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Milieu Marin, Station Biologique de Roscoff, Roscoff, France, 3 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada

Abstract

Background: The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a
significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and
an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change
and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how
this organism functions is a priority area and will provide fundamental data for life history studies, energy budget
calculations and food web models.

Methodology/Principal Findings: The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an
average size of 492bp (ranging between 137 and 8515bp). In depth analysis of the data revealed an extensive catalogue of
the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the
chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications
of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/
INDELS), providing a resource for population and also gene function studies.

Conclusions: This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean
globally. The classical ‘‘stress proteins’’, such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were
shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living
in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by
reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in
particular a suite of ‘‘stress’’ genes for studies understanding marine ectotherms’ capacities to cope with environmental
change.
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Introduction

The Southern Ocean is an important breeding and/or foraging

location for a wide range of charismatic megafauna such as

whales, seals, penguins and other sea birds including albatrosses.

Whilst these species fascinate the public, they represent the apex of

a complex food chain, the keystone species of which is the

Antarctic krill Euphausia superba [1]. This shrimp-like crustacean is

not only a major prey item for these animals, but is also a

significant consumer, grazing on the phytoplankton bloom in the

austral summer and on algae under the sea ice in winter. In a more

global context, it has been suggested to be the most abundant

eukaryotic species in the World’s Oceans [2] existing in large

schools or swarms with densities that may be between 10,000–

30,000 individual animals per square metre [3,4]. Current catches

are 125,000–150, 000 tonnes per year [5], but at its peak in 1982,

krill fisheries comprised 13% of the global annual catches of

crustaceans [6]. Hence, E. superba with a circumpolar distribution

plays not only a pivotal role in the Antarctic ecosystem, but also

significantly impacts on the economy of the Southern Ocean

fishing industry [1,7].

Research on krill has a long history, reaching back to the

‘‘Discovery’’ expeditions of the 1920/1930s that sought to

understand the drivers of fluctuating populations of baleen whales

which fed on krill and which were then harvested for their oil [8].

More recently, research efforts have also focussed on stock

estimates and distributions, again with regard to fisheries

exploitation [7]. Whilst catches have remained relatively stable

and never reached the maximum TAC (total allowable catch)

defined by the regulatory body the Commission for the

Conservation of Antarctic Marine Living Resources (CCAMLR),

there is growing concern about decreasing krill stocks and any
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consequential effects on both the Southern Ocean ecosystem and

the fisheries industry [9].

An historical analysis of krill numbers in the southwest Atlantic

sector (which contains over half the total krill stocks of the

Southern Ocean) [10,11] indicates that there has been a significant

decline in population densities since the 1970’s which correlates

with the extent of winter sea ice cover. The ice provides an

essential habitat and food supply via ice algae for these animals

over the winter period [10,12]. The southwest Atlantic sector of

the Southern Ocean includes the Antarctic Peninsula, which is

experiencing some of the most rapid rises in sea water temperature

on the planet [13] with a 1uC increase in the surface layers of the

Bellingshausen Sea in 50 years [14,15] and reduced winter sea ice

duration [16]. This continued and rapid temperature rise has

profound implications, not only for krill stocks, but also for

broader food web interactions in the Southern Ocean [10,17–22]

and for the fishing industry [7,9,23].

There is a considerable body of scientific knowledge about the

general biology and ecology of krill, in particular growth,

biochemical composition and reproduction. One of the main

drivers for understanding krill biology has been the fisheries’

requirements for stock forecasting and conservation measures, but

this is now joined by concerns over climate change effects and the

requirement to take a more holistic over-view to understand food

web structures [7,24,25]. However, there is very little knowledge of

processes at the tissue, cellular or molecular level. As a

consequence, and given the pivotal role of this key species in the

Southern Ocean ecosystem, detailed physiological and molecular

studies are critical if we are to understand this species and its

responses to a changing environment. Such studies would provide

fundamental data for a deeper understanding of life histories, as

well as important parameters for energy budget calculations and

models [26].

Working with wild free living krill is beyond the capability of

current technologies. Therefore cellular, tissue and molecular data

can only be derived from either individuals recently sampled from

the sea, with the concommitant stresses involved or from

laboratory manipulations of aquarium held animal stocks. Hence

a fundamental issue for the future progression of these studies will

be the linking of laboratory developed assays with wild caught

sampling [27,28]. The physiology of E. superba has been studied in

a number of laboratory based experiments for periods of up to 5

months using non-specialised facilities [25,26,29]. Some of these

studies have highlighted the diversity of problems encountered

when working on a pelagic species, such as krill adapted to

living in swarms with social aggregations [29,30]. These studies

have emphasized the necessity of understanding stress responses

in this species as an a priori to improve experimental protocol

and also to provide a baseline laboratory physiological metric for

such comparative field sampling [26,30] as such molecular

analyses can provide a more detailed description of animal

condition over observational physiology approaches [31]. To date

there are only 3095 ESTs from E. superba in the public databases,

but the classical ‘‘stress genes’’ are largely absent from these gene

sets [32,33].

Here we describe the transcriptome of E. superba, the first 454

generated data for a pelagic Antarctic species or any pelagic

crustacean globally. Analysis here focuses on chaperone genes, in

particular the typical ‘‘stress’’ genes of the Heat Shock Protein

(HSP) family. This data will provide a major resource for future

physiological work on krill, but in particular a suite of ‘‘stress’’

genes for studies understanding marine ectotherms capacities to

cope with environmental change, such as future elevated sea water

temperatures, ocean acidification or water freshening etc.

Results and Discussion

The non-normalised krill libraries were subjected to a full 454

run that yielded 943,817 reads. After cleaning the data and

removing small reads, 699,248 reads containing 205,888,141 bases

with an average read size of 293 bp were entered into Newbler

[34] for assembly. These assembled into the 22,177 contigs

(261,280 reads) which were used for the further analysis. Because

the aim of this project was to conduct a preliminary characterisa-

tion of the krill transcriptome, with, as described below, an

emphasis on chaperones and stress-related genes for future

analyses there was a requirement for longer sequences of good

quality which would enable us to distinguish between gene family

members. Hence the descriptive analysis presented here utilised

only the contigs produced by the assembly. Whilst the singletons

potentially contain useful lowly expressed sequences, they also

contain a substantial proportion of artefacts derived from cDNA

synthesis, sequencing and contamination [35]. However these will

be retained within our databases and utilised when more targeted

pyrosquencing experiments (using both 454 and short reads) will

generate an enlarged transcriptome. The contigs ranged in size

from 137 bp to 8515 bp, with an average size of 491.9 bp. 48

contigs were greater than 3kb and 94 contigs comprised more than

300 reads, with the largest contig of 8515 bp comprising the most

reads with 740 sequences. Self BLAST of this dataset produced

only 625 matches with a value of e2100, indicating a low level

(,3%) of redundancy in the assembly of the reads. The contigs

contained 41,470 repeat sequence motifs in coding and/or UTR

regions (microsatellites), of which 339 comprised over 7 exact

repeat units (Table S1). There were 27,776 SNPs/INDELS

present in 3,980 contigs designated as high confidence by the

Newbler program (Table S2), although a further circa 25,000

SNPs were identified at lower confidence level as defined by

Newbler [34] Hence these provide significant resources for

researchers in allied fields and will fuel investigations into, for

example, population structure and gene flow dynamics in this

crucial pelagic species.

BLAST sequencing similarity searching of the GenBank non-

redundant database produced matches against 5563 of the contigs

using a ,1e210 cut off value (representing 25% of the total

number of contigs). Although this seems rather low, the number of

matches is higher when compared to those of other non-model

marine invertebrates which have recently been subjected to 454

transcriptome analyses (c.f. 12% in the blue mussel Mytilus

galloprovincialis, 17% in the Antarctic bivalve Laternula elliptica and

23.9% in larvae of the coral Acropora millipora [35–37]. This is due

to the phylogenetic position of E. superba within the Arthropoda, a

phylum which contains a number of species that have been

subjected to whole genome sequencing programmes. The prime

example of these is the fruit fly Drosophila melanogaster and the insect

vectors of human disease such as Anopheles gambiae (www.

vectorbase.org). Of these, the Drosophila genes, in particular, are

well annotated (www.flybase.org). However, E. superba is a marine

invertebrate and more closely related (within the sub-phylum

Eucrustacea, super-order Eucarida) are a number of commercially

important seafood species, such as the Pacific white shrimp

Litopenaeus vannamei, the black tiger shrimp Penaeus monodon and the

fleshy prawn Fenneropenaeus chinensis. These have been subjected to

several medium-scale EST projects in the past and comprise the

majority of the 33,813 nucleotide entries and 400,793 ESTs for the

Eucarida in the public database (www.ncbi.nlm.nih.gov) (as of 15/

05/10). BLAST sequence similarity searches against these more

morphologically and physiologically similar species produces a

greater number of matches (35–43%) (Table 1) and some of these,
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particularly the immune-related genes, are well annotated and

characterised [c.f. 38–42]. To date E.superba is poorly represented

in the database with only 3095 ESTs [32–33], of which over 80%

were represented in the transcriptome presented here (Table 1).

