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Abstract We consider the Boltzmann equation in a general non-convex do-
main with the diffuse boundary condition. We establish optimal BV estimates
for such solutions. Our method consists of a new W'!—trace estimate for
the diffuse boundary condition and a delicate construction of an e—tubular
neighborhood of the singular set.
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1 Introduction

Boundary effects play an important role in the dynamics of solutions of the
following so-called Boltzmann equation

atF+U'VzF:Q(FaF)7 (1)

where F'(t,7,v) > 0 denotes the particle distribution in the phase space 2xR3.
Here t stands for the time variable, = for the space variables, and v for the
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velocity variables. Throughout this paper, the collision operator takes the form
Q(F1, F2) = Qgain (F1, F2) — Quoss (F1, F)

=L v — ul"qo(0) | Fy (W) Fa(v") — Fy(u)Fy(v) | dwdu,

where v/ = u+ [(v—u) ww, vV =v—[(v —u) -wjwand 0 < k < 1 (hard
potential) and 0 < ¢o(f) < C|cosf| (angular cutoff) with cosf = o W
with w € S?. We denote the global Maxwellian

u(w) = exp (~ 120).

Throughout this paper we assume that 2 is a bounded open subset of R3.
The boundary 912 is locally a graph of a given C? function: for each point
xo € 082 there exist r > 0 and a C? function 7 : R — R such that, up to a
rotation and relabeling, we have

002N B(zo;r) = {x € Blxo;r) : w3 = n(w1,72) },
2N B(xz;r) = {:17 € B(xzo;r) : x5 > n(xl,xz)}.

3)

The boundary of the phase space 2 x R? is
v = {(z,v) € 002 x R*}. (4)

We denote n = n(z) the outward normal unit vector at x € 9£2. We decompose
7y as

v- ={(z,v) € 912 x R3: n(x) - v < 0}, (the incoming set),
vy = {(z,v) € 02 x R® : n(x) - v > 0}, (the outgoing set),
Yo = {(x,v) € 02 x R* : n(z) - v = 0}, (the grazing set).

It is important to point out that the boundary condition is imposed only for
the incoming set v_ for general kinetic PDEs. We consider the diffuse boundary
condition in this paper: for (x,v) € v_

F(t,z,v) = cyp(v) / F(t,z,u){n(z) - u}du, (5)

n(z)-u>0

where the constant ¢, is chosen to satisfies ¢, fn(z).u>0 w(u){n(z) - updu = 1.

Despite extensive developments in the study of the Boltzmann equation,
many basic questions regarding solutions in a physical bounded domain, such
as their regularity, have remained largely open. This is partly due to the char-
acteristic nature of boundary conditions in kinetic theory: Consider the sim-
ple transport equation v - V, f(x,v) = 0 with the given boundary condition
flv. = g. Then we solve f(z,v) = g(zp(z,v),v) = g(x — tp(x,v)v,v) where
tp(z,v) is the backward exit time defined as

th(z,v) :=sup({0U{r >0:z2—sveRforal 0<s<T7}),

Tp(z,v) =z — tp(x,v)v.

(6)
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Similarly the forward exit time t¢ is defined as
te(z,v) :=sup({0}U{r >0:z+sv e Rforall 0 <s<T1}),
xe(z,v) = x + te(z,v)v.

Since xp, (x, v) has singular behavior (even not continuous) if n(zp (z,v))-v = 0,
we expect f to be singular on the singular set:

Gp = {(z,v) € 2 x R® : n(zp(z,v)) - v = 0}, (8)

which is the collection of all the characteristics emanating from the grazing
set vop.

In [5], it is shown that in convex domains, the solutions of the Boltzmann
equation are continuous away from the grazing set 9. On the other hand, in
[7], it is shown that the singularity (discontinuity) does occur for Boltzmann
solutions in a non-convex domain, and such singularity propagates along the
singular set Gp. Very recently in [6] the authors were able to establish weighted
C! estimates in convex domains for all basic boundary conditions. The main
purpose of this paper is to establish the first BV regularity estimate for the
Boltzmann solution in non-convex domains.

We denote ||+ || the L>(£2 xR?) norm, while |||, is the LP(£2 x R?) norm.
We denote | - [, the LP (92 x R? dS,dv) norm and | - |, the LP(92 x R3) =
LP(002 x R3,dy) norm where dy = |n(z) - v|dS,dv with the surface measure
dS; on 9£2. We write | - |5, p = | - 1,, |- For a function f on 2 x R3, we
denote f, its trace on y whenever it exists.

A function f € L'(£2 x R3) has bounded variation in 2 x R if

sup{ fdivpdzdo : ¢ € CH2 x R%;R? x R3), |p| < 1} < 00.
2xR3

We define
IfllBv == I fllr oxrsy + | fl 57
where

Il = sup{//Q » fdivedzdo : ¢ € CHO2 xR R3xR?), |¢| < 1} < 0.
X

Now we are ready to state the main theorem.
Theorem 1 Let £2 be a bounded open subset of R3 with C? boundary 082 as
in (3). Assume that 0 < k < 1in (2), Fo = \/iufo > 0, fo € BV (2 xR?), and
€1 folloe < 400 for 0 < 6 < 1. Then there exists T = T(1e?1 folloo) >
0 such that F' = \/if solves the Boltzmann equation (1) with the diffuse
boundary condition (5) and f € L*([0,T]; BV (2 x R?)) and V. ,fdy is a
Radon measure on 02 x R3.

Moreover, for all0 <t <T,

1F Oy Sre Ifollzv + P follo), (9)

for some polynomial P and V4., f(t) is a Radon measure oy on 02 x R® such
that [y |o:(02 x B[t Sr. || follav + PUI follo).
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We remark that the result holds even without any size resgriction for the
initial datum within a small time. On the other hand, if ||e?/*” go||oo < 1 for
Fo = p+/igo > 0 (9o = fo — /1), then Theorem 1 holds for g(t) for all
t>0:

2
lg@®)llsv See lgolsv + P’ gollc).

Due to our weight function eV for 0 < 0 < i, these estimates imply that
f~ e—0Iv® H(U)%-

Moreover the BV regularity (even in the bulk) is the best regularity we
can expect. The reason is that in general the singular set &g is a co-dimension
1 subset in the phase space £2 x R3.

Remark 1 Assume that the domain (2 is non-convex, i.e., there exist at least
one point zg € A2 and u € R? and (uy,us) # 0 such that (3) and

Z wu;0;05m(x0) < 0, (strictly non-convex point). (10)
ij=1,2

Then the singular set &g is a co-dimension 1 subset of £2 x R3. Moreover if
we restrict the singular set to the characteristics emanating from the strictly
non-convex points

{(z,v) € S : (zb(x,v),v) is a strictly non-convex point },
then this set is a co-dimension 1 submanifold of 2 x R3.

We prove Remark 1 in the appendix. Since discontinuous solutions were con-
structed for non-convex domains in [7], this remark shows that the Boltzmann
solutions are singular on the co-dimensional 1 subset Gp. Then it is standard
to conclude that the best possible regularity space is indeed the BV space
([3]), which implies that Theorem 1 is optimal.

The equation for f = F'/,/it where F' solves (1) is

atf+v'v$f+y(\/ﬁf)f:Fg'ain(ﬁf)’ inQXR3, (11)
where
1
Fgain(flva) = ﬁ@gain(\/ﬁfla\/ﬁfé)v (12)

1
i
The boundary condition for f = F/,/n where F satisfies (5) is

£t 2,0) = cun/a(0) / o J VR )

z)-u>0 (13)
on (z,v) € v_.

