and get some positive

constant c such that

|Eα,α(−λj,nz)| 6 c

1 + |λj,nz|2
, z ∈ Dθ0 , n ∈ N∗.

As a consequence we have

λj,n|Eα,α(−λj,nz)|
∣∣∣∣∫
Sin

h(y)ψj,n(y)dσ(y)

∣∣∣∣ 6 c|z|−2λ−1
j,n

∣∣∣∣∫
∂Ω

h(y)ψj,n(y)dσ(y)

∣∣∣∣ . (4.5)

Let K be a compact subset of Dθ0 . Due to Lemma 2.3, (4.5) yields that the series

appearing in the right hand side of (4.4) converges in L2
ρj

(Ω), uniformly in z ∈ K. Next,

the mapping z 7→ Eα,α(−λj,nz)
(∫

Sin
h(y)ψj,n(y)dσ(y)

)
λj,nϕn being holomorphic in K

for each n ∈ N∗, since the Mittag-Leffler function Eα,α is holomorphic in C from the

very definition (2.4), we get that Gj is holomorphic in K as well. This entails that Gj

is analytic in Dθ0 since K is arbitrary in Dθ0 . �
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Fix θ0 ∈ (πα/2, πα). Since F1,h(z, x) = F2,h(z, x) for a.e. x ∈ Sout and all z ∈
(0, Tα0 ), according to (4.3), then the same is true for z ∈ Dθ0 , by Lemma 4.1 in virtue

of the unique continuation principle for analytic functions. This yields

F1,h(t, x) = F2,h(t, x), x ∈ Sout, t ∈ (0,+∞). (4.6)

Having seen this, we turn now to proving that the identity (4.6) yields

λ1,n = λ2,n and Θ1,n(x, y) = Θ2,n(x, y), n ∈ N∗, (x, y) ∈ Sout × Sin. (4.7)

This can be done upon computing the Laplace transform of both sides of (4.6).

Step 3: Laplace transform. We fix N ∈ N∗, t ∈ R∗+ and recall that the L2(∂Ω)-norm of

N∑
n=1

Eα,α(−λj,ntα)

(∫
Sin

Θj,n(·, y)h(y)dσ(y)

)
=

N∑
n=1

Eα,α(−λj,ntα)

(
mj,n∑
p=1

(∫
Sin

h(y)ψj,n,p(y)dσ(y)

)
ψj,n,p

)
,

is upper bounded (up to some positive multiplicative constant that depends only on Ω)

by the L2
ρj

(Ω)-norm of
∑N

n=1Eα,α(−λj,ntα)
(∑mj,n

p=1

(∫
Sin
h(y)ψj,n,p(y)dσ(y)

)
λj,nϕj,n,p

)
.

Hence we find that∥∥∥∥∥
N∑
n=1

tα+1Eα,α(−λj,ntα)

(∫
Sin

Θj,n(·, y)h(y)dσ(y)

)∥∥∥∥∥
L2(Sout)

6 Ctα+1

(
N∑
n=1

λ2
j,nEα,α(−λj,ntα)2

(
mj,n∑
p=1

∣∣∣∣∫
∂Ω

h(y)ψj,n,p(y)dσ(y)

∣∣∣∣2
))1/2

6 Ct1−α

(
N∑
n=1

λ−2
j,n

(
mj,n∑
p=1

∣∣∣∣∫
∂Ω

h(y)ψj,n,p(y)dσ(y)

∣∣∣∣2
))1/2

,

according to (2.7), the constant C > 0 depending neither on N , nor on t. Therefore, we

have∥∥∥∥∥
N∑
n=1

tα+1Eα,α(−λj,ntα)

(∫
Sin

Θj,n(·, y)h(y)dσ(y)

)∥∥∥∥∥
L2(Sout)

6 Ct1−α‖h‖H3/2(∂Ω),

by Lemma 2.3, and the Lebesgue dominated convergence theorem for L2(Sout)-valued

functions yields

L

[
+∞∑
n=1

tα+1Eα,α(−λj,ntα)

