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HYPERSURFACES WITH DEGENERATE DUALS

AND THE GEOMETRIC COMPLEXITY THEORY PROGRAM

J.M. LANDSBERG, LAURENT MANIVEL AND NICOLAS RESSAYRE

Abstract. We determine set-theoretic defining equations for the varietyDualk,d,N ⊂ P(Sd
C

N )
of hypersurfaces of degree d in C

N that have dual variety of dimension at most k. We apply

these equations to the Mulmuley-Sohoni variety GLn2 · [detn] ⊂ P(Sn
C

n2

), showing it is an

irreducible component of the variety of hypersurfaces of degree n in C
n2

with dual of dimension
at most 2n − 2. We establish additional geometric properties of the Mulmuley-Sohoni variety
and prove a quadratic lower bound for the determinental border-complexity of the permanent.

1. Introduction

A classical problem in linear algebra is to determine or bound the smallest integer n such that
the permanent of an m × m matrix may be realized as a linear projection of the determinant
of an n × n matrix. L. Valiant [7] proposed using this problem as an algebraic analog of the
problem of comparing the complexity classes P and NP. Call this value of n, dc(permm). He
conjectured that dc(permm) grows faster than any polynomial in m. The best known lower

bound is dc(permm) ≥ m2

2 , which was proved in [3].
The definition of dc(permm) may be rephrased as follows: let ℓ be a linear coordinate on C,

let C ⊕Mm(C) ⊂ Mn(C), be any linear inclusion, where Mn(C) denotes the space of complex
n × n matrices; then dc(permm) is the smallest n such that ℓn−m permm ∈ End(Mn(C)) · detn.
Here u ∈ End(Mn(C)) acts by (u · detn)(M) := detn(u(M)).

K. Mulmuley and M. Sohoni [4, 5], have proposed to study the function dc(permm), which

is the smallest n such that [ℓn−m permm] is contained in the orbit closure GLn2 · [detn] ⊂
P(Sn(Mn(C))

∗). Here Sn(Mn(C))
∗ denotes the homogeneous polynomials of degree n on Mn(C).

The best known lower bound on this function had been linear. Note that dc(permm) ≤

dc(permm), the potential difference being the added flexibility of limiting polynomials inGLn2 · [detn]
that are not in End(Mn(C)) · [detn]. Our main result about dc(permm) is the following quadratic
bound.

Theorem 1.0.1. dc(permm) ≥ m2

2 .

Consider the ideal of regular functions on Sn(Mn(C)
∗) that are zero on GLn2 · [detn]. We

construct an explicit sub-GLn2-module Vn in this ideal which has the following properties.

Theorem 1.0.2. (1) The GLn2-module Vn contains an irreducible module of highest weight

n(n− 1)(n − 2)ω1 + (2n2 − 4n− 1)ω2 + 2ω2n+1
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and Vn is a subspace of the space of homogeneous polynomials of degree n(n − 1) on

Sn(Mn(C))
∗.

(2) The variety GLn2 · [detn] is an irreducible component of the zero locus Dn of Vn.

Theorem 1.0.2 provides the first explicit module of equations in the ideal of GLn2 · [detn].

However dim(Dn) grows exponentially with n, whereas dim(GLn2 · [detn]) is on the order of
n4. In particular, Dn has other irreducible components, one of which is described in §4. A
more precise statement than Theorem 1.0.2 is Theorem 3.1.1, which implies that our equations
provide a full set of local equations of GLn2 · [detn] around [detn].

One can similarly define dc(P ), dc(P ) for an arbitrary polynomial P of degree n in N variables.
Such a polynomial, if nonzero, defines a hypersurface Z(P ) ⊂ P

N−1. If P is reduced, the Zariski
closure of the set of tangent hyperplanes to this hypersurface is a subvariety Z(P )∗ of the dual
projective space, called the dual variety of Z(P ). For generic such P , Z(P )∗ is a hypersurface.

Theorem 1.0.3. For any irreducible polynomial P ,

dc(P ) ≥
dim Z(P )∗ + 1

2
.

Theorem 1.0.3 is obtained by partially solving a question in classical algebraic geometry
(Theorem 2.3.1): find set-theoretic defining equations for the variety Dualk,d,N ⊂ P(Sd

C
N ) of

hypersurfaces of degree d in CP
N−1 whose dual variety has dimension at most k.

While it was generally understood that End(Mn(C))·[detn] ⊂ GLn2 · [detn] was a proper inclu-
sion, it had not been known if the difference was potentially significant. Proposition 3.5.1 exhibits
an explicit codimension one GLn2(C)-orbit that is contained in the boundary of GLn2 · [detn]

but not contained in End(Cn2

) ·detn, at least when n is odd. In particular, we exhibit an explicit
sequence of polynomials Pm with dc(Pm) < dc(Pm).

