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A simplified hard output sphere decoder for
large MIMO systems with the use of efficient search
center and reduced domain neighborhood study
Youssef Nasser1*, Sebastien Aubert2,3, Fabienne Nouvel3, Karim Y. Kabalan1 and Hassan A. Artail1

Abstract

Multiple-input multiple-output (MIMO) with a spatial-multiplexing (SM) scheme is a topic of high interest for the next
generation of wireless communications systems. At the receiver, neighborhood studies (NS) and lattice reduction
(LR)-aided techniques are common solutions in the literature to approach the optimal and computationally complex
maximum likelihood (ML) detection. However, the NS and LR solutions might not offer optimal performance for large
dimensional systems, such as large number of antennas, and high-order constellations when they are considered
separately. In this paper, we propose a novel equivalent metric dealing with the association of these solutions by
introducing a reduced domain neighborhood study. We show that the proposed metric presents a relevant complexity
reduction while maintaining near-ML performance. Moreover, the corresponding computational complexity is shown
to be independent of the constellation size, but it is quadratic in the number of transmit antennas. For instance, for a
4 × 4 MIMO system with 16-QAM modulation on each layer, the proposed solution is simultaneously near-ML with
perfect and real channel estimation and ten times less complex than the classical neighborhood-based K-best solution.

1 Introduction
Multiple-input multiple-output (MIMO) technology has
taken a lot of attention in the last decade since it can
improve link reliability without sacrificing bandwidth
efficiency or, contrariwise, it can improve the bandwidth
efficiency without losing link reliability [1]. Recently, the
concept of large MIMO systems, i.e., high number of
antennas, has also gained research interests, and it is
well seen as a part of next-generation wireless communi-
cation systems [2, 3].
However, the main drawback of MIMO technology is

the increased complexity at the receiver side when a
non-orthogonal (NO) MIMO scheme with a large num-
ber of antennas and/or large constellation size is imple-
mented [4, 5]. For the detection process, although the
performance of the maximum likelihood (ML) detector is
optimal, its computational complexity increases exponen-
tially with the number of transmit antennas and with the
constellation size. In literature, different MIMO detection
techniques have been proposed. The linear-like detection

(LD) [6] and decision-feedback detection (DFD) [7] are the
baseline detection algorithms. Here, we distinguish the
conventional linear MIMO detection techniques zero forcing
(ZF) [8] and minimum mean square error (MMSE) [8].
Although linear detection approaches are attractive in terms
of their computational complexity, they might lead to a
non-negligible degradation in terms of performance [9].
Some non-linear detectors have been also introduced.

The sphere decoder (SD), one of the most famous
MIMO detectors, is based on a tree search and is very
popular due to its quasi-optimal performance [10].
However, this performance is reached at the detriment
of an additional implementation complexity. Indeed,
the SD achieves quasi-ML performance while its aver-
age complexity is shown to be polynomial (roughly
cubic) in constellation size and in the number of
transmit antennas over a certain range of signal-to-
noise ratio (SNR) while the worst case complexity is still
exponential [11]. From a hardware implementation point
of view, the SD algorithm presents two main drawbacks.
Firstly, its complexity coefficients can become large when
the problem dimension is high, i.e., at the high spectral
efficiency, high number of antennas, and high number of
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users in multi-user MIMO (MU-MIMO) context. Sec-
ondly, the variance of its computation time can be also
large leading to undesirable highly variable decoding de-
lays. Despite classical optimizations such as the Schnorr-
Euchner (SE) enumeration [12], the SD originally pre-
sented in [11] offers by nature a sequential tree search
phase, which is an additional drawback for implementa-
tion. In order to deal with these two aspects, the authors
in [13] have proposed a sub-optimal solution denoted as
the K-best [13, 14], where K is the number of stored neigh-
bors given a layer. However, even with a fixed computa-
tional complexity and a parallel nature of implementation,
some optimizations are required especially for high-order
constellation and large number of antennas (due to the
large K required in this case) [15–18]. Aiming at reducing
the neighborhood size (namely K, over all layers), different
solutions are proposed. For instance, the sorted QR decom-
position (SQRD)-based dynamic K-best which leads to the
famous SQRD-based fixed throughput SD (FTSD) is
proposed in [16]. Even with these efforts, the neighbor-
hood size still induces a computationally expensive
solution for achieving quasi-ML performance. An al-
ternative trend has been firstly presented in the litera-
ture by Wuebben et al. in [19]. It consists in adding a
pre-processing step, namely the lattice reduction (LR),
aiming at applying a classical detection through a better-
conditioned channel matrix [19–21]. This solution has
been shown to offer the full reception diversity at the
expense of a SNR offset in the system performance. This
offset increases with large dimensional transmit antenna
systems and high-order modulations.
Recently, a promising—although complex—association

of the K-best and LR solutions has been considered. It
provides a convenient performance-complexity tradeoff.
The general idea consists in reducing the SNR offset
through a neighborhood study which yields a near-ML
performance for a reasonable K. The concept has been
introduced first by the authors of [22]. Later on, their
basic solution has been improved by proposing to model
the sphere constraint in a reduced domain or by intro-
ducing efficient symbols’ enumeration algorithm [23].
However, a major aspect of this combination has not been
considered yet. In particular, any SD, including the K-best,
may be advantageously applied by considering a better-
conditioned channel matrix through the introduction of a
Reduced Domain Neighborhood (RDN) study and a
judicious search center. In [5], an improved LR technique
dealing with the RDN has been proposed in the context of
large MIMO systems. It is based on the decomposition of
the spanned space of the channel matrix into small sub-
spaces in order to improve orthogonality of the quan-
tization. In [24], the search center is found through an ant
colony optimization and initial search through the output
of the MMSE detector.

In this paper, we adopt the K-best solution with fixed
complexity as the basic solution of the SD. We propose to
reduce the neighborhood size through an efficient pre-
processing step which allows the SD process to apply a
neighborhood study in a modified constellation domain.
Then, using the modified domain, we propose a modified
novel ML equation with an efficient search center. We
show that the proposed metric presents a large complexity
reduction while maintaining near-ML performance. More-
over, the corresponding complexity is shown to be inde-
pendent of the constellation size and polynomial in the
number of transmit antennas. In particular, for a 4 × 4
MIMO system with 16-QAM modulation on each layer, the
proposed association presents near-ML performance while
it is ten times less complex than the classical K-best solu-
tion. We note that because the complexity is fixed with such
a detector, the exposed optimizations guarantee a perform-
ance gain for a given neighborhood size or a reduction of
the neighborhood size for a given bit error rate (BER) target.
The contributions of this paper are summarized as follows:1

� A promising association of the K-best and LR
solutions is proposed.

