P. Haney, J. Badger, G. Buldak, C. Reich, and C. Woese, Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species, Proceedings of the National Academy of Sciences, vol.96, issue.7, pp.3578-3583, 1999.
DOI : 10.1073/pnas.96.7.3578

D. Kreil and C. Ouzounis, Identification of thermophilic species by the amino acid compositions deduced from their genomes, Nucleic Acids Research, vol.29, issue.7, pp.1608-1615, 2001.
DOI : 10.1093/nar/29.7.1608

I. Berezovsky and E. Shakhnovich, Physics and evolution of thermophilic adaptation, Proceedings of the National Academy of Sciences, vol.102, issue.36, pp.12742-12747, 2005.
DOI : 10.1073/pnas.0503890102

D. Lynn, G. Singer, and D. Hickey, Synonymous codon usage is subject to selection in thermophilic bacteria, Nucleic Acids Research, vol.30, issue.19, pp.4272-4277, 2002.
DOI : 10.1093/nar/gkf546

N. Galtier and J. Lobry, Relationships Between Genomic G+C Content, RNA Secondary Structures, and Optimal Growth Temperature in Prokaryotes, Journal of Molecular Evolution, vol.44, issue.6, pp.632-636, 1997.
DOI : 10.1007/PL00006186

URL : https://hal.archives-ouvertes.fr/hal-00434982

A. Paz, D. Mester, I. Baca, E. Nevo, and A. Korol, Adaptive role of increased frequency of polypurine tracts in mRNA sequences of thermophilic prokaryotes, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.2951-2956, 2004.
DOI : 10.1073/pnas.0308594100

A. Szilágyi and P. Závodszky, Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey, Structure, vol.8, issue.5, pp.493-504, 2000.
DOI : 10.1016/S0969-2126(00)00133-7

S. De-farias and M. Bonato, Preferred amino acids and thermostability, Genet Mol Res, vol.2, pp.383-393, 2003.

G. Vogt, S. Woell, and P. Argos, Protein thermal stability, hydrogen bonds, and ion pairs, Journal of Molecular Biology, vol.269, issue.4, pp.631-643, 1997.
DOI : 10.1006/jmbi.1997.1042

M. Thompson and D. Eisenberg, Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability, Journal of Molecular Biology, vol.290, issue.2, pp.595-604, 1999.
DOI : 10.1006/jmbi.1999.2889

R. Ellis and S. Van-der-vies, Molecular Chaperones, Annual Review of Biochemistry, vol.60, issue.1, pp.321-347, 1991.
DOI : 10.1146/annurev.bi.60.070191.001541

D. Vendittis, E. Castellano, I. Cotugno, R. Ruocco, M. Raimo et al., Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition, Journal of Theoretical Biology, vol.250, issue.1, pp.156-171, 2008.
DOI : 10.1016/j.jtbi.2007.09.006

URL : https://hal.archives-ouvertes.fr/hal-00554492

G. Wang and M. Lercher, Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes, BMC Evolutionary Biology, vol.10, issue.1, pp.263-271, 2010.
DOI : 10.1186/1471-2148-10-263

J. Felsenstein, Phylogenies and the Comparative Method, The American Naturalist, vol.125, issue.1, pp.1-15, 1985.
DOI : 10.1086/284325

P. Harvey and M. Pagel, The comparative method in evolutionary biology, 1991.

R. Haymon, R. Koski, and C. Sinclair, Fossils of Hydrothermal Vent Worms from Cretaceous Sulfide Ores of the Samail Ophiolite, Oman, Science, vol.223, issue.4643, pp.1407-1409, 1984.
DOI : 10.1126/science.223.4643.1407

C. Little, V. Maslennikov, N. Morris, and A. Gubanov, Two Palaeozoic Hydrothermal Vent Communities from the Southern Ural Mountains, Russia, Palaeontology, vol.42, issue.6, pp.1043-1078, 1999.
DOI : 10.1111/1475-4983.00110

D. Jollivet, Specific and genetic diversity at deep-sea hydrothermal vents: an overview, Biodiversity and Conservation, vol.96, issue.12, pp.1619-1653, 1996.
DOI : 10.1007/BF00052119

D. Desbruyères, P. Chevaldonné, A. Alayse, D. Jollivet, and F. Lallier, Biology and ecology of the ???Pompeii worm??? (Alvinella pompejana Desbruy??res and Laubier), a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments, Deep Sea Research Part II: Topical Studies in Oceanography, vol.45, issue.1-3, pp.383-422, 1998.
DOI : 10.1016/S0967-0645(97)00083-0

P. Girguis and R. Lee, Thermal Preference and Tolerance of Alvinellids, Science, vol.312, issue.5771, p.231, 2006.
DOI : 10.1126/science.1125286

D. Jollivet, D. Desbruyères, C. Ladrat, and L. Laubier, Evidence for differences in the allozyme thermostability of deep-sea hydrothermal vent polychaetes (Alvinellidae):a possible selection by habitat, Marine Ecology Progress Series, vol.123, pp.125-136, 1995.
DOI : 10.3354/meps123125