(∫
Sin

Θj,n(x, y)h(y)dσ(y)

)]
(p)

=
+∞∑
n=1

(∫
Sin

Θj,n(x, y)h(y)dσ(y)

)
L
[
tα+1Eα,α(−λj,ntα)

]
(p), x ∈ Sout, p ∈ R∗+.(4.8)
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We are thus left with the task of computing the Laplace transform of t 7→ tα+1Eα,α(−λj,ntα)

on R∗+. We find by standard computations that [57, Eq. (1.80)] implies

L
[
tα+1Eα,α(−λj,ntα)

]
(p) =

d

dp

2 (
L
[
tα−1Eα,α(−λj,ntα)

]
(p)
)

= pα−2

(
2α2pα − α(α− 1)(pα + λj,n)

(pα + λj,n)3

)
,

(4.9)

for all p > λ
1/α
j,n . Further, since p 7→ L [tα+1Eα,α(−λj,ntα)] (p) is an analytic function of

p ∈ {z ∈ C; <z > 0}, then (4.9) holds for every p ∈ R∗+, and we have∑+∞
n=1

(2α2pα−α(α−1)(pα+λ1,n))
∫
Sin

Θ1,n(x,y)h(y)dσ(y)

(pα+λ1,n)3

=
∑+∞

n=1

(2α2pα−α(α−1)(pα+λ2,n))
∫
Sin

Θ2,n(x,y)h(y)dσ(y)

(pα+λ2,n)3
, p ∈ R∗+, x ∈ Sout,

(4.10)

by (4.2), (4.6) and (4.8).

Step 4: End of the proof. Consider O := C \ {−λj,n; j = 1, 2, n ∈ N∗} and note that,

since, for j = 1, 2, (λj,n)n>1 is a strictly increasing and unbounded sequence, the set O is

connected. Let K be a compact subset of O := C \ {−λj,n; j = 1, 2, n ∈ N∗}. Arguing

as in the derivation of Lemma 4.1, we see that, for j = 1, 2, the serie

+∞∑
n=1

(
2α2z − α(α− 1)(z + λj,n)

(z + λj,n)3

)(∫
Sin

Θj,n(x, y)h(y)dσ(y)

)
,

converges uniformly with respect to z ∈ K. Thus, since K is arbitrary in O, the function

z 7→
+∞∑
n=1

(
2α2z − α(α− 1)(z + λj,n)

(z + λj,n)3

)(∫
Sin

Θj,n(·, y)h(y)dσ(y)

)
,

is analytic in O and we deduce from (4.10), that∑+∞
n=1

(
2α2z−α(α−1)(z+λ1,n)

(z+λ1,n)3

)(∫
Sin

Θ1,n(x, y)h(y)dσ(y)
)

=
∑+∞

n=1

(
2α2z−α(α−1)(z+λ2,n)

(z+λ2,n)3

)(∫
Sin

Θ2,n(x, y)h(y)dσ(y)
)
, z ∈ O, x ∈ Sout,

(4.11)

by the unique continuation principle for analytic functions. Now, putting λ∗1 :=

min
(j,n)∈{1,2}×N∗

λj,n, multiplying both sides of (4.11) by (z+λ∗1)3, and sending z to (−λ∗1),

we obtain that

λ1,1 = λ∗1 = λ2,1 and

∫
Sin

Θ1,1(x, y)h(y)dσ(y) =

∫
Sin

Θ2,1(·, y)h(y)dσ(y) for a.e. x ∈ Sout.

Similarly, by induction on n ∈ N∗, we find that

λ1,n = λ2,n and

∫
Sin

Θ1,n(x, y)h(y)dσ(y) =

∫
Sin

Θ2,n(·, y)h(y)dσ(y) for a.e. x ∈ Sout.

for any function h ∈ H3/2(∂Ω) supported in Sin, which yields (4.7). Finally, since Sin ∪
Sout = ∂Ω and Sin ∩ Sout 6= ∅, we end up getting that BSD(ρ1, a1, V1) = BSD(ρ2, a2, V2),
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up to an appropriate choice of the functions {ϕ1,n, n ∈ N∗}, from (4.7) and the end of

the proof of Theorem 1.1 in [13] (see [13, pages 975-976]).