2. Hypersurfaces with degenerate dual varieties

2.1. Katz’s dimension formula. Let W be a complex vector space of dimension N , and
P ∈ SdW ∗ a homogeneous polynomial of degree d. Let Z(P ) ⊂ PW denote the hypersurface
defined by P . If P is irreducible, then Z(P ) and its dual variety Z(P )∗, the Zariski closure of
the set of tangent hyperplanes to Z(P ), are both irreducible. The Katz dimension formula [2]
states that

dim Z(P )∗ = rank(HP,w)− 2,

where HP,w denotes the Hessian of P at w, a general point of the affine cone over Z(P ). Recall
that the Hessian can be defined, once a coordinate system on W has been chosen, as the
symmetric matrix of second partial derivatives of P . Intrinsically, it is just the quadratic form
constructed from P by polarization:

HP,w(X) := P (w, . . . , w,X,X).

Katz’s formula implies that Z(P )∗ has dimension less or equal to k if and only if, for any
w ∈ W such that P (w) = 0, and any (k + 3)-dimensional subspace F of W ,

det(HP,w|F ) = 0.

Equivalently (assuming P is irreducible), for any such subspace F , the polynomial P must
divide det(HP |F ), a polynomial of degree (k + 3)(d− 2).
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2.2. Pairs of polynomials such that one divides the other. Consider two homogeneous
polynomials P,Q on W = C

N , of respective degrees d, e. We determine equations on their
coefficients that are implied by the condition that P divides Q.

There is an obvious solution in the slightly different situation where P and Q are (non-
homogeneous) polynomials in a single variable: one simply performs the Euclidian division of Q
by P and requires that the remainder R be zero. The ideal defined by this condition is described
in [6].

In our situation, we can first restrict P and Q to some plane L in W , and choose coordinates
x, y on L. The restricted polynomials PL and QL are then binary forms in these coordinates.
Then set y = 1 and perform a Euclidean division on the resulting polynomials in x. After
rehomogenization, we obtain

(1) QL(x, y) = PL(x, y)DL(x, y) + ye−d+1RL(x, y),

where RL(x, y) is homogeneous of degree d − 1. The condition RL = 0 depends on the choice
of the coordinates x and y, but up to scale, the coefficient RL,d−1 of xd−1 only depends on
the choice of the coordinate y. That is, the condition RL,d−1 = 0, considered as a polynomial
equation in the coefficients of P and Q, only depends on the choice of L and of the line D in L
defined by the equation y = 0.

To make the connection with [6], write

QL(x, y) =
∑e

i=0 qix
iye−i = qe

∏e
k=1(x− yαk),

PL(x, y) =
∑d

j=0 pjx
jyd−j = pd

∏d
l=1(x− yβl).

Divide equation (1) by PL(x, y) and set x = 1. We get an identity between power series in y,
to which DL contributes only up to degree e − d. We conclude that RL,d−1/pd is equal to the

coefficient of ye−d+1 in

QL(1, y)

PL(1, y)
=

qe
∏e

k=1(1− yαk)

pd
∏d

l=1(1− yβl)
=

qe
pd

∑

m≥0

sm(β − α)ym,

where the last equality can be taken as a definition of the symmetric functions sm(β − α). The
condition that RL,d−1 = 0 is thus equivalent to the condition that

se−d+1(β − α) = 0.

In order to get a polynomial equation in the coefficients of QL and PL, we modify the expression
slightly. Write

QL(1, y)

PL(1, y)
=

QL(1, y)

pd(1 + π(y))
=

QL(1, y)

pd

∑

m≥0

(−1)mπ(y)m,

where π(y) =
∑d

j=1
pd−j

pd
yj . Therefore, the coefficient of ye−d+1 can be expressed as

R̂(Q,P ) :=
1

pd

e
∑

i=0

qi
∑

j1+···+jr=−d+1+i

(−1)r
pd−j1 · · · pd−jr

prd
.

In that sum the maximal value of r is e− d+ 1, so we make it a polynomial by multiplying by
pe−d+2
d . We conclude that RL,d−1 = 0 is equivalent to the condition that

(2)
∑

j1+···+jr=−d+1+i

(−1)rqipd−j1 · · · pd−jrp
e−d+1−r
d = 0.
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This condition is linear in the coefficients of QL, and of degree e − d + 1 in those of PL. It
depends, as we have seen, on the choice of a preferred coordinate on L, in particular, on the
choice of the line D defined by this coordinate.