� Modification of the SD neighborhood study by
applying a pre-processing step. This is accompanied
with a new and efficient search center and MMSE
detector. The equivalent expression of the lattice
reduction-aided (LRA)-MMSE-centered SD, which
corresponds to an efficient LRA-MMSE-successive
interference canceller (SIC) Babai point, is proposed to
improve the performance or reduce the complexity of
the detector.

� The (S)QRD is introduced in formulas.
It provides—to the best of the authors’
knowledge—the best known pseudo-linear hard
detector as a Babai point, for large number of
antennas as well as for high-order modulations.

� The proposed expression is robust by nature to
any search center and constellation order and
offers close-to-optimal performance with medium
K values. This applies for both perfect and real
channel estimation.

� The proposed solution offers a computational
complexity that is independent of the constellation
order. Therefore, it outperforms classical SD
techniques for a reasonable complexity in the case
of high-order constellations. We show for example
that a number of neighbors K = 2 is sufficient for
a 4 × 4 MIMO system with 16-QAM modulation
on each layer, and it is less than 0.5 dB for a 64 × 64
and 128 × 128 MIMO system from the ML solution.

� The proposed solution offers a computational
complexity that is quasi-constant for large number
of antennas, showing the evidence of its importance.
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This paper is organized as follows. Section 2 pre-
sents the problem statement of the SD. In Section 3,
the different existing solutions are described and ana-
lyzed. In Section 4, we propose our generalized solu-
tion based on LR with the use of an efficient search
center and reduced domain neighborhood. In Section 5,
the performance of the presented detectors are provided,
compared, and discussed. In Section 6, we consider the
computational complexity of the proposed solution in
comparison with some reference detection techniques.
Conclusions are drawn in Section 7.

2 Problem statement
2.1 Sphere decoder detector
Let us introduce a nR × nT MIMO system model with nT
transmit and nR receive antennas. Then, the received
symbols vector could be written as

y ¼ Hxþ n; ð1Þ
where H represents the (nR, nT) complex channel matrix
assumed to be perfectly known at the receiver, x is the
transmit symbol vector of dimensions (nT, 1) where each
entry is independently withdrawn from a constellation
set ξ, and n is the additive white Gaussian noise of
dimensions (nR, 1) and of variance σ2/2 per dimension.
The basic idea of the SD, to reach the optimal estimate
x̂ML (given by the ML detector) while avoiding an
exhaustive search, is to observe the lattice points that lie
inside a sphere of radius d.
The SD solution starts from the ML equation x̂ML ¼

argminx∈ξnT ∥y−Hx∥2 and reads

x̂SD ¼ argmin
x∈ξnT

∥QHy−Rx∥2≤d2 ð2Þ

where H =QR, with the classical QRD definitions.
The classical SD formula in (2) is centered on the

received signal y. From now on, this detection will be
denoted as the naïve SD. In the case of a depth-first
search algorithm [13], the first solution given by this
algorithm is defined as the Babai point [25, 26]. In
order to write it, the classical SD expression may be
re-arranged, leading then to an exact formulation
through an efficient partial Euclidean distance (PED)
expression and early pruned nodes [27].
In the literature, the SD principle leads to numerous

implementation problems. In particular, it is a non-
deterministic polynomial-time (NP-hard) problem [28].
This aspect has been partially solved through the
introduction of an efficient solution that lies in a fixed
neighborhood size algorithm (FNSA), commonly
known as the K-best solution. However, this solution
makes the detector sub-optimal since it leads to a
performance loss compared to the ML detector. It is

particularly true in the case of an inappropriate choice
of K according to the MIMO channel condition num-
ber and in the case of an inappropriate choice of d in
(2). Indeed, an inappropriate choice of d could lead to a
ML solution excluded from the search tree. On the other
hand, although a neighborhood study remains the one
and only one solution that achieves near-ML performance,
it may lead to the use of a large-size neighborhood scan
which would correspond to a dramatic increase of the
computational complexity. This complexity’s increase will
be prohibitive for high-order modulations.

2.2 Lattice reduction
Through the aforementioned considerations and by
using the lattice definition in [26], the system model
given in (1) rewrites

y ¼ ~Hz þ n; ð3Þ

where ~H ¼ HT and z = T− 1x. The nT × nT complex
matrix T (with |det{T}| = 1) is unimodular, i.e., its en-
tries belong to the set of complex integers which reads
ℤℂ = ℤ + jℤ, with j2 = 1. The key idea of any LR-aided
(LRA) detection scheme is to understand that the finite
set of transmitted symbols ξnT can be interpreted as a
de-normalized, shifted then scaled version of the infinite
set of complex integers subset ⊂ℤnT

ℂ according to the
relations offered in [29].
To this end, various reduction algorithms have been

proposed [19, 30–32]. In the following, we focus on the
well-known Lenstra-Lenstra-Lovász (LLL) algorithm due
to considerations presented in [30, 33]. The lattice aided
(LA) is a local approach [34] that transforms the channel
matrix into an LLL-reduced basis that satisfies both of
the orthogonality and norm reduction conditions [31].
While it has been shown in [33] that the QRD outputs
of the channel matrix is a possible starting point for the
LLL, it has been subsequently introduced that the SQRD
provides a better starting point [34]. In particular, it leads
to a significant reduction of its computational complexity
[35]. That is, the detection process in (3) is performed on
z instead of x through the better-conditioned matrix ~H.
Wuebben et al. [19] proposed a full description of some
reference solutions, namely the LRA-ZF and LRA-ZF-SIC
without noise power consideration and the LRA-MMSE,
LRA-MMSE extended, and LRA-MMSE-SIC. LRA detec-
tors constitute efficient detectors in the sense of the high
quality of their hard outputs. Indeed, they offer a low
overall computational complexity while the ML diver-
sity is reached within a constant offset. However, some
important drawbacks exist. In particular, the aforemen-
tioned SNR offset is important in the case of high-
order modulations and of large number of antennas.
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This issue is expected to be bypassed through an
additional neighborhood study.