The E. superba mitochondrial genome has been almost completely

sequenced on two occasions with the aim of producing markers for

exploitation and management of krill fisheries resources [43,44].

Whilst a previous 454 run on a non-model species, Mytilus

galloprovincialis produced enough mitochondrial reads to enable

alignment of this new data against the relevant mitochondrial

sequence [36], this was not possible on the krill data, as only 8

mitochondrial genes (cytochrome c oxidase, subunits 1, 2 and 3,

ATP synthase subunit 6 and NADH dehydrogenase subunits 1,2,4

and 5) were present in our dataset, which may be due to the fact

that non-normalised libraries were produced from a single source

of krill material. Sequencing of the transcriptomes of krill

subjected to different treatments will almost certainly enhance

the identification of mitochondrial genes.

To obtain an overall view of the krill transcriptome and also as

part of the contig verification process, all contigs comprising over

450 reads were analysed in-depth. These most commonly

expressed sequences with an associated database match represent-

ed a varied mix of functional groups (Table 2). The largest contig,

with a length of 8515bp also contained the highest number of

Table 1. Representation of Eucarida species in the public databases (at 15/07/10).

Species
No of ESTs in
database BLASTn matches tBLASTx matches

krill 454 ESTs % match krill 454 ESTs % match

Euphausia superba 3095 2177 2567 83 2560 2547 82

Fenneropenaeus chinensis 10511 556 1706 16 1759 3717 35

Penaeus monodon 35690 968 10464 29 3141 15400 43

Litopenaeus vannamei 162755 1412 24482 15 4893 63145 39

Number of species-specific ESTS and the number of krill ESTs that match a corresponding number of Eucarida ESTs.
doi:10.1371/journal.pone.0015919.t001

Table 2. Most commonly expressed sequences with associated BLAST matches.

Contig ID Length (bp) No of reads Description Species Common name E-value

00790 8515 740 b-1,3-glucan binding protein Litopenaeus vannemei Pacific white shrimp 0.0

00604 7491 689 Fatty acid synthase Aedes aegypti Yellow fever mosquito 0.0

00865 5235 643 Myosin heavy chain Aedes aegypti Yellow fever mosquito 6.4 e-253

01872 2994 617 Ribonucleoside diphosphate
reductase

Aedes aegypti Yellow Fever mosquito 0.0

00704 462 596 Ribosomal protein L10 Callinectes sapidus Blue crab 1.0 e-70

00239 279 576 Myosin light chain Litopenaeus vannemei Pacific white shrimp 3.0 e-16

00111 2061 568 ATP synthase Bombyx mori Silk worm 0.0

02321 2341 534 Eukaryotic translation
initiation factor 5A

Penaeus monodon Black tiger prawn 9.0 e-63

00248 1639 525 NADH dehydrogenase
sub-unit 4

Euphausia superba Antarctic krill 0.0

00826 1750 502 Calreticulin Fenneropenaeus chinensis Fleshy prawn 1.5 e-152

00709 2128 499 Elongation factor 1c Artemia salina Brine shrimp 1.4 e-152

01202 4840 493 Vigilin Culex quinquefasciatus mosquito 3.8 e-257

00995 505 492 60s ribosomal protein L5 Ixodes scapularis Blacklegged tick 1.0 e-45

20909 849 490 Dehydrogenase, glyceraldehyde
dephosphate

Pleocyemata sp. Lobster 1.5 e-122

19460 1984 484 Chaperonin Nasonia vitripennis Jewel wasp 0.0

00477 800 483 Vitellogenin Pandalopsis japonica Shrimp species 4.9 e-17

00056 867 483 Ferritin peptide Fenneropenaeus chinensis Fleshy prawn 4.7 e-71

00581 860 479 ATP dependant RNA helicase Caligus rogercresseyi Sea louse 3.1 e-181

21501 2124 474 Cyclin A Penaeus monodon Black tiger prawn 4.7 e-155

18212 417 464 Ribosomal protein L1 Lonomia obliqua Caterpillar 1.4 e-40

19379 1095 458 Death-associated protein-like Penaeus monodon Giant tiger prawn 3.2 e-16

00914 1918 456 Protein disuphide isomerase Scylla paramamosain Green mud crab 1.4 e-162

01103 1039 455 Acidic ribosomal protein P0 Spodoptera frugiperda Fall armyworm 4.0 e-115

doi:10.1371/journal.pone.0015919.t002
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reads (740). BLAST sequence similarity searching of this contig

produced a match with an E-value of 0.0 against the shrimp,

Litopenaeus vannemei b-1,3-glucan binding protein (bGBP-HDL) [39]

(Table 2). The full length of this 1454 amino acid protein was

represented in the krill contig. Not surprisingly, given the E-value,

there was strong conservation at the amino acid level with 41.2%

identity and 59.4% similarity between the two putative proteins.

There was also conservation of the precursor N-terminal domain and

processing sites for the mature peptide. However, out of the 4 O-

glycosylation and 5 N-glycosylation sites found to be preserved

between the two Penaeid shrimp and crayfish bGBP-HDL proteins,

only 2 and 1 respectively were present in the krill sequence, indicating

potential differences in post translational modification [39]. Func-

tional characterisation of the shrimp protein revealed a dual function:

binding of b-glucans trigger the activation of this pattern-recognition

protein and the prophenol-oxidase system, which is a central

component of the shrimp innate immunity defence system, but

bGBP-HDL is also involved in lipid transport [45,46]. Whilst the

definition as to which of these functions predominates is not possible

within the confines of this descriptive study, the second most common

sequence was fatty acid synthase, a key enzyme in the production of

fatty acids. The Antarctic environment is subject to extreme

seasonality with huge phytoplankton blooms during the austral

summer [47–49] and strong seasonal physiology is known for many

Antarctic species [50,51]. The krill samples used for this transcrip-

tome were caught during the summer and hence during the period

when the animals were taking advantage of the ready food supply to

fuel the seasonal increase in metabolism, growth and reproduction

[52,53]. This latter process is also supported by the presence of

vitellogenin, a major reproductive protein.

The majority of the remainder of the putative genes were clearly

related to this seasonal physiology and an active metabolism with

presence of transcripts involved in DNA replication and RNA

metabolism (ribonucleoside diphosphate reductase and vigilin

respectively), protein synthesis (elongation factors and ribosomal

genes), energy production (dehydrogenase, glyceraldehyde depho-

sphatase), cell division (cyclin A) and growth (myosin heavy and

light chains). The relatively high levels of vigilin may potentially be

linked to those of vitellogenin, as although it is suggested to play a

general role in RNA metabolism [54], it has been specifically

shown to stabilise vitellogenin transcripts in some species [55]. The

seemingly odd presence of an apoptosis-related gene (contig19379)

is almost certainly linked to the processes involved in ecdysis and

moulting. Again, this is a process with increased activity in the

austral summer, being linked to nutritional status and environ-

mental conditions [56]. Overall, this initial survey of the

pyrosequencing data substantiates a previous molecular study,

which indicated that krill sampled in the summer were far more

active than those sampled in winter [33].

However, of most interest to our research, was the presence of

genes involved in chaperone functions and the stress response in

the most commonly expressed sequences (calreticulin, chaperonin,

protein disulphide isomerase and ferritin) (Table 2). Also, whilst

not in this listing, the heat shock proteins HSP90 and HSP70 were

also highly represented in the transcriptome with 417 and 307

reads respectively. To futher understand these systems and provide

a baseline for future studies on the environmental stress response

of E. superba, a number of putative genes were examined in more

detail. These sequences were identified from the BLAST sequence

similarity results as being involved in either chaperone or

antioxidant functions. Where possible, the more commonly known

names of the chaperone genes have also been linked to the new

nomenclature as designated by the HUGO Gene Nomenclature

committee and NCBI [57].