Note the following behavior under rescaling:

R̂(αQ(x, λy), βP (x, λy)) = αβe−d+1λe−d+1R̂(Q,P ).(3)

2.3. Equations for hypersurfaces with degenerate duals. We apply the results of the
preceeding section to the case where Q = det(HP |F ), whose degree equals e = (k + 3)(d − 2).
Recall that F ⊂ W is a subspace of dimension k+3. Once F has been chosen, we obtain a family
of equations depending, up to scale, only on the choice of a plane L in W and a line D in L. In
particular, if F contains L we get an equation depending only on the partial flag D ⊂ L ⊂ F .
This equation must therefore be a highest weight vector in some module of polynomials on
SnW ∗, and its highest weight must be of the form aω1 + bω2 + cωk+3.

Consider a basis adapted to D ⊂ L ⊂ F and let (x, y, z, w) = (x, y, zi, ws) denote its dual
basis. Consider a diagonal matrix T := (tx, ty, tzIdF/L, twIdW/F ). Under rescaling

(T.P )(x, y, 0, 0) = t−n
x P (x, txt

−1
y y, 0, 0).(4)

Moreover, the matrix of HT.P |F is obtained from that of HP |F by substituting (x, y, z, w) by
(t−1

x x, t−1
y y, t−1

z z, t−1
w w) and multiplying the first row and column by t−1

x , the second row and

column by t−1
y and the other rows and columns by t−1

z . It follows that det(HT.P |F ) is obtained

from det(HP |F ) by substituting (t−1
x x, t−1

y y, t−1
z z, t−1

w w) in for (x, y, z, w) and by multiplying the
result by

t−2
x t−2

y t−2(k+1)
z .

In summary,

det(HT.P |F )(x, y, 0, 0) = t−2
x t−2

y t−2(k+1)
z t−e

x det(HP |F )(x, txt
−1
y y, 0, 0).(5)

From equations (3), (4) and (5), the vector of exponents of the action of T on our equation is:




2 + e+ (d− 1)(e − d+ 1)
e− d+ 3
2(k + 1)



 .

This vector should be




a+ b+ c
b+ c

c(k + 1)



 .

We deduce
a = −e+ 3d− 2 + de− d2 = (d− 1)(d − 2)(k + 2),
b = e− d+ 1 = d(k + 2)− 2k − 5,
c = 2.

Note that a+ 2b+ (k + 3)c = d(d − 1)(k + 2) so this module occurs in W⊗d(d−1)(k+2).
Define Dualk,d,N ⊂ P(SdW ∗) as the Zariski closure of the set of irreducible hypersurfaces of

degree d in PW ≃ P
N−1, whose dual variety has dimension at most k.

Theorem 2.3.1. The variety Dualk,d,N ⊂ P(Sn(CN )∗) has equations given by a copy of the

SLN -module with highest weight

Ω(k, d) = (d− 1)(d − 2)(k + 2)ω1 +
(

d(k + 2)− 2k − 5
)

ω2 + 2ωk+3.

These equations have degree (k + 2)(d− 1).
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Note that when we constructed our equations, we did not suppose that L was contained in
F . This indicates that the module generated by these equations should in fact be larger than
the single module with highest weight Ω(k, d).

Set theoretically, these equations suffice to defineDualk,d,N locally, at least on the open subset
parametrizing irreducible hypersurfaces Z(P ) ⊂ P(W ). Indeed, once the plane L is fixed, by
varying the line D one obtains a family of equations expressing the condition that PL divides QL,
respectively the restrictions to L of the polynomials P and Q = det(HP |F ). But P divides Q if
and only if restricted to each plane P divides Q, so our conditions imply that the dual variety
of the irreducible hypersurface Z(P ) has dimension less or equal to k. On the other hand, if P
is not reduced, then these equations can vanish even if the dual of Pred is non-degenerate. For
example, if P = R2 where R is a quadratic polynomial of rank 2s, then det(HP ) is a multiple
of R2s.

2.4. Polynomials of the form ℓd−mR.

Lemma 2.4.1. Let U = C
M and L = C, let R ∈ SmU∗ be irreducible, let ℓ ∈ L∗ be nonzero,

let U∗ ⊕ L∗ ⊂ W ∗ be a linear inclusion, and let P = ℓd−mR ∈ SdW ∗.

If [R] ∈ Dualκ,m,M and [R] 6∈ Dualκ−1,m,M , then [P ] ∈ Dualκ,d,N and [P ] 6∈ Dualκ−1,d,N .

