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On an optional semimartingale decomposition
and the existence of a deflator in an enlarged
filtration

Anna Aksamit, Tahir Choulli and Monique Jeanblanc

Abstract Given a reference filtration F, we consider the cases where an enlarged fil-
tration G is constructed from F in two different ways: progressively with a random
time or initially with a random variable. In both situations, under suitable conditions,
we present a G-optional semimartingale decomposition for F-local martingales. Our
study is then applied to answer the question of how an arbitrage-free semimartingale
model is affected when stopped at the random time in the case of progressive en-
largement or when the random variable used for initial enlargement satisfies Jacod’s
hypothesis. More precisely, we focus on the No-Unbounded-Profit-with-Bounded-
Risk (NUPBR) condition. We provide alternative proofs of some results from [5],
with a methodology based on our optional semimartingale decomposition, which
reduces significantly the length of the proof.

Introduction

We are interested with some specific enlargements of a given filtration, namely the
progressive one and the initial one. The progressive enlargement G of a filtration F
with a random time (a positive random variable) τ , is the smallest filtration larger
than F making τ a stopping time. It is known that any F-martingale, stopped at
time τ is a G semi-martingale. In this paper, we do not consider the behavior of
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d’Essonne, UMR CNRS 8071, e-mail: monique.jeanblanc@univ-evry.fr

1



2 Anna Aksamit, Tahir Choulli and Monique Jeanblanc

F-martingales after τ , which is presented in [3], and requires specific assumptions
on the random time τ .
Then, we study the case where the enlarged filtration G is constructed from F as an
initial enlargement, that is, adding to all the elements Ft of the filtration F a ran-
dom variable ξ . We focus on a specific situation where the hypothesis (H ′), i.e.,
the property that each F-martingale remains a G-semimartingale, is satisfied. More
precisely, we shall assume that the F-conditional law of ξ is absolutely continuous
with respect to the unconditional law of ξ (Jacod’s hypothesis, see Definition1 be-
low).

The goal of the paper is to study the impact of the new information for arbi-
trage opportunities in a financial market: assuming that one deals with an arbitrage
free financial market with F-adapted prices, can an agent using G-adapted strategies
realize arbitrage opportunities? More precisely we study how the No-Unbounded-
Profit-with-Bounded-Risk (NUPBR) condition (see Definition 3 below) will be pre-
served in the enlarged filtration. This condition is closely related with the notion
of log-optimal portfolios and optimal growth rate portfolio. A general study of the
NUPBR condition, and a list of references on the subject can be found in Kabanov
et al. [22].

The literature on arbitrage conditions in an enlarged filtration is important, even
if the subject is not so popular in mathematical finance. Quite surprisingly, the hy-
pothesis that all the investors have the same knowledge is usually done in the lit-
erature, even if this hypothesis is not satisfied in reality. The main difficulty is that
it is not easy to compare stochastic processes in various filtration (the most com-
mon approach is filtering study). Here we are interested with the opposite direction:
some investor has an information larger than the one generated by prices of asset he
is willing to trade. For progressive enlargement, the case of classical arbitrages is
presented in [11], and it is proved that, for a class of random times (called honest
times) arbitrages can occur in the case where the market described in the filtration F
is complete and arbitrage free (see also [15] for the Brownian case). However, to the
best of our knowledge, no necessary and sufficient conditions are known in an in-
complete model. The recent literature concerns a weaker notion of arbitrages, called
No-Unbounded-Profit-with-Bounded-Risk (NUPBR), deeply related with optimiza-
tion problems, see [7]. A first paper on that subject was [11], in which the authors
are dealing with continuous processes. Many examples of progressive enlargement
(in particular for discontinuous processes) are given in [2]. A general study, giving
necessary and sufficient condition for the stability of NUPBR condition is presented
in [5]. A different proof of some results of that paper (mainly sufficient conditions),
based on another representation of the deflators (see subsection 1.3 for definition),
is given in [1]. We shall explain here how our results are linked with the ones in
[1]. The recent paper of Song [33] contains also a study of deflator in a progressive
enlargement setting.

The case of initial enlargement was studied under the name of insider trading.
Many papers, including [12, 13] and the thesis [6] present results under an assump-
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tion stronger that the absolute continuity Jacod’s hypothesis.

In the first section, we recall some basic definitions and results on enlargement of
filtration and on arbitrage opportunities. Section 2 addresses the case of progressive
enlargement with τ and F-martingales stopped at τ . In subsection 2.1, we introduce
a particular optional semi-martingale decomposition, which will be useful in the se-
quel, and we give the link between this decomposition and the deflator exhibited in
the literature (see [1] and [5]). In subsection 2.2, we provide alternative and shorter
proofs of some results from [5], and give a condition so that the NUPBR condition
is preserved, using a methodology different from the one used in [5] avoiding the
introduction of optional integral, and based on our optional semimartingale decom-
position.

Section 3 presents the case of initial enlargement. In subsection 3.2, we give an
optional decomposition result for the F-martingales, when the added random vari-
able satisfies Jacod’s hypothesis.We also obtain a result concerning the relationship
between the predictable brackets of semimartingale computed in both filtrations.
Then, we address the question of stability of the NUPBR condition. The results
presented in this last section were obtained in parallel and independently of [1].

The last section 4 presents a link between our optional decomposition and abso-
lutely continuous change of measures.

1 Preliminaries

Let (Ω ,G ,P) be a complete probability space and F= (Ft)t≥0 be a filtration satis-
fying the usual conditions. We say that a filtration G= (Gt)t≥0 is an enlargement of
F if, for each t ≥ 0, we have Ft ⊂ Gt .

We recall some standard definitions and set some notation. For a filtration H, the
optional σ -field on Ω ×R+, denoted by O(H), is the σ -field generated by all càdlàg
H-adapted processes and the predictable σ -field on Ω ×R+, denoted by P(H), is
the σ -field generated by all left-continuous H-adapted processes. A stochastic set or
process is called H-optional (respectively H-predictable) if it is O(H)-measurable
(respectively P(H)-measurable).

For an H-semimartingale Y , the set of H-predictable processes integrable with
respect to Y is denoted by L(Y,H) and for H ∈ L(Y,H), we denote by H �Y the
stochastic integral

∫ ·
0 HsdYs.

As usual, for a process X and a random time ϑ , we denote by Xϑ the stopped
process. For a given semimartingale X , E (X) stands for the stochastic exponential
of X . The continuous local martingale part and the jump process of a càdlàg semi-
martingale X are denoted respectively by Xc and ∆X .
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1.1 Progressively enlarged filtration

Consider a random time τ , i.e., a positive random variable. Then, we define two F-
supermartingales, which are the corner stone for the classical enlargement decom-
position formulae (2) and (3), in a progressive enlargement framework (see [19]),
given by

Zt := P(τ > t|Ft) and Z̃t := P(τ ≥ t|Ft).

In other terms, Z is the optional projection of 1[[0,τ[[, whereas Z̃ is the optional pro-
jection of 1[[0,τ]]. Let Ao be the F-dual optional projection of the increasing process
A := 1[[τ,∞[[; then (see [19]), the process

m := Z +Ao (1)

is an F-martingale. Furthermore, Z̃ = Z−+∆m.
We denote by Fτ = (F τ

t )t≥0 the right-continuous progressively enlarged filtra-
tion with the random time τ , i.e.,

F τ
t :=

∩
s>t

(Fs ∨σ(τ ∧ s)) .

The following result from [20] states that any F-local martingale stopped at τ is
an Fτ -semimartingale.

Proposition 1. Let X be an F-local martingale. Then, Xτ is an Fτ -semimartingale
which can be decomposed as

Xτ
t = X̂t +

∫ t∧τ

0

1
Zs−

d⟨X ,m⟩Fs (2)

where X̂ is an Fτ -local martingale.

In what follows, we will refer to the equality (2) as the predictable decomposition
of the Fτ -semi-martingale Xτ .

Remark 1. The decomposition (2) contains a predictable bracket computed in F.
When working in a larger filtration G, predictable brackets are computed in G. As
can be seen in [5], we are faced to the problem of comparison of the two different
brackets.

Remark 2. It is rather easy to check that Z− does not vanishes on the set {t ≤ τ}.
However, the first time where this process vanishes will play an important rôle.

Remark 3. Using the F-local martingale

N := E

(
1

Z−
1{Z−>0} �m

)
, (3)

Kardaras [25] notes that the decomposition (2) can be written Xτ
t = X̂t +

∫ t∧τ
0

1
Ns−

d⟨X ,N⟩Fs .
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1.2 Initially enlarged filtration

Let ξ be a random variable valued1 in (R, B).