The cellular chaperone systems
The cellular chaperones can be divided into two main

categories: the cytosolic and the endoplasmic reticulum (ER)

systems. Many of these proteins are expressed ubiquitously in the

normal cell state to aid in the folding of native polypeptides and

their translocation to different cellular compartments [58,59].

However, during the stress response, they may be up-regulated to

further assist mis-folded proteins to attain or regain their native

states and also target degraded proteins and regulate their removal

from the cell, thus preventing the formation of cytotoxic

aggregates [60–62]. Of these, the best known are the cytosolic

genes, as these include the HSPs, specifically HSP70 which has

long been associated with the cellular stress response (CSR) [58].

Chaperones do not act in isolation, efficient protein folding in

the cell is often achieved by the cellular equivalent of a production

line, with upstream chaperones capturing and transferring

elongating, nascent chains to more specialised systems. In the

cytosol, there are two main pathways involving either HSP70 or

prefoldin [61]. The HSP70 route is non-specific, whilst prefoldin

seems to specifically act in conjunction with the chaperonin that

contains T-complex polypeptide 1 (CCT) proteins. In the ER, the

route is, again, either via an HSP70 gene family member: BiP

(binding protein) or calreticulin/calnexin. Numerous components

of all of these chaperone pathways are present in the E. superba

dataset. These will be described below, of which, given our

research interests, the HSPs will be characterised in most detail.

The HSP cytoplasmic chaperones
HSP70s. The heat shock proteins are a large family of

proteins which are named according to their molecular weight in

kiloDaltons. The most studied of these are the 70kD heat shock

proteins (HSP70s). There are two main forms of these 70kD

proteins, the heat shock cognate (HSC70) which is expressed

constitutively and an inducible form (HSP70) which is normally

expressed in response to external stimuli [58]. Whilst HSP70 is the

‘‘classical’’ stress gene, the expression levels and regulation of these

gene family members in Antarctic species is of particular interest

for two reasons: protein folding is more difficult at low

temperatures and in the limited examples studied to date,

Antarctic species show enhanced expression of these genes [63–

66] with one adaptation to the cold being the permanent

expression of the inducible form in the fish [63,64,66] and also

the lack of the classical heat shock response (HSR) [65–69].

In the krill assembly, 16 contigs, comprising a total of 1,026

reads (coverage ranging from 2–323 reads per contig) produced

the best sequence matches to HSP70 using BLAST searching

tools. Ten sequences showed the most sequence similarity to the

classic inducible form of HSP70. The alignment of the 9 non-

redundant sequences (Figure S1) showed that only contig 02253

was complete. The nucleotide sequence of this contig putatively

codes for a protein of 668 amino acids. The percentage identity of

the deduced amino acid sequence of contig 02253 compared with

orthologues from other crustaceans is very high, between 78–84%,

confirming the remarkable conservation of this family. As could be

expected, this percentage is even higher when you only consider

comparisons within the super order Eucarida (.81%) or outside the

class Malacostraca (,79%). More detailed analysis of this full

length protein sequence reveals the presence of three signature

motifs of the HSP70 family: IDLGTTYSCV (amino acids 9–18),

IFDLGGGTFDVSIL (amino acids 196–209), IVLVGGSTRIP-

KIQKL (amino acids 334–349). Interestingly, at the C-terminus

there are four repetitions of a tetrapeptide sequence (GGMP)

(Figure S1). Certain of these repetitive peptides have antigenic

properties [70] and are also implicated in the association between

Krill Stress
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HSP70 and HSP90 in a multichaperone complex. The ATP/GTP

active site is also identifiable via the motif: AEAYLGAT (amino

acids 133–138) and a potential bi-partite nuclear targeting

sequence KRKHKKDPADNKR at amino acids 252–264. The

terminal sequence motif of the HSP70 family identifies their

cellular location, with the EEDV sequence motif at the end of

contig 02253 attesting to its cytoplasmic localisation [71], whereas

HDEL and PEAEYEEAKK characterise members localised to the

endoplasmic reticulum and mitochondria respectively.

With regard to the other contigs in the alignment, 19890 and

19889 could potentially be the product of a duplication of HSP70

as the amino acid translations are very similar to that of 02253.

The differences between these 3 sequences are possibly explained

by the multiple origin of the animals used and therefore constitute

allelic variants. A fourth sequence, contig 06573, was relatively

short (423bp) and closely resembles the previously described

contigs. However, it may represent another form due to the

signature situated at amino acid 189 (STGQ) (Figure S1). Whilst

this sequence is at the end of the read and therefore the quality is

less assured, these supplemental amino acids are also present in the

HSPs of other crustaceans. For example, there is a short succession

of amino acids intercalated at a similar position (amino acid 191 in

the alignment in Figure S2) in the two HSP70 isoforms of the

hydrothermal vent shrimp, Rimicaris exoculata, as well as in the crab,

Dromia personata and the oysters Ostrea edulis and Crassostrea gigas

(Figure S2). Whether contig 06573 represents a duplication of the

HSP70 gene in E. superba is difficult to exactly determine without

the full length sequence and extensive PCR amplification between

sequence fragments, which is planned in a future study. However,

there is evidence of a duplication of HSP70 genes in Antarctic

species; in the molluscs Laternula elliptica, Nacella concinna, but also

the crustacean Paraceradocus gibber [65,69,72] and other crustacean

species known by their capacity to respond to thermal shock

namely, Rimicaris exoculata [73], Palaemonetes varians [74] and

Macrobrachium rosenbergii [75] amongst others.

Of the other contigs represented in the HSP70 alignment

(Figure S1), contig 20245 (and 20197, which is not shown in the

alignment as it is an exact duplicate sequence of 20245) is clearly

different to those described above, although this is not possible in

comparisons with 06573 as there is no overlapping sequence. On

BLAST sequence similarity searching these two sequences

represent the most likely candidates for the constitutive form of

HSC70 (HSPA8), but at 531bp and 163bp respectively accurate

designation was difficult.

The overall conclusions from examining the contigs listed

above, permits the observation that E. superba possesses numerous

forms of HSP70. The designation of specific isoforms coding for

inducible or constitutive expression patterns is a delicate issue,

based on sequence alone. Only by following the expression of

these variant molecules under different regimes and environmental

stresses will enable the true definition of their role.

HSP90. Six contigs showed high sequence similarity to

HSP90. The full length sequence, with the exception of 4 amino

acids from the N-terminal region was constructed from 4

overlapping contigs 00022, 00026, 02405 and 02406 (Figure S3).

This sequence of 2151 nucleotides coded for a protein of 717

amino acids containing the characteristic signatures for the HSP90

protein: NKEIFLRELISNSSDALDKIR (amino acids: 28–48),

LGTIAKSGT (amino acids: 95–103), IGQFGVGFYSAYLVAD

(amino acids: 119–134), IKLYVRRVFI (amino acids: 346–355)

and GVVDSEDLPLNISRE (amino acids: 372–386) [76]. The

presence of the pentapeptide MEEVD at the extreme C-terminal

indicated that this E. superba EusHSP90-1 is cytosolic and is also

implicated in the binding of known co-chaperone molecules.

Two other contigs showed high sequence similarity with HSP90

(10288 and 00025), but there were sufficient amino acid

differences present (Figure S3) to suggest that a second HSP90

gene exists in E. superba (designated EusHSP90-2). Two cytoplas-

mic HSP90s exist in human (HSP90 a and b) and have been

reported in other vertebrates. In the invertebrates, only one

protein form has been characterised, although in Mytilus

galloprovincialis it may be the product of either one or two genes

[77] and only one form has been cloned in the crustaceans Peneaus

monodon and Metapenaeus ensis [78,79]. Recently, two different

HSP90s have been identified in the crab Portunus trituberculatus [80].

Analysis of the two ptHSP90s showed that both were most similar

to the vertebrate HSP90a and are the result of a duplication of

the orthologous vertebrate HSP90a gene [80]. Comparisons

were made between these two crab sequences and the E. superba

sequences across a common region of 128 amino acids.

EusHSP90-1 shows most similarity to the HSP90-1 of Portunus

(86.7% amino acid identity) (79.7% with ptHSP90-2 and 74.2%

with EusHSP90-2). Likewise EusHSP90-2 is also most close in

terms of identity to ptHSP90-1 (78.1%) than to the second form

(76.6%) of ptHSP90. It should be noted that the percentage

identity of the two forms of HSP90 in Portunus is 86%.