V(\/ﬁfl)f? = Qloss(\/p’fla\/ﬁf2)~
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The local-in-time existence of the solution f with supg<,<p 1l £ () ]|oo <
|\69'|v\2fo||OO for0< <0 < i is standard (e.g. Lemma 6 in [6]).

We now illustrate the main ideas of the proof of Theorem 1. For simplicity
we assume that f solves the following simpler problem

Oif +v-Vof +vf=H, fli=o = fo, (14)

with the boundary condition (13), and where v = v(t,z,v) > 0, H, and v are
smooth enough. We note that in general solutions f of (14) are discontinuous
on G and (distributional) derivatives do not exist [7]. In order to take (dis-
tributional) derivatives we employ the following approzimation scheme using
some smooth cut-off function x.(z,v) vanishing on some open neighborhood
OfGBZ

OhfS +v-Vaofs +vfe =x.Hin (2,v) € 2 x R,
fEhZOZZXsﬁ)hl(mvv)g E?X]Ra

FE(t,2,0) = Xeen/al0) / o eV )

x)-u>0

(15)
on (z,v) € vy_.

Due to the cut-off x., the solution of (15) f€ vanishes on some open sub-
set of £2 x R3 containing the singular set Gp defined in (8). Therefore f¢ is
smooth. Once we can show that f¢ is uniformly bounded in L*° and 0f¢ is
uniformly bounded in L!(£2 x R3) then we conclude that f¢ converges to f
strongly in L' up to a subsequence. Combining this L' convergence and the
uniform L* bound we conclude that f € BV solves (14) with (13). We apply
(distributional) derivatives 9 € {V,, V,} to the equation and obtain

0:0f° +v - Vo0 f° +v0f°| <[0f| + |0vf*| + [OxH]| + |x0H|.

On the other hand at the boundary we use an orthonormal transformation
T (x) flattening the boundary in order to remove a z—dependence of the in-
tegration range: {n(z)-u > 0} — {(T tu); > 0} (see (17) — (21) in [6]).
Instead the geometric x—dependence enters into the velocity component and
hence after differentiating in = tangentially we have an extra v—derivative. For
the normal derivative in  we use the equation. Overall the derivatives of the
boundary terms are bounded as in [6]:

1 1
0f°] ~ [Oxel + [0f{n - updu + W{\HI +Ivfl},  ono-.

|n-v| n-u>0
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We then apply the energy-type estimate (Green’s identity, Lemma 8) and the
above boundary control to have

t t
||‘9f5(15)||1+/O |3f6|~y+,1+/0 lvofe(s)||ds
t t
< ||8X5f(0)\|1+/ |8f5|%,1+/ |oxH| + “good terms”
0 0

¢
St 10xelln + 10xely 1 + C/ |0f]y, 1 + “good terms”.
0

(4)

(B)

The first main difficulty is to construct a smooth cut-off function x. which
vanishes on an open neighborhood of &g and makes (A) be finite at the same
time. We carefully construct, in Lemma 1, an open neighborhood O, of &p.
More precisely O, is a collection of e—tubular neighborhoods of forward tra-
jectories emanating from the grazing set vy. Also we show that O, contains all
points whose distance from Gp is less than €. Such e—thickness is important
for constructing cut-off functions. In fact we construct smooth cut-off functions
Xe by convoluting the characteristic function 15, gs\ . with some standard
mollifier. Moreover the e—thickness guarantees that the cut-off function van-
ishes around G&p. Fortunately x. satisfies the desired bound (A) < oo, that
is, xe is uniformly bounded in W'!. (Lemma 2 and Proposition 1 , whose
proofs are delicate) Since . is a standard e—mollification of 15, gs\o, We
have Ox. ~ [l — xc] ~ 1(Z%1 44 vj<e) * Lo.. For example a desired estimate
for |Oxely_1 18

/ 1o, (z,v)|n(z) - v|dvdS, ~ €.
(zv)€7-, [v|<1

Let us denote O, a collection of e—tubular neighborhoods of forward trajecto-
ries emanating from ~g. Unfortunately there could be infinitely many grazing
trajectories passing by x, which might lead to

/ 1o, (z,v)|n(z) - v|dvdS,
(w,v)E'y,, |U\51

~ {number of grazing at 1’} X / 1 tubular neighborhood (’U)|7”L(£U) ’ U|d’0
lv|<1

~ 0Q.

Instead we establish the geometric Lemma 3 to show that |n(z) - v| < e if
(z,v) € O¢. For the proof, we decompose O, carefully in position and velocity
with varying grazing trajectories. We remark that [0x.|,,,1 < 0o may not be
true in general.

The second main difficulty is to control the outgoing term (B). We denote
the (outgoing) almost grazing set

Ve = {(z,v) € vy :v-n(x) <8 or v > 1/6}, (16)
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and the (outgoing) non-grazing set

1 \7] = {(@,0) € 74 s v-nle) > 6 and Jo] < 1/6}. (17)

In fact the 7+\vi contribution can be controlled by the bulk integration and
the initial data by the trace theorem. However the 'yi contribution cannot be
bounded by the bulk integration nor f(f |0f¢|,,,1 in the LHS of the energy-type
estimate since the constant C' > 0 of (B) can be large in general. The new
idea is to use the Duhamel formula along the trajectory once again (Double
iteration scheme) to extract an extra small constant to close the estimate. We
evaluate Jf¢ along the characteristics and use the bound of 0f¢ on y_ to have

t

:/ / |0f¢ (s, x,v){n(z) - v}dS,dvds
0 (:c,v)G'yi
¢
~ / ds/ [0f¢(s — tb(z,v), zp(z,v),v)|{n(x) - v}dS,dv
(z0)€7]

A / ; ) - 0} X (20 (2, v), v)|dS, dvds (18)

/ / _on(z)v
(zv)evs n(z x,v)) v
X / [0f (b (2, v), u)[{n(zp(z,v)) - u}dudS,dvds. (19)
n(zp) u>0

In Lemma 4, we establish a crucial change of variables (z,v) — (b (z,v),v)
with |n(z)-v|dSydv S [n(zp) - v|dSs, dv. Clearly (18) is bounded by |9x:|_ .1
For (19) we use Lemma 4 to convert z—integration into xp—integration and
T = Tp(2p, —v) and (z,v) € 4 which implies (zn(2p, —v),v) € ¥]. Then we
can bound the last term by

t
sup /1($b(mb,*v),v)€’yidvx/0 |8f5|7+71,

T €O

remove the singular factor . Furthermore, since = € 02 we have

Using the covering lemma of [5] (Lemma 9), we are able to extract an extra

small constant from sup,, csp f L — v)@idv.

Finally in order to study the nonlinear problem with diffuse boundary con-
dition we employ some approzimation scheme. On each sequence the problem
is a linear problem with given boundary data but the solutions are vanishing
on the singular set G p. Thanks to the crucial properties of the smooth cut-off
function x. we are able to achieve uniform estimates via energy-type estimates
with the new estimate for the outgoing term. The quadratic nonlinear terms
are controllable due to the known pointwise estimates of the solutions ([5,6]).
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The plan of the paper is the following: In Section 2 we construct the desired
e—neighborhood of the singular set and its smooth cut-off functions. Then we
prove the quantitative estimates of the cut-off functions and their derivatives
in the bulk and on the boundary. In Section 3 we establish the new trace
theorem using double iteration. In Appendix A we recall some basic geometric
results. In the Appendix B we show that the singular set is co-dimension 1 in
general.