Definition 1. The random variable ξ satisfies the absolute continuity Jacod’s hy-
pothesis if there exists a σ -finite positive measure η on (R,B) such that for every
t ≥ 0,

P(ξ ∈ du|Ft)(ω)≪ η(du),P− a.s..

As shown by Jacod [17], without loss of generality, η can be taken as the law of ξ .
We do not impose any condition on η , in particular, it is not necessarily atomless.
The random variable ξ satisfies the equivalence Jacod’s hypothesis if

P(ξ ∈ du|Ft)(ω)∼ η(du),P− a.s..

Let Fσ(ξ ) = (F σ(ξ ))t≥0 be the right-continuous initial enlargement of the filtra-
tion F with the random variable ξ , i.e.,

F
σ(ξ )
t :=

∩
s>t

(Fs ∨σ(ξ )) .

The following result is due to Jacod [17, Lemme 1.8]. We give here the formula-
tion of Amendinger as it provides a nice measurability property (see [6, Remark 1,
page 17]).

Proposition 2. For ξ satisfying the absolute continuity Jacod’s hypothesis, there
exists a non negative O ⊗B-measurable function (t,ω,u) → qu

t (ω) càdlàg in t
such that
(i) for every u, η a.s., the process (qu

t , t ≥ 0) is an F-martingale, and if the stopping
time Ru is defined as

Ru := inf{t : qu
t− = 0} (4)

one has qu > 0 and qu
− > 0 on [[0,Ru[[ and qu = 0 on [[Ru,∞[[,

(ii) for every t ≥ 0, the measure qu
t (ω)η(du) is a version of P(ξ ∈ du|Ft)(ω).

It is rather clear that we shall have to deal with the family of processes (qu,u∈R),
that we shall call parametrized processes.

Definition 2. Consider a mapping X : (t,ω ,u)→ Xu
t (ω) on R+×Ω ×R with values

in R. Let J be a class of F-optional processes, for example the class of F-(local)
martingales or the class of F-locally integrable variation processes. Then, (Xu,u ∈
R) is called a parametrized J -process if for each u ∈ R the process Xu belongs to
J and if it is measurable with respect to O(F)⊗B.

By [34, Proposition 3], the second condition can be obtained by taking appropriate
versions of processes Xu.

1 The random variable ξ can take values in a more general space without any difficulty.
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The next theorem gives, in the case of equivalence Jacod’s hypothesis, a particu-
lar change of measure making the reference filtration F and the random variable ξ
independent, see [32], [6, Proposition 1.6], [12].

Theorem 1. Assume that the equivalence Jacod’s hypothesis is satisfied, so that
P(ξ ∈ du|Ft) = qu

t η(du) with qu
t > 0, (η ⊗P) a.s. . Then

(a) the process 1
qξ is an Fσ(ξ )-martingale,

(b) the probability measure P∗, defined as

dP
dP

∗
|
F

σ(ξ )
t

=
1

qξ
t

has the following properties:
(i) under P∗, τ is independent from Ft for any t ≥ 0,
(ii) P∗|Ft = P|Ft ,
(iii) P∗|σ(ξ ) = P|σ(ξ ).

Remark 4. Note that, under Jacod’s equivalence hypothesis, if the price process S
is such that there are no arbitrages in F, then there are no arbitrages in G. Indeed,
taking P as an equivalent martingale measure in F, the previous result proves that
P∗ is an equivalent martingale measure in G.

We now recall the computation of F-predictable and F-optional projections of
Fσ(ξ )-adapted processes. The first part is due to Jacod [17, Lemme 1.10], the second
part is found in Amendinger [6, Lemma 1.3].

Lemma 1. Assume that the absolute continuity Jacod’s hypothesis is satisfied.
(i) Assume that the map (t,ω,u) → Y u

t (ω) is P(F)⊗B-measurable, positive or
bounded. Then, the F-predictable projection of the process (Y ξ

t )t≥0 is given by

p,F(Y ξ )
t =

∫
R

Y u
t qu

t−η(du) t ≥ 0. (5)

(ii) Assume that the map (t,ω ,u) → Y u
t (ω) is O(F)⊗B-measurable, positive or

bounded. Then, the F-optional projection of the process (Y ξ
t )t≥0 is given by

o,F(Y ξ )
t =

∫
R

Y u
t qu

t η(du) t ≥ 0. (6)

As noticed in Jacod [17, Corollary 1.11], Lemma 1 implies in particular that

Rξ = ∞ P− a.s. (7)

where Ru is defined through (4), or equivalently qξ
t > 0 and qξ

t− > 0, for t ≥ 0, P-a.s.
Therefore, the Fσ(ξ )-optional process ( 1

qξ
t
, t ≥ 0) is well-defined.

The Fσ(ξ )-semimartingale predictable decomposition of an F-local martingale is
given in [17, Theorem 2.5] in the following way:
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Proposition 3. Let X be an F-local martingale. Then, under absolute continuity
Jacod’s hypothesis

Xt = X̂t +
∫ t

0

1

qξ
s−

d⟨X ,qu⟩Fs |u=ξ (8)

where X̂ is an Fσ(ξ )-local martingale.

To ensure the existence of well measurable versions of dual projections of
parametrized processes, we assume from now on that the space L1(Ω ,G ,P) is sep-
arable. Then, we apply [34, Proposition 4].

In the next proposition, we extend Proposition 3 to a class of parametrized F-
local martingales.

Proposition 4. Assume absolute continuity Jacod’s hypothesis. Let (Xu,u ∈R) be a
parametrized F-local martingale. Then

Xξ
t = X̂ξ

t +
∫ t

0

1

qξ
s−

d⟨Xu,qu⟩Fs |u=ξ

where X̂ξ is an Fσ(ξ )-local martingale.

Proof. Let X be of the form Xu
t (ω) = g(u)xt(ω) where x is an F-martingale and g

is a Borel function. Then, Xξ = g(ξ )x and, using Jacod’s decomposition given in
Proposition 3, for t ≥ s, we have

E(Xξ
t −Xξ

s |F
σ(ξ )
s ) = g(ξ )E(xt − xs|F σ(ξ )

s )

= g(ξ )E

(∫ t

s

1

qξ
v−

d⟨x,qu⟩v|u=ξ

∣∣∣F σ(ξ )
s

)

= E

(∫ t

s

1

qξ
v−

d⟨Xu,qu⟩v|u=ξ

∣∣∣F σ(ξ )
s

)
.

For a general X , we proceed by Monotone Class Theorem. ⊓⊔

1.3 Local martingale deflators and related notions

As announced before, we shall study the No Unbounded Profit with Bounded Risk
(NUPBR) condition of no arbitrages. We start with some definitions for a general
filtration H.

Definition 3. (a) Let (Xu,u ∈ R) be a parametrized H-semimartingale. We say that
(Xu,u ∈ R) satisfies No Unbounded Profit with Bounded Risk condition in the fil-
tration H (we shall write NUPBR(H)) if for each T < ∞, the set KT (X) defined
as
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KT (X) := {(H �Xu)T : H ∈ L(H,Xu), H �Xu ≥−1 and u ∈ R}

is bounded in probability.
(b) A process Y is called an H-local martingale deflator for (Xu,u ∈ R) if it is a
strictly positive H-local martingale such that (Y Xu,u ∈ R) is a parametrized H-σ -
martingale.
(c) A process Ỹ is called an H-supermartingale deflator for (Xu,u ∈ R) if it is a
strictly positive H-supermartingale such that for each H ∈ L(H,Xu) with H �Xu ≥
−1, the process (1+H �Xu)Ỹ is an H-supermartingale.

As proved in [29] in full generality, condition (a) and the existence of a super-
martingale deflator stated in Definition 3(c) are equivalent. Moreover, as shown in
[31], for a process which does not depend on a parameter, condition (a) and the
existence of a local martingale deflator are equivalent. So, we have the following
theorem:

Theorem 2. For a semimartingale X, the NUPBR condition is equivalent to the
existence of a local martingale deflator which is equivalent to the existence of a
supermartingale deflator.

The following proposition is a parametrized version of [5, Proposition 2.5].

