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Abstract
Background: The hard clam, Mercenaria mercenaria, has been affected by severe mortality
episodes associated with the protistan parasite QPX (Quahog Parasite Unknown) for several years.
Despite the commercial importance of hard clams in the United States, molecular bases of defense
mechanisms in M. mercenaria, especially during QPX infection, remain unknown.

Results: Our study used suppression subtractive hybridization (SSH), as well as the construction
of cDNA libraries from hemocytes to identify genes related to the defense of the hard clam against
its parasite. Hard clams were experimentally infected with QPX and SSH was performed on mRNA
samples extracted from mantle and gill tissues at different times post-challenge. A total of 298
clones from SSH libraries and 1352 clones from cDNA libraries were sequenced. Among these
sequences, homologies with genes involved in different physiological processes related to signal
transduction, stress response, immunity and protein synthesis were identified. Quantitative PCR
revealed significant changes in the expression of several of these genes in response to QPX
challenge and demonstrated significant correlations in terms of levels of gene expression between
intermediates of signalling pathways and humoral defense factors, such as big defensin and
lysozyme.

Conclusion: Results of this study allowed the detection of modifications caused by QPX at the
transcriptional level providing insight into clam immune response to the infection. These
investigations permitted the identification of candidate genes and pathways for further analyses of
biological bases of clam resistance to QPX allowing for a better understanding of bivalve immunity
in general.

Background
The hard clam, Mercenaria mercenaria, is exploited along
the eastern coast of North America, from Maritime Can-
ada to the Gulf of Mexico. This species is among the most

commercially important bivalves in the United States and
is well suited for aquaculture as it is characterized by a rel-
atively fast growth. The hard clam is a sturdy bivalve and
the only infectious agent that causes severe mortality epi-

Published: 14 August 2009

BMC Genomics 2009, 10:377 doi:10.1186/1471-2164-10-377

Received: 5 March 2009
Accepted: 14 August 2009

This article is available from: http://www.biomedcentral.com/1471-2164/10/377

© 2009 Perrigault et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19682366
http://www.biomedcentral.com/1471-2164/10/377
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2009, 10:377 http://www.biomedcentral.com/1471-2164/10/377
sodes among wild and cultured clams is the protistan par-
asite QPX (Quahog Parasite Unknown) [1]. QPX is a
unicellular protist member of the family Thraustochytri-
dae [2]. Despite the ubiquitous nature of this family in
aquatic environment, thraustochytrids were poorly stud-
ied and only few pathogens were described in this group
[3]. QPX reported in 1989 at Prince Edward Island was
linked to almost 100% of the mortality among cultured
clams [4]. It was subsequently identified in other loca-
tions further south: Massachusetts in 1995 [5], Virginia in
1996 [6], New Jersey [7] and New York [8] in 2002, but
the parasite was never detected further south than Vir-
ginia. Recent lab-controlled experiments [9] and in situ
investigations [7,10] demonstrated variability of suscepti-
bility among hard clam populations, with clams from
southern broodstocks being more susceptible to QPX dis-
ease than northern broodstocks, suggesting a genetic ori-
gin of clam resistance. Field investigations also showed
variability in the resistance toward QPX among different
local (New York State) clam broodstocks [9]. Differences
of susceptibility to pathogen infection between different
populations were previously observed in other bivalves
[11,12]. Intra-specific genetic variation in disease suscep-
tibility to Perkinsus marinus was indirectly demonstrated
by the evolution of resistance in disease-challenged natu-
ral populations of oysters [13].

Like other invertebrates, bivalves lack adaptive immunity
and instead rely on various innate defenses against invad-
ing pathogens. In hard clam, hemocytes constitute the pri-
mary line of defense against materials recognized as non-
self [14]. The presence of non-self materials in tissues ini-
tiates a complex molecular signalling cascade to stimulate
cell-mediated immune responses, mainly involving
phagocytosis or encapsulation of foreign materials, and
the production of reactive oxygen species (ROS) [15,16].
Humoral factors, such as defensins, also play an impor-
tant role because they possess various anti-microbial
properties [17,18]. Enzymes, such as peptidases and lys-
ozyme, are particularly crucial because of their ability to
hydrolyze protein components of invading microorgan-
isms [19-21]. Since bivalves have an open circulatory sys-
tem, antimicrobial constituents associated with plasma
and hemocytes are virtually present in all tissues. Histo-
logical observation of naturally- and experimentally-
infected clams by QPX demonstrated that some individu-
als are sometimes able to mount a defense reaction char-
acterized by an intense inflammatory response,
phagocytosis (rare) and encapsulation of parasite cells.
The presence of dead and necrotic QPX cells was reported
in some instances, suggesting that clam's humoral and/or
cellular response was sufficiently efficient to lead to the
healing of infected individuals [6,8,22]. Histological
observations of infected clam tissues and in vitro cultures
also revealed an abundant production of a mucofilamen-

tous net by QPX. These secretions are suspected to repre-
sent virulence factors that protect the parasite from host
defense mechanisms [5]. In vitro investigations demon-
strated that the mucus layer protects QPX from humoral
defense factors in clam plasma and therefore, could be
important to the establishment, as well as the develop-
ment, of the disease [23]. However, clam immune
response to QPX cells and/or mucus has never been inves-
tigated.

In bivalves, prior studies focusing on the identification of
immune-related genes were performed in oysters [24-28],
mussels [29] and scallops [30-34]. Molecular bases of
defense mechanisms in hard clams, especially during QPX
infection, are unknown. The only investigations that have
studied molecular aspects of clam immunity were per-
formed in the genus Tapes or Ruditapes; [35-37], a rela-
tively distant member of the family Veneridae.
Identification of immune-related genes involved in the
response of M. mercenaria to QPX infection could lead to
the development of tools that will contribute to the selec-
tion of resistant populations of clams and develop knowl-
edge about clam immunity by the generation of a nucleic
database for the species.

This study aimed for a better characterization of clam's
response to QPX infection by investigating differentially
expressed genes following parasite challenge. Our study is
the first to apply transcriptomic approaches in M. merce-
naria. Suppression subtractive hybridization (SSH), as
well as the construction of cDNA libraries of expressed
genes associated with quantitative PCR, was used to iden-
tify genes related to the defense of hard clam against its
parasite.