2.3 Lattice reduction-aided sphere decoder
Contrary to the LRA-(O)SIC receivers, the application of
the LR preprocessing step followed by any SD detector
is not straightforward. The main problem lies in the
consideration of the possibly transmit symbol vector in
the reduced constellation since, unfortunately, the set of
all possible transmit symbols vectors cannot be predeter-
mined. The reason for that is because the solution does
not only depend on the employed constellation but also
on the T−1 matrix of (3). Hence, the number of children
in the search tree and their values are not known in
advance. A brute-force solution is then to determine the
set of all possible transmit vectors in the reduced con-
stellation, starting from the set of all possible transmit
vectors in the original constellation and by switching to
the reduced domain, thanks to the T−1 matrix.

3 Detection process in the original domain
neighborhood
3.1 Zero forcing-centered sphere decoder with original
domain neighborhood study detection process
In order to deal with the detection process, we firstly
introduce the sphere center xC search algorithm. It
concerns any signal of the form ∥xC − x∥ 2 ≤ d2 where x
is a possible signal.
Based on this search algorithm, different possible sphere

centers could be introduced. Using a ZF detector, the
received symbols given in (2) are then estimated through

x̂ZF‐SIC ¼ argmin
x∈ξnT

∥ReZF∥2 ð4Þ

where eZF = xZF − x and xZF = (HHH)− 1HHy.
Equation (4) clearly shows that the naïve SD is un-

constrained ZF-centered. It implicitly corresponds to
a ZF-SIC solution with an Original Domain Neigh-
borhood (ODN) study at each layer where each layer
is defined as the number of spatial multiplexed data
streams. It can be noticed that, in the case of a large
ODN study, the ML performance is achieved since
the computed metrics are exactly the ML metrics.
However, this occurs at the detriment of a large
neighborhood study and subsequently a large com-
putational complexity.

3.2 Minimum mean square error-centered sphere decoder
with original domain neighborhood study detection
process: equivalent formula
In this section, we introduce the minimum mean square
error successive interference cancellation (MMSE-SIC), a
closer-to-ML Babai point than the ZF-SIC. For the sake of

clearness with definitions, we firstly give a general defin-
ition of the equivalence between two ML metrics.
Definition Two ML equations are equivalent if the

lattice point argument outputs of the minimum distance
are the same, even in the case of different metrics. Two
ML equations are equivalent iff:

argmin
x∈ξnT

∥y−Hx∥2
� � ¼ argmin

x∈ξnT
∥y−Hx∥2 þ c

� � ð5Þ

where c is a constant.
Using (5), Cui et al. [36] proposed a general equivalent

minimization problem given by

x̂ML ¼ argmin
x∈ξnT

∥y−Hx∥2 þ αxHx
� � ð6Þ

where the signals x have to be of constant modulus, i.e.,
xHx is a constant.
This assumption is respected in the case of quadrature

phase-shift keying (QPSK) modulations, but it is not
directly applicable to 16-QAM and 64-QAM modula-
tions. However, this assumption is not limiting in prac-
tice since a QAM constellation can be considered as a
linear sum of QPSK points [36]. In Appendix 1, we
discuss the constant modulus constraint on the signal x.
The authors of [37] proposed to apply this solution to

the FNSA detection technique of the unconstrained
MMSE center, leading to a MMSE-SIC procedure with
an ODN study at each layer [37]. In this case, the
equivalent ML equation reads

x̂MMSE‐SIC ¼ argmin
x∈ξnT

xMMSE−xð ÞH HHH þ σ2I
� �

� xMMSE−xð Þ ð7Þ

Through the use of the Cholesky factorization (CF) of
HHH + σ2I =UHU in the MMSE case (HHH =UHU in
the ZF case), the ML expression equivalently rewrites,
using the proof in Appendix 2, as

x̂SIC ¼ argmin
x∈ξnT

∥U ~x−xð Þ∥2
� � ð8Þ

where U is upper triangular with real diagonal ele-
ments and ~x is any (ZF or MMSE) unconstrained lin-
ear estimate.

4 Proposed detection process in the reduced
domain neighborhood
Due to the implementation drawbacks, the optimal SD
has been proposed to be replaced by a sub-optimal
FNSA. Hassibi et al. have discussed and shown in [11]
that the detector performance is impacted by the noise
power and the channel condition number. Hence, the
presence of a well-conditioned channel could highly
reduce the neighborhood. This means that realizing a
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LR step followed by a neighborhood study is a very inter-
esting solution in a good-conditioned channel matrix.
Accordingly, our proposed combined solution will be
detailed in the next subsections.

4.1 Preprocessing
All existing solutions rely on the utilization of the efficient
CF pre-processing step. However, these solutions are only
functional in the case of a factorized formulation form. Al-
though it is the case in our context, most of the advanced
studies have been provided with the applicable QRD. In
particular, the advantageous SIC performance optimiza-
tions such as ordering according to the corresponding de-
creasing SNR (from nT to 1) in the ZF-SQRD case and
SINR in the MMSE-SQRD case have been proposed in
[33]. Moreover, a complexity reduction of the LLL-based
LR algorithm has been proposed by the same authors in
[33]. In our work, we propose to modify the classical
detectors by introducing the QRD instead of the CF, and
subsequently of the SQRD, in the (LRA-)MMSE-(O)SIC
cases.
The MMSE criterion is introduced through the consideration

of an extended system model [27], by introducing the (nR+
nT) ‐by ‐nT matrixHext and the (nR+nT) vector yext such as

Hext ¼ H
σI

� �
and yext ¼ y

0

� �
: ð9Þ

In this way, the pre-processing step is similar to the
ZF-SQRD and the detection procedure equals that of
LRA-ZF-SIC. The SQRD interest lies in the ordering of
the detection symbols as a function of their S(I)NR, and
consequently, it limits the error propagation in SIC
procedures. Indeed, it has been shown by Wübben et al.