5. Results on Riemannian manifolds

In this section we prove Theorem 1.2. Then, we establish in the particular case

where µ = 1 and q = 0, upon assuming a spectral Hassell-Tao type inequality (see (5.5)

below) that the result of Theorem 1.2 remains valid when Sin ∩ Sout = ∅.

Nevertheless, in the first step of the analysis we assume a slightly more restrictive

assumption, i.e. that Sin∩Sout 6= ∅, than the one required by Theorem 1.2. We consider

the weighted measure µdx, where dx is the Riemannian volume measure, to define the

space L2(M), since ∆g,µ is symmetric with respect to the resulting inner product. Let us

introduce the elliptic operator A acting on L2(M) with domain D(A) = H1
0 (M)∩H2(M)

defined by

Ah = −∆g,µh+ qh, h ∈ D(A). (5.1)

By a compact resolvent argument we know that the spectrum of A consists of a non-

decreasing sequence of eigenvalues (λn)n>1 and we can introduce the associated Hilber-

tian basis of eigenfunctions (ϕn)n>1. We define the boundary spectral data as

BSD(M, g, µ, q; Γ) := {(λn, ψn|Γ); n > 1},

where Γ ⊂ ∂M is open and ψn = ∂νϕn. In view of these BSD, it is easy to see that

the results of Sections 2, 3 and 4 remain valid in the framework of Theorem 1.2. In

particular, we may repeat the proof of Theorem 2.2 in the present context to obtain:

Theorem 5.1. Let (Mk, gk), k = 1, 2, be two compact and smooth connected Riemann-

ian manifolds of dimension d > 2 with the same boundary. Let µk, qk ∈ C∞(Mk) satisfy

µk(x) > 0 and qk(x) ≥ 0 for all x ∈Mk, k = 1, 2. Let Sin, Sout ⊂ ∂M1 be relatively open

and suppose that Sout ∩ Sin is nonempty. Suppose, moreover, that g1 = g2, µ1 = µ2 = 1

and ∂νµ1 = ∂νµ2 = 0 on ∂M1. Then, the condition ΛM1,g1,µ1,q1 = ΛM2,g2,µ2,q2 implies

that, up to an appropriate choice of the eigenfunctions of the operator A1, we have

BSD(M1, g1, µ1, q1;Sout ∪ Sin) = BSD(M2, g2, µ2, q2;Sout ∪ Sin). (5.2)

It is well-known that (5.2) implies that (Mk, gk), k = 1, 2, are isometric, and that

(µk, qk), k = 1, 2, are on the same orbit of the group of gauge transformations, and

we refer to [31] for a detailed proof. To our knowledge, all the proofs of this result are

based on the Boundary Control method. The Boundary Control method was introduced
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by Belishev in [5] where he solved the inverse boundary value problem for the isotropic

wave equation, that is, the equation (1.6) with α = 2, a = 1 and q = 0. The method was

generalized to geometric context by Belishev and Kurylev [6], and the inverse boundary

spectral problem with partial data as in (5.2) was solved by Katchalov and Kurylev [30].

We mention that a reduction similar to Theorem 5.1 was shown in [32] in the case of

the heat equation, that is, the equation (1.1) with α = 1.

Let us now consider two further generalization where the assumption that Sout∩Sin

is nonempty is weakened. These generalizations are based on the observation that the

proof of Theorem 2.2 gives:

Theorem 5.2. Let (Mk, gk), k = 1, 2, be two compact and smooth connected Riemann-

ian manifolds of dimension d > 2 with the same boundary. Let µk, qk ∈ C∞(Mk) satisfy