These observations lead to the hypothesis that the Crustacean

HSP90-1 genes derive from a common ancestor and that the

sequences described here constitute orthologues. However, the

percentage identities between the different forms of HSP90

underline that both forms of the crustacean gene are closest in

terms of sequence similarity with the vertebrate a form. Hence

these molecules are the result of an independent duplication event

and the high variability between the paralogues observed in the

Euphausia indicate that this phenomenon was very ancient in this

taxa. This hypothesis is in accord with the results observed in the

Peneids, which at the phylogenetic level are intermediate between

the Euphausia and the Brachyura and only appear to have a single

HSP90 gene [78,79]. The HSP90 sequences from a number of

invertebrates belonging to the Panarthropoda were aligned (Figure

S4) and show the conservation of the protein in this taxon

(Figure 1). Bayesian and Maximum Likelihood analyses using the

Chelicerate Ixodes scapularis as an outgroup generated congruent

trees positioning krill as the sister group of the decapods (Figure 2).

The resulting tree structure is coherent with regard to the positions

of the different taxons [81,82], even if certain nodes are weakly

resolved, i.e. the base of the Eucrustacea (Figure 2).

The last sequence with high sequence similarity to HSP90

(contig 03026) putatively codes for the terminal 354 amino acids.

However, this shows considerable differences with EusHSP90-1

(24% identity over the region concerned) and does not contain the

cytosolic signature EEVD at the extreme C-terminal. Further

analysis of the BLAST results indicated that this sequence is

actually more similar to TRAP1 (Tumour Necrosis Factor (TNF)

Receptor-Associated Protein 1) or HSP75, even though some of

the database matches have been designated as HSP90 (Aedes aegypti

and Culex quiquifasciatus). This example demonstrates some of the

confusion over the naming of these genes, as in Homo sapiens, where

all of these variant names have now been potentially designated as

HSPC5 [57]. The alignment and percentage identity calculation

between the putative E. superba sequences and TRAP1/HSP75

genes from different invertebrates and vertebrates showed

significant conservation of this molecule in different taxa

(Figure 3 and Figure S5). This homologue of the HSP90s is

localised in the mitochondria [83,84]. Although the precise

function of these molecules is yet to be determined, they are

implicated in cellular stress resistance pathways and therefore are

involved in the general functioning of the cell cycle, cellular
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differentiation and apoptosis. It is evident that the mitochondria

play an essential role in cellular homeostasis under stressful

conditions as well as the control of intracellular Ca2+, energy

generation and apoptosis (see also section on other identified

chaperones including mitochondrial genes). Despite their sequence

similarity to the HSP90 genes, the TRAP1 family exhibit

significant functional differences [83]. They are particularly

studied for their role in cancer defence and represent targets of

interest in anti-cancer therapies [85].

The prefoldin cytoplasmic pathway
The other major cytosolic chaperone system involves prefoldin.

This chaperone is the first stage in a pathway that largely acts on

correct folding and polymerization of the cytoskeletal proteins,

actin and tubulin [86]. It is a multimeric protein comprised of 6

subunits; 2 are a-like (designated 3 and 5) and the remainder are

b-like (assigned numbers 1, 2, 4 and 6). This protein processes

nascent polypeptides and then passes them onto CCT for further

processing. This second chaperone is more complex comprising 16

subunits in 2 stacked rings, each with 8 polypeptide subunits:

alpha, beta, gamma, delta, epsilon, eta, theta and zeta. All subunits

for both complexes were present in our data set with the exception

of CCT theta (Table 3).

CCT action is not exclusively restricted to actin and tubulin, as it

has also been shown to bind approximately 15% of newly

synthesized proteins sized between 30–60kDa and so may play a

more general role in the cytoplasm [87]. However, as part of its

primary role, CCT may pass on the cytoskeletal folding interme-

diates for further processing and in the case of tubulin, this can lead

to the production of microtubules. This is achieved via tubulin

cofactors (designated A–E), all of which are also present in our

dataset with the exception of subunit c; subunit d is present in the

form of 2 non-overlapping clones, hence the dual entry (Table 3).

The tubulin co-factors act on a and b-tubulin folding intermediates

to generate polymerizable heterodimers for microtubule growth and

centrosome generation, but also confer a certain level of stability

within these structures and hence directly influence cell division

processes as well as providing a chaperone function [88].

Analysis shows that all major elements of the two cytosolic

chaperone systems were present in the E. superba data set. Contigs

18509 and 13343 showed strong sequence similarity to members of

the HSP70 family and are almost certainly molecular chaperones.

However a closer analysis and alignment with database entries for

HSP70 isoforms 4 and to members of the HSP105/110 (Figure S6),

shows that with these partial sequences, it is impossible to precisely

identify which group (HSPA14, HSPH1, HSPH2 or HSPH3) these

fragments actually belong to. Similarly, contig 06563 showed a

match with high probability to HSP70 protein 14 (HSPA14), but

with only 34% identity to the mouse protein, it is either not highly

conserved between species or is a different, potentially novel family

member. Only by comprehensive analysis of all HSP70 family

members will the exact designation of vertebrate orthologues be

possible in non-model species, a non-trivial task.

Similarly, HSPH1 (contig 18509) is another member of the

HSP70 family and whilst it has been shown to prevent the

aggregation of proteins under severe stress, it also interacts with

other HSPs, inhibiting HSPA8/HSC70 ATPase and chaperone

activity. In addition, a number of other cytosolic chaperones and

co-chaperones were present, some of which appear to have mainly

chaperone functions (e.g. HSPa4l (contig09322)), whilst others

interact with, and control the action of other chaperones. Of

particular note were contigs with high sequence similarity to the

HSP70 co-chaperones DnaJ, chaperonin 10 (contig 01709) and

HSPBP1 (contig06138). This latter protein interacts with

HSPA1A, an HSP70 family member and has been shown to

inhibit the action of HSPA1A and therefore impact on

degradation of target proteins. The DnaJ proteins are an extensive

gene family which directly stimulate the ATPase activity of the

HSP70 chaperones, but also determine the activity of HSP70s by

stabilising their interactions with substrate proteins [89]. All

members of this gene family contain a J domain, but they have

been divided into 3 main groups depending on what other

domains are present in the protein. In humans, so far there have

been 4 type A, 14 type B and 22 type C DnaJ proteins described

[57]. In the E. superba dataset 18 contigs potentially comprising at

least 13 different family members over all three groups were

present (Table 4), indicating a similar complement of these genes

in krill compared to vertebrates. Of the full data set, only 2 small

heat shock proteins were identified in contigs 05090 and 05374.

These are difficult to define as they are not very conserved

Figure 1. Percentage amino acid identities between HSP90 genes from the Panarthropoda. For accession numbers see Figure 2.
doi:10.1371/journal.pone.0015919.g001
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between species. Finally, three non-overlapping contigs were

identified with high sequence similarity to Hop. This is the gene

name for the HSC70/HSP90 organising protein and mediates the

association between these two chaperones. However, as stated

previously, the cytosolic chaperone system with the prevalence of

HSP70 gene family members is not the only cellular chaperone

system or pathway.

The endoplasmic reticulum chaperone systems
The ER has its own protein quality control mechanisms and

acts, in particular, on secretory proteins. Newly synthesized

secreted and membrane-bound proteins are folded and assembled

in the ER and failure to achieve correct conformation results in in

situ tagging, retention and degradation, all still within the ER. This

comprehensive quality checking is achieved via two main

pathways involving either the HSP70 BiP complex or the

calnexin/calreticulin system [90].