Proposition 5. Let (Xu,u ∈ R) be a parametrized H-adapted semi-martingale.
Then, the following assertions are equivalent.
(a) The process (Xu,u ∈ R) admits an H-local martingale deflator.
(b) There exist a P(H)⊗B-measurable parametrized process (ϕ u,u ∈ R) such
that 0 < ϕ u ≤ 1 and an H-local martingale deflator for (ϕ u �Xu,u ∈ R).
(c) There exists a sequence of H-stopping times (Tn)n≥1 that increases to ∞ such
that for each n ≥ 1, there exist a probability Qn on (Ω ,FTn) such that Qn ∼ P and
an H-local martingale deflator for ((Xu)Tn ,u ∈ R) under Qn.

The NUPBR condition is related to other no arbitrage conditions like No Free
Lunch with Vanishing Risk (NFLVR) or (classical) No Arbitrage, see [8, 21]; in
particular the NUPBR condition is equivalent to both NFLVR condition and No ar-
bitrages condition. However, the NUPBR condition is proved to be an appropriate
condition to study some financial notions like numéraire portfolio, or market viabil-
ity (see [7, 14, 23, 24, 26, 27, 30] and the references therein).

2 Progressive Enlargement up to a Random Time

2.1 Optional semimartingale decomposition for progressive
enlargement

In this section, we derive an Fτ -semimartingale decomposition of any F-local mar-
tingale stopped at τ , different from the one given in Proposition 1. Let us start by
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the definition of an important F-stopping time, namely

R := inf{t ≥ 0 : Zt = 0},

and define the F-stopping time R̃ as

R̃ := R{Z̃R=0<ZR−} = R1{Z̃R=0<ZR−}+∞1{Z̃R=0<ZR−}c

We establish an optional decomposition in the following theorem. By optional
decomposition, we mean that we write a semi-martingale as a martingale plus an
optional bounded variation process.

Theorem 3. Let X be an F-local martingale. Then the process

X̄t := Xτ
t −

∫ t∧τ

0

1

Z̃s
d[X ,m]s +

(
∆XR̃ 1[[R̃,∞[[

)p,F

t∧τ
(9)

is an Fτ -local martingale.

Proof. First of all, let us recall that for any F-local martingale, the stopped process
Xτ is an Fτ -semimartingale as stated in Proposition 2. Let H be an Fτ -predictable
bounded process. Then, there exists an F-predictable bounded process J such that
H1[[0,τ]] = J1[[0,τ]]. By [19, Section IV-3 and Lemme (5,17)], the F-martingale m
given in (1) satisfies that for each H1(F) martingale Y , one has E(Yτ) = E([m,Y ]∞).
Thus, we have

E((H �Xτ)∞) = E((J �X)τ)) = E([J �X ,m]∞)

= E

(∫ ∞

0

JsZ̃s

Z̃s
1{Z̃s>0}d[X ,m]s

)
+E

(∫ ∞

0
Js1{Z̃s=0<Zs−}d[X ,m]s

)
.

Since {Z̃ = 0 < Z−}= [[R̃]] and ∆mR̃ =−ZR̃− on {R̃ < ∞}, we can write

1{Z̃=0<Z−} � [X ,m] = ∆XR̃ ∆mR̃ 1[[R̃,∞[[ =−ZR̃−∆XR̃ 1[[R̃,∞[[ .

Furthermore, due to the fact that J and [X ,m] are F-adapted, we obtain

E((H �Xτ)∞) = E
(∫ τ

0

Js

Z̃s
1{Z̃s>0}d[X ,m]s

)
−E

(∫ ∞

0
JsZs−d

(
∆XR̃ 1[[R̃,∞[[

)
s

)
.

Then, as JZ− is F-predictable, it holds that

E
(∫ ∞

0
JsZs−d

(
∆XR̃ 1[[R̃,∞[[

)
s

)
= E

(∫ ∞

0
JsZs−d

(
∆XR̃ 1[[R̃,∞[[

)p,F

s

)
and we obtain:
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E((H �Xτ)∞) = E
(∫ τ

0

Js

Z̃s
1{Z̃s>0}d[X ,m]s

)
−E

(∫ ∞

0
JsZs−d

(
∆XR̃ 1[[R̃,∞[[

)p,F

s

)
= E

(∫ τ

0

Hs

Z̃s
1{Z̃s>0}d[X ,m]s

)
−E

(∫ τ

0
Hsd

(
∆XR̃ 1[[R̃,∞[[

)p,F

s

)
where we have used the facts that J is predictable and that Z− is the predictable
projection of 1[[0,τ]]. That ends the proof. ⊓⊔

Remark 5. In [9, Paragraph 77, Chapter XX] an optional semimartingale decompo-
sition is mentioned (without any proof) in the form: given an F-local martingale X ,
the process

X̄t := Xτ
t −

∫ t∧τ

0

1

Z̃s
d[X ,m]s

is an Fτ -local martingale. This decomposition is valid for any F-local martingale
if and only if R̃ = ∞ P-a.s.. In particular, if all F-martingales are continuous, then
R̃ = ∞ P-a.s. and the above formula is valid. The condition R̃ = ∞ P-a.s. will play
an important rôle in the study of stability of NUPBR condition.

Remark 6. The Fτ -local martingale X̄ which appears in (9) can be expressed in
terms of the F-local martingale N defined in (3). Indeed, from equalities N =

N−
(
1{Z−>0}

Z̃
Z−

+1{Z−=0}

)
and N = 1+N−

1
Z−

1{Z−>0} �m and the fact that Z− > 0
on [[0,τ]], it follows that

1

Z̃
1[[0,τ]] � [X ,m] =

1
N
1[[0,τ]] � [X ,N].

We will now study some particular martingales which will be important for the con-
struction, under adequate conditions, of deflators for price processes and we will
give the relation of our construction with previous works, in particular [5, Propo-
sition 3.6]. The next lemma defines an Fτ -local martingale Lpr which is the corner
stone in the construction of the deflator2. Due to this lemma, we avoid the use of
optional integrals done in equation (3.9) in [5, Proposition 3.6].

Lemma 2. (a) The Fτ -predictable process 1
Z−

1[[0,τ]] is integrable with respect to m̄,
the Fτ -martingale part from the optional decomposition of m obtained in (9).
(b) Let

Lpr =
1

Z−
1[[0,τ]] � m̄ .

Then

Lpr =
Z2
−

Z2
−+∆⟨m⟩F

1

Z̃
1[[0,τ]]⊙ m̂,

where m̂ is the Fτ -local martingale part in the predictable decomposition of m (8)
and ⊙ stands for the optional stochastic integral.

2 The upper script ”pr” stands for progressive.
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Proof. In the proof, we set L = Lpr for simplicity.
(a) Being càglàd , the process 1

Z−
1[[0,τ]] is locally bounded.

(b) The Fτ -continuous martingale part and the jump part of 1
Z−

1[[0,τ]] � m̄ are given by(
1

Z−
1[[0,τ]] � m̄

)c

=
1

Z−
1[[0,τ]] �

(
mc − 1

Z−
1[[0,τ]] � ⟨mc⟩F

)
∆
(

1
Z−

1[[0,τ]] � m̄
)

=
∆m

Z̃
1[[0,τ]]− p,F

(
1[[R̃]]

)
1[[0,τ]],

where mc is the F-continuous martingale part of m. Let us now compute the Fτ -
continuous martingale part and the jump part of L. By definition of the optional
stochastic integral and Lemma 3.1 (b) in [5], we have:

Lc =
Z2
−

Z2
−+∆⟨m⟩F

p,Fτ
(

1

Z̃

)
1[[0,τ]] � m̂c

=
1

Z−
1[[0,τ]] � m̂c −

p,F(1{Z̃=0<Z−})

Z−
1[[0,τ]] � m̂c.

As {Z̃ = 0 < Z−} is a thin set, the set { p,F(1{Z̃=0<Z−}) ̸= 0} is also thin, and from
continuity of m̂c, we conclude that

Lc =
1

Z−
1[[0,τ]] � m̂c.

In the proof of Proposition 3.6 in [5], it is established that the jump process of L is
given by

∆L =
∆m

Z̃
1[[0,τ]]− p,F

(
1{Z̃=0<Z−}

)
1[[0,τ]]. (10)

This completes the proof. ⊓⊔

The link between the Fτ -local martingale Lpr and the Fτ -adapted process 1
Nτ ,

where N is defined in (3), is made precise in the next lemma.

Proposition 6. Let N be defined in (3).
(a) The process 1

Nτ is an Fτ -supermartingale which can be written

1
Nτ = E

(
−(Lpr)τ −

(
1[[R̃,∞[[

)p,F

�∧τ

)
.