µk(x) > 0 and qk(x) ≥ 0 for all x ∈ Mk, k = 1, 2. Let Sin, Sout ⊂ ∂M1 be relatively

open, and suppose that g1 = g2, µ1 = µ2 = 1 and ∂νµ1 = ∂νµ2 = 0 on ∂M1. Then, the

condition ΛM1,g1,µ1,q1 = ΛM2,g2,µ2,q2 implies that

λ1,n = λ2,n and Θ1,n(x, y) = Θ2,n(x, y), n ∈ N∗, (x, y) ∈ Sout × Sin, (5.3)

where, as before, {λk,n;n ∈ N∗} is the strictly increasing sequence of the Dirichlet eigen-

values of Ak and

Θk,n(x, y) :=

mk,n∑
p=1

ψk,n,p(x)ψk,n,p(y), where ψk,n,p :=
d∑

i,j=1

gijk νi∂xjϕk,n,p.

Here the eigenfunctions ϕk,n,p are chosen so that ϕk,n,p, p = 1, . . . ,mk,n, form an or-

thonormal basis of the eigenspace associated with λk,n.

If Sin ∩ Sout 6= ∅, then the equation (5.3) implies that the boundary spectral data

BSD(Mk, gk, µk, qk;Sout), k = 1, 2, (5.4)

are gauge equivalent in the sense that there is a constant κ > 0 such that up to an

appropriate choice of the eigenfunctions of the operator A1, we have ψ1,n,p = κψ2,n,p on

Sout for all n and p, see [38, Theorem 4]. In [38] the authors considered only operators

A of the form (5.1) with µ = 1 identically. We can actually reduce to this case upon

taking κ =
√
µ in (1.11). The gauge equivalence of the boundary spectral data (5.4)

implies that (Mk, gk), k = 1, 2, are isometric and that (µk, qk), k = 1, 2, are on the same

orbit of the group of gauge transformations, as can be seen by combining the proofs of

[31, Theorems 4.33 and 3.37]. This proves Theorem 1.2.
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Finally, let us consider the case where Sin and Sout are allowed to be far apart.

Following [39] we assume that µk = 1 and qk = 0 identically, and that both (Mk, gk),

k = 1, 2, satisfy the spectral inequality

λk,n ≤ C‖ψk,n,p‖2
L2(Sin), (5.5)

where the constant C > 0 is independent of n and p. Hassell and Tao [27] showed that

all non-trapping Riemannian manifolds (Mk, gk) satisfy (5.5) when Sin is replaced by

∂Mk. Moreover, (5.5) follows from (and is strictly weaker than) the geometric control

condition by Bardos, Lebeau and Rauch [2], see [39]. We will now give a reduction

to the result in [39]. Let us denote by LM,g the hyperbolic DN map associated to the

Riemannian manifold (M, g) and restricted to Sin × Sout, that is,

LM,gf = ∂νu|(0,∞)×Sout , f ∈ C∞0 ((0,∞)× Sin),

where u is the solution of (1.1) with µ = 1, q = 0 identically and α = 2. The map

LMk,gk has the representation

LMk,gkf(t, x) =
∑
n∈N∗

∫ t

0

∫
Sin

f(s, y)
sin(
√
λk,n(t− s))√
λk,n

Θk,n(x, y)dyds,

where dy is the Riemannian surface measure on ∂M1, see e.g. [31, Lemma 3.6]. Hence

(5.3) implies that LM1,g1 = LM2,g2 , and therefore (Mk, gk), k = 1, 2, are isometric [39].

We have shown:

Theorem 5.3. Let (Mk, gk), k = 1, 2, be two compact and smooth connected Riemann-

ian manifolds of dimension d > 2 with the same boundary. Let Sin, Sout ⊂ ∂M1 be rel-

atively open, and suppose that g1 = g2 on ∂M1. Suppose, moreover, that both (Mk, gk),

k = 1, 2, satisfy the spectral inequality (5.5). Then, the condition ΛM1,g1,1,0 = ΛM2,g2,1,0

implies that (Mk, gk), k = 1, 2, are isometric.

We do not know if Theorem 5.3 holds for operators with varying µ and q, see the

discussion in [40, pp. 7-8].
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Eric Soccorsi, Aix-Marseille Université, CNRS, CPT UMR 7332, 13288 Marseille,
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