P. Chevaldonné, D. Desbruyères, and J. Childress, . . . and some even hotter, Nature, vol.359, issue.6396, pp.593-594, 1992.
DOI : 10.1038/359593b0

S. Cary, T. Shank, and J. Stein, Worms bask in extreme temperatures, Nature, vol.391, issue.6667, pp.545-546, 1998.
DOI : 10.1038/35286

F. Sicot, M. Mesnage, M. Masselot, J. Exposito, and R. Garrone, Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen, Journal of Molecular Biology, vol.302, issue.4, pp.811-820, 2000.
DOI : 10.1006/jmbi.2000.4505

E. Dahlhoff, J. O-'brien, G. Somero, and R. Vetter, Temperature Effects on Mitochondria from Hydrothermal Vent Invertebrates: Evidence for Adaptation to Elevated and Variable Habitat Temperatures, Physiological Zoology, vol.64, issue.6, pp.1490-1508, 1991.
DOI : 10.1086/physzool.64.6.30158226

S. Hourdez, F. Lallier, D. Cian, M. Green, B. Weber et al., (Annelida Polychaeta, Terebellida): Functional Properties of Intracellular and Extracellular Hemoglobins, Physiological and Biochemical Zoology, vol.73, issue.3, pp.365-373, 2000.
DOI : 10.1086/316755

K. Henscheid, D. Shin, S. Cary, and J. Berglund, The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1727, issue.3, pp.197-207, 2005.
DOI : 10.1016/j.bbaexp.2005.01.008

D. Shin, M. Didonato, D. Barondeau, G. Hura, and C. Hitomi, Superoxide Dismutase from the Eukaryotic Thermophile Alvinella pompejana: Structures, Stability, Mechanism, and Insights into Amyotrophic Lateral Sclerosis, Journal of Molecular Biology, vol.385, issue.5, pp.1534-1555, 2009.
DOI : 10.1016/j.jmb.2008.11.031

P. Piccino, F. Viard, P. Sarradin, L. Bris, N. et al., Thermal selection of PGM allozymes in newly founded populations of the thermotolerant vent polychaete Alvinella pompejana, Proceedings of the Royal Society B: Biological Sciences, vol.271, issue.1555, pp.2351-2359, 2004.
DOI : 10.1098/rspb.2004.2852

N. Gagnière, D. Jollivet, I. Boutet, Y. Brélivet, and D. Busso, Insights into metazoan evolution from alvinella pompejana cDNAs, BMC Genomics, vol.11, issue.1, pp.634-648, 2010.
DOI : 10.1186/1471-2164-11-634

T. Struck, N. Schult, T. Kusen, E. Hickman, and C. Bleidorn, Annelid phylogeny and the status of Sipuncula and Echiura, BMC Evolutionary Biology, vol.7, issue.1, pp.57-68, 2007.
DOI : 10.1186/1471-2148-7-57

R. Sweet and D. Eisenberg, Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure, Journal of Molecular Biology, vol.171, issue.4, pp.479-488, 1983.
DOI : 10.1016/0022-2836(83)90041-4

X. Bailly, D. Jollivet, S. Vanin, J. Deutsch, and F. Zal, Evolution of the Sulfide-Binding Function Within the Globin Multigenic Family of the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila, Molecular Biology and Evolution, vol.19, issue.9, pp.1421-1433, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004205

V. Abkevich and E. Shakhnovich, What can Disulfide Bonds Tell Us about Protein Energetics, Function and Folding: Simulations and Bioninformatics Analysis, Journal of Molecular Biology, vol.300, issue.4, pp.975-985, 2000.
DOI : 10.1006/jmbi.2000.3893

D. Hickey and G. Singer, Genomic and proteomic adaptations to growth at high temperature, Genome Biology, vol.5, issue.10, pp.117-123, 2004.
DOI : 10.1186/gb-2004-5-10-117

L. Duret, Evolution of synonymous codon usage in metazoans, Current Opinion in Genetics & Development, vol.12, issue.6, pp.640-649, 2002.
DOI : 10.1016/S0959-437X(02)00353-2

URL : https://hal.archives-ouvertes.fr/hal-00427267

A. Tanguy, N. Bierne, C. Saavedra, B. Pina, and E. Bachère, Increasing genomic information in bivalves through new EST collections in four species: Development of new genetic markers for environmental studies and genome evolution, Gene, vol.408, issue.1-2, pp.27-36, 2007.
DOI : 10.1016/j.gene.2007.10.021

URL : https://hal.archives-ouvertes.fr/halsde-00450595

H. Romero, A. Zavala, H. Musto, and G. Bernardi, The influence of translational selection on codon usage in fishes from the family Cyprinidae, Gene, vol.317, pp.141-147, 2003.
DOI : 10.1016/S0378-1119(03)00701-7

R. Thangudu, M. Manoharan, N. Srinivasan, F. Cadet, and R. Sowdhamini, Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families, BMC Structural Biology, vol.8, issue.1, pp.55-77, 2008.
DOI : 10.1186/1472-6807-8-55

URL : https://hal.archives-ouvertes.fr/hal-01198476

A. Glyakina, S. Garbuzynskiy, M. Lobanov, and O. Galzitskaya, Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms, Bioinformatics, vol.23, issue.17, pp.2231-2238, 2007.
DOI : 10.1093/bioinformatics/btm345

I. Berezovsky, W. Chen, P. Choi, and E. Shakhnovitch, Entropic stabilization of proteins and its proteomic consequences, PLoS Comput Biol, vol.1, pp.322-332, 2005.