(b) The process 1
Nτ is an Fτ -local martingale if and only if R̃ = ∞. In that case

1
Nτ = E (−(Lpr)τ) .

Proof. (a) By Itô’s formula and the obvious equality dN = N−
1

Z−
1{Z−>0}dm
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1
Nτ

t
= 1−

∫ t∧τ

0

1
N2

s−
dNs +

∫ t∧τ

0

1
N3

s−
d⟨Nc⟩s + ∑

s≤t∧τ

(
1
Ns

− 1
Ns−

+
1

N2
s−

∆Ns

)
= 1−

∫ t∧τ

0

1
Ns−Zs−

dms +
∫ t∧τ

0

1
Ns−Z2

s−
d⟨mc⟩s + ∑

s≤t∧τ

(∆ms)
2

Ns−Zs−Z̃s
,

where we have used the fact that Z̃ = Z−+∆m. We continue with

1
Nτ

t
= 1−

∫ t∧τ

0

1
Ns−

d
(

1
Z−

�m− 1
Z2
−
� ⟨mc⟩−∑ (∆m)2

Z−Z̃

)
s

= 1−
∫ t∧τ

0

1
Ns−

d
(

1
Z−

� m̄+
(
1[[R̃,∞[[

)p,F
)

s

where the second equality comes from Theorem 3 applied to the F-martingale m.
Finally we conclude that

1
Nτ = E

(
− 1

Z−
1[[0,τ]] � m̄−

(
1[[R̃,∞[[

)p,F

�∧τ

)
.

(b) From the previous equality, we see that the process 1
Nτ is an Fτ -local martingale

if and only if
(
1[[R̃,∞[[

)p,F

·∧τ
= 0. The last equality is equivalent to

0 = E
((

1[[R̃,∞[[

)p,F

τ

)
= E

(∫ ∞

0
Zs−d

(
1[[R̃,∞[[

)p,F

s

)
= E

(
ZR̃−1{R̃<∞}

)
,

which in turn is equivalent to R̃ = ∞, P-a.s. since ZR̃− > 0 on {R̃ < ∞}. ⊓⊔

2.2 Deflators for progressive enlargement up to τ

In this section, we give alternative proofs, based on the optional semimartingale
decomposition, to results in [1] and to Theorem 2.23 and Corollary 2.18 (c) from
[5] (or their general versions in [4]). In Proposition 7 (a), we determine an Fτ -local
martingale deflator for a large class of F-local martingales. In Proposition 7 (b), an
Fτ -supermartingale deflator for F-local martingales is studied.

We introduce an Fτ -predictable process V pr which is crucial for proofs therein
(also used in [5]). Denoting by R̃a the accessible part of the F-stopping time R̃, we
set

V pr
t :=

(
1[[R̃a,∞[[

)p,F

t∧τ
.

Using the process V pr we study, in the next proposition, a particular Fτ -supermartingale
which will play the rôle of a deflator for some F-local martingales.

Proposition 7. Assume that X is an F-local martingale such that
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∆XR̃ = 0 on {R̃ < ∞} .

(a) If X is quasi-left continuous, then Y pr := E (−Lpr) is an Fτ -local martingale
deflator for Xτ .
(b) The process Ỹ pr := E (−Lpr −V pr) is an Fτ -supermartingale deflator for Xτ .

Proof. (a) In the proof, we set Y =Y pr and L = Lpr for simplicity. Using integration
by parts and the optional decomposition (9) given in Theorem 3 for X and then for
m, we obtain:

Y Xτ = Xτ
− �Y +Y− �Xτ +[Y,Xτ ]

= Xτ
− �Y +Y− � X̄ +Y−

1

Z̃
1[[0,τ]] � [m,X ]−Y−1[[0,τ]] � (∆XR̃1[[R̃,∞[[)

p,F−Y−1[[0,τ]] � [L,X ]

= Xτ
− �Y +Y− � X̄ +Y−

1

Z̃
1[[0,τ]] � [m̄,X ]+Y−

1

Z̃2
1[[0,τ]] � [[m],X ]

−Y−
1

Z̃
1[[0,τ]] � [(∆mR̃1[[R̃,∞[[)

p,F,X ]−Y−1[[0,τ]] � (∆XR̃1[[R̃,∞[[)
p,F− Y−

Z−
1[[0,τ]] � [m̄,X ]

=: I1 + I2 + I3 + I4 + I5 + I6 + I7.

In a first step, we study the sum of third and seventh term of the last expression

I3 + I7 = Y−

(
1

Z̃
− 1

Z−

)
1[[0,τ]] � [m̄,X ] =−Y−

∆m

Z̃Z−
1[[0,τ]] � [m̄,X ]

= −∑Y−
∆m

Z̃Z−
1[[0,τ]]∆ m̄∆X ,

where the third equality comes from the fact that {∆m ̸= 0} is a thin set. We add the
term I4 to the previous two

I4 +(I3 + I7) := ∑Y−
1

Z̃2
1[[0,τ]](∆m)2∆X −∑Y−

∆m

Z̃Z−
1[[0,τ]]∆ m̄∆X

= −∑Y−
∆m

Z̃
∆X1[[0,τ]]

(
1

Z−
∆ m̄− 1

Z̃
∆m
)

= ∑Y−
∆m

Z̃
∆X1[[0,τ]]

p,F
(
1[[R̃]]

)
,

where the last equality comes from (10). Note that, by Yoeurp’s lemma (which states
that, for a predictable bounded variation process V and a semimartingale Y , [V,Y ] =
∆V �X , see, e.g., [18, Proposition 9.3.7.1]), properties of dual predictable projection,
and the fact that p(∆V ) = ∆(V p), the fifth term in the expression for Y Xτ is equal
to

I5 = −Y−
1

Z̃
1[[0,τ]] � [(∆mR̃1[[R̃,∞[[)

p,F,X ] =−Y−
1

Z̃
1[[0,τ]]

p,F(∆mR̃1[[R̃]]) �X

= ∑Y−
Z−

Z̃
1[[0,τ]]

p,F(1[[R̃]])∆X ,
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where the last equality is due to ∆mR̃ =−ZR̃− and the fact that the process p,F(1[[R̃]])

is thin.
Finally, using the fact that Z−+∆m = Z̃, we get

I5 +(I4 + I3 + I7) = ∑Y−
Z−

Z̃
1[[0,τ]]

p,F(1[[R̃]])∆X +∑Y−
∆m

Z̃
∆X1[[0,τ]]

p,F
(
1[[R̃]]

)
= ∑Y−1[[0,τ]]

p,F(1[[R̃]])∆X .

Summing up we have that

Y Xτ = Xτ
− �Y +Y− � X̄ +∑Y−1[[0,τ]]

p,F(1[[R̃]])∆X −Y−1[[0,τ]] �
(

∆XR̃1[[R̃,∞[[

)p,F
.

If X is an F-quasi-left continuous local martingale, using the predictability of
p,F(1[[R̃]]) and ∆XR̃ = 0 on {R̃ < ∞}, then

Y Xτ = Xτ
− �Y +Y− � X̄

which implies that Y Xτ is a local martingale, hence Y is an Fτ -local martingale
deflator for Xτ .
(b) In the proof, we set Ỹ = Ỹ pr, L = Lpr and V = V pr for simplicity. Let H be an
Fτ -predictable process such that H �X ≥−1. By integration by parts, we get

(1+H �Xτ) Ỹ = (1+H �Xτ)− � Ỹ +H Ỹ− �Xτ −H Ỹ− � [Xτ ,L]−H Ỹ− � [Xτ ,V ].

Note that
HỸ− � [Xτ ,V ] = ∑H Ỹ− 1[[0,τ]]

p,F(1[[R̃]])∆X .

Then, using the same arguments as in the proof of (a), we get

(1+H �Xτ)Ỹ = (1+H �Xτ)− � Ỹ +HỸ− � X̄ −HỸ−1[[0,τ]] �
(

∆XR̃1[[R̃,∞[[

)p,F
.

In particular, if ∆XR̃ = 0 on {R̃ < ∞}, then Ỹ is an Fτ -supermartingale deflator for
Xτ and Xτ satisfies NUPBR(Fτ). This ends the proof of the proposition. ⊓⊔
Proposition 8. Let X be a process such that ∆XR̃ = 0 on {R̃ < ∞} and admitting an
F-local martingale deflator. Then Xτ admits an Fτ -local martingale deflator.

Proof. There exist a real-valued F-predictable process ϕ and a positive F-local mar-
tingale K such that

0 < ϕ ≤ 1 and K (ϕ �X) is an F-local martingale.