The ER BiP pathway
This system recognises the presence of unfolded regions on

proteins containing hydrophobic residues and plays an important

role in the folding and post-translational modification of non-

Figure 2. Phylogeny based on Bayesian analysis and maximum likehood of the amino acid data set of HSP90 sequences from the
pancrustaceans (14 taxa, 689 characters). Ixodes scapularis was assigned as outgroup. Trees obtained by Bayesian analysis and by maximum
likelihood analysis of the amino acid dataset were fully congruent. Numbers at nodes are posterior probabilities and bootstrap values (based on 100
replicates) respectively obtained from the analysis of the amino acid dataset. Sequence accession numbers are: Ixodes scapularis: XM_002414763; Apis
mellifera: FJ713701; Macrocentrus cingulum: EU570066; Drosophila melanogaster: NM_079175; Mamestra brassicae: AB251894; Chilo suppressalis:
AB206477; Tigriopus japonicus: EU831278; Chiromantes haematocheir: AY528900.1; Eriocheir sinensis: EU809924; Portunus trituberculatus: FJ392027;
Fenneropenaeus chinensis: EF032650; Penaeus monodon: FJ855436; Metapenaeus ensis: EF470246; Euphausia superba: contig00022. Only the ptHSP90-1
and EusHSP90-1 are used in this analysis.
doi:10.1371/journal.pone.0015919.g002
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glycosylated proteins. BiP is an HSP70 family member, often

referred to as GRP78 (HSPA5). Studies involving immunoglobulin

binding assays have shown that this protein is part of a

multiprotein complex which also includes GRP94 (HSPC4),

CaBP1, protein disulphide isomerase (PDI), an HSP40 co-

chaperone, cyclophillin B, Erp72, GRP170, UDP-glucosyltransfer-

ase and SDF2-L1 [90]. Of the genes in this listing, only BiP and

GRP74 were specifically identified in the E. superba dataset (Table 5).

GRP94 is one of most abundant ER proteins and on sequence

similarity is thought to be a homologue of HSP90. An additional

Figure 3. Percentage amino acid identities of TRAP1 sequences. These are from a number of invertebrates and vertebrates with the
EusHSP90-1 and contig03026. Accession numbers:. Aedes aegypti TRAP1: AAD29307; Culex quinquefasciatus TRAP1: XM_001861228; Drosophila
melanogaster TRAP1: AAD29307; Pediculus humanus HSP75: XP_002425720; Danio rerio TRAP1: AAI4468; Apis mellifera TRAP1: XP_623366; Homo
sapiens TRAP1: Q12931.
doi:10.1371/journal.pone.0015919.g003

Table 3. Components of the prefoldin cytosolic chaperone system leading to tubulin polymerisation.

Putative gene designation Contig ID Length (bp) No of reads Description

Prefoldin 02592 544 24 sub-unit 1: Caligus clemensi (sea louse) 2.4e223

14357 325 4 sub-unit 2: C1BJW5: Osmerus mordax (rainbow smelt) 7.6e223

14161 407 7 sub-unit 3: Q5RCG9: Pongo abelii (Sumatran orangutan) 7.2e231

12250 446 15 sub-unit 4: Oncoryhnchus mykiss (rainbow trout) 4.3e211

06004 1045 62 sub-unit 5: Culex quinquifasciatus (mosquito) 7.7e237

01685 499 39 sub-unit 6: Ixodes scapularis (blacklegged tick) 1.6e220

Chaperonin that contains T-complex
polypeptide 1 (CCT)

19460 1984 484 CCT1:a subunit: C3Y2C5: Branchiostoma floridae
(Florida lancelet) 4.5e2210

00135 1864 268 CCT2: b subunit: B5X2M8: Salmo salar (Atlantic salmon) 1.7e2187

02814 1917 247 CCT3: c subunit: B0WSS5: Culex quinquifasciatus
(mosquito) 3.6e2199

00117 1994 388 CCT4: d subunit: C3XS21: Branchiostoma floridae
(Florida lancelet) 1.1 e2192

21580 626 278 CCT5: e subunit: Q68FQ0: Rattus norvegicus(rat)
3.3e-79 mid portion of gene

00119 202 149 CCT5: e subunit: C0HBB4: Salmo salar
(salmon) 4.2e217 39 end of gene

00120 204 51 CCT5: e subunit: Identical clone to contig 00120

04098 1804 349 CCT6: g subunit: Q95V46: Artemia sanfranciscana
(brine shrimp) 3.5e2212

CCT7: h subunit: not present

00149 1785 376 CCT8: f subunit: B0W8W8: Culex quinquifasciatus
(mosquito) 4.0e-202

Tubulin-specific co-factors 03429 1127 19 tbca: B0W943: Culex quinquifasciatus (mosquito) 7.4e214

02234 2032 62 tbcb: Q5E951: Bos taurus (bovine) 5.8e-61

tbcc: not present

05722 958 8 tbcd: Q5ZI87: Gallus gallus (chicken) 7.0e253

02424 1104 14 tbcd: Q8BYA0: Mus musculus (mouse) 5.0e240

07816 635 4 tbce: Q28EJ7: Xenopus tropicalis (pipid frog) 4.6e221

doi:10.1371/journal.pone.0015919.t003
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number of contigs showed high sequence similarity to members of

the PDI family (Table 5), none of which are implicated in the BiP

complex described above, but have been shown to localise to the ER

and have chaperone activity. They also contain variable numbers of

thioredoxin domains, which contribute to the disulphide isomerase

activity, involved in the disulphide exchange reactions in post

translational modification [91].

The ER Calnexin/Calreticulin pathway
This second pathway affects the folding and post-translational

modification of virtually all glycosylated, secreted or integral

membrane proteins that pass through the ER. Although calnexin

and calreticulin are some of the most abundant chaperones in the

ER, they are either not detected, or present in trace amounts in

the BiP complex described above. Evidence suggests that these two

networks are spatially separated and that as secreted proteins

mature they are transported inside the ER from one network (BiP)

onto calnexin/calreticulin [90]. These two genes are putatively

represented by a full length contig for calreticulin (00826) and a

partial 39 clone (08163) for calnexin. Whilst these two genes share

a high degree of amino acid similarity and functionality (Ca2+

binding, lectin-like activity and recognition of mis-folded proteins),

they have distinct cellular localisations which affect their mode and

sphere of action. Calnexin is an integral membrane protein, whilst

calreticulin is a luminal protein and thus more mobile. In addition

to their role as chaperones, they also play a significant role in ER

Ca2+ binding and storage. Hence they are also involved in Ca2+

homeostasis and ER-dependent Ca2+ signalling [92] and therefore

are potential candidates for understanding responses to stress both

in terms of protein turnover, but also cellular signalling.

Other identified chaperones including mitochondrial
genes

In addition to the various cytosolic chaperones identified, a

number of other contigs showed high sequence similarity to more

specialised protein folding systems. For example, the MESD

Table 4. Putatively identified HSP40 genes in E. superba.

Contig ID Length (bp) No of reads Putative assignment Closest match

04109* 1336 29 Dnaja1 Q0P4H4: Xenopus tropicalis (toad) 2.2e2117

02240 1358 30 Dnaja3 Q16R72: Aedes aegypti (mosquito) 6.9 e2138

14139 589 5 Dnaja3 D2A3L8: Tribolium castaneum (red flour beetle) 2.0e2155

09733 412 5 Dnajb1 Q28F52: Xenopus tropicalis (toad) 1.5e29

02096 1169 23 Dnajb11 B0WE51: Culex quinquefasciatus (mosquito) 1.6e2115

09747 1095 23 Dnajc2 Q6NWJ4: Danio rerio (zebrafish) 3.6e263

01898 1254 28 Dnajc3 B7P6D4: Ixodes scapularis (tick) 4.1e287

08765 603 5 Dnajc7 Q48AJ9: Tetraodon nigroviridis (pufferfish) 1.4e261

13604 454 8 Dnajc7 B6VFL2: Bombina orientalis (toad) 4.5e228

11977 1179 11 Dnajc9 Q5EAY1: Xenopus laevis (toad) 5.7e245

05667 1086 11 Dnajc11 B7PLX9: Ixodes scapularis (tick) 9.4e271

06410 441 3 Dnajc13 D3ZNI6: Rattus novegicus (rat) 4.5e217

08550 1726 11 Dnajc16 B7QBO3: Ixodes scapularis (tick) 1.5e236

16253 542 5 Dnajc19 A8Q605: Brugia malayi (nematode) 1.7e213

00224 632 6 Dnajc21 O62360: Caenorhabditis elegans (nematode) 3.1e228

Fragments less than 400bp 16579 (266, 5); 14282 (310, 2); 10787 (399, 4);

Only contigs with reads above 400bp in length are annotated. * denotes full length sequences. Small fragment data includes size in bp and number of reads (in
brackets).
doi:10.1371/journal.pone.0015919.t004

Table 5. Components of the ER chaperone system.