[19] that the optimum order offers a performance im-
provement even if the ML diversity is not reached. On the
other hand, it was shown that once the ML diversity is
achieved through a LRA technique, the performance may
be significantly improved with this solution [19]. Thus,
The LRA-MMSE-OSIC corresponds, to the best of the
authors’ knowledge, to the best pseudo-linear detector
proposed in the literature, in particular in the case of 4 × 4
MIMO systems with QPSK modulations on each layer
[19]. For higher order constellations or larger number of
antennas, it may be shown that our proposed solution of-
fers convenient hard-decision performance with a highly
reduced complexity. In order to deal with these state-
ments, we introduce the reduced domain neighborhood
by using the following notations:

� QξnT :f g is the quantification operator in the original
domain constellation,

� QℤnT
ℂ

:f g is the quantification operator in the reduced
domain constellation,

� a is the power normalization and scaling coefficient
(i.e., 2=

ffiffiffi
2

p
; 2=

ffiffiffiffiffi
10

p
; and 2=

ffiffiffiffiffi
42

p
for QPSK, 16-QAM,

and 64-QAM constellations, respectively)
� d ¼ 1

2T
−1 1þ j … 1þ j½ �T is a complex

displacement vector.

The classical LRA-FNSA is implicitly unconstrained
LRA-ZF-centered, which leads to a LRA-ZF-SIC proced-
ure with a RDN study at each layer. The exact formula has
not been clearly provided but is implicitly used by any
LRA-FNSA [21] and may even be considered as an incre-
mental extension of (4):

ẑLRA‐ZF‐SIC ¼ argmin
z∈ℤnT

ℂ

∥~ReLRA‐ZF∥2 ð10Þ

where ~R is the LLL-based LR algorithm output, eLRA ‐ ZF =
zLRA ‐ZF − z, and ℤnT

ℂ is the nT-dimensional infinite set of
complex integers.

Fig. 2 Block diagram of any RDN LRA-SIC FNSA procedure

Fig. 1 Block diagram of any LRA procedure
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4.2 Lattice reduction-aided minimum mean square
error-centered sphere decoder with reduced domain
neighborhood study detection process
To the best of the author’s knowledge, no convincing
formula has been proposed until now. Even if Jalden et
al. [38] proposed a LRA-MMSE-centered solution, the
introduced metrics are not equivalent to the ML expres-
sion. The solution of [38] is given by

ẑα; ML ¼ argmin
z∈ℤnT

ℂ

∥~R−1 R−1† H†y−z∥2

¼ argmin
z∈ℤnT

ℂ

∥zLRA‐MMSE−z∥2 ð11Þ

The corresponding detector is a sub-optimal solution
that consists in a RDN study around the unconstrained
LRA-MMSE solution, obtained through QR decom-
position. This solution’s output is the constrained
LRA-MMSE detection plus a list of solutions in the
neighborhood. The latter is generated according to a
non-equivalent metric, which would be subsequently re-
ordered according to the exact ML metric. However, the
list is not generated according to the correct distance
minimization criterion and would not lead to a near-ML
solution. Consequently, the proposed detector does not
offer an acceptable uncoded BER performance in the
sense that it would not lead to a near-ML solution. In
particular, the ML performance is not reached in the case
of a large neighborhood study.
An efficient solution is derived from (11) and consists

in an unconstrained LRA-MMSE center which leads to a

LRA-MMSE-SIC procedure with a RDN study at each
layer. The equivalent ML equation reads

ẑLRA‐SIC ¼ argmin
z∈ℤnT

ℂ

∥ ~U ~z−zð Þ∥2; ð12Þ

where ~HH ~H þ σ2THT ¼ ~UH ~U in the MMSE case ( ~HH

~H ¼ ~UH ~U in the ZF case) and by noting that Ũ is upper
triangular with real diagonal elements and ~z is any LRA
(ZF or MMSE) unconstrained linear estimate. The proof
of this detector formula is given in Appendix 3.
The formula introduced in (12) offers an equivalent

metric to the MMSE one introduced in (11), which has
been shown to be near-ML performance. The difference,
and in particular the interest in the LRA case in (12),
relies on the neighborhood study nature. In the case of a
RDN study, the equivalent channel matrix ~H is consid-
ered and is remembered to be only roughly, and not
exactly, orthogonal. Consequently, the detection, layer
by layer, of the symbol vector x does not exactly corres-
pond to its joint detection since the mutual influence of
the transformed z signal is still present. This discussion
not only exhibits the interest of SD-like techniques to
still improve such a detector performance but also puts
a big challenge to achieve the ML performance.
The general principle of RDN LRA-MMSE-OSIC-

centered solution key points is depicted as a block dia-
gram in Fig. 1. The detailed block diagram description of
the proposed solution is addressed in Fig. 2.

Fig. 3 Block diagram of the RDN LRA-MMSE-OSIC FNSA

Table 1 ODN naïve (O)SIC FNSA, ODN ZF-(O)SIC FNSA, ODN MMSE-(O)SIC FNSA, RDN LRA-ZF-(O)SIC FNSA, RDN LRA-MMSE-(O)SIC
FNSA, and ML formulas

Technique designation Corresponding metric

ODN naïve (O)SIC FNSA ∥QHy−Rx∥2; x∈ξnT

ODN exact ZF-(O)SIC FNSA ∥R yZF−xð Þ∥2; x∈ξnT [14]

ODN equivalent MMSE-(O)SIC FNSA yMMSE−xð ÞH HHH þ σ2I
� �

yMMSE−xð Þ; x∈ξnT [38]
RDN exact LRA-ZF-(O)SIC FNSA ∥~R zLRA‐ZF−zð Þ∥2; z∈ℤnT

ℂ

RDN equivalent LRA-MMSE-(O)SIC FNSA (proposed) zLRA‐MMSE−zð ÞH ~HH ~H þ σ2THT
� �

zLRA‐MMSE−zð Þ; z∈ℤnT
ℂ

ML ∥y−Hx∥2; x∈ξnT
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In Fig. 2, the mapping of any estimate (or list of estimates)

from the reduced domain ẑ to the original domain ~x˜ is proc-
essed through the T matrix multiplication (see Equation (3)).
The additional quantification step aims at removing duplicate
symbol vector outputs in the case of a list of solutions.
For the sake of simplicity, let us consider any LRA-SIC

procedure with no neighborhood study. The search center is
updated at each layer as follows. By considering the k-th
layer and with the knowledge of the ẑ kþ1:nT estimates at
previous layers, the ẑk unconstrained Babai point can be pro-
vided. Then, it has to be de-normalized and shifted to make
it belong to ℤnT