Results
Identification of regulated genes in SSH libraries
The search for homology using the BLASTX program
revealed a total of 25 unique sequences in gill libraries
and 29 unique sequences in mantle libraries for M. merce-
naria after 14 days of exposure, 10 unique sequences in
gill libraries and 74 unique sequences in mantle libraries
for M. mercenaria after 48 days of exposure, including
sequences corresponding to known genes or unidentified
ESTs. Genes regulated by QPX challenge were assigned to
7 major cellular physiological functions using the Gene
Ontology (GO) Database: 1) stress response and detoxifi-
cation; 2) cell communication, immune system and
membrane receptors; 3) cell cycle regulation, DNA repair,
protein regulation and transcription; 4) cytoskeleton pro-
duction and maintenance; 5) respiratory chain; 6) metab-
olism; 7) ribosomal proteins; 8) unknown functions and
9) unidentified sequences. Up-regulated and down-regu-
lated sequences in gill and mantle tissues are listed in
tables 1 and 2, respectively. Sequences were submitted to
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Table 1: Upregulated genes identified in mantle and gill tissues 14 and 48 days after challenge with washed and unwashed QPX cells.

Homolog proteins Homolog species BlastX value Libraries GenBank accession no

stress response and detoxification 4% of sequences identified in libraries from mantle tissue
11% of sequences identified in libraries from gill tissue

metallothionein Corbicula fluminea 1e-11 Mantle (14 days) GO915213
cytochrome P450 like TBP Nicotiana tabacum 2e-07 Gills (14 days) GO915227
71 kDa heat shock protein Haliotis tuberculata 6e-53 Mantle (48 days) GO915235
ferritin subunit Meretrix meretrix 3e-50 Mantle (48 days) GO915233

cell communication, immune system and membrane 
receptors

7% of sequences identified in libraries from mantle tissue

receptor of Activated Kinase C 
1

Mya arenaria 4e-44 Mantle (48 days) GO915258

lysozyme (Chain) Enterobacteria phage T4 3e-04 Mantle (48 days) GO915259
big defensin Tachypleus tridentatus 5e-10 Mantle (48 days) GO915266
sialic acid binding lectin Helix pomatia 1e-04 Mantle (48 days) GO915267
C-type lectin A Chlamys farreri 5e-05 Mantle (14 days) GO915219
nicotinic acetylcholine receptor 
subunit type H

Lymnaea stagnalis 8e-14 Mantle (14 days) GO915224

cell cycle regulation, DNA repair, protein 4% of sequences identified in libraries from mantle tissue
regulation and transcription 26% of sequences identified in libraries from gill tissue
CCAAT/enhancer binding 
protein

Aplysia kurodai 5e-19 Mantle (14 days) GO915218

translation elongation factor 1-
alpha

Dreissena polymorpha 3e-108 Mantle (14 and 48 days) and 
Gills (48 days)

GO915211

elongation factor 1 beta Plutella xylostella 4e-21 Mantle (48 days) GO915246
eukaryotic translation 
elongation factor 1 delta

Bos taurus 4e-12 Mantle (48 days) GO915241

similar to H3 histone, family 3B Macaca mulatta 9e-37 Mantle (48 days) GO915263

cytoskeleton production and maintenance 4% of sequences identified in libraries from mantle tissue
1% of sequences identified in libraries from gill tissue

Actin Chlamys farreri 4e-67 Mantle (48 days) GO915239
myosin (essential light chain) Macrocallista nimbosa 3e-38 Mantle (48 days) GO915247
Tropomyosin Balanus rostratus 7e-15 Mantle (48 days) GO915261
alpha tubulin Leishmania braziliensis 2e-05 Mantle (48 days) GO915252
beta-tubulin Halocynthia roretzi 2e-59 Gills (14 days) GO915225
transgelin 3 Danio rerio 1e-08 Mantle (48 days) GO915232

respiratory chain 12% of sequences identified in libraries from mantle tissue
11% of sequences identified in libraries from gill tissue

cytochrome oxidase subunit 1 Ruditapes philippinarum 2e-29 Mantle and Gills 
(14 and 48 days)

GO915255

cytochrome oxidase subunit 3 Inocellia crassicornis 3e-19 Mantle (14 and 48 days) GO915234
NADH dehydrogenase subunit 
4

Ruditapes philippinarum 3e-30 Mantle and Gills (48 days) GO915245

ATP synthase subunit 6 Ruditapes philippinarum 3e-25 Mantle and Gills (14 days) GO915223

Metabolism 6% of sequences identified in libraries from gill tissue
zinc-dependent alcohol 
dehydrogenase

Lysiphlebus testaceipes 1e-33 Gills (14 days) GO915228

ribosomal proteins 3% of sequences identified in libraries from mantle tissue
1% of sequences identified in libraries from gill tissue

ribosomal protein L17A Argopecten irradians 8e-11 Mantle (48 days) GO915262
ribosomal protein L11 Ictalurus punctatus 2e-08 Mantle (48 days) GO915248
ribosomal protein S2e Onchocerca volvulus 8e-25 Gills (48 days) GO915270
ribosomal protein S3a Crassostrea gigas 5e-99 Mantle (14 days) GO915220

unknown functions 1% of sequences identified in libraries from mantle tissue
29% of sequences identified in libraries from gill tissue
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NCBI with the following accession numbers: [GenBank:
GO915165 – GO915272].

Identification of genes from hemocyte cDNA libraries
The sequencing of 1352 clones from the hemocyte cDNA
library resulted in the characterization of a total of 487
ESTs that have been clusterized according to their func-
tion using the GO Database (Figure 1). Only 29% of these
ESTs present an annotation and 71% remain unidentified.
Several sequences presenting homologies with stress- and
defense-related genes have been detected including Stress-
Induced Protein STI [GenBank: GR209325] (BlastX value
= 8e-21, Cryptosporidium parvum – [GenBank:
XP_001388209]), Toll-Like Receptor TLR [GenBank:
GR209327] (BlastX value = 2e-4, Strongylocentrotus purpu-
ratus – [GenBank: XP_001201188]), Tumor Necrosis Fac-
tor Receptor-Associated Factor TRAF-6 [GenBank:
GR209326] (BlastX value = 4e-5, Chlamys farreri – [Gen-
Bank: ABC73694]) and C1q – TNF related protein [Gen-
Bank: GR209324] (BlastX value = 3e-2 Danio rerio –
[GenBank: NP_001017702]).

Expression patterns of differentially-regulated genes
Results showed that QPX challenge induced significant
changes in the expression of several of the eighteen inves-
tigated genes. This modulation was characterized by a
highly variable regulation of these genes 14 days after
challenge (Figure 2). At that sampling time, few tran-
scripts were significantly regulated, particularly in w-QPX
challenged clams, including hemocyte defensin, C1q,
actin, HSP 70 and ferritin (Table 3). After 28 and 48 days,
significant variations of gene expression were observed in
both washed and unwashed-QPX challenged clams with a
high variability according to the challenge and the tissue
(Table 3, Figure 2). Some genes, such as TRAF-6, were
more specific to the challenge (washed or unwashed-
QPX), whereas other genes tended to be more linked to
particular tissues such as the big defensin (Figure 2). In
addition, some gene expressions presented continuous

trends over time (decrease or increase) as TRAF-6 and fer-
ritin, while other genes displayed strong modulation after
28 days (TLR expression in mantle tissues, Figure 2). Mul-
tifactor analysis indicated significant effects of all individ-
ual parameters (time, treatment and tissues) on actin and
big defensin expression and a significant effect of com-
bined parameters on AP-1, lysozyme and TLR expression
(Table 4).