Proof. Choose a basis u1, . . . , uM , v, wM+2, . . . , wN of W so (U∗)⊥ = 〈wM+2, . . . , wN 〉 and
(L∗)⊥ = 〈u1, . . . , uM , wM+2, . . . , wN 〉. Let c = (d − m)(d − m − 1). In these coordinates,
we have the matrix in (M, 1, N −M − 1)× (M, 1, N −M − 1)-block form:

HP =





ℓd−mHR 0 0
0 cℓd−m−2R 0
0 0 0





First note that detM+1(HP |F ) for any F = C
M+1 is either zero or a multiple of P . If

dimZ(R)∗ = M − 2 (the expected dimension), then for a generic F = C
M+1, detM (HP |F ) will

not be a multiple of P , and more generally if dimZ(R)∗ = κ, then for a generic F = C
κ+2,

detκ+2(HP |F ) will not be a multiple of P but for any F = C
κ+3, detκ+3(HP |F ) will be a multiple

of P . �

3. The orbit of the determinant

3.1. Statement of the main result. Let W = Mn(C), the space of complex matrices of size
n. Its dimension is N = n2. The hypersurface in PW defined by the determinant is dual to the
variety of rank one matrices, the Segre product Pn−1 × Pn−1 ⊂ PN−1.

Intuitively, a deformation of the determinant hypersurface, subject to the condition that its
dual remains of dimension 2n − 2, should have a deformation of the Segre as its dual variety.
But the Segre is rigid, its only deformations in PW ∗ are translates by projective automorphisms.
Hence the only deformations of the determinant hypersurface, with duals of the same dimension,
should be translates by projective automorphisms as well.

The problem with this intuitive argument is that the dual map can be highly discontinuous,
especially in the presence of singularities, and the determinant hypersurface is very singular.
Nevertheless, the conclusion turns out to be correct:

Every small deformation of the determinant hypersurface, with dual variety of the same di-

mension, is a translate by a projective automorphism.

We will prove a more precise statement. For a polynomial P of degree n on W , and a k-
dimensional subspace F ofW , we have expressed the condition that P divides det(HP |F ) in terms
of polynomial equations of degree (k+2)(n−1). These equations define a subschemeDualk,n,N ⊂
PSnW ∗, supported on the variety Dualk,n,N and possibly other reducible hypersurfaces.
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Theorem 3.1.1. The scheme Dual2n−2,n,n2 is smooth at [detn], and the PGLn2-orbit closure

of [detn] is an irreducible component of Dual2n−2,n,n2 .

In particular, Theorem 3.1.1 implies that the SL(W )-module of highest weight Ω(2n − 2, n)

given by (2) gives local equations at [detn] of GLn2 · [detn], of degree 2n(n−1). Since Dualk,n,N
always contains the variety of degree n hypersurfaces which are cones over a linear space of
dimension N − k − 1, the zero set of the equations is strictly larger than GLn2 · [detn]. The

so-called subspace variety of cones has dimension
(k+n+1

n

)

+ (k + 2)(N − k − 2) − 1. For k =

2n− 2, N = n2, this dimension is bigger than the dimension of the orbit of [detn], and therefore
Dual2n−2,n,n2 is not irreducible. We have not yet been able to find equations that separate the
orbit of [detn] from the other components of Dual2n−2,n,n2 .

3.2. Consequences regarding Kronecker coefficients. A copy of the module with highest

weight n(n − 1)(n − 2)ω1 + (2n2 − 4n − 1)ω2 + 2ω2n+1 in S2n(n−1)(Sn
C
n2

) is in the ideal of

GL(W ) · [detn].
The program suggested in [5] was to separate the determinant and permanent by finding

SL(W )-modules in the ideal of GLn2 · [detn] such that their entire isotypic component was in
the ideal. (Also see [1] for explicit statements regarding Kronecker coefficients needed to carry
out the program.) This does not occur for the module with highest weight n(n− 1)(n− 2)ω1 +
(2n2 − 4n− 1)ω2 + 2ω2n+1.

For example, when n = 3, the module with highest weight 12ω1 + 5ω2 + 2ω7 occurs with
multiplicity six in S12(S3

C
9), but only one copy of it is in the ideal.

3.3. Computing the Zariski tangent space. We differentiate the condition that P divides
det(HP |F ) for each F . That is, write det(HP |F ) = PQF for some polynomial QF , and consider
a curve Pǫ = P + ǫπ + ǫ2τ + O(ǫ3), inducing a curve QF,ǫ = QF + ǫQ′

F + O(ǫ2). Up to O(ǫ2),
HP becomes HP + ǫHπ and we deduce the identity

(6) det(HP , . . . ,HP ,Hπ)|F = πQF + PQ′
F .

To exploit (6), let [w] be a general point of the hypersurface Z(P ), so the rank of the qua-
dratic form HP,w is exactly k + 2. Let X belong to the kernel of HP,w. Let F ′ be a (k + 2)-
dimensional subspace of W , transverse to the kernel of HP,w, and let F = F ′ ⊕ CX. Now
compute det(HP , . . . ,HP ,Hπ)|F at w. In terms of bases adapted to the flag F ′ ⊂ F ⊂ W ,
the matrix of HP,w has zeros in its last row and column, since they correspond to X, which
belongs to the kernel. Removing this row and column yields an invertible matrix, corresponding
to HP,w|F ′ , as F ′ is transverse to the kernel.