ℂ . After quantization, and de-shifting and
normalization, the ẑk estimate at the k-th layer is obtained
such as the next (k− 1)-th layer can be considered, until the

whole symbol vector is detected. As previously introduced,
the neighborhood generation is a problematic step due to
the infiniteness and non-regular natures of the constellations
in the reduced domain. This point is transparent with
classical detectors such as LD and DFD, thanks to the straight-
forward quantification step in the reduced domain [39].
However, the issue of infinite lattices, addressed through

a sphere constraint, appears when working with the
classical considerations. It presents a performance loss or
a NP-hard complexity solution. Hence, our proposed
solution relies on a SE enumeration. Starting from the
LRA-SIC principle, a neighborhood is considered at
each layer and leads to the RDN LRA-SIC FNSA
principle. In particular and due to the implementation

Fig. 4 Uncoded BER of the ODN ZF-SIC-centered FNSA (curve 1), of the ODN MMSE-SIC-centered FNSA (curve 2), of the RDN LRA-ZF-SIC-centered
FNSA (curve 3), of the RDN LRA-MMSE-SIC-centered FNSA (curve 4), of the RDN LRA-MMSE-OSIC-centered FNSA (curve 5), and of the ML (curve 6),
for K = {1, 2, 4, 16} (top left, top right, bottom left, and bottom right, respectively), 4 × 4 complex Rayleigh channel, QPSK modulation on each layer
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constraints, the RDN generation is processed for bounded
number of N possibilities and in a SE fashion, namely with
ordered PEDs according to an increasing distance from
~zk at each layer as follows:

zk ¼ Qℤ
nT
ℂ

~zkf g; Qℤ
nT
ℂ

~zkf g þ 1; Qℤ
nT
ℂ

~zkf g
þ j; Qℤ

nT
ℂ

~zkf g; Qℤ
nT
ℂ

~zkf g−1; Qℤ
nT
ℂ

~zkf g−j; …
ð13Þ

The SE strategy aims at finding the correct decision early,
leading to a safe early termination criterion, which is not
considered here for the sake of readability in performance

comparison. Also, all the corresponding PEDs are com-
puted and then ordered. The K-best solutions, namely with
the lowest PED, in the reduced domain are stored (Cẑ) simi-
larly to their corresponding cumulative Euclidean distances
(CED) (Dtot). The whole procedure is depicted in Fig. 2.
By adding the pre-processing steps, i.e., the SQRD-

based then LLL-based LR blocks, and the computation
of a close-to-ML unconstrained estimate (although
linear) such as LRA-MMSE extended, a complete de-
scription of the detection may be obtained. Figure 3
shows the detailed block diagram of the complete pro-
posed solution. The SQRD block offers an efficient layer

Fig. 5 Uncoded BER of the ODN ZF-SIC-centered FNSA (curve 1), of the ODN MMSE-SIC-centered FNSA (curve 2), of the RDN LRA-ZF-SIC-centered
FNSA (curve 3), of the RDN LRA-MMSE-SIC-centered FNSA (curve 4), of the RDN LRA-MMSE-OSIC-centered FNSA (curve 5), and of the ML (curve 6), for
K = {1, 2, 4, 16} (top left, top right, bottom left, and bottom right, respectively), 4 × 4 complex Rayleigh channel, 16-QAM modulation on each layer
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re-ordering [19] that lies on the noise power. The latter
is taken into account in the rest of the detector through
the T matrix.
As a final step of the detector and in the case of a

RDN-based SD, the list of possible symbols output has
to be re-ordered according to the ML metrics in the
original domain and duplicate solutions are removed.
It is due to the presence of noise that makes some
candidates to be mapped on non-legitimate constellation
points in the reduced constellation, leading to non-
acceptable points in the original constellation. The
symbol vector associated to the minimal metric becomes
the hard decision output of the detector and offers a
near-ML solution. The proposed algorithm is described

in detail in Appendix 4. The reader may refer to this
appendix for more details.

5 System performance
In this section, we present and compare the system
performance of the different techniques previously
presented, and we compare them with our proposed
solution. For clearness target, we summarize the detec-
tion metrics for each solution in Table 1.
We should note that the RDN LRA-MMSE-OSIC

FNSA, to which this paper relates, is particularly efficient
in the case of rank-deficient MIMO systems, i.e., spatially
correlated antenna systems, for high-order modulation
which are considered points of the LTE-A norm and for

Fig. 6 Uncoded BER of the strictly equivalent ODN MMSE-SIC-centered FNSA, of the strictly equivalent RDN LRA-MMSE-SIC-centered FNSA, of the
strictly equivalent RDN LRA-MMSE-OSIC-centered FNSA, compared to the assumption respect in mean, and of the ML, for K = {2, 4}, 4 × 4 complex
Rayleigh channel, 16-QAM modulation on each layer. Some curves are coincident

Fig. 7 Uncoded BER of the ODN ZF-SIC-centered FNSA (curve 1), of the ODN MMSE-SIC-centered FNSA (curve 2), of the RDN LRA-ZF-SIC-centered
FNSA (curve 3), of the RDN LRA-MMSE-SIC-centered FNSA (curve 4), of the RDN LRA-MMSE-OSIC-centered FNSA (curve 5), and of the ML (curve 6),
for K = 4, 4 × 4 complex Rayleigh channel, 64-QAM modulation on each layer
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large number of antennas as in the future generation of
cellular systems (beyond 4G networks). Moreover, since
the equivalent channel matrix in the LRA case is only
roughly orthogonal, the mutual influence of the trans-
formed z is small but still present. Hence, a neighborhood
study in the original constellation domain improves the
performance compared to a SIC. However, contrarily to
classical solutions that are not LRA, the necessary size for
achieving the optimal performance is smaller.
Figure 4 depicts the BER for the aforementioned tech-

niques. Some notable points have to be highlighted from
this figure. Contrary to the RDN LRA-ZF/MMSE-(O)SIC
FNSA, the ODN ZF/MMSE-SIC FNSA does not reach the
ML diversity for a reasonable neighborhood size, even if
there is a decrease of the SNR offset in the MMSE-SIC

case. However, a BER offset can be observed in the low
SNR range, due to error propagation. Consequently, there
exists a switching point from low to high SNR between
LRA detectors and others. This aspect is removed through
the use of better techniques. In particular, the SQRD in
the RDN LRA-MMSE-OSIC FNSA presented in this work
offers ML diversity, and the BER offset in low SNR has
been highly reduced compared to the RDN LRA-MMSE-
SIC FNSA and is now close-to-ML.
It may also be noticed in Fig. 4 that the RDN LRA-ZF-