Discriminant Analysis performed on data from mantle
and gill tissues (samples from different time points com-
bined) revealed significant discrimination of the treat-
ments in both tissues by Function 1 (p = 0.05 and 0.01,
respectively) which explained 68.3% and 81.5% of the
total variance respectively (Table 5). Scatter plots of discri-
minant functions indicated a small overlapping between
treatments with a good discrimination of centroids by
Function 1 (Figure 3). Examination of the structure corre-
lation matrix (Table 6) revealed that 9 variables were
highly loaded in Function 1 for both mantle and gill tissue
analyses. Among these variables, the expression of TLR,
AP-1, big defensin and lysozyme were highly correlated
(Table 7, p < 0.001).

Discussion
Our investigations allowed the identification of compo-
nents involved in different physiological processes related
to signal transduction (RACK-1, TLR, TRAF-6), stress
response (HSP, metallothionein, ferritin), immunity
(lectins, defensins, lysozyme) and protein synthesis (tran-
scription and elongation factors). This new information
allowed the detection of modifications caused by QPX at
the transcriptional level. Our results depict some integra-
tive aspects of clam responses to QPX infection and more
specifically to different forms of QPX challenges (washed
versus unwashed cells of the parasite).

Since QPX is an opportunistic parasite usually found in
pallial tissues (gills and mantle) of infected clams [7], we

putative senescence-associated 
protein

Pisum sativum 3e-34 Gills (14 days) GO915231

hypothetical protein 
TTHERM_02141640

Tetrahymena thermophila 
SB210

2e-36 Gills (14 days) GO915230

hypothetical protein 
TTHERM_00648850

Tetrahymena thermophila 
SB210

8e-09 Mantle (48 days) GO915260

SJCHGC09076 protein Schistosoma japonicum 4e-03 Mantle (48 days) GO915249

unknown genes 16% of sequences identified in libraries from mantle tissue
11% of sequences identified in libraries from gill tissue

7 sequences Mantle (14 days) GO915212, GO915214-17,
GO915221-2

15 sequences Mantle (48 days) GO915236-38, 40, 42-44, 50-51,
53-54, 56-57, 64-65

2 sequences Gills (14 days) GO915226, GO915229
4 sequences Gills (48 days) GO915268-69, GO915271-72

Table 1: Upregulated genes identified in mantle and gill tissues 14 and 48 days after challenge with washed and unwashed QPX cells. 
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focused our investigations on these tissues to identify dif-
ferentially expressed genes in response to the infection.
Interestingly, the comparison of gene distribution from
subtracted libraries indicated some variations according
to the tissue and the time of sampling. After 14 days of
QPX challenge, similar numbers of unique genes were

identified in mantle and gill tissues. However, 48 days
post-challenge, a clear difference was observed among tis-
sues with a larger proportion of genes identified in mantle
as compared to gills. In addition, 24% of identified genes
in mantle tissues presented homologies with proteins
known to be involved in stress and immune response,

Table 2: Downregulated genes identified in mantle and gill tissues 14 and 48 days after challenge with washed and unwashed QPX 
cells.

Homolog proteins Homolog species BlastX value Libraries GenBank accession no

stress response and detoxification 8% of sequences identified in libraries from mantle tissue
HSP70 Mytilus galloprovincialis 1e-52 Mantle (14 days) GO915169
71 kDa heat shock protein Haliotis tuberculata 6e-53 Mantle (14 days) GO915166

cell communication, immune system and membrane 
receptors

5% of sequences identified in libraries from mantle tissue

hemocyte defensin Crassostrea gigas 1e-05 Mantle (48 days) GO915199
peroxisome proliferator-
activated receptor

Oncorhynchus keta 7e-07 Mantle (14 and 48 days) GO915177

thioester-containing protein Euphaedusa tau 2e-08 Mantle (48 days) GO915190

cell cycle regulation, DNA repair, protein regulation and 
transcription

3% of sequences identified in libraries from mantle tissue

transcription factor AP-1 Strongylocentrotus purpuratus 2e-16 Mantle (48 days) GO915178
translation elongation factor 1-
alpha

Dreissena polymorpha 3e-108 Mantle (14 and 48 days) GO915167

cytoskeleton production and maintenance 2% of sequences identified in libraries from mantle tissue
Actin Cyrenoida floridana 1e-82 Mantle (48 days) GO915201
alpha tubulin Theromyzon tessulatum 5e-40 Mantle (48 days) GO915209
alpha tubulin a1 Mesenchytraeus solifugus 1e-09 Mantle (48 days) GO915208

respiratory chain 1% of sequences identified in libraries from mantle tissue
1% of sequences identified in libraries from gill tissue

cytochrome b Ruditapes philippinarum 8e-91 Gills (14 days) GO915174
cytochrome c subunit I Ruditapes philippinarum 6e-25 Mantle (14 days) GO915173

metabolism 1% of sequences identified in libraries from mantle tissue
ADP/ATP carrier Leishmania mexicana 

amazonensis
2e-05 Mantle (14 days) GO915170

ribosomal proteins 4% of sequences identified in libraries from mantle tissue
ribosomal protein L7 Argopecten irradians 8e-03 Mantle (48 days) GO915202
ribosomal protein L19 Crassostrea gigas 9e-21 Mantle (48 days) GO915205
ribosomal protein L24 Danio rerio 3e-12 Mantle (14 days) GO915172

unknown functions 8% of sequences identified in libraries from mantle tissue
SJCHGC02792 protein Schistosoma japonicum 3e-12 Mantle (14 days) GO915171
hypothetical protein 
DDBDRAFT_0167791

Dictyostelium discoideum AX4 1e-04 Mantle (14 days) GO915168

hypothetical protein Monodelphis domestica 2e-27 Mantle (48 days) GO915196
similar to product in Drosophila 
melanogaster

Schistosoma japonicum 7e-04 Mantle (48 days) GO915187

unknown genes 17% of sequences identified in libraries from mantle tissue
3% of sequences identified in libraries from gill tissue

1 sequence Mantle (14 days) GO915165
23 sequences Mantle (48 days) GO915179-86, 88-89, 91-95, 97-98,

GO915200, 03-04, 06-07, 10
2 sequences Gills (14 days) GO915175-76
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whereas only 11% of identified genes in gills were
involved in stress response (Tables 1 and 2). These results
suggest that molecular changes observed 14 days after
challenge represented a systemic acute response of clams
resulting from the injection of parasite in the circulation,
whereas the differences observed after 48 days could be
related to clam response to established QPX infections in
mantle tissues. These results fit well with histological
observations made following injection of QPX into the
pericardial cavity of hard clams that showed an early (2
weeks) systemic distribution of QPX in clam tissues, fol-
lowed by the development of most intense lesions in
mantle tissues [22]. It is noteworthy that the development
of QPX lesions following intrapericardial injection
matches well, temporally (>4 weeks) and spatially (organs
infected), with the typical disease development in natu-
rally infected clams [22].