Now, det(HP , . . . ,HP ,Hπ)|F evaluated at w is the sum of the k + 3 determinants obtained
by considering the matrix of HP,w|F and replacing one column by the corresponding column
of Hπ,w|F . If this column is not the last one, this determinant remains with a zero column,
hence equals zero. In case the replaced column is the last one, since the last row of the ma-
trix of HP,w|F vanishes, the resulting determinant is equal to the determinant of the upper-
left block, det(HP,w|F ′), multiplied by the lower-right entry of Hπ,w|F , that is, Hπ,w(X) =
π(w, . . . , w,X,X). Equation (6) becomes

(7) det(HP,w|F ′)Hπ,w(X) = π(w)QF (w).

Note that QF (w) depends on both w and X (since F depends on X), but det(HP,w|F ′) only
depends on w.
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Now specialize (7) to the case P = detn. Then w must be a matrix of rank exactly n − 1.
Write W = E⊗E∗, and as such, it is naturally self-dual via the involution e⊗φ 7→ φ⊗e. For
w ∈ W , write w∗ ∈ E∗⊗E = W ∗ for the image of w under the involution.

Lemma 3.3.1. Let w be a matrix of rank exactly n−1. Then the singular locus of the quadratic

form Hdetn,w, (Hdetn,w)sing is the space of n× n matrices X such that:

1) Im(X) ⊂ Im(w), 2) Ker(X) ⊃ Ker(w), 3) w∗(X) = 0.

Proof. Write w = φ1 ⊗ e1 + · · · + φn−1 ⊗ en−1, for some collection e1, . . . , en−1 of independent
vectors in E = C

n, and some collection φ1, . . . , φn−1 of independent linear forms. We com-
plete these collections into bases by adding a vector en and a linear form φn. Consider an
endomorphism X =

∑

1≤i,j≤n xijφi ⊗ ej. An easy computation yields

Hdetn,w(X) = det(w, . . . , w,X,X) =

n−1
∑

i=1

(xnnxii − xnixin).

This implies that the singular locus of the quadratic form Hdetn,w is defined by the conditions

xni = xin = 0 for 1 ≤ i ≤ n, and
∑n−1

i=1 xii = 0. The first identities are equivalent to the
conditions Im(X) ⊂ Im(w) and Ker(X) ⊃ Ker(w). The third one is the condition w∗(X) =
0. �

We summarize our analysis:

Lemma 3.3.2. Suppose that π ∈ SnW ∗ belongs to the affine Zariski tangent space T̂[detn]Dual2n−2,n,n2 .

Then for any matrix w of rank n− 1, and any X ∈ (Hdetn,w)sing,

Hπ,w(X) = cX,wπ(w),

for some scalar cX,w that does not depend on π.

3.4. Immanants. Recall that each partition λ of n defines an irreducible representation [λ] of
the symmetric group Sn, hence a character χλ. The immanant IMλ is the degree n polynomial
on Mn defined by the formula

IMλ(X) =
∑

σ∈Sn

χλ(σ)x1σ(1) · · · xnσ(n).

For example, [n] is the trivial representation and IM(n) is the permanent; [1n] is the sign
representation and IM(1n) is the determinant.

Write Mn(C) = A∗ ⊗ B for two copies A,B of Cn. Since [detn] is preserved by the action of
GL(A)×GL(B) by left-right multiplication, this is also the case of the Zariski tangent space at
[detn] of the GLn2-invariant scheme Dual2n−2,n,n2 . But as a GL(A) ×GL(B)-module,

Sn(A∗⊗B)∗ =
⊕

λ

SλA⊗ SλB
∗,

where the sum is over all partitions of n. Since this decomposition is multiplicity free, the
submodule T̂[detn]Dual2n−2,n,n2 must be the direct sum of some of the components:

T̂[detn]Dual2n−2,n,n2 =
⊕

λ∈Pn

SλA⊗ SλB
∗,

for some set of partitions Pn to be determined. Note that IMλ is contained in the component
SλA⊗ SλB

∗. Therefore λ belongs to Pn if and only if IMλ belongs to T̂[detn]Dual2n−2,n,n2 .
We apply Lemma 3.3.2 as follows. Start with a matrix w of rank n − 1, which we write as

∑n
i=1 e

∗
i ⊗ ci. There is a dependence relation between c1, . . . , cn, which we can suppose to be of
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the form cn =
∑n−1

i=1 µici. Then w =
∑n−1

i=1 (e
∗
i + µie

∗
n)⊗ ci. By Lemma 3.3.1, (Hdetn,w)sing can

then be described as the set of all

X =

n−1
∑

i=1

(e∗i + µie
∗
n)⊗ (

n−1
∑

j=1

ζji cj),

where
∑n−1

i=1 ζ ii = 0. In bases, the first n− 1 columns c′1, . . . , c
′
n−1 of X are linear combinations

of the columns of w, and c′n =
∑n−1

i=1 µic
′
i is then given by the same linear combination as for

the last column of w. We can thus write the entries of X as

xki =
n−1
∑

j=1

ζjiw
k
j , i < n, xkn =

n−1
∑

i=1

µix
k
i .