SIC-centered FNSA does not reach the ML perform-
ance, contrarily to other techniques. It is due to the
chosen neighborhood size in the reduced constellation
value (N = 5) that is not sufficient for this detector but
that is sufficient for the proposed LRA-MMSE-(O)SIC

Fig. 8 BER comparison between the proposed RDN LRA-MMSE-OSIC and ML detector, for nR = nT = N, 16-QAM (continuous line), 64-QAM (dash)

Fig. 9 Uncoded BER with imperfect channel estimation, of the ODN MMSE-SIC-centered FNSA (FNSA curve), of the proposed RDN
LRA-MMSE-OSIC-centered FNSA (proposed), and of the ML, with perfect channel estimation Δ = 0 and real channel estimation, Δ = 0.001 (left) and
Δ = 0.005 (right), for K = 4, (4 × 4 complex Rayleigh channel, QPSK modulation on each layer
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Babai points. With a larger N value, the RDN LRA-ZF-
SIC-centered FNSA achieves the ML performance,
similarly to other presented detectors.
Similarly to Fig. 4, some notable points have to be

highlighted from Fig. 5. There still exists a switching point
from low to high SNR regime between LRA detectors and
others. This aspect is removed through the use of better
techniques. In particular, the SQRD in the RDN LRA-
MMSE-OSIC FNSA offers ML diversity and the BER offset
in low SNR has been importantly reduced compared to the
RDN LRA-MMSE-SIC FNSA, leading now to a close-to-
ML solution. We can observe from both Figs. 4 and 5 that
even though when ZF-SIC and equivalent MMSE-SIC are
not LRA, they achieve the ML performance at the detri-
ment of a very large neighborhood study size; it is of the
order of the number of symbols contained in the employed
constellation. By comparing the impact on LRA detector
performance of QPSK and 16-QAM modulations, two
fundamental points must be discussed. Firstly, there impli-
citly exists a constraint from the QPSK constellation con-
struction that eliminates nearby lattice points that do not
belong to ξnT , due to the quantization operation QξnT :f g .
This aspect annihilates a large part of the LR-aid benefit
and cannot be corrected despite the increase of the neigh-
borhood study size since many lattice points considered in
the RDN would be associated with the same constellation

point after quantization in the original constellation. In the
case of larger constellation orders, the LRA solution is
more effective, as depicted in Fig. 5.
Secondly, we recall that the constant modulus constella-

tion assumption has, in theory, to be fulfilled. It was not
the case in Fig. 5 with 16-QAM modulation on each layer.
However, it could be assumed that this constraint
would be almost respected in mean value as shown in
Appendix 1 (Fig. 12). In Fig. 6, the performance of
R(O)DN (LRA)-MMSE-(O)SIC FNSA detectors with or
without respect of this assumption are depicted, but only
for a neighborhood scan of 1 and 2 neighbors for the sake
of consistency between QPSK and 16-QAM performance.
As depicted in Fig. 6 and with 16-QAM modulation,

the performance is impacted by the fact that the strict
equivalence assumption is not true, i.e., the term xHx (or
zHz) is not exactly constant but only constant in average.
As shown in this figure, this assumption is not con-
straining in terms of performance loss. Moreover, it is
insignificant compared to the advantage of the LRA in
high-order constellation, which would be annihilated by
the use of QPSK constellation.
The proposed solution is particularly efficient for a large

number of antennas and for high-order constellations. It
was not the case of the LRA-MMSE-OSIC that has been
shown worse BER performance in 4 × 4 MIMO systems
with a 16-QAM modulation on each layer, compared to
the ML detection [40], while it was the case for 4 × 4
MIMO systems with QPSK modulation on each layer
[41]. For the sake of completeness of this work, Fig. 7
shows the same results with 64-QAM modulation as those
given in Fig. 5. Again this figure shows the outperform-
ance of the proposed detection algorithm with high-order
constellation.
Figure 8 shows the comparison between the proposed

RDN LRA-MMSE-OSIC-centered FNSA and the ML
detection for high number of antennas, such that nR =
nT =N = 64 and N = 128 and, K = 2. First, there is no
doubt that increasing the number of antennas increases
the performance gain. Secondly, the proposed solution
shows a comparable performance with respect to the ML
decoder. At a BER = 10−4, the SNR loss is less than 0.4 dB

Table 2 Computational complexity equivalences

Complex operations Real operations MUL

ADDCC 2ADD 0

ADDRC ADD 0

ADDRR ADD 0

MULCC 4MUL + 4ADD 4

MULRC 2MUL 2

MULRR 1MUL 1

DIVCC 6DIV + 6ADD 96

DIVRC 2DIV 32

DIVRR 1DIV 16

SQRTRR 1SQRT 32

Table 3 ODN ZF-(O)SIC FNSA, ODN MMSE-(O)SIC FNSA, RDN LRA-ZF-(O)SIC FNSA, RDN LRA-MMSE-(O)SIC FNSA, and ML formulas

Technique designation Corresponding computational complexity in MUL

ODN exact ZF-(O)SIC 2MKn2T þ 2MKnT−4MK þ 3M

ODN equivalent MMSE-(O)SIC 2MKn2T þ 2MKnT−4MK þ 3M

RDN exact LRA-ZF-(O)SIC 2Nmin K;Nf gn2T þ 30min K ;Nf gnT þ 2N min K ;Nf gnT−4Nmin K ;Nf g
þ6min K ;Nf gn2T þ 4min K ;Nf gnRnT þ 2min K ;Nf gnR þ 4n2T−32min K ;Nf g þ 2N

RDN equivalent LRA-MMSE-(O)SIC 2Nmin K;Nf gn2T þ 30min K ;Nf gnT þ 2N min K ;Nf gnT−4Nmin K ;Nf g
þ6min K ;Nf gn2T þ 4min K ;Nf gnRnT þ 2min K ;Nf gnR þ 4n2T−32min K ;Nf g þ 2N

ML 4nRnTMnT
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for 16-QAM and less than 0.5 dB for 64-QAM while the
complexity of the proposed RDN LRA-MMSE-OSIC-
centered FNSA solution is by far much lower than the ML
decoder. This will be discussed in the next section.
Finally, even though it is not the target of the paper,

we have drawn the simulation results of the proposed
solution with real channel estimation. Figure 9 shows
the simulation results when the channel estimation error
variance Δ is equal to 0.001 and 0.005, assuming that
the channel coefficients power is normalized by the
number of antennas. This figure shows that the pro-
posed LRA-MMSE solution still presents quasi-ML
detection even with real channel estimation.