Our investigations demonstrated the modulation in QPX-
challenged clams of components with strong homologies
to stress-related proteins, including heat shock proteins
(HSP's) and their co-chaperones STI1 (Stress Induced Pro-

tein), metallothionein and ferritin. These molecular chap-
erones protect the cell and maintain homeostasis under
stressful conditions [38]. HSPs were identified in several
bivalve species in response to various chemical, physical
and pathogenic stresses and appear to represent a general
marker of non-specific stress [25,39-41]. Previous studies
demonstrated that heat-shock proteins were able to stim-
ulate innate immune system in mammalians [42]. Our
results are consistent with previous studies, which showed
that the relationship between HSP and defense response
was not established, despite the identification of heat-
shock proteins following pathogenic challenge in inverte-
brates [25,36,43]. HSP 70 was significantly repressed in
gill tissues of w-QPX challenged clams after 14 days and
up-regulated in mantle tissues of u-QPX challenged clams
(unwashed cells) after 28 days (Table 3). However, Multi-
factor ANOVA analysis indicated no significant role of
HSP expression in the response of clams to the different
treatments (Table 4). MT's are an ubiquitous class of
metal-binding proteins that function in the homeostasis
of essential metals, as well as serving a detoxification role
by sequestering toxic metals. In oysters, Anderson et al.

Functional classification of the sequences identified in the hemocyte library (487 ESTs)Figure 1
Functional classification of the sequences identified in the hemocyte library (487 ESTs). Genes were clustered 
into 13 categories according to their putative biological function.
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[44] demonstrated that MT's were able to scavenge reac-
tive oxygen species. In mammals, immune stimulants
have been shown to be effective inducers of MT's [45].
However, the role of MT's in invertebrates, and especially
in bivalves, appears more complex. Bacterial challenge
induced a repression of MT expression in Crassostrea virgi-
nica [26] but not in the bay scallop Agropecten irradians
[46] or during trematode parasitism in the cockle Cerasto-
derma edule where MT concentration increased [47]. Dif-
ferences of MT expression could be related to the nature of
the pathogen and its capacity to produce toxic com-
pounds against its host. In our study, MT was significantly

up-regulated in mantle after 28 days and gill tissues after
48 days in clams challenged by unwashed QPX but not in
w-QPX challenged clams (Table 3). Discriminant analysis
in mantle and gill tissues also revealed the specific impor-
tance of MT to separate the treatments in Function 1
(Table 6). Ferritin has also been classified as a stress pro-
tein due to its similarity with proteins involved in detoxi-
fication processes [24]. However, ferritin was also
associated with defense mechanisms because of its role in
the regulation of iron availability to infectious agents
[48]. Previous studies demonstrated an increase of ferritin
expression in invertebrates following exposures to patho-

Table 3: Summary of the results of Student's t-tests of gene expression data.

14 days 28 days 48 days

Mantle Gills Mantle Gills Mantle Gills

w-QPX u-QPX w-QPX u-QPX w-QPX u-QPX w-QPX u-QPX w-QPX u-QPX w-QPX u-QPX

hemocyte defensin +
big defensin +++
lysozyme + ++ + ---

C1q – TNF related protein +
TRAF-6 --

Toll-like receptor -
RACK-1 +++ +++ +++ + + ++ +++

peroxisome proliferator-
activated receptor

+ +

HSP70 - +
stress-induced protein STI +

ferritin - ++ +
metallothionein ++ - +++

actin + ++
AP-1 ++ + ++

elongation factor beta +++ - --- +++
NADH sub-unit IV +

senescente associated protein -- +
cytochrome P450 like TBP +++ -

Symbols + and - respectively indicate significant increase or decrease of gene expression compared to controls and the number of symbols for each 
condition refers to the p-value: + or -: p < 0.05, ++ or --: p < 0.01 and +++ or ---: p < 0.001.

Table 4: Effects of QPX challenge, sampling time and tissue type on gene expression in M. mercenaria (Multifactor ANOVA followed by 
Holm-Sidak post-hoc test).

Time condition tissue time × condition time × tissue condition × tissue time × condition × tissue

hemocyte defensin *
big defensin *** * ** ** *** **
lysozyme * *

Toll-like receptor *** * * *** *
ferritin ***
actin ** * ** *** ** * ***
AP-1 * * * **

NADH sub-unit IV * *
senescente associated protein *** * * ***

Only genes showing significant variations are presented. Symbols refer to the p-value: *: p < 0.05, **: p < 0.01 and ***: p < 0.001.
Page 7 of 17
(page number not for citation purposes)



BMC Genomics 2009, 10:377 http://www.biomedcentral.com/1471-2164/10/377
gen-associated molecular patterns (PAMPs) or bacterial
challenge [24,49,50]. In our study, quantitative PCR
revealed an increase of ferritin expression in clams chal-
lenged by QPX after 28 and 48 days (Figure 2). However,
significant increase of ferritin expression was only
observed in gill tissues (Table 3). The biological signifi-
cance of changes in ferritin expression levels is not known
in clams since the effects of iron on QPX has never been
investigated, but Gauthier and Vasta [51] demonstrated

limited in vitro growth of the oyster pathogen Perkinsus
marinus under low iron concentrations.

Subtracted libraries also allowed the identification of
genes coding for several proteins involved in humoral
defense including lysozyme, lectins and defensins. Lys-
ozyme is a well-known protein possessing anti-microbial
activities; lysozyme activity has been detected in the body
fluids and tissues of many bivalve mollusks and is
believed to play a role in host defense and digestion

Relative expression by quantitative PCR of selected transcripts from SSH (hemocyte and big defensins, ferritin, RACK-1) and hemocyte (TRAF-6 and TLR) librariesFigure 2
Relative expression by quantitative PCR of selected transcripts from SSH (hemocyte and big defensins, ferri-
tin, RACK-1) and hemocyte (TRAF-6 and TLR) libraries. Expression levels were normalized to 18S RNA and pre-
sented as relative expression to controls (mean ± SD, n = 8 clams). * indicates significant differences of gene expression 
compared to controls at p < 0.05 (Student's t-test).