2 The e—Neighborhood of the Singular set

In this section, we construct, in Lemma 1, an open covering of the singular set
Gp of (8) and construct a smooth function that cuts off the open covering.
Moreover, we prove the crucial properties of such cut-off functions in Lemma
2, and Proposition 1.

2.1 Construction of Neighborhoods

Lemma 1 For 0 <e <e; <1 and 0 > 0, we construct an open set O ., C
R3 x R3, such that,

S C 05,51. (20)

There exists Cy, = Cy(£2) > 1 such that for any 0 < e <e3 K 1
Ocey C Occey- (21)

Moreover there exist C; = C1(6,2,C.) >0, Cy = Co(02,C,) > 0, such that

// 1OE,C*a(x7U)€_9‘U|2dUd$ < Chg, (22)
2xR3

and
dist (2 x R*\O, ¢, 6p) > Coe. (23)

Proof Construction of O ¢, : Let us fix § > 0 (¢ will be chosen later in (26)).
Since the boundary 0f?2 is locally a graph of smooth functions, there exists a
finite number M, 5 of small open balls Uy, Us, .., Unr, , € R? with diam(U,,) <
26 for all m, such that

Mg s
: ' 1
002 ¢ |J [ Un N 0] with Ma,s = O(5), (24)
m=1

and for every m, inside U,, the boundary U,,, N 02 is exactly described by a
smooth function 7,, defined on a (small) open set A,, C R2.
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For all m, without loss of generality (up to rotations and translations de-
pending on m, and up to reducing the size of the ball U,,) we will always
assume that

U, NON = {(xl,xg,nm(xl,xg)) e A, x R}, (25)
U N2 = {(z1,22,23) € A X R : 23 > nn (21, 22) §,
and
(0,0) € Ay, Copen [—9,6] x [—4,4],
817]m(0, 0) =0= azﬁm(o, 0)
Therefore
n(0,0,1,,(0,0))
1
= (alnm(070)78277m(0a0)7_1)
V14 1017(0,0)[2 + [9210 (0, 0)
= (0,0,-1).

Recall that 912 is locally C2. Then we can choose § > 0 small enough to
satisfy for all m € {1,.., Mn s}

|O1m (71, 22) — O110m (0, 0)| + |02 (21, T2) — D2 (0, 0)
1 (26)
=[010m (21, 22)| + [O2nm (71, T2)| < g for (71, 22) € A,

and

021 (21, T2)| + |050m (w1, T2)| + |01 02mm (21, 22)| < C,y  for (21,72) € Ay,

Now we define the lattice point on A,, as 0

Cm,ije = (el,ej) for —N.<4,j <N, = O(g) (28)

Then we define the (i, j)-rectangular R ;i j.e.e, Which is centered at ¢ ; ;.
and whose side is 2¢1:

Rumijeer = {(xl,xg) tei—e] < a1 < gite; andej—e; < a9 < €j+€1} NA,,.
(29)
Note that if €1 > € then {Ru. i j.c.e, } is open covering of A,,, i.e.

. 0
AnC |  Rmijes with No= O(2). (30)
_NE SiajSNs
For each rectangle we define the representative outward normal

1 8177771(6771,1',3',5)

= 02N (Cmije)
VIH 101 iy ) P+ Dot (Cmig )P\ g

nmﬂ;]ﬁ :
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Let {Z1,m.ij.e, Z2,m.ijec} C S? be an orthonormal basis of the tangent space of
082 at (Cmij,es Mm(Cm,i je)). Remark that the three vectors &1 i j.c, £2.m,i j.e
and ng, ; ;. are fixed for each m,i,j,e and that {&1,mije: E2,m i j.e) M je f
is an orthonormal basis of R3.

We split the tangent velocity space at (Cp i jes N (Cm,ije)) € 082 as

L
N 1
3 .
{v ER” 1V N4 e = 0} - U Om,ijeert, With Lo = O(g%
=0
where
@mﬂ',j,e,ehé

= {rv €08 0y COS Oy &1, m i j,e + Ty SIN O, COS Gy T2 m i j,e + To SN GyNiyn i e € R3 :
|7y sin ¢, | < 8Cpeq for vy, € [0,1], |sing,| < 8Cye; for r, € [1,00),
|6, — el] < ey forr, € [O,oo)}7
(31)
with the constant C;, > 0 from (27).
Remark that for 1 > ¢,
L.

|V - N i e | < 8Cpeq for Ju| <1, } (32)

Om.ij =JveER?:
KLJ() m,i,j,6,61,£ or ||27| . nm,i,j,5| < 807]51 for |U| 2 1

Now we are ready to construct the desired open cover corresponding to
Rmigeer X Omiijeert 8

Omiijeert = { U Bel 51)} X Omije.er ts (33)
meXm,i,j‘E,sl,é
where

Xm,i,j,s,sl,f

= {(:171, T2, ’/]m(.Tl, Zg)) —+ T[COS eil,m,i,j,e -+ sin 95327%1-73-75] —+ 8Mim. i j,e e RB :
(21,22) € Rimyijeer, 0 € (el —e1,el+e1), s € (—e1,61)
TE [07 g ((371, T2 Tim (.131, .’,132)), COS ijl,m,i,j,s + sin oi'Q,'m,i,j,a)] }

(34)

We note that Oy, i e, ¢ is an infinite union of open sets and hence is an open
set.
Finally we define

Ocer = |J Omijeere U [R®x Bps(0;e1)], (35)

m,i,j,L
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where 1 <m < Mg s =0(3), —N- <4,j < N.=0(2), 0< (< L. = 0(2).
Since O, ., is a union of open sets, it is an open set.

Proof of (20): Suppose there exists (z,v) € &g. By the definition of &g in (8)
there exists y = zp(z,v) € 02, such that © = y + tp(z,v)v and v - n(y) =0
from (6) and (7). Then y € U,, for some m. Without loss of generality (up to
rotations and translations) we may assume that y = (y1, Y2, 7m(y1, y2)) and
(y1,92) € Rm,ijee for some i, j.

Firstly we consider the case of |v| > 1. Then we check that

v
[P m|
= )n(yl’yQ’nm(yl’QQ)) ' %‘ + ‘[nm,i,j,e = (Y1, Y2, Mm (Y1, 92))] - ﬁ
< 0+ [n(emyies m(Cmige)) = (Y1, Y2, mm (Y1, y2)) |
< |vnm(cm,i,j,5) - vnm(yh y2>|
T |\/1 + |V77m(y17y2)|2 - \/1 + |V77m(cm,i,j,s)|2|
\/1 + |V7Im(cm,i,j,s)|2
< 2|V (Cm,ie) = Vim(y1, y2)l,

where we used the Taylor expansion at the last line. Using (27), we have

IV (Cmyige) = Vim (Y1, y2)| < der X nmllc2 (R jee))
<Ader X mmllczanm)
S 407751.

Therefore we conclude

v
|nm,i7j,8 . m’ < 807761.

By (32), v € UZLZEO Onnijeere and hence (z,v) € O, .
Secondly we consider the case of |v| < 1. Then from (27) and following the
similar estimate of |v| > 1 case

[V i gel < Jv-n(@)] + v (n(Yy) = nmije)l
<Adeilnllez(Rp i jee) < 4etlnllczca,)
§ 807781.