Then there exists a sequence of F-stopping times (vn)n that increases to infinity such
that the stopped process Kvn is an F-martingale. Put Qn := Kvn �P ∼ P. Then, by
applying Proposition 7 to (ϕ �X)vn under Qn, we conclude that (ϕ �X)vn∧τ satisfies
NUPBR(Fτ) under Qn. Thanks to Proposition 5, NUPBR(Fτ) under P of Xτ follows
immediately. ⊓⊔
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The next result provides explicit Fτ -local martingale deflators for F-local mar-
tingales. The proof differs from the one of Theorem [5, Theorem 2.23] and is based
on the optional semimartingale decomposition and direct computations.

Theorem 4. The following conditions are equivalent.
(a) The thin set

{
Z̃ = 0 < Z−

}
is evanescent.

(b) The F-stopping time R̃ is infinite (R̃ = ∞).
(c) For any F-local martingale X, the process Xτ admits Y pr as Fτ -local martingale
deflator, hence, satisfies NUPBR(Fτ).
(d) For any (bounded) process X satisfying NUPBR(F), the process Xτ satisfies
NUPBR(Fτ).

Proof. The equivalence between (a) and (b) is obvious from definition of R̃.
The implication (b)⇒(c) follows from Proposition 7. To prove (c)⇒(b) (and (d)⇒(b)),
we consider the F-martingale

X = 1[[R̃,∞[[−
(
1[[R̃,∞[[

)p,F
.

Note that P(τ = R̃) = E(∆Ao
R̃
) = E(Z̃R̃ − ZR̃) = 0 (since 0 = Z̃R̃ ≥ ZR̃ ≥ 0). This

implies that τ < R̃ and

Xτ =−
(
1[[R̃,∞[[

)p,F

·∧τ

is a predictable decreasing process. Thus, from [5, lemma 2.6], Xτ satisfies NUPBR(Fτ)
if and only if it is a null process. Then, we conclude that R̃ is infinite using the same
argument as in the proof of Lemma 6 (b). The implication (c) ⇒ (d) follows from
Proposition 8. ⊓⊔

3 Initial Enlargement under Jacod’s Hypothesis

In this section, we study initial enlargement of filtration and NUPBR condition un-
der absolute continuity Jacod’s hypothesis. We extend some results of Amendinger
[6] that require both equivalence Jacods hypothesis and Theorem 1.

3.1 Optional semimartingale decomposition for initial enlargement

In this subsection, we develop our Fσ(ξ )-optional semimartingale decomposition
of parametrized F-local martingales. We first decompose the F-stopping time Ru,
introduced in (4), as Ru = R̃u ∧ R̄u with

R̃u = Ru
{qu

Ru−>0} and R̄u = Ru
{qu

Ru−=0}. (11)
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Clearly R̄u is an F-predictable stopping time and {Ru = ∞} ⊂ {R̄u = ∞} so

(
1[[Ru,∞[[

)p,F |u=ξ =
(
1[[R̃u,∞[[

)p,F
|u=ξ .

In the following lemma, we express the Fσ(ξ )-dual predictable projection in terms of
the F-dual predictable projection. This is a result for initial enlargement case similar
to the one given in [5, Lemma 3.1 (a) and Lemma 3.2] for progressive enlargement
case.

Lemma 3. Let (V u,u∈R) be a parametrized F-adapted càdlàg process with locally
integrable variation (V ∈ Aloc(F)). Then the following properties hold:
(a) The Fσ(ξ )-dual predictable projection of V ξ is

(V ξ )p,Fσ(ξ )
=

1

qξ
−
�
(
qu �V u)p,F|u=ξ . (12)

(b) If (V u,u ∈ R) belongs to A +
loc(F) (respectively V ∈ A +(F)), then the process

(Uu,u ∈ R) with

Uu :=
1

qξ �V u, (13)

belongs to A +
loc(F

σ(ξ )) (respectively to A +(Fσ(ξ ))).
(c) If (V u,u ∈ R) belongs to Aloc(F), the process (Uu = 1

qξ �V u,u ∈ R) is well de-

fined, its variation is Fσ(ξ )-locally integrable, and the Fσ(ξ )-dual predictable pro-
jection of Uξ is given by

(Uξ )p,Fσ(ξ )
=

1

qξ
−
�
(
1{qu>0} �V u)p,F |u=ξ .

Proof. (a) We apply the predictable semimartingale decomposition given in Propo-
sition 4 to the parametrized F-local martingale (Xu,u ∈R) = (V u−(V u)p,F,u ∈R),
obtaining

V ξ = X̂ξ +(V u)p,F|u=ξ +
1

qξ
−
� ⟨V u,qu⟩F|u=ξ

= X̂ξ +
(
1{qu>0} �V u)p,F |u=ξ +

(
∆qu

qu
−

1{qu>0} �V u
)p,F

|u=ξ

= X̂ξ +
1

qξ
−
� (qu �V u)p,F|u=ξ ,

which proves assertion (a).
(b) Suppose that (V u,u ∈R) ∈A +

loc(F). For fixed u, let (ϑn)n≥1 be a sequence of F-

stopping times that increases to infinity such that E
(

V u
ϑn

)
< ∞. Then, E

(
Uu

ϑn

)
< ∞

since
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E
(
Uu

ϑn

)
= E

(∫ ϑn

0

1

qξ
t

dV u
t

)
= E

(∫ ϑn

0

∫
R
1{qy

t >0}η(dy) dV u
t

)
≤ E

(
V u

ϑn

)
< ∞,

where the last equality comes from (6) applied to 1
qu

t
1{qu

t >0}.
(c) Suppose that (V u,u ∈ R) ∈ Aloc(F), and denote by W :=V++V− its variation.
Then (W u,u ∈ R) ∈ A +

loc(F), and a direct application of (b) implies that(
1

qξ �W u,u ∈ R
)
∈ A +

loc(F
τ).

As a result, we deduce that U given by (13) for the case of V = V+−V− is well
defined and has variation equal to 1

qξ �W which is Fσ(ξ )-locally integrable. For each
n ≥ 1, let us consider the parametrized process (Uu

n ,u ∈ R) with

Uu
n :=

1
qu1{qu≥ 1

n }
�V u.

Due to (12), we derive(
Uξ

n

)p,Fσ(ξ )

=
1

qξ
−
�
(
1{qu≥1/n} �V u)p,F |u=ξ .

Hence, since (Uξ )p,Fσ(ξ )
= limn→∞

(
Uξ

n

)p,Fσ(ξ )

by taking the limit in the above
equality, we get

(Uξ )p,Fσ(ξ )
=

1

qξ
−
�
(
1{qu>0} �V u)p,F |u=ξ .

This ends the proof. ⊓⊔

Remark 7. The above lemma allows us to make precise the link between predictable
brackets in F and in G. Indeed, for two F martingales X and Y

⟨X ,Y ⟩Fσ(ξ )
= ([X ,Y ])p,Fσ(ξ )

=
1

qξ
−
�
(
qu � [X ,Y ]

)p,F|u=ξ

=
1

qξ
−
�
(
qu
− � [X ,Y ]

)p,F|u=ξ +
1

qξ
−
�
(
∆qu � [X ,Y ]

)p,F|u=ξ

= ⟨X ,Y ⟩F+
(

∑ ∆qu

qu
−

∆X∆Y
)p,F

|u=ξ .

We are now ready to state, in the next theorem, the main result of this section
with a proof based on Lemma 3.

Theorem 5. Let (Xu,u ∈ R) be a parametrized F-local martingale. Then,
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X̄ξ
t := Xξ

t −
∫ t

0

1

qξ
s

d[Xξ ,qξ ]s +
(

∆Xu
R̃u1[[R̃u,∞[[

)p,F

t
|u=ξ (14)

is an Fσ(ξ )-local martingale. Here, R̃u is defined in (11).

Proof. From the predictable decomposition given in Proposition 4, Xξ can be writ-
ten as

Xξ = X̂ξ +
1

qξ
−
�
(
1{qu>0} � [Xu,qu]

)p,F |u=ξ +
1

qξ
−
�
(
1{qu=0} � [Xu,qu]

)p,F |u=ξ

Using Lemma 3 (c) and the fact that ∆qu
R̃u =−qu

R̃u−

Xξ = X̂ξ +

(
1

qξ � [Xξ ,qξ ]

)p,Fσ(ξ )

+
1

qξ
−
�
(

∆Xu
R̃u∆qu

R̃u1[[R̃u,∞[[

)p,F
|u=ξ

= X̄ξ +
1

qξ � [Xξ ,qξ ]−
(

∆Xu
R̃u1[[R̃u,∞[[

)p,F
|u=ξ

where

X̄ξ := X̂ξ − 1
qξ � [Xξ ,qξ ]+

(
1

qξ � [Xξ ,qξ ]

)p,Fσ(ξ )

is proved to be an Fσ(ξ )-local martingale. ⊓⊔

In [6], the process 1
qξ was studied in the case of a random variable ξ satisfying

equivalence Jacod’s hypothesis, and was proved to be an Fσ(ξ )-local martingale.
Here we work under a weaker assumption, and we show that the martingale property
established in [6] fails in the general case.