6 Complexity evaluation
Based on the assumptions presented in Table 1, the com-
putational complexities introduced in Table 2 can be dem-
onstrated. The RDN study is processed in an infinite lattice
which would not lead to boundary control; however, a
finite set of displacements has been generated in a SE
fashion in simulations. Its size has been fixed to an arbitrary
value (N = 5)—decided through simulations. Although an
SE technique is used, the proposed solution does not
consider any complexity reduction like early termination.
As shown in Table 3, the computational complexities

of RDN LRA-ZF/MMSE-(O)SIC FNSA detectors do not
depend on the constellation order log2{M}. It may be
checked in the numerical applications in Table 4, and it
is the key point of the paper advantage over classical
techniques for high-order modulations such as 16(64)-

QAM. The SNR loss compared to ML are given in
Table 4. They have been measured for an uncoded BER
of 10−4 in the case of the ML decoder. For all the config-
urations given in Table 4, the numerical application of
the corresponding computational complexity is given in
Table 5 for a RDN size N = 5.
Even if the proposed solution is two times more com-

plex in the QPSK case, it offers near-ML performance and
in particular a SNR gain of 0.3 dB at a BER of 10−4. The
interesting point concerns higher order modulations:
starting from the 16-QAM modulation, the estimated
complexity of the proposed solution is ten times less com-
plex than the classical one, for the same performance
result. Identically, same conclusions are obtained for a 64-
QAM modulation. In such case, the complexity gain will
increase importantly to reach a hundred times. Similarly,
the numerical application of the 16-QAM extension com-
plexity is given in Table 6. As an example, in the case of
16-QAM modulations, the computational complexities
read 8MKn2T þ 4MKnT−4MK þ 3M for the ODN
equivalent MMSE-(O)SIC and 8N min K ;Nf gn2T þ 60min
K ;Nf gnT þ 4N min K ;Nf gnT−4N min K ;Nf g þ 24min
K ;Nf gn2T þ 8min K ;Nf gnRnTþ2min K ;Nf gnR þ 16n2T−

32min K ;Nf g þ 2N for the RDN equivalent LRA-
MMSE-(O)SIC, and with M = 4 since a QPSK modulation
is considered in this case. As depicted in Table 6, the
computational complexity of the 16-QAM extension with
respect to the constant modulus criterion is more import-
ant compared to the straightforward but not strictly
correct solution. Since no significant gain is provided, we
consequently claim it does not offer high advantages.

Table 4 SNR loss at BER = 10−4, ODN ZF-SIC FNSA, ODN MMSE-SIC FNSA, RDN LRA-ZF-SIC FNSA, RDN LRA-MMSE-SIC FNSA, and RDN
LRA-MMSE-OSIC FNSA compared to ML

SNR loss (QPSK) SNR loss (16-QAM)

Technique K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 4 K = 16

ODN exact ZF-SIC FNSA >7.6 >7.6 >7.6 0.36 >5.0 >5.0 >5.0 0

ODN equivalent MMSE-SIC FNSA >7.6 >7.6 6.21 0.30 >5.0 >5.0 >5.0 0.09

RDN exact LRA-ZF-SIC FNSA 4.43 2.90 1.92 1.71 3.21 2.04 1.27 0.62

RDN equivalent LRA-MMSE-SIC FNSA 2.90 0.73 0.52 0.27 2.12 0.76 0.53 0.40

RDN equivalent LRA-MMSE-OSIC FNSA 0.80 0.01 0 0 1.62 0.02 0 0

Table 5 ODN ZF-SIC, ODN MMSE-SIC, RDN LRA-ZF-SIC, RDN LRA-MMSE-SIC, RDN LRA-MMSE-OSIC, and ML computational
complexities in MUL

MUL (QPSK) MUL (16-QAM)

Technique K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 4 K = 16

ODN ZF-(O)SIC FNSA 156 300 444 588 624 1200 2352 9264

ODN MMSE-(O)SIC FNSA 156 300 444 588 624 1200 2352 9264

RDN LRA-ZF-(O)SIC FNSA 510 946 1382 1818 510 946 1818 2254

RDN LRA-MMSE-(O)SIC FNSA 510 946 1382 1818 510 946 1818 2254

ML 16,384 4,194,304
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Figure 10 shows the “measured” complexity of all
solutions explored in this work versus the constellation
size, expressed in terms of the exponent (in base 10) of
the computational capacity in MUL, for nR = nT = 8 and
K = 2. This figure shows, as explained earlier, that the
proposed solution is independent of the constellation
size. This is very crucial in the future large MIMO
systems exploiting large dimensions. Figure 11 is in line
with the previous conclusion. It provides the computation
complexity of the different MIMO detection solutions,
expressed as a function of the number of antennas. This
figure shows that the proposed solution is almost ten times
less complex than the classical K-best solutions. Moreover,
it presents almost equal complexity for nT ≥ 32 yielding
another important characteristic for large MIMO decoding.
Finally, to give some concrete example, Table 6 compares

between ODN and RDN cases. It shows that the proposed
solution offers an advantage over existing solutions when
applied to any OFDM standard supporting MIMO
spatial-multiplexing mode, e.g., IEEE 802.16, IEEE 802.11,
3GPP LTE, and 3GPP LTE-A. It may be advantageously
considered in the case of a large number of antennas
and consequently in the case of the 3GPP LTE-A standard.
The main advantages reside in the following points:

▪The equivalent expression of the LRA-MMSE-centered
SD, which corresponds to an efficient LRA-MMSE-

OSIC Babai point, improves the performance or
reduces the complexity of the detector.
▪The proposed (S)QRD formulation with reduced
domain neighborhood induces the use of the best
known hard detector as a Babai point, for both
large number of antennas and high-order
modulations.
▪The proposed expression is robust by nature to any
search center and constellation order and offers
close-to-optimal performance for large K. Likewise, the
proposed solution offers a computational complexity
that is independent of the constellation order which
consequently offers a solution that outperforms
classical SD techniques for a reasonable computational
complexity in the case of high-order constellations.
For instance, the neighborhood study size K has
been reduced to K = 2 for a 16-QAM modulation
compared to classical SD techniques.