Substituting these expressions into HIMλ,w(X) = IMλ(w, . . . , w,X,X) yields a polynomial

IMλ(ζ, w
′, µ) which is quadratic in the ζji and of degree n in the coefficients wk

j , j < n, of

the first n− 1 columns of w, denoted by w′. Explicitly,

HIMλ,w(X) = IMλ(ζ, w
′, µ)

=
∑

i<j

∑

p,q ζ
p
i ζ

q
j

(

∑

k,σ µkχλ(σ)w
σ(1)
1 · · ·w

σ(i)
p · · ·w

σ(j)
q · · ·w

σ(n−1)
n−1 w

σ(n)
k

)

+
∑

i,j

∑

p,q ζ
p
i ζ

q
j

(

∑

σ µjχλ(σ)w
σ(1)
1 · · ·w

σ(i)
p · · ·w

σ(j)
j · · ·w

σ(n−1)
n−1 w

σ(n)
q

)

.

On the other hand, expressing the last column of w in terms of the first ones, IMλ(w) becomes
a polynomial IMλ(w

′, µ), of degree n in w′:

IMλ(w) = IMλ(w
′, µ) =

∑

k,σ

µkχλ(σ)w
σ(1)
1 · · ·w

σ(k)
k · · ·w

σ(n−1)
n−1 w

σ(n)
k .

By Lemma 3.3.2, for each choice of µ, the vanishing of IMλ(w
′, µ) implies the vanishing of

IMλ(ζ, w
′, µ). Since they are both homogeneous of degree m in w′, they must be proportional.

This gives many relations, one for each quadratic monomial in the ζ’s (but recall the relation
∑n−1

i=1 ζ ii = 0). We will need only a small subset of them:

Lemma 3.4.1. Suppose that IMλ belongs to T̂[detn]Dual2n−2,n,n2 . Then for any permutation

σ, and any triple of distinct integers i, p, q smaller than n, one has the relations
∑

τ∈〈(ip),(qn)〉

χλ(στ) = 0.

Here 〈(ip), (qn)〉 denotes the group of permutations generated by the two simple transpositions
(ip) and (qn). This group has order four, hence we get a collection of four term relations between
the values of the character χλ. Observe also that since the characters are class functions, ipqn
can be replaced by any four-tuple of distinct integers.

Proof. Consider the coefficient of ζpi ζ
q
i in IMλ(ζ, w

′, µ). It is
∑

σ

µiχλ(σ)w
σ(1)
1 · · ·wσ(i)

p · · ·wσ(p)
p · · ·w

σ(i)
i · · ·wσ(q)

q · · ·wσ(n)
q .

The monomials in that sum do not appear in IMλ(w
′, µ), so this sum must be zero. Our

condition is then just that the coefficient of each monomial is equal to zero, since the monomial
to which a permutation σ contributes does not change when we compose it on the right with
some element of 〈(ip), (qn)〉. �

We conclude:
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Proposition 3.4.2. Pn = {1n, 21n−2}.

Proof. We know that both partitions are contained in Pn, since the first one corresponds to the
determinant itself, and the second one to the tangent space to the orbit of its projectivization.
Therefore, by Lemma 3.4.1, it is enough to check that the vector space Cn of class functions F
on Sn, such that

∑

τ∈(ij)(kl)

F (στ) = 0 ∀σ, ∀i, j, k, l,

is at most two-dimensional. We prove that F ∈ Cn is completely determined by its values on
permutations of cycle type (1n) or (21n−2). Recall that the value of a class function F on a
permutation σ only depends on its cycle type, which is encoded by a permutation λ. We will
thus write F (λ) rather than F (σ). Apply induction on the number of fixed points in σ. Suppose
that σ has at least two nontrivial cycles. Choose i and k in these two cycles and let j = σ(i),
l = σ(k), then the three permutations σ(ij), σ(kl), σ(ij)(kl) have more fixed points than σ. If
σ has a cycle of length at least four, take i in this cycle and let j = σ(i), k = σ(j), l = σ(k), to
obtain the same conclusion. Finally, if σ is of cycle type 31n−3, say with a nontrivial cycle (123),
choose ijkl = 1234. This gives the relation 2F (31n−3)+F (41n−4)+F (21n−2) = 0. On the other
hand, when σ has cycle type 41n−4, with nontrivial cycle (1234), let ijkl = 1324, which yields
the relation F (41n−4) + F (221n−4) = 0. And if σ has cycle type 221n−4, with nontrivial cycles
(12)(34), letting ijkl = 1234 gives the relation F (221n−4)+2F (21n−2)+F (1n) = 0. These three
identities altogether imply that F (31n−3) is determined by F (21n−2) and F (1n), and then the
induction argument shows that F is completely determined by these two values. �

Our discussion implies

T̂[detn]Dual2n−2,n,n2 = T̂[detn]PGL(Mn).[detn].