In the next two lemmas, we study the properties of the process qξ . In Lemma 4 we
define particular Fσ(ξ )-local martingales based on qξ . Then, in Lemma 5, we focus
on the process 1

qξ , which is proved to be an Fσ(ξ )-supermartingale, and we give its
semimartingale decomposition. We give a necessary and sufficient condition such
that 1

qξ is an Fσ(ξ )-local martingale.

Lemma 4. Let q̄ξ be the Fσ(ξ )-local martingale part of qξ given by (14), i.e.,

q̄ξ := qξ − 1
qξ � [qξ ]−qξ

− �
(
1[[R̃u,∞[[

)p,F
|u=ξ .

Then, the Fσ(ξ )-predictable process 1
qξ
−

is integrable with respect to q̄ξ and the

Fσ(ξ )-local martingale

Li :=
1

qξ
−
� q̄ξ (15)
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is such that 1−∆Li > 0. 3

Proof. The process 1
qξ
−

is càglàd so it is locally bounded.

The definition of q̄ξ implies

1−∆Li = 1− 1

qξ
−

(
∆qξ − 1

qξ (∆qξ )2
)
+∆

(
1[[R̃u,∞[[

)p,F
|u=ξ

= 1− ∆qξ

qξ + p,F
(
1[[R̃u]]

)
|u=ξ

=
qξ
−

qξ + p,F
(
1[[R̃u]]

)
|u=ξ > 0,

which completes the proof. ⊓⊔

Under equivalent Jacod’s hypothesis, as stated in Theorem 1, the process 1
qξ is

true Fσ(ξ )-martingale and provides an interesting change of probability.

Lemma 5. (a) The process 1
qξ is an Fσ(ξ )-supermartingale with Doob-Meyer de-

composition
1

qξ = 1− 1
(qξ )2

−
� q̄ξ − 1

qξ
−
�
(
1[[R̃u,∞[[

)p,F
|u=ξ . (16)

Equivalently, it can be written as a stochastic exponential of the form

1
qξ = E

(
−Li −

(
1[[R̃u,∞[[

)p,F
|u=ξ

)
.

(b) The process 1
qξ is an Fσ(ξ )-local martingale if and only if R̃u = ∞ P⊗η-a.s.

Then 1
qξ = E (−Li).

(c) In particular, the process 1
qξ is a true Fσ(ξ )-martingale if and only if Ru = ∞

P⊗η-a.s. (i.e., under equivalent Jacod’s hypothesis).

Proof. (a) (qu,u ∈ R) is a parametrized F-martingale, then by Proposition 4, qξ

is an Fσ(ξ )-semimartingale. By (7), qξ is strictly positive. Then, 1
qξ is an Fσ(ξ )-

semimartingale, and by definition of the bracket, as

1
qξ = 1− 1

(qξ )2
−
�qξ +

1
(qξ )2

−qξ � [qξ ].

Applying (14), we finally get that

1
qξ = 1− 1

(qξ )2
−
� q̄ξ − 1

qξ
−
�
(
1[[R̃u,∞[[

)p,F
|u=ξ .

3 The upper script ”i” stands for initial.
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The exponential form immediately follows.

(b) Since 1
qξ
−
�
(
1[[R̃u,∞[[

)p,F
|u=ξ is an Fσ(ξ )-predictable increasing process, the pro-

cess 1
qξ is an Fσ(ξ )-local martingale if and only if

(
1[[R̃u,∞[[

)p,F
|u=ξ = 0. The last

condition is equivalent to have that, for each t

0 = E
(
(1[[R̃u,∞[[)

p,F
t |u=ξ

)
= E

(
o,F
(
(1[[R̃u,∞[[)

p,F|u=ξ

)
t

)
= E

(∫
R
(1[[R̃u,∞[[)

p,F
t qu

t η(du)
)
=
∫
R
E
(
(1[[R̃u,∞[[)

p,F
t qu

t

)
η(du),

where the second equality comes from (6). Next, by Yoeurp’s lemma we conclude
that, for each t

0 =
∫
R
E
(∫ t

0
qu

s−d
(
(1[[R̃u,∞[[)

p,F
)

s

)
η(du) =

∫
R
E
(

qu
R̃u−1{R̃u≤t}

)
η(du)

which in turn is equivalent to R̃u > t, P⊗η-a.s. for each t since qu
R̃u− > 0. Thus, 1

qξ

is an Fσ(ξ )-local martingale if and only if R̃u is infinite P⊗η-a.s.
(c) The ”if” part is shown in Theorem 1. We show ”only if” part here. Assume that
the process 1

qξ is a true Fσ(ξ )-martingale. Then, for each t ≥ 0, we have E( 1
qξ

t
) = 1.

On the other hand, using Lemma 1 (ii), we have that

E

(
1

qξ
t

)
=E

(∫
R

1
qu

t
1{qu

t >0}qu
t η(du)

)
=
∫
R
P(qu

t > 0)η(du)=
∫
R
P(Ru > t)η(du),

which shows that Ru = ∞, P⊗η-a.s.. ⊓⊔
In [6], Amendinger establishes that under equivalence Jacod’s hypothesis, for any

F-martingale X , the process X/qξ is a G martingale. In the following proposition,
we investigate the Fσ(ξ )-semimartingale decomposition of a parametrized F-local
martingale X when ξ is plugged in and when multiplied by 1

qξ from previous lemma.

Proposition 9. Let (Xu,u ∈ R) be a parametrized F-local martingale. Then Xξ

qξ is

an Fσ(ξ )-semimartingale with Fσ(ξ )-local martingale part equal to

Xξ
0 −

Xξ
−

(qξ )2
−
� q̄ξ +

1

qξ
−
� X̄ξ ,

and Fσ(ξ )-predictable finite variation part equal to

− 1

qξ
−
�
(

Xu
R̃u1[[R̃u,∞[[

)p,F
|u=ξ .

Proof. We compute, applying integration by parts formula:
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Xξ

qξ = Xξ
0 +Xξ

− � 1
qξ +

1

qξ
−
�Xξ +

[
Xξ ,

1
qξ

]

= Xξ
0 −

Xξ
−

(qξ )2
−
� q̄ξ −

Xξ
−

qξ
−
�
(
1[[R̃u,∞[[

)p,F
|u=ξ

+
1

qξ
−
� X̄ξ +

1

qξ
−qξ

� [Xξ ,qξ ]− 1

qξ
−
�
(

∆Xu
R̃u1[[R̃u,∞[[

)p,F
|u=ξ

− 1
(qξ )2

−
� [Xξ ,qξ ]+

1
(qξ )2

−qξ �
[
Xξ , [qξ ]

]
,

where the second equality comes from (16). It follows that

Xξ

qξ = Xξ
0 −

Xξ
−

(qξ )2
−
� q̄ξ +

1

qξ
−
� X̄ξ

− 1

qξ
−
�
(

Xu
R̃u1[[R̃u,∞[[

)p,F
|u=ξ −

∆qξ

p(ξ )2qξ � [Xξ ,qξ ]+
∆Xξ

(qξ )2
−qξ � [qξ ]

= Xξ
0 −

Xξ
−

(qξ )2
−
� q̄ξ +

1

qξ
−
� X̄ξ − 1

qξ
−
�
(

Xu
R̃u1[[R̃u,∞[[

)p,F
|u=ξ .

⊓⊔

As a corollary, from Proposition 9, we recover [16, Proposition 5.2] on universal
supermartingale density.

Corollary 1. If X is a positive F-supermartingale, then, X
qξ is an Fσ(ξ )-supermartingale.