0.1

1

10

100

0.1

1

10

100

1000

0.001

0.01

0.1

1

10

100

1000

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

0.1

1

10

100

0.01

0.1

1

10

100

1000

F
ol

d 
ch

an
ge

 in
 g

en
e 

ex
pr

es
si

on
F

ol
d 

ch
an

ge
 in

 g
en

e 
ex

pr
es

si
on

F
ol

d 
ch

an
ge

 in
 g

en
e 

ex
pr

es
si

on

Hemocyte defensin Big defensin

Ferritin Rack-1

TRAF-6 TLR

14 days

28 days

48 days*

*

*
*

*

*

*
*

*

*

* *

* *

w-QPX u-QPX w-QPX u-QPX

Gill Mantle

w-QPX u-QPX w-QPX u-QPX

Gill Mantle

w-QPX u-QPX w-QPX u-QPX

Gill Mantle

w-QPX u-QPX w-QPX u-QPX

Gill Mantle

w-QPX u-QPX w-QPX u-QPX

Gill Mantle

w-QPX u-QPX w-QPX u-QPX

Gill Mantle
Page 8 of 17
(page number not for citation purposes)



BMC Genomics 2009, 10:377 http://www.biomedcentral.com/1471-2164/10/377
[19,52,53]. Different results have been previously
reported on the variation of lysozyme concentration in
response to parasites in mollusks. Lysozyme concentra-
tions were unchanged in clams Tapes decussatus infected
by Perkinsus atlanticus [54] and in oysters Crassostrea virgi-
nica infected by P. marinus [55,56]. However, a subse-
quent investigation in oysters showed a slight decrease in
lysozyme concentration in P. marinus-infected oysters
[57]. Our results indicate a differential response according
to the treatment since the injection of washed QPX cells
(w-QPX) induced significant expression of lysozyme in
mantle and gill tissues, whereas unwashed parasite cells
(u-QPX) caused a down-regulation of lysozyme expres-
sion in gill tissues after 48 days (Table 3).

Two different lectins were also identified in up-regulated
libraries (Table 1). Lectins play an important role in inver-
tebrate immunity as non-self pattern recognition mole-
cules by promoting agglutination and opsonization of
pathogens. In Manila clams Ruditapes philippinarum, Kang

et al. [35] demonstrated significant increase in lectin
expression following pathogen challenge. Interestingly,
lectins isolated from R. philippinarum [58] and oysters C.
virginica [59] bind to the surfaces of purified hypnospores
from Perkinsus sp. enhancing their phagocytosis by hemo-
cytes. Identified lectins in libraries could as well be associ-
ated to the activation of the complement pathway since a
thioester-containing protein (TEP) was also found in sub-
tracted libraries (Table 2). Complement pathway is acti-
vated in reaction to the presence of PAMPs, leading to
increased opsonization and phagocytosis activity by
defense cells [60]. Several TEP with homologies with α-
macroglobulin were previously characterized in other
invertebrates [61,62] and in bivalves [63,64]. A transcript
with homologies with C1q was also present in our librar-
ies. C1q is the target recognition of the classical comple-
ment pathway that is crucial for the clearance of
pathogens in vertebrates [65] and invertebrates [66].

Table 5: Gene expression data from different sampling times were combined.

Tissue Discriminant Eigenvalue relative Canonical Wilks Chi- Degrees of Statistical
function percentage Correlation Lambda Square freedom significance

Mantle 1 1.18 68.3 0.74 0.30 50.4 36 0.05
2 0.55 31.7 0.59 0.65 18.1 17 0.38

Gills 1 1.54 81.5 0.78 0.29 57.2 36 0.01
2 0.35 18.5 0.51 0.74 13.9 17 0.67

Table 6: Structure matrix of Discriminant Analyses on gene expression data obtained from mantle and gill tissues.

mantle tissue gill tissue

function function function function
1 2 1 2

Toll-like receptor 1.118* 1.021 2.109* -1.269
AP-1 4.635* 0.899 1.492* -0.098

peroxisome proliferator-activated receptor -0.356* 0.119 -2.771* 1.871
big defensin -1.164* -0.197 2.178* -0.883
lysozyme -2.662* 0.220 -0.704* 0.163

metallothionein 6.612* -2.521 0.313* 0.241
Actin -2.452* -1.006 -2.161* 1.222

NADH sub-unit IV 0.335* 0.073 -1.133* 1.051
senescence associated protein -0.095* 0.036 0.352* 0.025

hemocyte defensin 1.642* 0.238 0.461 0.775
HSP70 1.413* -0.295 0.377 -0.613

elongation factor beta -6.159* -0.112 -2.472 2.639
cytochrome P450 like TBP -0.155 -0.270 -0.107* -0.009

TRAF 6 0.322 -0.364 -1.859* -0.946
stress-induced protein STI -1.698 2.122 5.207* -3.063

RACK-1 0.1242 -0.645 0.033 0.181
C1q – TNF related protein 0.278 0.857 0.142 -0.559

Ferritin 0.115 0.139 -0.430 0.992

Largest absolute correlations between variables and discriminant functions are indicated by *.
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Our approach also led to the identification of two differ-
ent defensins that show different expression patterns in
mantle and gill tissues. Defensins are small antimicrobial
peptides (AMP) and represent major actors in innate
immunity [67]. Defensins were isolated from mussels
[68], scallops [33] and oysters [69,70]. These AMPs can be
constitutively expressed, as observed in oysters [70], or
induced in response to infection, as in scallop [33]. Most
previously described defensins were characterized from
hemocytes but some were also constitutively expressed in
pallial tissues [69]. In our study, quantitative PCR
revealed that the hemocyte defensin was significantly up-
regulated in gills only after 14 days, while no significant
change was observed in mantle, despite the tendency to
an increase of the hemocyte defensin expression after 48
days following challenge with washed and unwashed
QPX cells (Figure 2). Initial induction of the hemocyte
defensin after 14 days in gills could reflect systemic hemo-
cyte activity as gill tissues are normally rich in hemocytes
compared to mantle. Later on, increased PCR signals in
mantle tissues could be related to increased expression in
hemocytes present near infection sites or might simply
reflect the mobilization of hemocytes toward active infec-
tion sites as part of the normal inflammatory response
[5,8]. This may, in turn, lead to the observed shift of gene
expression among tissues. Similar patterns were found in
other studies investigating defensin expression in oysters
[70]. Regarding the big defensin, a significant induction
was observed after 48 days in gill tissues of clams chal-
lenged with washed QPX whereas a tendency to a decrease
of defensin expression was noticeable in mantle tissue
(Figure 2). Moreover, the big defensin appeared as an
important variable to discriminate treatments in gill and
mantle tissues (Table 6). Defensins present a great diver-
sity in terms of structural features, biological properties
and functions, and also in their tissue distribution and
expression. Defensins from C. gigas exhibit high activities
against gram positive bacteria but low activity against

fungi [69], whereas big defensins from A. irradians and the
horseshoe crab Tachypleus tridentatus exhibit strong fungi-
cidal activities [33,71]. Trends of both defensins suggest a
certain level of specificity in the response of M. mercenaria
to washed and unwashed QPX cells in mantle and gill tis-
sues.