Theorem 3.1.1 immediately follows.

3.5. On the boundary of the orbit of the determinant. Decompose a matrix M into
its symmetric and skew-symmetric parts S and A. Define a polynomial PΛ ∈ Sn(Mn(C))

∗ by
letting

PΛ(M) = detn(A, . . . , A, S).

This is easily seen to be zero for n even so we suppose n to be odd. More explicitly, PΛ can
be expressed as follows. Let Pfi(A) denote the Pfaffian of the skew-symmetric matrix, of even
size, obtained from A by suppressing its i-th row and column. Then

PΛ(M) =
∑

i,j

sijPfi(A)Pfj(A).

Proposition 3.5.1. The polynomial PΛ belongs to the orbit closure of the determinant. More-

over, GL(W ) · PΛ is an irreducible codimension one component of the boundary ofGL(W ) · [detn],
not contained in End(W ) · [detn]. In particular dc(PΛ,m) = m < dc(PΛ,m).

Proof. The first assertion is clear: for t 6= 0, one can define an invertible endomorphism ut of
Mn(C) by ut(A+ S) = A+ tS, where A and S are the skew-symmetric and symmetric parts of
a matrix M in Mn(C). Since the determinant of a skew-symmetric matrix of odd size vanishes,

(ut · detn)(M) = detn(A+ tS) = nt detn(A, . . . , A, S) +O(t2),

and therefore ut · [detn] converges to [PΛ] when t goes to zero.
To prove the second assertion, we compute the stabilizer of PΛ inside GL(Mn(C)). The

easiest way to make this computation uses the decomposition Cn⊗Cn = Λ2Cn ⊕ S2Cn of the
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space of matrices into skew-symmetric and symmetric ones. The action of GLn(C) on Mn(C) by
M 7→ gMgt preserves PΛ up to scale, and the Lie algebra of the stabilizer of [PΛ] is a GLn(C)
submodule of End(Mn(C)). We have the decomposition into GLn(C)-modules:

End(Mn(C)) = End(Λ2 ⊕ S2) = End(Λ2)⊕ End(S2)⊕Hom(Λ2, S2)⊕Hom(S2,Λ2).

Moreover, End(Λ2) = gln ⊕ EA and End(S2) = gln ⊕ ES, where EA and ES are distinct
irreducible GLn(C)-modules. Similarly, Hom(Λ2, S2) = sln ⊕ EAS and Hom(S2,Λ2) = sln ⊕
ESA, where EAS and ESA are irreducible, pairwise distinct and different from EA and ES.
Then one can check that the modules EA,ES,EAS,ESA are not contained in the stabilizer,
and that the contribution of the remaining terms is isomorphic with gln ⊕ gln. In particular it
has dimension 2n2, which is one more than the dimension of the stabilizer of [detn]. This implies

GL(W ) · PΛ has codimension one in GL(W ) · [detn]. Since it is not contained in the orbit of the
determinant, it must be an irreducible component of its boundary. Since the zero set is not a
cone (i.e., the equation involves all the variables), PΛ cannot be in End(W ) ·detn which consists
of GL(W ) · detn plus cones. �

The hypersurface defined by PΛ has interesting properties.

Proposition 3.5.2. The dual variety of the hypersurface Z(PΛ) is isomorphic to the Zariski

closure of

P{v2 ⊕ v ∧ w ∈ S2
C
n ⊕ Λ2

C
n, v, w ∈ C

n} ⊂ P(Mn(C)).

As expected, Z(PΛ)
∗ is close to being a Segre product P

n−1 × P
n−1. It can be defined as

the image of the projective bundle π : P(E) → P
n−1, where E = O(−1) ⊕ Q is the sum of the

tautological and quotient bundles on P
n−1, by a sub-linear system of OE(1) ⊗ π∗O(1). This

sub-linear system contracts the divisor P(Q) ⊂ P(E) to the Grassmannian G(2, n) ⊂ PΛ2
C
n.