Proof. Let X be decomposed as X = MX −V X where MX is a positive F-local
martingale and V X is an increasing F-predictable process. Then, MX

qξ is an Fσ(ξ )-

supermartingale since from the positiveness of MX , by Proposition 9, we get that
1

qξ
−
�
(

MX
R̃u1[[R̃u,∞[[

)p,F
|u=ξ is an Fσ(ξ )-predictable increasing process. Moreover, as

1
qξ is an Fσ(ξ )-supermartingale and V X is predictable and increasing, the process

−V X

qξ is as well an Fσ(ξ )-supermartingale which ends the proof. ⊓⊔

3.2 NUPBR condition for initial enlargement

In this section, we focus on the NUPBR condition in an initial enlargement frame-
work. Using simple arguments based on our optional semimartingale decomposi-
tion, we prove the stability of the NUPBR condition with respect to an initial en-
largement of filtration under absolute continuity Jacod’s hypothesis. In Proposition
10, we give Fσ(ξ )-local martingale deflators for quasi left-continuous parametrized
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F-local martingales and Fσ(ξ )-supermartingale deflators for parametrized F-local
martingales. In Theorem 6, we present a necessary and sufficient condition such that
any parametrized F-local martingale satisfies NUPBR(Fσ(ξ )). We close this section
by giving two particular examples of initial enlargements under Jacod’s hypothesis.
We address the reader to [1] for a study similar to the one contained in this section
using fully different methodology.

We denote by R̃u,a the accessible part of the F-stopping time R̃u and we define
the process V i as

V i
t := ∑

0≤s≤t

p,F
(
1[[R̃u]]

)
s
|u=ξ =

(
1[[R̃u,a,∞[[

)p,F
|u=ξ . (17)

Proposition 10. Let Li be defined in (15), and let (Xu,u ∈ R) be a parametrized
F-local martingale such that ∆Xu

R̃u = 0 on {R̃u < ∞} P⊗η-a.s. .
(a) If (Xu,u ∈ R) is quasi-left continuous, then the process Y i := E

(
−Li

)
is an

Fσ(ξ )-local martingale deflator for Xξ .
(b) In general, the process Ỹ i := E (−Li −V i) is an Fσ(ξ )-supermartingale deflator
for Xξ .

Proof. (a) Using the optional decomposition (14) given in Theorem 5, firstly for Xξ

and then for qξ , we obtain

Y iXξ = Xξ
− �Y i +Y i

− �Xξ +[Y i,Xξ ]

= Xξ
− �Y i +Y i

− � X̄ξ +Y i
−

1
qξ � [Xξ ,qξ ]−Y i

− � (∆Xu
R̃u)

p,F|u=ξ −Y i
− � [Li,Xξ ]

= Xξ
− �Y i +Y i

− � X̄ξ +Y i
−

1
qξ � [Xξ , q̄ξ ]+Y i

−
1

(qξ )2
� [[qξ ],Xξ ]

− Y i
−

1
qξ � [(∆qu

R̃u−1[[R̃u,∞[[)
p,F|u=ξ ,X

ξ ]−Y i
− � (∆Xu

R̃u1[[R̃u,∞[[)
p,F|u=ξ −

Y i
−

qξ
−
� [Xξ , q̄ξ ].

We continue, computing the various brackets:

Y iXξ = Xξ
− �Y i +Y i

− � X̄ξ −∑ Y i
−∆qξ

qξ qξ
−

∆Xξ ∆ q̄ξ +∑ Y i
−

(qξ )2
(∆qξ )2∆Xξ

+ ∑ Y i
−qξ

−
qξ

p,F(1[[R̃u]])|u=ξ ∆Xξ −Y i
− �
(

∆Xu
R̃u1[[R̃u,∞[[

)p,F
|u=ξ

= Xξ
− �Y i +Y i

− � X̄ξ +∑Y i
−

p,F(1[[R̃u]])|u=ξ ∆Xξ −Y i
− �
(

∆Xu
R̃u1[[R̃u,∞[[

)p,F
|u=ξ

= Xξ
− �Y i +Y i

− � X̄ξ +∑Y i
−

p,F(1[[R̃u]])|u=ξ ∆Xξ +
Y i
−

qξ
−
�
(
1[[R̃u]] � [X

u,qu]
)p,F

|u=ξ .

where the last equality follows from ∆qu
R̃u =−qu

R̃u− on {R̃u < ∞}.
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Since (Xu,u ∈ R) is an F-quasi-left continuous local martingale and ∆Xu
Ru = 0

on {Ru < ∞}, the two last terms are null, and Y iXξ is an Fσ(ξ )-local martingale.
Therefore, Y i is an Fσ(ξ )-local martingale deflator for Xξ .
(b) Let H be an Fσ(ξ )-predictable process such that H �Xξ ≥−1. Then, by integra-
tion by parts, we get

(1+H �Xξ ) Ỹ i = (1+H �Xξ )− � Ỹ i +H Ỹ i
− �Xξ −H Ỹ i

− � [Xξ ,Li]−H Ỹ i
− � [Xξ ,V i].

Note that
HỸ i

− � [Xξ ,V i] = ∑HỸ i
−

p,F(1[[R̃u]])|u=ξ ∆Xξ .

Then, using the same arguments as in the proof of Theorem 10, we get

(1+H �Xξ )Ỹ i = (1+H �Xξ )− � Ỹ i +H Ỹ i
− � X̄ξ −H Ỹ i

−

(
∆Xu

R̃u1[[R̃u,∞[[

)p,F
|u=ξ

and the assertion is proved. ⊓⊔

Proposition 11. Let (Xu,u ∈ R) be a parametrized process admitting an F-local
martingale deflator such that ∆Xu

R̃u = 0 on {R̃u < ∞}, η-a.e. Then Xξ admits an

Fσ(ξ )-local martingale deflator.

Proof. Let (Xu,u ∈ R) be a parametrized F-semimartingale admitting an F-local
martingale deflator, i.e., there exist a real-valued parametrized predictable process
(ϕ u,u ∈ R) and a positive F-local martingale L such that

0 < ϕ u ≤ 1 and (L(ϕ u �Xu),u ∈ R) is a parametrized F-local martingale.

Then, there exists a sequence of F-stopping times that increases to infinity (Tn)n
such that LTn is a martingale. Put Qn := LTn � P ∼ P. Then, by applying Propo-
sition 10 to ((ϕ u �Xu)Tn ,u ∈ R) under Qn, we conclude that (ϕ ξ �Xξ )Tn satisfies
NUPBR(Fσ(ξ )) under Qn. Thanks to Proposition 5, NUPBR(Fσ(ξ )) property under
P of Xξ follows immediately. ⊓⊔

Theorem 6. The following conditions are equivalent.
(a) The thin set

{
qu = 0 < qu

−
}

is evanescent η-a.e.
(b) The F-stopping time R̃u is infinite P⊗η-a.s.
(c) For any parametrized F-local martingale (Xu,u ∈ R), the process Xξ admits an
Fσ(ξ )-local martingale deflator 1

qξ (and satisfies NUPBR(Fσ(ξ ))).
(d) For any parametrized (bounded) process (Xu,u ∈ R) admitting an F-local mar-
tingale deflator, the process Xξ admits an Fσ(ξ )-local martingale deflator (and sat-
isfies NUPBR(Fσ(ξ ))).

Proof. The equivalence between (a) and (b) is obvious from the definition of R̃u.
The implication (b) ⇒(c) follows from Proposition 10. To prove (c)⇒(b), we con-
sider a parametrized F-martingale (Mu,u ∈ R) with

Mu := 1[[R̃u,∞[[− (1[[R̃u,∞[[)
p,F.
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Then, due to the equality Rξ = ∞ established in (7), it is clear that

Mξ =−
(
1[[R̃u,∞[[

)p,F
|u=ξ

is decreasing. Thus, Mξ satisfies NUPBR(Fσ(ξ )) if and only if it is a null process.
Then, we conclude that R̃ is infinite using the same argument as in the proof of
Lemma 5 (b). The implication (c) ⇒ (d) follows from Proposition 11. ⊓⊔

In the two following examples we look at two extreme situations.

Example 1. Let F be a filtration such that each F-martingale is continuous. Then, the
NUPBR condition is preserved in an initially enlarged filtration for any parametrized
F-local martingale from the reference filtration.

Example 2. Let B be a G -measurable set such that P(B) = 1
2 and consider the filtra-

tion F= (Ft)t≥0 defined as

Ft = { /0,Ω} for t ∈ [0,1[ and Ft := { /0,B,Bc,Ω} for t ∈ [1,∞[.

Define a random variable ξ as ξ := 1B + 2 ·1Bc . The random variable ξ satisfies
Jacod’s hypothesis with density (qu,u ∈ {1,2}) equal to

q1 = 1[[0,1[[+2 ·1{ξ=1}1[[1,∞[[,

q2 = 1[[0,1[[+2 ·1{ξ=2}1[[1,∞[[.