Several genes corresponding to membrane receptors and
elements of pathways involved in defense responses have
also been identified in our libraries. Among them, RACK-
1 is involved in the protein kinase C (PKC) pathways and
acts as an activator/receptor for this protein [72]. RACK-1
plays a key role as the crossroad among several cellular
pathways in cell communication by acting as a scaffold
protein on the translocation of the signalling proteins
towards the membrane-bound receptors [72]. Ron et al.
[73] demonstrated in situ association of RACK-1 and PKC
during phorbol 12-myristate 13-acetate (PMA) challenge,
an activator of reactive oxygen species production [74,75].
Overexpression of RACK-1 also led to enhanced spreading
and increased focal adhesion in mammalian cells [76].
These results suggested an involvement of RACK-1 in
phagocytosis and ROS production. RACK-1 was previ-
ously identified in bivalves exposed to pollutants, physi-
cal stress and pathogens [36,41,77]. In the hard clam, our
quantitative PCR results revealed that QPX challenge sig-
nificantly induced the expression of RACK-1 in both gill
and mantle tissues (Figure 2 and Table 3). Libraries gener-
ated from hemocytes also led to the identification of sev-
eral elements of the NF-kB pathway. Toll-like receptors
(TLRs) are among the most important families of pattern
recognition receptors (PRRs) and have already been iden-
tified in other bivalves [25,30]. They are able to selectively
recognize and initiate the response against a large number
of varied and complex PAMPs [78]. Tumor necrosis factor
receptor-associated factor (TRAF), another component of
the NF-kB pathway, was also detected in our hemocyte
libraries. This intermediary possesses a unique receptor-
binding specificity that results in its crucial role as the sig-
nalling mediator for both the TNF receptor superfamily
and the TLR superfamily [79]. Activation of this pathway
induces expression of immune response genes triggered
by transcriptional activator proteins. Among them, the
transcriptional factor AP-1 was identified in our sub-
tracted libraries. Interestingly, our results demonstrated
an important involvement of NF-kB components in the
differential response to washed and unwashed parasite
cells (Tables 4 and 6), as well as a high correlation (p <
0.001) between humoral defenses (lysozyme, big
defensins), TLR and the transcriptional factor AP-1 (Table
7). These results suggest that activation of the NF-kB path-
way occurred following the recognition of QPX by TLR
and the activation of AP-1, leading to a specific response
characterized by the production of humoral defense fac-
tors including lysozyme and the big defensin.

Table 7: Pearson's correlation coefficients of genes related to 
cell signalling (AP-1, TLR, TRAF-6; RACK-1) and humoral 
defense factors (hemocyte and big defensins, lysozyme).

lysozyme big defensin hemocyte defensin

AP-1 0.934 0.736 -0.025
(5.3e-51) (-2.5e-20) (NS)

Toll-like receptor 0.408 0.726 -0.030
(7.9e-6) (1.4e-19) (NS)

TRAF 6 -0.034 0.016 0.087
(NS) (NS) (NS)

RACK-1 -0.015 -0.039 -0.020
(NS) (NS) (NS)

P-values are indicated between parentheses and non significant 
correlations are indicated by NS.
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Actin is often used as a house-keeping gene but we clearly
observed a modulation of this gene in gills (14 days) and
mantle (28 days) tissues following challenge with washed
parasite cells (Tables 3, 4 and 6). Actins are highly con-
served proteins that are ubiquitously expressed in all
eukaryotic cells. They are involved in the formation of fil-
aments that are major components of the cytoskeleton
and participate in many important cellular functions
including cell motility, organelle movements and cell sig-
nalling [80,81]. With regard to infections, actin was, up-
regulated in Biomphalaria tenagophila at a proteomic level
in the presence of Schistosoma mansoni [82]. The involve-
ment of actin in QPX disease pathogenesis, if any, is
unclear but it may participate in the encapsulation of par-

asite cells by host hemocytes leading to healing as in other
host-parasite models [83].

Results of quantitative PCR also indicated that some genes
were differentially regulated according to analyzed tissue
(TLR, big defensin, Table 4) or inoculum (big defensin,
Tables 4 and 6). Discriminant Analysis revealed the
importance of signalling pathways and humoral defenses
to differentiate between QPX-challenged and unchal-
lenged clams or between clams injected with washed or
unwashed parasite cells (Figure 3 and Table 6). It should
be mentioned that, because of sample size requirements
of the statistical test, Discriminant Analyses were per-
formed on data obtained throughout the experiment by

Scatter plots of Discriminant Analysis scores in mantle (A) and gill (B) tissues for un-challenged controls (circles) and clams challenged with washed (triangles) or unwashed (squares) QPX cellsFigure 3
Scatter plots of Discriminant Analysis scores in mantle (A) and gill (B) tissues for un-challenged controls (cir-
cles) and clams challenged with washed (triangles) or unwashed (squares) QPX cells. Positions of group centroids 
for each treatment are indicated by a black cross.
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pooling samples collected at 14, 28 and 48 days post-chal-
lenge. Such a holistic approach eliminated the effect of
genes that displayed high temporary modulations within
each treatment and might neglect certain specific clam
responses. This limitation could explain the barely signif-
icant results obtained with Discriminant Analyses in man-
tle tissues (Table 5). Despite this drawback, our analyses
discriminated between clams injected with washed or
unwashed parasite cells, highlighting the importance of
QPX mucus during host-pathogen interactions. QPX
mucus was suggested to represent a virulence factor that
protects the parasite from host's cellular and humoral
defense mechanisms [5]. Proteases were also detected in
QPX mucus [84] and Thrautochytrids are known to pro-
duce several proteolytic enzymes as extracellular products
[85]. Injection of unwashed QPX could protect the para-
site from constitutive defenses of hard clams and enhance
their ability to establish infection within host tissues, as
well as prevent the detection of the parasite's PAMP's,
thereby limiting the response of hard clams. In contrast,
washed cells can be more readily phagocyted or encapsu-
lated by hemocytes and neutralized by humoral factors
[23]; they can also present PAMPs on their surface,
enhancing clam's immune response. Thus, injection of
washed QPX cells could induce an efficient defense
response in clams, leading to elimination of parasites and
failure of disease establishment.