D. Isom, C. Castaneda, B. Cannon, P. Velu, and E. Garcia-moreno, Charges in the hydrophobic interior of proteins, Proceedings of the National Academy of Sciences, vol.107, issue.37, pp.16096-16100, 2010.
DOI : 10.1073/pnas.1004213107

Z. Xu, Y. Liu, Y. Yang, W. Jiang, and E. Arnold, Crystal Structure of D-Hydantoinase from Burkholderia pickettii at a Resolution of 2.7 Angstroms: Insights into the Molecular Basis of Enzyme Thermostability, Journal of Bacteriology, vol.185, issue.14, pp.4038-4049, 2003.
DOI : 10.1128/JB.185.14.4038-4049.2003

X. Zhou, Y. Wang, Y. Pan, and W. Li, Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins, Amino Acids, vol.41, issue.1, pp.25-33, 2008.
DOI : 10.1007/s00726-007-0589-x

K. Zeldovitch, I. Berezovski, and E. Shakhnovich, Protein and DNA sequence determinants of thermophilic adaptation, PLoS Comput Biol, vol.3, pp.62-72, 2007.

A. Ikay, Thermostability and aliphatic index of globular proteins, J Biochem, vol.88, pp.1895-1898, 1980.

P. Argos, M. Rossman, V. Grau, H. Zuber, and G. Frank, Thermal stability and protein structure, Biochemistry, vol.18, issue.25, pp.5698-5703, 1979.
DOI : 10.1021/bi00592a028

L. Serrano, J. Neira, S. J. Fersht, and A. , Effect of alanine versus glycine in ??-helices on protein stability, Nature, vol.356, issue.6368, pp.453-455, 1992.
DOI : 10.1038/356453a0

Y. Nishio, Y. Nakamura, Y. Kawarabayasi, Y. Usuda, and E. Kimura, Comparative Complete Genome Sequence Analysis of the Amino Acid Replacements Responsible for the Thermostability of Corynebacterium efficiens, Genome Research, vol.13, issue.7, pp.1572-1579, 2003.
DOI : 10.1101/gr.1285603

B. Matthews, H. Nicholson, and W. Becktel, Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding., Proceedings of the National Academy of Sciences, vol.84, issue.19, pp.6663-6667, 1987.
DOI : 10.1073/pnas.84.19.6663

S. Dao-pin, W. Baase, and B. Matthews, A mutant T4 lysozyme (Val 131 ??? Ala) designed to increase thermostability by the reduction of strain within an ??-helix, Proteins: Structure, Function, and Genetics, vol.26, issue.2, pp.198-204, 1990.
DOI : 10.1002/prot.340070208

M. Borgi, K. Srih-belguith, B. Ali, M. Mezghani, M. Tranier et al., Glucose isomerase of the Streptomyces sp. SK strain: purification, sequence analysis and implication of alanine 103??residue in the enzyme thermostability and acidotolerance, Biochimie, vol.86, issue.8, pp.561-568, 2004.
DOI : 10.1016/j.biochi.2004.07.003

URL : https://hal.archives-ouvertes.fr/hal-01204384

B. Matthews, Structural and Genetic Analysis of Protein Stability, Annual Review of Biochemistry, vol.62, issue.1, pp.139-160, 1993.
DOI : 10.1146/annurev.bi.62.070193.001035

A. Rambaut, Sequence Alignment Editor (Se-Al), version 2.0 alpha 11 evolution, phylogenetics and epidemiology website, Available, p.2012, 1996.

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

Z. Yang, Phylogenetic Analysis by Maximum Likelihood (PAML), version 3.0, 2000.

J. Felsenstein, PHYLIP: Phylogenetic inference program, version 3.6, 2002.

J. Peden, Analysis of codon usage, 1999.

S. Whelan and N. Goldman, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, Molecular Biology and Evolution, vol.18, issue.5, pp.691-699, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003851

C. Pace, B. Shirley, M. Mcnutt, and K. Gajiwala, Forces contributing to the conformational stability of proteins, FASEB J, vol.10, pp.75-83, 1996.

N. Goldman and Z. Yang, A codon-based model of nucleotide substitution for protein-coding sequences, Mol Biol Evol, vol.11, pp.725-736, 1994.