4. A large irreducible component of Dualk,d,N

Let Subk+2(S
dW ∗) be the projectivization of

{P ∈ SdW ∗ | ∃U∗ ⊂ W ∗, dim(U∗) = k + 2, and P ∈ SdU∗},

the subspace variety of hypersurfaces of degree d in PW that are cones over some Zk ⊂ P
k+1 ⊂

PW . The reduced, irreducible variety Subk+2(S
dW ∗) is of dimension k+1+(k+2)(N − (k+2))

and its ideal is generated in degree k + 3 (see [8, §7.2]).
If [P ] ∈ Subk+2(S

dW ∗), then Z(P ) ⊂ PW is a cone with an (N − k − 1)-dimensional vertex
P(U∗)⊥, and Z(P )∗ ⊂ PU∗. In particular dim(Z(P )∗) ≤ k.

Proposition 4.0.3. Subk+2(S
d
C
N ) is a reduced, irreducible component of Dualk,d,N .

Proof. Let W ∗ = C
N and let P ∈ Subk+2(S

dW ∗) be a general point. Write P ∈ SdU∗. It
follows from the Kempf-Weyman desingularization described in [8, §7.2] that

T̂[P ]Subk+2(S
dW ∗) = SdU∗ + 〈(u P ) ◦ α | u ∈ U, α ∈ W ∗〉.

If we choose a complement V ∗ to U∗ in W ∗ we may write

T̂[P ]Subk+2(S
dW ∗) = SdU∗ ⊕ 〈(u P ) ◦ α | u ∈ U, α ∈ V ∗〉.

We must show

T̂[P ]Dualk,d,N ⊆ T̂[P ]Subk+2(S
dW ∗) ⊂ SdU∗ ⊕ Sd−1U∗⊗V ∗ ⊂ Sd(U∗ ⊕ V ∗).

Following the notation and discussion of §3.3, in equation (7), for P ∈ Subk+2(S
dW ∗), since

the determinant of the Hessian on any k+3-plane vanishes, QF = 0, and we conclude Hπ,w(X) =
0 for all [w] ∈ Z(P ) and for all X ∈ V . This says the degree d − 2 hypersurface Z(Hπ,−(X))
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is contained in the irreducible degree d hypersurface Z(P ), which implies π(X,X, ·, . . . , ·) =
∂2π

(∂X)2
= 0 for all X ∈ V , i.e., T̂[P ]Dualk,d,N ⊆ SdU∗ ⊕ Sd−1U∗⊗V ∗. To obtain the restrictions

on the term in Sd−1U∗⊗V ∗ we must consider the term of order two in ǫ in the expansion of
det(HPǫ |F ) = PǫQǫ,F . With our choice of splitting we may identify U = (V ∗)⊥ ⊂ W and take
F ′ = U . (In other words, the choice of F ′ is equivalent to choosing the splitting.) Note the
order ǫ term also implies in this case that Q′

F = 0.
The terms on the left hand side that potentially could contribute to the ǫ2 coefficient are in

det

(

∂2P
∂ui∂uj

+ ǫ ∂2π
∂ui∂uj

ǫ ∂2π
∂ui∂X

ǫ ∂2π
∂uj∂X

ǫ ∂2π
(∂X)2

+ ǫ2 ∂2τ
(∂X)2

)

The actual contribution is the sum of detk+2(HP |U )
∂2τ

(∂X)2
and terms substituting two entries

from ∂2π
∂ui∂X

for two of the columns of HP |U = ∂2P
∂ui∂uj

. The right hand side is zero.

Choose [w] ∈ Z(P ) ∩ Z(detk+2(HP |U )), and note that we can take a basis of elements of W

of this form, so the first term is zero. We conclude that the column vector ∂2π
∂ui∂X

is a linear

combination of the columns of ∂2P
∂ui∂uj

which implies ∂π
∂X is a linear combination of the ∂P

∂ui
, i.e.

that ∂π
∂X = u P for some u ∈ U which is what we needed to prove. �
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3. Thierry Mignon and Nicolas Ressayre, A quadratic bound for the determinant and permanent problem, Int.

Math. Res. Not. (2004), no. 79, 4241–4253. MR MR2126826 (2006b:15015)
4. Ketan D. Mulmuley and Milind Sohoni, Geometric complexity theory. I. An approach to the P vs. NP and

related problems, SIAM J. Comput. 31 (2001), no. 2, 496–526 (electronic). MR MR1861288 (2003a:68047)
5. , Geometric complexity theory. II. Towards explicit obstructions for embeddings among class varieties,

SIAM J. Comput. 38 (2008), no. 3, 1175–1206. MR MR2421083
6. Piotr Pragacz, A note on the elimination theory, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 2,

215–221. MR MR898165 (88m:12003)
7. L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979), no. 2, 189–201.

MR MR526203 (80f:68054)
8. Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149, Cam-

bridge University Press, Cambridge, 2003. MR MR1988690 (2004d:13020)

E-mail address: jml@math.tamu.edu, laurent.manivel@ujf-grenoble.fr, ressayre@math.univ-montp2.fr