By the statement of (32), v € UgLio Om,ijee1,e and hence (z,v) € Opy i jee, 0 C
Ocey -

Proof of (21): Tt suffices to show that there exists a constant C > 1 such that
if (z,v) € Og, then (z,v) € Oq ¢, -
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Since in the definition (35) the union on m, 1, j, ¢ is finite, we have

Oei= | Omigemz U [RPx {veR®: o] <&1}]
m,i,j,4

=[R®x {veR®: |v| <e1}]

. U {( U BR3(1'§€1)) x@mmeglé]

m,i,5,0 TEXm i j,e,eq,L

First we define an open set including the underbraced set (a closed set). For
0 < ¢, we define

U U  Bes(uio)

TEXm, i j,e,eq,¢ YEBya (T3€1)

= {z € R3 : there exists z € Xonjijeer,e and y € Bgs(x;e1) (36)

such that z € Bgs(y; g)}

Since it is an infinite union of open balls, (36) is open and the underbraced
set is contained in (36) for any ¢ > 0.

Now we claim that, there exists C, = C,(£2) > 1 such that for 0 < ¢ <
€1 < 1, there exists 0 < ¢ = ¢(e1,C*) < 1 such that

U U Bgs(y;s) C U Bgs(z; Cier). (37)
TE€EXm i,j,e,eq,6 YEBys (z51) TEXm i j.e,Cneq

Choose z € Ua:eXm,i,j,s,sl,E UyeBw(ﬂsl)BRs(y;g). From (36) there exist x €
Xmijeer,e and y € Brs(xz;e1) such that z € Bps(y;s). If we choose ¢ < ¢;
then |x — z| < |z —y| + |y — 2| < 2e1 < Cie1 and therefore z € Bgs(z; Cier).
Clearly = € X, i jc.C.eq,0- This proves our claim (37).

On the other hand, from (31), C. > 1 and the fact that the vectors
B1,mi e T2,mui e, and N, ;5. are fixed for given m, 1, j,
Omijeert

= {v = 14 €08 0y COS Py Z1,m,i,j,c + TSI 0Oy COS Py T2 m ij.e

+ 7 SN Gy i je € R? |1y sin gy, | < 8Cye; for r, € [0,1],
| sin ¢y, | < 8Cypeq for ry, € [1,00), |0, —el| < e forr, € [0,00)}
C {v = 14 COS 0y COS Py Z1,m,i,j,c + TSI 0O, COS Py T2 mij.e
+ 7y SIN Py i je € R3 : |r, sin¢,| < 8C,,Cye1 for ry, € [0, 1],
| sin ¢, | < 8C,,Cyeq for 1, € [1,00), [0, —el| < Cyey for ry € [0700)}

= 9m,i,j,6,0*61,2~
(38)



BV-regularity of the Boltzmann equation in Non-Convex Domains 13

Finally we conclude, from (37) and (38),

T,sl C U [ U Bgs(z; Cye1) X Qm,i,j,s,C*el,Z]

myi,J, . TEXm i je,Cue b
@] [R3 X BRS (0;0*61)]
= 05,0*81-

Proof of (22): From (35), we deduce

// losyc*s(x,v)e_e‘vﬁdvdx
2xR3

< > // 10, 0@ 0)e” P dude + my(2)0(J21°)
Mgl 2xR3
S MQ76(2NE)2LE 8 Sup // 1Om,'i,j~5,c*s,f(x7v)670|v|2dvdx
m,i,5,¢ N2xR3

+m3(2)0(|e*)

1
So O(;g,) X sup // \ 10, i iccnen (x,v)e’e‘”dedx +O(leP).
2 xR

m,i,j,L

Therefore, to prove (22), it suffices to show

i // 10,05 ecnce (@ 0)e M dvde S50 . (39)
N2 xR3

m,i,j,¢

From (31),

—0|v|?
16m,i,j.5,0*5.5(v)6 ol dv

S

R3

Iy
i<t Sz

< / d|r, sin ¢, |
|7y sin ¢, | <8C, Cie
o0
2
></ 7y cos¢v|e_9‘r“cos¢”‘ d|ry, cos ¢y de,
0 |0, —el|<Cye
o0 2
+/ |ry|2e =01 dn,/ d¢,,/ dé,
1 | sin ¢, |<8C,, Cye |6, —el|<Cye
2
Sa e’

Now we claim that, for e; > ¢,

m3( U B]Rs(ac;gl)) <o €. (40)

meXm,i,j,s,sl‘Z
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Without loss of generality we assume that ¢ = 7 = 0 and [ = 0. Therefore
Cm,i,j,e = 0 in (28) and

Xm’i,j’ﬁ,ﬁll
C {(xl,xg, Nm (z1, x2)) + T[cos fe; + sin fes] + ses € R3 :
(z1,22) € (—e1,61)%, 0 € (—e1,€1),
TE [O,tf((.%'l,1'2777(1'17372))7C0S9€1 + sineeg)}, s € (—81,81)}.
Since §2 is bounded, we have that diam({2) = sup, ,cq |z — y| < +o0o and

hence
te((z1, 22, (21, 22)), cosfe; + sinfez) < diam(£2).

We have
2diam(£2)
U Brgs(w5e1) C U Brgs(7e1;[10 + [nllor(a,.) + Tlnlloz(a,.)le1)-
TEXm i e oq =0
More precisely UweXm,i,j,a,al,e Bgs(x;e1) is included in the truncated cone with
height diam({2), top radius [10 4 [[n]|c1(4,.)le1, and the bottom radius [10 +

Inllcra,,) + diam(£2)[[nllc2(a,,)ler-
Therefore, using (26) and (27), we conclude (40)

ms( U BRS($;€1)>

TEXm i j,e,e1,L

2diam($2)
< m3( U BR3(791;[10+||77||01(A,,L)+T||77||c2(A,,L)]51)>
7=0
2
< 3diam(2) [10+ [nllor(a,.) + diam(2) nll oz, | % (21)?

1
< 3diam(®2) [10+ 2 + C,ydiam(2)]*(e1)?
Sa e
Finally selecting &1 = C\e in (40) we conclude (39) as

2
m3( U BR3(I;C*€)> X /]RB 181",%1,]'15‘0*5,2(v)e*‘g“’\ dv

TEXm i j,e,Cpe,t

my( U Bes(wmen) x (o)

weXVYL,i,j,E,C*E,[

A

4
S en

Proof of (23): Due to (20), it suffices to show that there exists Cy = C3(Cy) > 0
such that ~
diSt(Q X RS\OE,C*E7 Oe,a) > Cae. (41)
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By the definition of O, . in (35),

dist(2 x R*\O..c.-,0:.)
= inf {[(z,v) — (y,u)| : (z,v) € (Oc,c.c)", (y,u) € Occ}
= infzinf {I(z,v) = (y,w)] : (z,v) € (Oc,c.2)",

m,t,7,
(y,4) € OmijeeeU[R® X Bgs(0;¢)]}
> inf inf {|(x,v) —(y,u)| : (z,v) € (OmijeCue,e) N [R3 x Bgs(0; Cye)“],

m,i,7,¢
(y,u) S Om,z}j,aa,( U [Rg X BRB (0,6)}}
— inf min { inf {|(z,0) — (y,u)| : (y,u) € R® x Bys(0;2),

m,i,7,¢
(x,v) € (Omijecee) N [R? x Bgs(0; C*E)c]}7 (42)
inf {|(x7v) —(y,u)| : (z,v) € (Omijecoee) N [R3 X Bgs(0; Cye)9],

(y:4) € Oz N [R*x Bas(0:2)} | (43)
Clearly,

(42) > inf {|(z,v) — (y,u)| : (z,v) € R® x Bga(0; C,e)°,
(y,) € B® x Bgo(056))
> inf {|v — u| : v € Bps(0; Cse)°, u € Bgrs(0;¢)}
= (Cy —1)e.