Gene Contig ID Length (bp) No of reads Description

BiP (GRP78) 01477 2341 259 B0W934: Culex quinquifasciatus (mosquito) 2.7e2264

GRP74 01266 1940 41 A5LGG7: Crassostrea gigas (oyster) 5.3e2197

Calreticulin 00826 1750 502 B8K275: Fenneropenaeus chinensis (Fleshy prawn) 1.5e2152

Calnexin 08163 1065 16 A5LGG8: Crassostrea gigas (oyster) 3.4e259

PDI 00914 1918 456 Erp60: B4QC45: Drosophila simulans (fly) 1.1e-144. Contains 2 thioredoxin domains.

PDI 05765 1293 53 TXNDC5: Thioredoxin domain containing protein 5: Q8NBS9: Homo sapiens(human) 1.9e287.
Contains 3 thioredoxin domains.

PDI 01765 2182 124 PDIA6: Q15084: Homo sapiens (human) 2.7e2120. Contains 2 thioredoxin domains.

PDI Fragments less than 400bp: 13243 (352,5); 05245 (344,2); 11325 (330, 4); 13589 (280, 3).

Small fragment data includes size in bp and number of reads (in brackets).
doi:10.1371/journal.pone.0015919.t005
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chaperone (contig 01700) specifically assists in the folding of b-

propeller/EGF molecules within low density lipoprotein receptors

(LDLRs) and the nuclear chaperone Asf1 (contig 05542) facilitates

histone deposition and histone exchange and removal during

nucleosome assembly and disassembly. In contrast, contig13343,

in spite of having an N-terminal ATPase domain, has many amino

acid differences with the classical HSP70s and to date, most

research has indicated a primary role in the mammalian immune

response.

Similar to the ER, the mitochondria also has its own chaperone

system. Two co-chaperones were putatively identified: HscB

(contig 12123) involved in iron-suphur cluster assembly and contig

16412 which showed high sequence similarity to GrpE, the main

HSP70 co-chaperone in the mitochondria and equivalent to the

cytosolic DnaJ [93]. As regards the main HSP70 family member in

this organelle, this is GRP75 (HSPA9) (contig 10241). This protein

is not induced by heat, but by other forms of stress e.g. glucose

deprivation and oxidative injury. Indeed over expression of

GRP75 in cell lines has indicated a primary role in inhibition of

ROS accumulation under stressful conditions [94].

This latter example exemplifies the multifunctional role that

chaperone proteins play in the cell. Whilst they are documented as

being one of the major groups of proteins involved in protein folding

and the cellular stress response [95], our understanding of their role is

becoming increasingly complex. Not only do they assist in the de novo

folding of nascent proteins (estimated to be in excess of 20% of all

cellular proteins), a requirement that increases under stressful

conditions, but also in interactions with signal transduction proteins

controlling cell homeostasis, proliferation, differentiation and cell death

[96]. Hence they are proposed as important multifunctional hubs in

cellular networks [97]. As such, even subtle environmental perturba-

tions are proposed as being able to profoundly affect not only

chaperone production, but also the functions of the whole cell network

[97]. Whilst all major components of the various chaperone systems

were identified in this study, despite extensive searches, transcription

factors controlling the expression of many of these were not present in

the dataset. Sequences with strong sequence similarity to either the

Heat Shock Factor (HSF) or the Hypoxia Inducible Factor (HIF)

transcription factors were not identified. The reason for this may simply

be timing, in that this data represents a single time point and these

transcripts had decayed by the time the RNAs were extracted.

Clearly, with regard to the stress response, some of the

important interactions to review will be those with the major

antioxidant proteins involved in combating the production of

ROS, which directly impact on protein functioning.

Antioxidants
The examination of these enzymes, in terms of their structure

and function is closely allied to our interest in heat shock proteins

and the cellular stress response and may be especially important

for Antarctic species that have evolved at constant low

temperatures for millions of years [72,98]. Sequence similarity

searches were carried out for several of the best characterised

members of this functional group with good sequence coverage in

our data set. In this respect, catalase, a major antioxidant enzyme

previously described in the clam [99] is only represented by a

single contig (08109) (match: 6.5e222) matching the very 39 end of

the gene (from amino acids 425 onwards). This small amount of

predicted amino acid sequence does not really allow for effective

annotation or comparisons with other species.

Ferritin
In contrast, the full length sequence of a putative ferritin gene is

present in contig 00056, which is also one of the more highly

expressed sequences in the data set (Table 2). This heteromeric

protein comprises 2 subunits: a heavy (H) and a light (L) chain.

The heavy chain is ubiquitous and contains the catalytic

ferroxidase centre which is responsible for the oxidation of iron

and allows iron uptake and release. The light chain is catalytically

inactive [100]. The sequence described here is the heavy chain

variant, containing the feroxidase motif. In line with previous

findings with other crustacean ferritins, the E. superba sequence

shares more amino acid sequence identity with the human (53.6%)

rather than the Drosophila heavy chain (35.9% identity at the amino

acid level) substantiating the theory of differential evolution of the

insect ferritins [101]. This protein is well described as being

expressed in response to oxidative stress and hypoxia, but

interestingly, it has also be shown to be elevated in response to

freezing in the marine snail (Littorina littorea) [102]. This may

explain the relatively high expression levels in this Antarctic

crustacean, although it has also been shown to play an immune

role in marine invertebrates [38,103].

Glutathione S-transferase (GSTs)
The numbers of these genes present in each species varies widely

from 16 in human, through 28 in Anopheles gambiae, 37 in Drosophila to

48 in Arabidopsis [104–106]. GSTs have been classified into families,

the largest of which is the cytosolic family comprising alpha, mu,

omega, pi, sigma, theta and zeta. Other family members include a

mitochondrial form (designated kappa), membrane bound micro-

somal forms and some with restricted distributions such as phi, tau

and lambda in plants and epsilon and delta in insects.

In the E. superba dataset 20 contigs were identified with high

sequence similarity to GSTs. Of these, 3 were most likely to be the

related prostaglandin D synthases (00275, 02350 and 02637), with

contig 09884 most closely matching the mitochondrial kappa

form. The remaining were assigned as cytosolic forms and further

designated into putative gene family members, based on sequence

similarity searches (Table 6). Of the 10 contigs which contained

either full length or almost full-length sequences, it was possible to

differentiate 8 genes putatively belonging to the omega, sigma,

delta, theta and mu families. Of the latter, 4 contigs showed

significant matches against the mu family, but three of these

(08776, 10471 and 03844) are potentially allelic variants, sharing

approximately 85% identity and 93% amino acid similarity. This

is in contrast to contig 06543, which also showed sequence

similarity to the mu family, but shared only 64.7% identity to the

other putative family members and therefore was designated as a

separate gene. Previous examination of the E. superba ferritin gene,

showed this to be evolutionarily more similar to the vertebrate,

than the insect lineage. The reverse is true of the GSTs, with the

identification of a putative delta GST. Recently a delta GST has

been described in the Chinese mitten crab [107] and the data

presented here substantiate these findings that the delta GSTs are

also present in the Crustacea and not restricted to the more

traditional insect taxonomic groupings.

Surveying the potential functionality of these proteins in E.

superba, there are potential clues from the Insecta. The sigma class in

mammals function as prostaglandin synthases, but in Drosophila,

these have been shown to be primarily active in the detoxification

of oxidative damage [108]. Also the Drosophila delta GSTs are

involved in combating oxidative stress and metabolism of

endogenously formed lipid peroxidation products [109]. It will

be interesting to further characterise the function of these

sequences in E. superba in the light of lipids as a major energy

store for Antarctic marine species and the enhanced levels of

dissolved oxygen and the potential for increased ROS damage in

Southern Ocean species.
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Superoxide dismutase: a novel duplication event
Superoxide dismutases are important antioxidant enzymes.