Conclusion
In conclusion, this study is the first to characterize molec-
ular modulation in clams in response to QPX infection. A
large number of new candidate genes was identified
including several genes involved in stress and defense
response and cell signalling. Quantitative PCR revealed
significant changes in the expression of some of these
genes in response to QPX challenge, as well as some cor-
relation between gene expression of intermediates of sig-
nalling pathway and humoral defenses. Additional
experiments are needed to further characterize molecular
components involved in M. mercenaria response to its par-
asite. Specifically, further experiments should compare
gene expression in susceptible and resistant clam brood-
stocks. Generated sequence information could also con-
tribute to the construction of the first hard clam micro-
array necessary for investigating gene expression on a
larger scale.

Methods
QPX cultures
QPX strain NY0313808BC7 was isolated from nodules of
infected New York clams [86] and subcultured in a culture
medium based on muscle homogenates from hard clams
adjusted at 1000 μg.mL-1 of proteins in filter-sterilized
artificial seawater (FASW) [87]. QPX cultures were initi-
ated in 25-cm2 flasks incubated at 23°C for 1 week to

reach the exponential phase of growth. Parasite cultures
were thereafter subdivided into two aliquots: one aliquot
was untreated resulting in QPX cells associated with their
typical abundant mucus secretions surrounding parasite
cells (cells and mucus – u-QPX) and another aliquot was
washed according to a protocol adapted from Anderson et
al. [23] to remove the mucus from cells (w-QPX). Briefly,
a volume of QPX culture was mixed well by repeatedly
drawing up and expelling the culture with a 3 mL-syringe
without a needle. A small volume of well-mixed culture
was then suspended in five times its volume of sterile cul-
ture medium. This suspension was then vortexed for 10–
15 seconds and centrifuged for 15 min at 600 × g [23]. The
supernatant was removed and the QPX pellet was then
washed two times and resuspended in sterile culture
medium. This washing procedure has been thoroughly
tested and found not to affect QPX viability [88]. QPX
biomass in each aliquot was then measured using a semi-
automated fluorometric technique according to Buggé
and Allam [88] and QPX suspensions were adjusted with
sterile culture medium to obtain the same parasite bio-
mass.

Hard clams and experimental infections
QPX-free adult Mercenaria mercenaria were obtained from
Frank M. Flowers Oyster Company (Oyster Bay, NY).
Clams were acclimated one week in the laboratory, held
in 150-L tanks with re-circulating water (28–30 ppt) at 21
± 1°C and fed daily with commercial algae (DT's Live Phy-
toplankton, Sycamore, IL). After acclimation, clams were
divided into three groups of 30 individuals and chal-
lenged with either washed (w-QPX) or unwashed (u-
QPX) parasite cells to compare clam response in presence
or absence of the mucus layer surrounding QPX cells.
Experimental infections were performed according to
Dahl and Allam [22] by injecting 100 μL of culture
medium containing 5 × 104 QPX cells into clam's pericar-
dial cavity. Control clams were injected with 100 μL of
sterile culture medium. Following injection, clams were
maintained out of the water for 1.5 h and were thereafter
transferred to separate tanks. Mortality was monitored
daily. For each experimental condition, 8 clams were sam-
pled at 14, 28 and 48 days after challenge. Hemolymph
was withdrawn from the adductor muscle and held indi-
vidually on ice. Samples were centrifuged at 700 × g for 10
min at 4°C, plasma was discarded and hemocyte pellets
were rapidly frozen in liquid nitrogen before storage at -
80°C. Concomitantly, gill and mantle tissues were dis-
sected and frozen individually until RNA extraction.

RNA extraction
Total RNA was extracted from hemocyte pellets and clam
tissues using TRI® Reagent (Invitrogen, Carlsbad, CA,
USA). Polyadenylated RNA was isolated using the PolyAT-
tract®mRNA Isolation System (Promega, Madison, WI,
Page 12 of 17
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USA) according to manufacturer's instructions. Messenger
RNAs were resuspended in RNase-free water and both
quantity and quality were assessed by spectrophotometry
(OD260, OD280).

Suppression subtractive hybridization
The suppression subtractive hybridization technique
(SSH) [89] was used to identify genes involved in clam's
immune response following QPX challenge. Messenger
RNAs isolated from gill and mantle tissues at 14 and 48
days were pooled for each treatment and sampling time.
Both forward and reverse subtracted libraries were gener-
ated on 2 μg of pooled mRNA for each SSH library con-
struction (Figure 4). First and second strand cDNA
synthesis, RsaI endonuclease enzyme digestion, adapter
ligation, hybridization, and PCR amplification were per-
formed as described in the PCR-select cDNA subtraction
manual (Clontech, Palo Alto, CA, USA). Differentially
expressed PCR products were purified and cloned into
pGEM-T vector (Promega, Madison, WI, USA). Bacteria
(DH5α phage resistant) were transformed and cultured in
Luria-Bertani medium (with 100 μg.L-1 ampicillin, final
concentration). Vectors from two hundred colonies per
library were extracted using an alkaline lysis plasmid min-
ipreparation, and screened by size after digestion. A total
of 298 clones from forward and reverse libraries were

sequenced using an AB3100 sequencer (Perkins-Elmer)
and Big Dye Terminator V3.1 Kit (Perkins-Elmer).

Full-length cDNA library construction
Messenger RNAs isolated from hemocytes were pooled
and cDNA library was generated using Creator™ SMART™
cDNA Library Construction Kit (Clontech, Palo Alto, CA,
USA) according to manufacturer's instructions. The cDNA
library was cloned into the pDNR-LIB Vector and trans-
formed in bacteria (DH5α phage resistant) and cultured
in Luria-Bertani medium (with 100 μg.L-1 ampicillin, final
concentration). A total of 1352 clones were randomly
selected and sequenced using an AB3100 sequencer (Per-
kins-Elmer) and Big Dye Terminator V3.1 Kit (Perkins-
Elmer).

Sequence analysis
The ABI sequence data were basecalled using 'phred' http:/
/www.phrap.org and subsequently clipped for bad-qual-
ity and vector using 'lucy' (compbio.dfci.harvard.edu/tgi/
software) with standard parameters. cDNA sequences
were automatically screened against UniProt (BLASTX)
and all ESTs from EMBL (BLASTN).