Now we claim that (43) is bounded below by the minimum of (44) and
(45):

(43)
> min (inf{|(x,v) — (y,u)| :

(z,v) € U Bgs (7;Cye) % [(Omijie,cuen) \Brs(0; Cie)],

(y,u)e[ U BRs(x;%a)] x [@m,ii,j,s,e,g\BRS(o;g)]}, (44)

zeX

.. C
m,ig,e, 5t el

inf {|(x7v) — (y,u)] :
@o)e[ () (BeslsCe)] x [R\Bus(0; Cuc)],

TEXm i j,e,Cne,t

gwel U Be@$a] x [BnueBu0a)]} )5

reX Cu

™m,i,j,e, 5" €, L
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Firstly, we divide {(z,v) € (Om,i je,c.c0)} in (43) into two parts: from
the definition of Oy, i j e .0 in (33), we deduce that

(Om,i7j,€7c*5,e)c = { U BRs(x;C*E)} X (9m)i7j,g7c*5’€)

xeXm,,i,j‘s,C*s‘Z

U [ ﬂ (BR3(x;C*s))C} x R3.

TE€EXm i, j,e,Cne b

c

Therefore, (43) is bounded below by the minimum of the following two num-
bers:

inf {|(z,v) — (y,u)| : (z,v) € [ U Bgs (.’L’;C*E)}

TEXm i je,Cue, b
X [(Omiigie,coee) \Brs (0; Ce),
(y,u) € m N [R3 X BRs(O;e)C]} },
inf {|(z,v) — (y,u)|
@o e ) (Be(wCe)] x R\B(0;Cao))

TEXm,i,j,e,Cue,l

(yvu) € Om,i,j,e,s,é N [Rd X BR3(O;€)C]} }

Secondly, we consider {(y,u) € Op, i jeee}. From (37) with e; = ¢, for
some ¢ =¢(g,Cy) >0

U Bes(we) U U  Bes(yio)

TEXm i, je,e,l TEXm i,j,e,e,0 YEBy3 (x;€)

C,
C U Bgs(z; 75),
reX

maisge, Gree

and from the definition of Oy, ; j ¢ in (33), we conclude

Omijeet = U Bes(@ie) x Omijeer

TEXm,i,j,e e,

C. [
cC { U Bgs(z; 75) X Omijeet-

reEX
€ m,,i,,j‘s,%s,é

Therefore, the first number of (46) is bounded below by (44) and the second
of (46) by (45). This proves the claim.
Now we claim that

(44) Z e, and (45) Z e.
Firstly, we prove (44) 2 €. Let v € (@myi,jys,c*g’g)c\BRa (0; Ce). By (31)

v = 71, cos 0, cos ¢vx1,m,i,j,a + 7, sin 0, cos ¢vi2,m,i,j,s + 7y sin ¢vnm,i,j,55
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where

|7y sin ¢y| > 8C,,Cre and |ry| <1,
or |sin¢,| > 8C,Cye and |r,| > 1, (47)
or |0, —el| > Cie.

Let u € Ony i jcc.0\Brs(0;€). Again from (31) we have
U = 7, COS Oy COS Py ®1 1 i,j,e + T SIN Oy COS PyBa m i e + Tu SIN Pyl i j e,
where

‘au - €‘€| é g,
and |r, sin ¢, | < 8Cye for |r,| <1, (48)
and |sin ¢, | < 8Cye for [r,| > 1.

If |6, — ] > C\e then clearly |v — u| 2 ¢ since |0, — | < e.

Now we consider the case of |6, — &f| < Ce.

If |r,| <1 (therefore |r, sin ¢,,| > 8C,,C\e from (47)) and |r,| < 1 (therefore
|7y sin ¢y, | < 8Cpe from (48)) then

v —ul > |(v—u) Nmigel 2 [V el = (W Tomi el
> |ry sin ¢, | — |1y sin ¢y, | > 8C,Cye — 8C) e
> .
~Y

On the other hand if |r,| > 1 and |r,| < 1 (therefore |sin¢,| > 8C, C.e from
(47) and |ry sin ¢,,| < 8Cye from (48)), then

v —ul > |(v =) Nmijel > |rosing, —rysing,| > |ry, sin @, | — |ry, sin ¢y |
> |sin¢,| — 8Cye
> 8C,C.e — 8Che
2 €.

If |r,| <1 and |ry| > 1, then |r,sin¢,| > 8C,Cye from (47) and |sin ¢, | <
8C,e from (48).
Fix 0 < ¢, « 1 < C,. If Cy — ¢y > |1y], then

[0 =ul 2 (v =) Nmije| 2 [0 M
= |Tv Sin¢v| - |ru sin ¢u|
> 8C,,Cye — |ry| x 8Cpe > 8C,e(Cy — |rul)
> 8Ce X cy.

= |u M i el
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On the other hand, if C, — ¢, < |ry|, then

v —u| > HU —(u- nm%ﬂ',é)”m,i,j,s] —v—(v- ”mmj,s)”mmj,s”

> |rul] cos ¢ | — |7v]| cOS Pyl
> |ru| 1- 64(077)252 - |COS ¢v|

(C, = c)1/1 — 64(Cy)2%e2 — 1
1.

VIV

If |r,| > 1 and |r,| > 1 then |sin¢,| > 8C,Cie and |sin ¢,| < 8Cye from
(47) and (48). Then

lv—ul > [(v=u) - nmijel Z [rollsind, —singu| Z Cp(Cr = 1)e.

Combining all cases, we deduce (44) 2 e.
Secondly, we prove (45) 2 e. The proof is due to

(45) > inf {|:L' —y|l:x € ﬂ (Brs(z; Cye))°,

2€Xm i j,e,Cye b

y € U Bel( C;E)}

zeX
€ 7n,'i,j,5,%s,é

> inf {|x —y|l:z € ﬂ (Brs(z; Cye))¢,

y € U Bgs(z; C;E)}

zEX Cy

m,i,j,e, 5% €, f

v

. . . C.
L, f 1nf{|x —y|:x € (Brs(2:Che))°, y € Bys(2: 7a)}

myige, et
Cy
2

> E.

2.2 Construction of Cut-off functions

Recall the standard mollifier ¢ : R3 x R3 _ 0, 50),
1

T 0 1 f 2 2 1

SETEoL) o VPP <1

()0(:1"71}) = O, for |$|2 4+ |’U|2 > 17

where the constant C' > 0 is selected so that [;s. ps (2, v)dvdz = 1.
For each € > 0, set

oel@,0) = <s/é>6w<W>, (19)

p(xz,v) ;== Cexp (
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where C > C, > 1. Clearly ¢, is smooth and bounded and satisfies
// pe(,v)dvdr = 1, spt(p:) C Broxrs(0;/C).
R3 xR3
Definition 1 We define a smooth cut-off function x. : £ x R3 — [0,2] as

Xg(.’E,U) = 1QXRS\OE,C*E * SDE(‘T7’U)

(50)
= // Lowrn\0. .. (Y wpe(z — y, v — u)dudy.
R3 xRR3

The following properties of the cut-off function are crucial for our analysis.