Three distinct types have been identified in eukaryotes depending

on the metal ions found at the active site: iron SOD (Fe-SOD)

(found only in prokaryotes and plants to date), manganese SOD

(Mn-SOD) and copper/zinc SOD (Cu,Zn SOD). Surprisingly

searches of the E. superba dataset identified 4 putative SOD genes

(Table 7). Two putative Mn-SOD transcripts were clearly

differentiated via the manganese superoxide dismutase signature

(DVWHHAYY) and then further defined using BLAST sequence

similarity searching into the mitochondrial and cytosolic forms

(Table 7). Analysis of the Cu,Zn SODs was more complex. An

alignment of the two putative Cu,Zn SOD protein sequences from

E. superba with those of other Eucrustacea identified the conserved

amino acid residues for binding Cu and Zn and the signature

motifs of Cu,Zn SODs in both genes (Figure 4). There are two

forms of this gene documented in a variety of species [110]: an

intracellular and an extracellular form [111]. However, the two E.

superba sequences did not contain either the consensus header or

consensus tail sequences (KAVCVL and GVIGT respectively)

associated with the intracellular form [110]. Sequence analysis

showed that the two E. superba transcripts shared only 32.9%

identity and hence were not the result of alternative splicing, as has

been found in Caenorhabditis elegans [112]. Duplicated Cu,Zn SOD

variants have been identified in Xenopus laevis [113], but the

genome of this species is known to be tetraploid and hence this

situation may not be unexpected. There is very little data on the

genome evolution of the Eucrustacea, but, to date, there is no

evidence of extra genome duplications in this taxa and therefore

the two transcripts in E. superba potentially represent a novel

species-specific gene duplication.

It is not possible, given the data presented here to determine

why this gene duplication event, and a requirement for additional

antioxidant enzymes, has occurred in E. superba. It is suggested that

animals living in constant cold temperatures may be more

vulnerable to damage by reactive oxygen species, due to slow

cell and protein turnover rates and the consequent accumulation

of oxidised proteins [99,114], however examination of the

databases shows a complex pattern of Cu,Zn duplication in the

Arthropoda. Bombyx mori, the silk worm, has both intracellular and

extracellular Cu,Zn genes. In contrast Culex quinquefasciatus, the

Southern house mosquito, has 4 different putative genes for Cu,Zn

SOD (B0WC98, B0WNS9, B0X9L3, B0VZ56), all of which are

different with the latter two containing the intracellular motifs.

The two extracellular variants, only show 17.2% identity and

26.9% similarity at the amino acid level, but do contain the

required motifs for Cu,Zn SOD, i.e. duplication of both the intra-

and extracellular forms. A more complicated story arises with 5

putative genes for SOD in Drosophila sechellia (P61854, B4HNH5,

B4HMD6, B4ICF4 and B4HT88). The last accession number

describes a Mn-SOD, P61854 is the intracellular form of Cu,Zn

SOD whilst the other 3 genes (181, 264 and 270 amino acids

respectively) all appear to code for different variants of

extracellular Cu,Zn SOD. In the Eucrustacea, to date, only one

form of Cu,Zn SOD has been identified with the exception of the

sea louse, Caligus clemensi, which has two, but these can be clearly

differentiated into an intracellular and extracellular form. In

Antarctic marine species, gene duplication events have fuelled

Table 6. Putatively identified GST genes in E. superba.

Contig ID Length (bp) No of reads Putative assignment Closest match

02590* 1069 45 delta A9QUN5: Blattella germanica (German cockroach) 7e238

03298 1065 16 omega B0VZ90: Culex quinquifasciatis (Southern house mosquito) 2.6e-47. 59 end missing

07558* 976 14 omega D1MAK0: Anopheles cracens (mosquito) 2.4e244

08955* 950 22 sigma O18598: Blattella germanica (German cockroach) 3.1e217

06543* 848 88 mu C3KHT9: Anoplopoma fimbria (sable fish) 9.2e265

10471* 820 19 mu B8JIS5: Danio rerio (zebrafish) 4.7e-66

04853 627 19 sigma C3V9U8: Chironomus tetans (midge) 3.1e214. Mid portion of gene.

03844 603 93 mu Q0GZP5: Cyprinus carpio (common carp) 2.5e256. Partial 59 end.

08403 531 4 theta Q5PY76: Aedes aegypti (yellow fever mosquito) 7.0e233. Partial 59 end.

08776 417 7 mu B8J188: Danio rerio (zebrafish) 2.5e-35. Partial 59 end.

Fragments less than 400bp 20423 (400, 6); 09683 (268, 4); 12330 (263, 2); 03758 (243, 8); 10951 (243, 13); 20077 (153, 9)

Only contigs with reads above 400bp in length are annotated. * denotes full length sequences.
doi:10.1371/journal.pone.0015919.t006

Table 7. Identification of SOD genes via sequence similarity searches.

Contig Gene BLAST sequence similarity match

Accession
number Organism

Common
name P Expect % id

00295 cytMn-SOD C3W7U6 Cancer pagurus Rock crab 1189 2.3e-119 75

06804 mtMn-SOD Q3Y596 Macrobrachium rosenbergii Giant fresh water prawn 814 1.2e-79 70

03139 Cu,Zn-SOD Q09JE3 Argas monolakensis Mono lake bird tick 291 3.3e-24 41

09879 Cu,Zn-SOD Q45Q33 Macrobrachium rosenbergii Giant fresh water prawn 328 3.9e-28 56

doi:10.1371/journal.pone.0015919.t007
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adaptations to the cold, particularly in the case of antifreeze

proteins [115] and this extra SOD may be another such example.

As more non-model species are sequenced the complexity of gene

duplication events will become more apparent and fuel the

requirement to understand such events in the light of adaptation to

different habitats and life histories.

Other antioxidant genes
Additional to the more detailed analyses above, further contigs

were identified with high sequence similarity to genes with

antioxidant functions. Contig15252 was shown to be most similar

to a copper transport protein in the Southern house mosquito

(Culex quinquifasciatus) (accession number: B0X8C6). Also two

contigs (02344 and 02345) comprised non-overlapping clones

with sequence similarity to the ER localised hypoxia up-

regulated protein (Hyou1). Whilst this latter protein is a member

of the HSP70 family and therefore may play function as a

molecular chaperone and participate in protein folding, its

critical role is thought to be cryoprotection triggered by oxygen

deprivation.

Figure 4. Multiple sequence alignment of the two putative E. Superba Cu-Zn superoxide dismutases with those of other Eucrustacea.
Signature motifs for Cu-Zn superoxide dismutases are indicated by the blue lines under the consensus. The four amino acid residues required for
binding copper and four amino acids required for binding zinc are indicated by arrows, as well as two cysteines residues (SS) for the disulphide bridge
[110]. Putative N-glycosylation sites for contig03139 only are indicated by the red lines under the consensus and the predicted signal peptide (again
for contig03139 only) is marked in italics and underlined. Accession numbers: Portunus trituberculatus: C8XTB0; Callinectes sapidus: Q9NB64; Scylla
serrata: A5Y446; Pacifastacus leniusculus: Q9XYS0; Caligus rogercresseyi: C1BQG7; Caligus clemensi: 1: C1C108, 2: C1C2E3; Lepeophteirus salmonis:
C1BSR9; Scylla paramamosain: D2DSH2; Macrobrachium rosenbergii: Q45Q33.
doi:10.1371/journal.pone.0015919.g004
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Conclusions
This paper describes, for the first time, a transcriptome of the

Antarctic krill Euphausia superba using 454 pyrosequencing technol-

ogies. The most highly expressed genes are concerned with lipid and

seasonal metabolism. However, the classical ‘‘stress proteins’’, such

as HSP70, HSP90, ferritin and GST are also highly expressed,

which lead us to carry out an extensive characterisation of both the

cellular chaperone system and the major antioxidant proteins

(Figure 5). Knowledge of these gene networks is particularly

pertinent in the study of Antarctic marine species in terms of both

their adaptations to living in an extreme environment, but also to

their responses to climate change. In a recent study on the

transcriptomes of Antarctic notothenioid fish 177 protein families

were shown to be over-expressed compared with temperate

relatives, many of these were genes involved in protein biosynthesis,

protein folding, lipid metabolism and antioxidants [116], similar to

Figure 5. Summary of most highly expressed chaperone and ‘‘stress’’ transcripts in E. superba. Picture of E. superba from the
Bellingshausen Sea continental shelf, taken onboard RRS James Clark Ross cruise JR230 (benthic pelagic coupling cruise) by Pete Bucktrout (British
Antarctic Survey). Gene names in red = 400+ copies in the transcriptome data, Green = 200–400 gene copies and blue = less than 200 gene copies.
Genes labelled (i) and (ii) plus boxed in the diagram are duplicated genes and their analysis fully described in the main text.
doi:10.1371/journal.pone.0015919.g005
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those described in this paper. These were hypothesized as required

adaptations to living in the cold and validate some of the proposed

costs of living in such an environment, such as decreased protein

folding efficiency [117] and increased vulnerability to damage by

reactive oxygen species [99].