7 Conclusions
In this paper, the LRA-MMSE-centered SD has been
proposed with a K-best neighborhood generation. A
detailed and hardware implementation-oriented compu-
tational complexity estimation has been provided and
combined with performance results. It has been shown
that the proposed detection technique outperforms
the existing solutions. In particular, the corresponding

Table 6 ODN MMSE-SIC, RDN LRA-MMSE-SIC, and RDN LRA-MMSE-OSIC computational complexities in MUL

MUL (16-QAM extension) MUL (16-QAM)

Technique K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 4 K = 16

ODN equivalent MMSE-(O)SIC FNSA 560 1120 1680 2240 624 1200 2352 9264

RDN equivalent LRA-MMSE-(O)SIC FNSA 1694 3122 4550 5978 510 946 1818 2254

Fig. 10 The exponent in base 10 of the computational complexity, nR = nT = 8, K = 2
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implementation complexity has been shown to be in-
dependent of the constellation size and polynomial in
the number of antennas while reaching the ML per-
formance with both real and perfect channel estima-
tion. It implies a ten times lower computational
complexity compared to the classical K-best, even for
a large MIMO system, with 16-QAM modulation on
each layer.

Endnotes
1It is worth mentioning that, with respect to our

previous work in [1], this paper presents a detailed
technical description of the proposed methodology, a
detailed complexity analysis, and more results. This
particularly includes a step by step implementation of
the proposed algorithm in Appendix 4.

Appendices
Appendix 1: the constant modulus constraint in (6)
The authors of [42] discussed the constant modulus
constraint of x in (6) when nT is large. It has been
shown that the constant modulus signal assumption
becomes the time average of the nT xi entries. Figure 12
presents the probability density functions (PDF) of xHx
for different number of transmit antennas and different
modulations. This figure shows that, due to the weak
law of large numbers, the term is Gaussian centered to a
mean value that is constant in time. Consequently, the
assumption may still be considered as fulfilled as nT

increases. It is worth mentioning that, in order to make
(6) strictly equivalent to the ML metric, any M-QAM
constellation may be represented as a weighted sum of
QPSK constellations:

x M‐QAMð Þ ¼
X log2 Mf g−1

i¼0
2i

ffiffiffi
2

p

2

	 

x QPSKð Þ
i ð14Þ

Where x(M ‐QAM) is an nT symbols vector whose entries

all belong to a M-QAM constellation and x QPSKð Þ
i is an

nT symbol vector whose all entries belong to a QPSK
constellation.

Appendix 2: proof of Equation (8)
Let us introduce any term c s:t:∥y−Hx∥2 þ c ¼ ∥U
~x −xð Þ∥2 , where ~x is any (ZF or MMSE) unconstrained
linear estimate:

c ¼ ∥U ~x−xð Þ∥2−∥y−Hx∥2

¼ ~x−xð ÞHUHU ~x−xð Þ− y−Hxð ÞH y−Hxð Þ
¼ ~xHG~x −~xHGx−xG~x þ xHGx−yHyþ yHHx

þxHHHy−xHHHHx; with G ¼ UHU;

¼ yHHG−1GG−1HHy−yHHG−1Gx−xGG−1HHy

þxHGx−yHyþ yHHxþ xHHHy−xHHHHx;

Fig. 11 The exponent in base 10 of the computational complexity, as a function of the number of antennas, 16-QAM
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by introducing ~x ¼ G−1HHy and ~xH ¼ yHHG−1 and
where G =UHU =HHH in the ZF case and G =HHH +
σ2I in the MMSE case.

c ¼ yHHG−1HHyþ xHGx−yHy−xHHHHx
¼ yHHG−1HHyþ xH G−HHH

� �
x−yHy

In the ZF case, HG− 1HH =HH− 1(HH)− 1HH = I and
G −HHH = 0, consequently c = 0 which is a constant
term.
In the MMSE case, c = yH[H(HHH + σ2I)− 1HH − I]y +

σ2xHx which is a constant term in x iff the signal x
entries are of constant modulus.

Appendix 3: proof of Equation (12)
The proof of Equation (12) is very similar to the proof
of (8); however, in this appendix, we work on the

LRA-based detector. Let us introduce any term c′ s:t:

∥y− ~Hz∥2 þ c′ ¼ ∥ ~U ~z˜ −z
� �

∥2 , where ~z˜ is any LRA

(ZF or MMSE) unconstrained linear estimate:

c′ ¼ ∥ ~U ~z −zð Þ∥2−∥y− ~H z∥2

¼ ~z−zð ÞH ~UH ~U ~z −zð Þ− y− ~H z
� �H

y− ~H z
� �

¼ ~zH ~G~z −~zH ~Gz−zH ~G~z þ zH ~Gz−yHyþ yH ~Hz

þzH ~HHy−zH ~HH ~Hz; with ~UH ~U ¼ ~G;

¼ yH ~H ~G−1 ~G ~G−1 ~HHy−yH ~H ~G−1 ~Gz−z ~G ~G−1 ~HHy

þzH ~Gz−yHyþ yH ~Hz þ zH ~HHy−zH ~HH ~Hz

by introducing ~z ¼ ~G−1 ~HHy and ~zH ¼ yH ~H ~G−1,
where ~G ¼ ~HH ~H in the LRA-ZF case and ~G ¼ ~HH ~H
þσ2THT in the LRA-MMSE case.

c′ ¼ yH ~H ~G−1 ~HHyþ zH ~Gz−yHy−zH ~HH ~Hz

¼ yH ~H ~G−1 ~HHyþ zH ~G− ~HH ~H
� �

z−yHy

Fig. 12 PDF of the transmit signal power for all the possible symbols vectors, 2 × 2, 4 × 4, and 8 × 8 complex Rayleigh channel, QPSK, 16-QAM,
and 64-QAM modulations on each layer
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In the ZF case, ~H ~G−1 ~HH ¼ ~H ~H −1 ~HH
� �−1 ~HH ¼ I and

~G− ~HH ~H ¼ 0, consequently c′ = 0 is a constant term.

In the MMSE case, c′ ¼ yH ~H ~HH ~Hþ�
σ2THTÞ−1

~HH−I�yþ σ2zHTHTz which is a constant term in x
iff the signal x entries are of constant modulus since
σ2zHTHTz = σ2xHx.

Appendix 4: description of the proposed detection
algorithm: RDN LRA-ZF-(O)SIC K-best
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