Lemma 2 For 0 > 0, there exist C > C, > 1 in (49) and (50) and gy =
€0(92) > 0 such that if 0 < & < gq then

G C {(x,v)GQXRS:XE(x,v):O}, (51)
and, for either 0 =V, or 0 = V,,
// [1— xe(z, v)]e_g‘”|2dvdx <os, (52)
2 xR3
// |8X5(x,v)|e_9‘”|2dvdx <ol (53)
N2 xR3

Proof Firstly we prove (51). Let (x,v) € &g. Due to (49) if |(z,v) — (y,u)| >
¢/C then ¢.(z — y,v — u) = 0. Therefore

(50) = / / Loxano, o, (8 0)pe(@ — 1,0 — u)dydu.
Bge ((z,v);e/C)

On the other hand, due to (23) with £, = £ and C' > C,, we have (y,u) €
O¢,c.. and

1.(_Z><R3\(')5,c*€(yau) = 0) on (yau) € BR6(<x7v);5/é)'

Therefore we conclude x.(z,v) = 0 and (51).
Secondly we deduce (52). We use (22) with €; = € to have

/ / / / [1-1omo0. .. (4 w)]pe(z — y,v — we 1P dudydvde

R3xR3 J JR3 xR3 o

< // lo. c,. (¥, w)e™ 2 dudy // e (z —y,0 — el dvdze
R3 xR3 ' R3xR3

< Cli// gag(x,v)eGEQ/édedx
2 J e (02/€)

< g,

~

where we used

6
—0|v|* = 0lv —ul? — 0lv — u* — O]v)* < Olv —ul* — §|u|2 (54)
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Thirdly we prove (53). Note that from a standard scaling argument and
(49)
06
= Lb,o 0/ (2 0)-
We also note that Ox. = —9[1 — x.]. Therefore, by Lemma 1,

// |8X5(x,v)|e_9‘”|2dvdx
N xR3
// // —Loxrs\o..c,. (Y, w)]|0pe(z —y,v —ue ~01” Qudy|dvda

_// lo. ... (y,u)e —5ul? dudy// O(e7"C%1, (0:/0) (@, v)dvda
RIXRE RS xRS Bro (0s¢

<0(e) x O(e™)
< 1.

|0 (2,0)| S

Proposition 1 With the same constants C > C, > 1 as in Lemma 2 and
0<e<eg,

Sp N[00 xR* C {(z,v) € 02 x R®: x.(z,v) = 0}. (55)

Moreover if |(y,u)| < e/C for C > C, > 1 then

/ / 1o, C*E(x—y,v—u)e_elv_"lz|n(x—y)-(v—u)|dvdSw < g, (56)
002 Jn(z)v<0 '
and

/ 1= xe( o)l dy <o e, (57)

/ X (,0) e dy <o 1. (58)

The following fact is crucial to prove Proposition 1 and especially (56):

Lemma 3 We fit mo = 1,2,--- , Mg in (24). From (25), we may assume
(up to rotations and translations) there exists a C*—function 1y, : [—6,08] x
[4, 0] — R, whose graph is the boundary Up,, N O12.

Let (z1,x2) € Am, N [—0/2,0/2]x[—6/2,0/2] and (z1,%2) € Ring.ig.jo,e,Cuz
for lio|, [jol < Ne. (see (28), (29), and (30))

Suppose 1) ly| <e/C and

((x1>x2a77m0($17m2)) —y,U) S OE,C*S’ (59)
and i) for large but fized s, > 1,

v . [8C, 1/2
71 S nmo(0,0) . m S 75*02\/5, wzth CQ = 3 [1 + HanHCQ(AmO)} / 3
(60)
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_ 1 —
where N, (0,0) = LT (V1mo (0,0), —1).
Then either |v| < €'/ or there eists (i,5) € [Ny +ig, N1 +10] x [-Ny +
jOaNl +j0]7 with

1/2 ~
N, = LLCSJ 40, +8C [1+ ||77moHC’1(AmO)] 2y 2/C (61)
b \E ' T 8*02 ’
such that
((I1,$27nmo(x1,x2))*y,v) € U OmgijeCuzt N 2x{v e R3 . | > 61/3}’
0<U<L.
and
U .
[rme(0,0)- 5] < CavE with Ca = CalL 4 Imollozcang)]- (62

Remark that the constant N7 in (61) does not depend on z,y, v.

Proof (Proof of Lemma 3) Without loss of generality (up to rotations and
translations), we may assume

(i0,j0) = (0,0) and 7,,,(0,0) =0 and Vi, (0,0) = 0. (63)

Consider the case of [v| > £!/3. Since ((xl,xg,nmo (x1,22)) — v, v) € O0.c,e
we use the definition of O, ¢, in (35) to have

either |v] < Cie or (x—y,v)€E U OmijeCust - (64)
. m,i,5,4
(64)—(4)
(64)—(37)

For small 0 < ¢ < 1, we can exclude the case of (64) — (4) since |v] > £'/3 >
Cie.
Consider the case of (64) — (¢). In this case, we claim that

(@1, @2, 1o (€1, 22)) = 4,0) € | Omosirjie.Cuctr (65)
1,5,

From (64) — (i¢) and the definition of Oy, 4 je.c.c,0 in (33), there exist m, i, 7, ¢
such that

(($17$2777m0($17$2)) - y7v) € [ U Brs (p; C*E)} X Qm,i,j,a,c*e,z~

pexvn,i,j,e,c*s,l

In particular, there exists p € X, 4 j.¢,0,c,¢ satisfying

0= (@1, 22, Ny (21, 22)) — )| < Cie.
By the definition of X, ; ;e c.e¢ in (34),

p = (D1, D2, M (P1,P2)) + T[ €08 01 i jie + SN OL2 i jic] + 5N i e,
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for some

) € Rm,i,j,s,C*sv

0 € (el — Cye,el + C.e),
€ [0, te((Pr, D2y M (P1, D2)), €08 021 m i je + SINOZ2 1y i o )],
€ £

(ﬁ17ﬁ2

By the definition of t¢ in (7),
2 =D = SNmige = (ﬁl,ﬁg,f]m(ﬁl,ﬁg)) —‘r%[COS éi'lym’i’j’g + sin éi.2,m’fi,j’5} e 0.
And
12 = (w1, T2, Ny (21, 22)) — )]
< |pr‘+|p7 ((‘Tlax27nmo(xlax2))7y)| (66)
< 2C,e.
From (63), (66), and |y| < &/C, we deduce

|Z_ (Ovovnmo(ovo))‘
< |Z - ((Ihl‘g,ﬁmo(.fhﬂjg)) - y)| + |(5€17I2;77mo($17932)) - (0707777”0(050)” + ‘y|
< 2C.e +4Cue(1 + ||1my llor (A,ng)) +€/C

Denote (Z1, Z2) = (1, p2). By the definition of ¢y, and ¢¢ in (6) and (7)
(2,08 021 i jie + SN 0Z2 i j.e + i o) = (215 22, Ny (21, 22)). (67)

On the other hand, by the definition of Gy, ; j . c,e ¢ in (31),

ol = 05 0, COS Py, T1,m,i,j,c + SiN Oy COS Py&2 i j.e + SN PyNm i e, (68)

with |0, —ef| < Cle,
and

[0 i je| < 8C,Che, for /3 < |v| <1,
v
‘m M| < 8CyChe, for 1< .

Therefore, for 0 < e <« 1,

||%‘ Mim.ije| = |sin¢y| < max {8C,C.e*3,8C,Ce} < 16C,C,e?. (69)

Now we estimate as

Nimg (0, 0) . (COS éfl,m,i,j,e + sin é-i'2,m,i,j,e + Onm’i’j,g)

v v ~ e Aa
S ’/lmo (0, 0) . m + nm(O, 0) . (|7 — (COS axl,m,i,j,s + sin 6m27m7i,]‘75 =+ Onm,i,j,s)) .