As more Antarctic transcriptomes become available it will be

possible to determine how wide-spread altered expression patterns,

gene duplication events and even altered cellular networks are in

Southern Ocean or indeed, polar animals. E. superba is a pelagic

species and experimental work is always limited by availability and

ship time. The mere act of recovering the animals from the sea via

trawls is stressful and it will always be difficult to partition the stress

effects of the sampling regime from the experimental changes to

the transcriptome. As such, there is a need to identify not only the

stress response, but also the trade-offs associated with enhanced

‘‘stress gene’’ production. It is already known that some Antarctic

species permanently express the inducible form of HSP70 as well

as other HSP70 family members [63–69]. In more experimentally

amenable species it has been shown that there is a demonstrable

energetic cost associated with the production of heat shock

proteins [118] and as yet we have no knowledge of the effect of this

in terms of altered transcription patterns in Antarctic species or

how it will affect their response to climate change effects. Is the

stenothermal nature of Antarctic marine species solely a result of

adaptation to living in a cold constant environment for so long, or

is it a trade-off effect of survival? Recent large-scale EST and 454

studies [37,116] and the data described here, are starting to

provide the building blocks towards more detailed studies across a

range of Antarctic species with the ultimate aim of providing

ecosystem level answers to the costs of life in the cold.

Materials and Methods

Specimen collection, RNA isolation and cDNA production
The animals were collected on cruise JR177. Catches were

made in the vicinity of the South Orkney Islands (60.44uS to

60.53uS and 47.97uW to 48.13uW). All of the krill were taken by

target fishing, mainly using a pelagic net (RMT8), based on

observations of krill swarms using an EK60 echo sounder at 38

and 120KHz. The nets were towed for only a short time and, after

hauling, the krill were transferred as quickly as possible to the cold

room at 1–3uC for sorting. Catches were made at different times of

the day (00:50, 06:00, 07:00, 14:00 and 20:30) and samples flash

frozen before being stored at 280uC. RNA was isolated from

whole animals using the RNeasy system with on-column DNase

treatment (Qiagen) according to manufacturers instructions. RNA

was initially qualified using a standard spectrophotometer and a

pool of 6 animals prepared for library production. 1.5mg of pooled

sample of krill total RNA was used for the library production, with

the RNA purity additionally checked on an Agilent Bioanalyzer.

The cDNA library was constructed using the CreatorTM

SMARTTM kit (Clontech Laboratories Inc., Mountain View,

CA, USA). In brief, total RNA was reverse transcribed to first

stand cDNA coupled with (dC) tailing and CDS III primers (both

containing SfiI digestion site sequences) following a step of

template switching and extension by reverse transcription. The

second strand cDNAs were then amplified using long-distance

PCR with Advantage 2 PCR enzyme system (Clontech Labora-

tories Inc.). The quality of cDNAs was then visually checked by

loading the cDNAs on a 1.1% agarose gel. The cDNAs were then

purified using QIAquick PCR Purification Kit (Qiagen; Carlsbad,

CA, USA) according to the manufacturer’s instructions. The

second strand cDNAs (5 mg) were then subjected to sequencing

library construction and pyrosequencing using GS FLX Titanium

system (Roche applied Science, Indianapolis, IN, USA) at McGill

University and Genome Quebec Innovation centre (Montreal,

QC, Canada) using the standard GS FLX protocol.

454 Assembly and Analysis
The initial assembly comprised 943,817 reads. Crossmatch

(P. Green, unpublished) was then applied to screen for adaptor

sequences and other artifacts of the pyrosequencing procedure and

also vector sequences using the UniVec database (www.ncbi.nlm.

nih.gov/VecScreen/UniVec.html). Stripping the masked se-

quence from the ends and removing reads with masked sequence

in the middle as well as eliminating resulting reads below 50bp,

resulted in 699,248 sequences that were entered into the Newbler

program [34] for assembly. This resulted in 22,177 contigs. None

of the singletons were used for further analysis. Files containing the

reads have been submitted to the National Center for Biotech-

nology Information Short Read Archive (accession number:

SRA023520). The mapping facility of Newbler was applied to

the assembly to determine the number of SNPs, and Phobos [119]

was used for microsatellite discovery. The contigs were then

searched for sequence similarity using BLAST [120] against the

genbank non-redundant database [121]. Sequence manipulation

was carried out using either the EMBOSS suite of programmes

[122] with clustering using ClustalW [123] or CLC Mainwork-

bench [124]. Alignments were produced and displayed in CLC

Mainworkbench [124]. Putative N-glycosylation sites in the

Cu,ZN SODs were predicted using the NetGlyc 1.0 Server

[125] and signal peptide using the SignalP 3.0 server [126] using

both neural networks and hidden Markov models [127] and

accessed via the CBS server [128].

Supporting Information

Figure S1 Putative translations and amino acid alignment of the

9 E. superba contigs with sequence similarity to HSP70.

(PDF)

Figure S2 Alignment of the deduced amino acid sequences of

the E. superba contigs 02253 (full length) and 06573 (partial) with

those of other Eucrustacea. Sequence accession numbers are: Balanus

amphitrite: Q86MC3; Artemia sanfranciscana: Q95V47; Moina macro-

poda: ACB11341; Daphnia magna: ACB11340; Tigriopus japonicus:

B8PT12; Pachygrapsus marmoratus: ABA02164; Homarus americanus:

ABA02165; Penaeus monodon: AAQ05768; Metapenaeus ensis:

Q1HGN3; Litopenaeus vannamei: AAT46566; Rimicaris exoculata-3:

D2SPE2; Rimicaris exoculata-2: ACL52279; Rimicaris exoculata-1:

ABF85673; Palaemonetes varians: ACR77532; Mirocaris fortunata:

A1XQQ5; Macrobrachium rosenbergii: Q6S4R6; Portunus tritubercula-

tus: D2DWR3; Portunus sanguinolentus: A8KCI1; Eriocher sinensis:

B5AMI7; Calinectes sapidus: Q194W6; Scylla paramamosain:

B3VKG9.

(PDF)

Figure S3 Putative translations and amino acid alignment of the

6 E. superba contigs with sequence similarity to HSP90.

(PDF)

Figure S4 Amino acid alignment of HSP90 genes from the

Panarthropoda. Sequence accession numbers are: Ixodes scapularis:

XM_002414763; Apis mellifera: FJ713701; Macrocentrus cingulum:

EU570066; Drosophila melanogaster: NM_079175; Mamestra brassicae:

AB251894; Chilo suppressalis: AB206477; Tigriopus japonicus:

EU831278; Chiromantes haematocheir: AY528900.1; Eriocheir sinensis:
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EU809924; Portunus trituberculatus: FJ392027; Fenneropenaeus chinensis:

EF032650; Penaeus monodon: FJ855436; Metapenaeus ensis: EF470246;

Euphausia superba: contig00022. Only the ptHSP90-1 and

EusHSP90-1 are used in this alignment.

(PDF)

Figure S5 Amino acid alignment of TRAP1 sequences.
These are from a number of invertebrates and vertebrates with the

EusHSP90-1 and contig03026. Sequence accession numbers are:

Aedes aegypti TRAP1: AAD29307; Culex quinquefasciatus TRAP1:

XM_001861228; Drosophila melanogaster TRAP1: AAD29307;

Pediculus humanus HSP75: XP_002425720; Danio rerio TRAP1:

AAI4468; Apis mellifera TRAP1: XP_623366; Homo sapiens TRAP1:

Q12931.

(PDF)

Figure S6 Amino acid alignment of E. superba additional putative

HSP70 family members with HSP105 and APG HSP70 family

members. Accession numbers: Tigriopus japonicus HSP105:

ACA03526; Apis mellifera HSP70Cb: XP_623199.1; Nasonnia

vitripennis: XP_001607146; Pediculus humanus HSP105: XP_

002431004; Xenopus laevis HSP105: NP_001086692; Callithrix

jacchus HSP105-2: XP_002748999; Callithrix jacchus HSP70-4:

XP_002744640; Mus musculus HSP70-4-APG2: Q61316; Mus

musculus HSP70-4-APG1: P48722; Homo sapiens HSP70-4:

ABM69040.

(PDF)

Table S1 Microsatellite repeats found in excess of 7 copies per

repeat unit in E. superba data.

(XLS)

Table S2 Variant nucleotides (SNPs/INDELS) found in E.su-

perba data.

(XLS)
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