Real-Time PCR Analyses
Fourteen genes were selected from SSH libraries for fur-
ther investigations of their expression including 3 stress-

Diagram of the different subtractions and cDNA libraries performed in M. mercenariaFigure 4
Diagram of the different subtractions and cDNA libraries performed in M. mercenaria. Clams challenged with 
washed and unwashed QPX cells were pooled to perform SSH. The hemocyte library was generated from a pool of all chal-
lenged and unchallenged clams collected at 14 and 48 days.
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related genes (metallothionein, HSP 70 and ferritin), 3
defense-related genes (big defensin, hemocyte defensin
and lysozyme) and 2 genes involved in cell signalling
(receptor of activated kinase C1, peroxisome proliferator-
activated receptor). In addition, several transcripts
involved in gene regulation, transcription factors, the
cytoskeleton and metabolism were analyzed (elongation
factor 1 beta, transcription factor AP-1, actin, NADH4).
Two transcripts (senescence-associated protein, cyto-
chrome P450 like TBP) previously identified in other
bivalves during parasite challenges [25] and in our librar-
ies were also selected. Four additional transcripts encod-
ing for stress related gene (stress-induced protein – STI1)
and components of the NF-kB pathway (tumor necrosis
factor receptor-associated factor – TRAF-6, Toll like recep-
tor – TLR) and complement system (C1q-TNF related pro-
tein) were selected from the hemocyte library. Expression

of all candidates was compared to controls in gill and
mantle tissues at 14, 28 and 48 days post-challenge. For
each sample, 10 μg total RNA was individually submitted
to reverse transcription using the oligo dT anchor primer
(5'-GACCACGCGTATCGATGTCGACT(16)V-3') and Molo-
ney murine leukaemia virus (M-MLV) reverse tran-
scriptase (Promega, Madison, WI, USA). The real-time
PCR assay was performed with 3 μL cDNA (1/20 dilution)
in a total volume of 10 μL, using a Chromo 4™ System Q-
PCR (Bio-Rad, Hercules, CA USA). Concentrations of the
reaction components were as follows: 1× Absolute QPCR
SYBR Green ROX Mix (ABgene, UK) and 70 nM of each
primer. Primer sequences of the 18 genes selected in the
M. mercenaria SSH and hemocyte libraries are presented in
Table 8. Reactions were realized with activation of
Thermo-Start® DNA polymerase at 95°C for 15 min fol-
lowed by amplification of the target cDNA (50 cycles of

Table 8: Combinations of primers used in quantitative PCR assays.

Gene name Gene function Primer sequences

18S Ribosomal protein F: CTGGTTAATTCCGATAACGAACGAGACTCTA
R: TGCTCAATCTCGTGTGGCTAAACGCCACTTG

Hemocyte defensin Immune system F: ACAAATGTAACAGGCATTGTAGGAGCAT
R: CATGTGCATCTTCGGTAAAAAGTCCA

Big defensin Immune system F: ATGGACACTAGGAAAGTCTACTGTGTGCT
R: ACAAGTGCAACCCAGACCCAAGGTGA

Lysozyme Immune system F: ATAACGAAAGACCAAGCTCGTGCTCT
R: GTTTTGGGTCCTAGATCTCCCCTGTA

C1q – TNF related protein Immune system F: ATGCAAGTCAGTGCCGTGATACACCCAGA
R: AATAAAGCGCCACTGAAAGTTGTTCCATG

TRAF-6 Immune system F: GAACTAGCAAACAGGAATTGGGAGGCGCT
R:GTCAAGTGATGGCTCATCTTGGATGCTGC

Toll-like receptor Immune system F: GTAACAAATTTCACTCTGGCCGCTGACGC
R: TAGCTGAAATCCAACGACTGCACCCGTAA

RACK-1 Cell communication F: CCTAACAGATACTGGCTGTGTGCTGC
R: GTCTGTCCATCTGCGGACCATGCAAG

Peroxisome proliferator-activated receptor Cell communication F: CATAGCCAATTCCATACCCCTGGCCA
R: AGTTGGCATCGCCACTGTCGCTGCTC

HSP70 Stress response F: AATGACAAAGGCCGTCTCAGCAAGGA
R: TCTAACCAACTGATGACCTCGCTACA

Stress-induced protein STI Stress response F: GAAGCTGTTGAACAAGCCAAGAGTGGAGC
R: GTCTCTTGAATTCGGGGATCTTGAGCTGC

Ferritin Iron transport F: ATGTCTGTTTCACGACCTCGACAGAA
R: AGTTTCTCGGCATGCTCACGTTCCTC

Metallothionein Detoxification F: ACCAGTGATGGTGGCTGCAGGTGTGG
R: TTACACGAACAGCCACTATCACACTG

Actin Cytoskeleton F: ATTGTGATGGACTCTGGTGATGGTGT
R: TCTCTAACAATTTCTCTCTCAGCCGTTGT

Transcription factor AP-1 Transcription F: AGAAAACTTGAAAGAATTGCGCGACT
R: TGTGACATCATTATCTGGCACCCACT

Elongation factor beta Transcription F: CCTTGGGATGATGAAACAGATATGGC
R: CTAATCTTGGCATCTTCTATAACAGC

NADH sub-unit IV Mitochondrial respiration F: CCGTGGGATTTAGGGAGGGATAATATGCT
R: ACTCCAGTTAACAACATTGATCCCCTCAA

Senescence associated protein unknown F: AACCTGTCTCACGACGGTCTAAGCCCAGC
R: TTACCACAGGGATAACTGGCTTGTGG

Cytochrome P450 like TBP unknown F: GTCTGGAAAACGGCCACAAGGCACCT
R: TTATACAAGGTAACCGGCTTGGACGC
Page 14 of 17
(page number not for citation purposes)



BMC Genomics 2009, 10:377 http://www.biomedcentral.com/1471-2164/10/377
denaturation at 95°C for 30 sec, annealing and extension
at 60°C for 1 min) and a melting curve program from 95
to 70°C that decreased the temperature by 0.5°C every 10
sec. Readings were taken at 60°C. PCR efficiency (E) was
determined for each primer pair by determining the slope
of standard curves obtained from serial dilution analysis
of cDNA from different experimental samples (treatment
and control). The comparative CT method (2-ΔΔCT
method) was used to determine the expression level of
analyzed genes [90]. The expression of the candidate
genes was normalized using ribosomal RNA 18S fragment
as a housekeeping gene by the specific primers (Table 8).
Fold units were calculated on normalized expression val-
ues by dividing gene expression in tissues from challenged
clams by controls. Results are given as the mean and
standard deviation of eight replicates per condition.

Statistical analysis
Variations in gene expression levels in tissues from clams
submitted to different treatments were analyzed using
Student's t-test using SigmaStat Version 3.10 (Systat Soft-
ware, Inc). Effects of sampling times, treatments and tis-
sues on gene expression were analyzed using multifactor
analysis of variance (ANOVA) followed by a Holm-Sidak
post-hoc test when appropriate. Correlation analyses of
the expression of different genes were made using Pear-
son's method. Finally, Discriminant Analysis (DA) of
gene expression was performed using Statgraphics plus
Version 2.1. As DA requires a minimum within-treatment
sample size of 20, data from the different sampling times
within each treatment were combined and DA was sepa-
rately applied on mantle and gill tissue groups. DA deter-
mines linear combinations of variables (genes) that
maximize differences among a priori defined groups
(treatments). The relative contribution of each variable
was assessed on the basis of the structure correlations to
interpret the discriminating power of the independent
variables. In all tests, differences were considered statisti-
cally significant at p < 0.05.
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