(a)
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We use (68), (69), and 6 € (ef — C,e,ef + C.e) to conclude that, for
D<exl,

a) < 2{|cosf, — cosf| + | cosb,| cos ¢, — 1| + |sin 6, — sin |
+|sin 6, || cos ¢, — 1| + [ sin ¢ |}
< 2{4C.e + 160, C.e*/% + 2(16)>CC2*/3}
< 2000, C.¥3.
Finally from (60), for 0 < ¢ < 1,

—1 < 1y, (0,0) - (cos g‘%l’m7iﬁj75 + sin éiz’mﬂ-’jﬁs + 0Ny i)
< —s. x Cav/e +400C, C.e?/? (70)
< _S*Cz \/g

2
Now we are ready to prove the first claim (65). Denote

U := €08 0% 1,m,i j,c +5INOT2 i e

Recall that [2| < (20, +4C[1+ [0, 1 (4,)] + 1/C)e and z € £2. Therefore
for 0 < € < 1 the function 7,,, is defined around (z1, 22) and z3 > Ny, (21, 22).
We define, for |7| < 1,

D(T) = 23 — UsT — Ny (21 — WLT, 22 — UaT). (71)

Clearly ¢(0) > 0. Expanding ®(7) in 7, from —ti3 = 7, (0,0)- (coS 0& 1, i j.c +
Sin 0Z2 i 5, ), and (70), we have

D(7) < —U3T 4 |23] + [y (21 — Ui T, 22 — UaT)|
C
< —8, X fﬁr
+ (2C, +AC 1+ |0mo llor (4] + 1/C)e

+ 7m0 102 (A ) (2Cs +4ACLIL + [y 01 (A, )] + 1/C) e

mo
+ 19mo o2 () 1717
where we have used

Thmo (Zl — ’&17‘, z9 — ﬂQT)
T d
= Mo (21, 22) +/ 23 mo (21 — s, 25 — dlas)ds
0

= N (21, 22) — (1, 02) - Vi, (21, 22)T

/ / 277m — U181, 22 — lgs1)dsids

< 1molle2(a ,,m>2 = (1, 82) - Vg (0, 0)[ ] + [[9mo 02 (A, 12117

I7I”
=+ ||777no ||C2(.Am,0) 2

< o oz (1212 +1712).
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Now we plug 7 = SL x C34/e with the constant C3 in (61) to have, for s, > 1
and 0 < e < 1,

CyC5
2
B HnmoHC%AmO)O??}

(54)?

(1) < —{ — (2C. + 4C[1 + [0 o1 ()] + 1/C)

mQ

+0(%) <.

By the mean value theorem, there exists at least one 7 € (0, C3+/€] satisfying
&(7) = 0. We choose the smallest one of them and denote it as 79 € (0, C3+/2].
By this definition and (67), for 0 < ¢ < 1,

p(z,4) = zp(z, cos é.f],mﬂ',j’g 4+ sin §§327m,i7j,5)
=z — Toﬂ

= (21 — 10ti1, 22 — Tolla, 23 — Tols3).
Therefore, xn(z,4) € 92 MUy, and this proves (65).
For0<ex1

|(21 — 7o, 22 — Tol2) | <(2C% + 4C(1 + || lc1(a,,) + 1/C))e + C3v/E
<2C73v/e.

Moreover,
(Zl — ToU1, %2 — Tou2) S Rm07i,j75,c*57
for

li — o, — jo| < (2C5v/e)/e < 2C3—= < Ny.

-

We only need to prove (62). From (69) and (61)

’nmo(()?O) : |37|| < |nmo,’i,j,€,c*€ ' %! + |(7’Lm0 (070) — nmo,i,j,E,C*e) . ﬁ‘

IN

16C, Coe?® + || |l c1 (A, ) [ N1 + Cuc
16C,Coe™? + |1 |l (,,.,) {2C3VE + Cue}
10C3(1 + [[17m, |2 (4, ) VE

Civ/e,

IAN A IA

and (62) follows.

Proof (Proof of Proposition 1)
The first statement (55) is clear from (51). Once we assume (56) then it is
easy to prove (57), (58):
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Firstly we prove (57). Due to properties of the standard mollifier (49), we
obtain

// [1— xe(2,v)] e Ol In(z) - v|dSzdv
z€d2,n(x)v<0

—9lv|?
- // // [1-1oums0.c.. (@ = y,v = u)]pe(y, u)e "
2€d2,n(2)-v<0 J JrI xR

dudy|n(z) - v|dSydv
® o1l qud
ﬂsx , E(y,u)e uay

. // 1o, o (@ —y,v — we 5 n(r) - ]dS,dv
z€02,n(x)v<0 '
// pe(y,w)es dudy
Bz (05¢/C)

) // lo.c..(x—y,v—ue {2 n(z) . v]dS,dv,
x€d2,n(x) v<0 '

where we used

IN

0

0
UL |v|2 |U|2_,\v_u|) Tl —uf?

(5
> (Sl — 21of? — Sul) ~ o P
0
2

< —*IUIQ

S lul* = B

Z|v—u .

Since |y| + |u| < e/C and n(zx) - v < 0, we have

) (=) +n(z—y)-(v-u)
+n(z) —n(z —y)]-v+n(z-y) u

O(Z)(1+ o)

n(@) v =n(z)-v—nlz—y
n(z—y)- (v —u)
—nle—y)- (v —u)+

Therefore, we use (56) to bound (57) further as

// (v, u)ezlu\ dudy x // lo.o..(x—y,v—u)
(0; s/C z€82,n(x) v<0

e~ vl o= 810 (2 — ) - (v — w)|dS,do

+ 0(%)6% « m3(92) x/ (14 Jo])e 4 do
RS

95_2
<p & Xxexo)?

<Q E.

~
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Secondly we prove (58). Following the same proof of (57) , we deduce

‘// 8X5(x,v)e_0‘”|2|n(x) -v|dSmdv‘
z€92,n(x) v<0

= // A xe(z,v) — 1]6_9‘“|2|n(x) -v|d5’$dv‘
z€dN2,n(x)v<0

-1/ o [ tooc tvwento = yo - u)dudy]
z€0N,n(x)v<0 R3 xR3

X 679‘”|2|n(3:) . v|dedv’

// // lo. c,. (7 — y,v — u)[0p:(y, u)|dudy
z€02,n(x)-v<0 R3 xR3
X |n(z) -U|e_‘9|”‘2dszdv‘
// |00 (y, uw)]e? " dudy
Bye (0§5/é)
* // lo. .. (x —y,v — w)e S e8P n(z) - v]dS,dv
z€92,n(x) v<0
S sup // lo.o..(x—y,v—u)
(y,u)€ B (o;s/é) z€92,n(x)v<0

e~ dlv—ul® = gll* (14 |v|)dS,dv

1
o) sw ] lo.c. (a0 )
€ (yu)eBye(05e/0) J J2€02,n(x)-v<0

et 3 1P (e — y) - (0 - w)|dS,dv

IN

A

Proof of (56). Let |(y,u)| < e/C. We use (24) to decompose

Mg,s

(56) < Z / / lo.c..(x —y,v— u)e il o5l
m=1 JUmNOQ I (z)0<0
[nm (2 = y) - (v = u)|dvdS,

< Mgs % sup/ / lo. o, (x—y,v—u)
m JU, N0 Jny, () v<0

670\v7u|26*g|”‘2|nm(1‘ — y) : (U - u)|dUde

‘ 2

1
T
o m  JU, NI Jny, (x)v<0

e Ol—ul =510l 1y (2 — y) - (v — w)|dvdS,.
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For fixed m =1,2,--- , Mg 5, we use (25) and (30) again to decompose