Let the filtration Fσ(ξ ) = (F
σ(ξ )
t )t≥0 be an initial enlargement of the filtration F

with ξ , i.e.,
F

σ(ξ )
t := { /0,B,Bc,Ω} for t ∈ [0,∞[.

Let X be an F-martingale defined as

X :=
(
1{ξ=1}−

1
2

)
1[[1,∞[[.

Then, X is an Fσ(ξ )-predictable process. Thus, by [5, Lemma 2.6] it does not satisfy
NUPBR(Fσ(ξ )). Note that here, the set

{
qu = 0 < qu

−
}

is not evanescent, and that
R̃u is not equal to infinity.

4 Connection to Absolutely Continuous Change of Measure

In this section, we study the relationship between our optional semimartingale de-
compositions in progressive and initial enlargement of filtration cases and our op-
tional semimartingale decomposition in an absolutely continuous change of measure
set-up. First let us recall [28, Theorem 42, Chapter III].
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Theorem 7. Let X be a P-local martingale with X0 = 0. Let Q be a probability
measure absolutely continuous with respect to P, and define ζt := EP(

dQ
dP |Ft). Let

r := inf{t > 0 : ζt = 0} and r̃ := r{ζr−>0}. Then

X̄ := X − 1
ζ
� [X ,ζ ]+

(
∆Xr̃ 1[[r̃,∞[[

)p,P (18)

is a Q-local martingale.

It is clear that Theorem 7 implies the same type of decompositions as the two
decompositions stated in Sections 2.1 and 3.1.

Up to random time τ: Xτ = X̄ + 1
Nτ � [Xτ ,Nτ ]−

(
∆XR̃1[[R̃,∞[[

)p,F

�∧τ

Under Jacod’s hypothesis: Xξ = X̄ + 1
qξ � [Xξ ,qξ ]−

(
∆Xu

R̃u1[[R̃u,∞[[

)p,F
|u=ξ

Under measure Q: X = X̄ + 1
ζ � [X ,ζ ]−

(
∆Xr̃1[[r̃,∞[[

)p,P

In each of the three cases, there is a different mechanism to ensure the strict
positivity of Nτ , qξ and ζ . In the case of progressive enlargement up to a random
time, we stop at τ . In the case of initial enlargement with random variable satisfy-
ing Jacod’s hypothesis, we plug ξ . In the case of absolutely continuous change of
measure, the process ζ is strictly positive Q-a.s.

The optional decomposition in the change of measure case can be used in the
same way to obtain similar result on stability of the NUPBR condition with respect
to absolutely continuous change of measure.

We remark here that the set introduced in Definition 3 may become bigger under
absolutely continuous change of measure as under the new measure the condition
H �X ≥−1 is more likely satisfied.

Let ζ̄ given by (18) in terms of the Radon Nikodym density ζ , and define a
Q-local martingale La by

La :=
1
ζ
� ζ̄ .

Let us denote by r̃a the accessible part of the stopping time r̃, and set

V a :=
(
1[[r̃a,∞[[

)p,P

Using the processes La and V a we study, in the next lemma, the behaviour of
particular Q-deflators.

Proposition 12. (a) Let Y a := E (−La). If X is a quasi-left continuous local martin-
gale and ∆Xr̃ = 0 on {r̃ < ∞} P-a.s., then Y a is a Q-local martingale deflator for X.
(b) Let Ỹ a := E (−La −V a). Let X be a P-local martingale such that ∆Xr̃ = 0 on
{r̃ < ∞} P-a.s., then Ỹ a is a Q-supermartingale deflator for X.

Proof. (a) Using integration by parts and the optional decomposition (18) given in
Theorem 7 for X and then for ζ , we obtain



26 Anna Aksamit, Tahir Choulli and Monique Jeanblanc

Y aX = X− �Y a +Y a
− �X +[Y a,X ]

= X− �Y a +Y a
− � X̄ +Y a

−
1
ζ
� [ζ ,X ]−Y a

− � (∆Xr̃ 1[[r̃,∞[[)
p,P−Y a

− � [La,X ]

= X− �Y a +Y a
− � X̄ +Y a

−
1
ζ
� [ζ̄ ,X ]+Y a

−
1

ζ 2 [[ζ ],X ]

− Y a
−

1
ζ
� [(∆ζr̃ 1[[r̃,∞[[)

p,P,X ]−Y a
− � (∆Xr̃ 1[[r̃,∞[[)

p,P−
Y a
−

ζ−
[ζ̄ ,X ].

We continue, adding the two terms which contain [ζ̄ ,X ] and computing the brackets

Y aX = X− �Y a +Y a
− � X̄ −∑ Y a

−∆ζ
ζ ζ−

∆X∆ζ̄ +∑ Y a
−

ζ 2 (∆ζ )2∆X

+ ∑ Y a
−ζ−
ζ

p,P(1[[r̃]])∆X −Y a
− � (∆Xr̃1[[r̃,∞[[)

p,P

= X− �Y a +Y a
− � X̄ +∑Y a

−
p,P(1[[r̃]])∆X −Y a

− �
(
∆Xr̃1[[r̃,∞[[

)p,P (19)

Since for any P-quasi-left continuous martingale X , the process p,P(1[[r̃]])∆X is null
and ∆Xr̃ = 0, Y a is a Q-local martingale deflator for X .
(b) Let H be a predictable process such that H �X ≥ −1. Then, by integration by
parts, we get

(1+H �X) Ỹ a = (1+H �X)− � Ỹ a +H Ỹ a
− �X −H Ỹ a

− � [X ,La]−H Ỹ a
− � [X ,V a].

Note that
HỸ a

− � [X ,V a] = ∑H Ỹ a
−

p,P(1[[r̃]])∆X .

Then, using the same arguments as in the proof of Theorem 12 to derive (19), we
get

(1+H �X)Ỹ a = (1+H �X)− � Ỹ a +HỸ a
− � X̄ −HỸ a

− �
(

∆Xr̃1[[S̃,∞[[

)p,P

and the assertion is proved. ⊓⊔

Proposition 13. Let X be a process admitting a P-local martingale deflator such
that ∆Xζ̃ = 0 on {ζ̃ < ∞}. Then X admits a Q-local martingale deflator.

Proof. Let X be an P-semimartingale satisfying NUPBR(P). Thanks to Proposition
5 and Theorem 2, we deduce the existence of a real-valued predictable process ϕ
and a positive P-local martingale K such that

0 < ϕ ≤ 1 and K (ϕ �X) is a P-local martingale.

Then there exists a sequence of stopping times (vn)n that increases to infinity such
that the stopped process Kvn is a P-martingale. Put Pn := Kvn �P∼ P and
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Qn :=
Kvn

EP(ζvn Kvn)
�Q=

ζvn

EP(ζvn Kvn)
�Pn ≪ Pn.

Define ζ n
t := EPn

(
ζvn

EPn (ζvn )
|Ft

)
and note that the condition that {ζ = 0 < ζ−} is P-

evanescent implies that
{

ζ n = 0 < ζ n
−
}

is Pn-evanescent. Then, by applying Propo-
sition 12 to (ϕ �X)vn under Pn, we conclude that (ϕ �X)vn satisfies NUPBR(Qn).
Thanks to Proposition 5, since Qn ∼ Q, NUPBR(Q) property of X immediately
follows. ⊓⊔

We recover [10, Theorem 5.3] and [10, Proposition 5.7] with alternative proof in
the next result.

Theorem 8. The following conditions are equivalent.
(a) The thin set {ζ = 0 < ζ−} is P-evanescent.
(b) The stopping time r̃ is infinite P-a.s.
(c) Any P-local martingale X admits Y a as a Q-local martingale deflator, so X
satisfies NUPBR(Q).
(d) Any (bounded) process X satisfying NUPBR(P) satisfies NUPBR(Q).

Proof. The equivalence between (a) and (b) is obvious from the definition of r̃.
The implication (b)⇒(c) follows from Proposition 12. To prove (c)⇒(b) (and
(d)⇒(b)), we consider the P-martingale

X = 1[[r̃,∞[[−
(
1[[r̃,∞[[

)p,P
.

Then, due to r̃ = ∞ Q-a.s. we have that, under Q,

X =−
(
1[[r̃,∞[[

)p,P

is a predictable decreasing process. Thus, X satisfies NUPBR(Q) if and only if it is
a null process. Then, we conclude that S̃ is infinite using the same argument as in
the proof of Lemma 6 (b). The implication (c) ⇒ (d) follows from Proposition 13.
⊓⊔
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