—0lv—ul? —Lv|?
/ / lo.o..(x —y,v—u)e lv—ul”e—3v|
U, NI Iy, (x)-v<0

[nm(z —y) - (v —u)|dvdS,

/ / lo, o, (1 = y1, 22 — Yo, Mm(T1, 22) — Yy3,v — u)
m nm($1,$2)'v<0

X 679|“7“|267%‘”|2|nm(m —y)-(v— u)|dv\/1 + |V (21, x2)|2dz1da,

<> [
“N.<i,j<N. Y Rmije Cuc Jnm(x1,m2)0v<0
lo. o, (71 — Y1, 22 — Yo, Mm (71, T2) — y3,v — u)
X 6_9‘”_“‘26_g‘”|2|nm(x —y)-(v— u)|dv\/1 + |V (21, 22)|2dz1das
52
< - sup / /
€ —N<i,j<Ne Rom,i,j,e,Cue nm(zl112)‘v<0

105,0*5(301 — Y1, T2 — Y2, M (21, 22) — y3,v — )

X e‘elv_“lze—g“"?mm(ﬂc —y) - (v —w)|dv\/1 + |V (21, 22) [2dz; das,

X O11m (71, T2)
where nm($1, $2) - VI1H[011m (21,22) 24|81 nm (w1,22)[2 8277m£3311,$2)

We fix ¢, j. Without loss of generality (up to rotations and translations),
we may assume

Cm,i,j,e = (0,0), 8177m(0,0) =0= 8277m(0, 0), Nm,i,je = (0, 0, —1).

We claim

x/[—C*E,C*E]Z /nm(ml,m2)~(v+u)<0

lo. o.. (1 — Y1, 22 — Y2, Mm (21, T2) — Y3, 0) (72)
X e_9|”|26_3|”+“‘2\nm(9€ —y) - v|dv\/1 + |V (21, 2)|2dz1 das
< &3

Once we prove (72), due to the above estimates for the decomposition, we
conclude (56) directly. }
For (z1,22) € [—Cie,Ciel?, |(y,u)| < e/C, and ny, (21, 22) - (v +u) < 0,

we deduce

Nm,ije = U

=n,(0,0) - v

=N (z1,22) - (v+u) + [10(0,0) - v — np (21, 22) - (v + u)] (73)
<O+ |nm (21, 22)|[u] + [0 (0,0) — ngn (21, 22)|[0]
<e/C+2C.ellnmllc2(—c.e.cue V]
S 05(1 + ‘IUDEa
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where C5 = max {1/C, 2C, |0 c2((—c.c.c.e)2) |- Therefore

(72) < / /
[—Cie,Cue]?2 Inp, i, 5, v<Cs(1+]|v|)e

According to Lemma 3, we decompose

\/[—C'*fs,C’*e]2 ~/nm(0,0)»v§05(1+v|)5

105,0*5('1:1 —Y1,T2 — y2a77m(371,l‘2) - y37v)

X 679‘”|26*%|”+“|2|nm(x —y) - v|dv\/1 + |V (21, z2)|2dz1d2s

B /[C'*E,C’,fs]2 \/{S*Cz\/g<n7”(0,0)~v<05 1+“"| 5} (74)

o] S To

@

. f /
[~Cue,Cue]? J{—1<nm(0,0)- 2 <—s.CavE}

(Im

First we consider (I). If —s,.Cav/e < 1 (0,0)- 177 < 0 then 0 < v3 = —nyy, (0,0)-
v < s,.Calvly/e and for 0 < e <« 1

0 S V3 § 28*02\/|U1|2+|'02‘2\/5.
Moreover

N (2 =) - 0] < [1n(0,0) - 0] + [ ll o1 ((—ce.cuep2) (Co + 1/C)vle
< 8.0200[Ve + 4lnmllc2((—c.e,0.2) (Ci + 1/C)vle.

If 7, (0,0) - % < C5 1Yl e then for 0 < £ < 1

|v] |v]

[vs| = |7 (0,0) - v| < 2C5(1 + V/|v1]? + |v2|?)e.
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Therefore,

m- | /
[=Cye,Cue]? J0<v3<25,Caq/ |v1 |2+ |v2|2VE
2 ~
e ! 5. Calv|VE + Alnmllc2 (c.e,c.e2) (Co + 1/C)vle}

N / / 679‘v|2
[70*570*6]2 |’U3|S2C5(1+ I’U1‘2+|’02‘2)E

Sma((~Cuc.Cuef?) x { (75)

25*02\/‘U1|2+‘U2|2\/g
—&luil? =G v2|?
Ve dvidvy e 21V e 2102 dvs
R2 0

5 2 2C5(1+ I’U1‘2+|’02‘2)€
+ // dvld’Ug 670\1}1' 679\v2| / d’l)g}
R2 0
We decompose (II), according to Lemma 3:

wef., ]
[=Cye,Cuel? J|v|<el/3

+f J) .
[~Cue.Cuc]? J{~1<nm(0,0) 117 S=5.C2v/E and [v]>e1/3}

< &3,

~

The first term is clearly bounded by O(1)e®. For the second term we use (62)
to have

{ —1<n,(0,0)- |v—| < —s5,02v/€ and |v| > 51/3}
v

| < Cyv/z and |v| > €'/}

cﬂ%mmy%

Therefore we follow the same proof as for (75) to obtain
ang§+/ /
[-Cue,Cue]? Jus|<2Cay/|v1 |2+ w2 |?VE
2 ~
xe” 1 Calv|vE + 4lnmllc2(—c.c.0ue)(Co + 1/C)ole}
< &3 (76)

We conclude (74) from (75) and (76).

3 New Trace Theorem via the Double Iteration

In this section we prove the following geometric result. For the later purpose
(this will be used in the approximation scheme for the nonlinear problem with
diffuse BC) we state the result for the sequence of solutions.
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Proposition 2 Let hg € L' (2xR3). Let (h™),>0 C L>=([0,T]; L*(2xR3))N
LY([0,T]; L' (74, dv)) solve

{0y +v Vo +vih™ = g™ AT,y = hy, (77)
where v = v(t,x,v) > 0, and such that the following inequality holds for all
(x,v) € v

| (¢, 2, v)|

) ™tz ) () T {n(z) - uldu
<1+ ) [ ol )

—Cav|?

(78)

e

+(1+ JR™,

In(z) - vl
where H™ € L([0,T]; L*(2xR?)) and R™ € L'([0,T]; LY (002xR3, (v)dS,dv)).

Then for all m > 1, K21 e L'([0,T); L*(y-,dy)) and satisfies, for t €
[0,T] and 0 < § < 1,

t
/ ()]

0

t
< 0(5) / R 1(8)]hs 1+ Cllholn (79)
0

i=m,m—1

won max { [+ [ @R+ [ 1oL}

Our proof requires the following lemma:

Lemma 4 Let 2 C R? be an open bounded set with a smooth boundary 012.
For k € N, consider the map

P {(x,v) € v4 : n(ap(x,v)) -v< —1/k}
= {(zp,v) €v_ i n(xp) v < —1/k},
(CE,’U) = @k(gjav) = (:i’,”U) = ($b(l’,7)),'0).

Then @y, is one-to-one and we have a change of variables formula for allk € N :
(@) ve—1/k} P(F) - v[dvdSz: = 1in(ey(@w)-va—1/k) [P(2) - 0| dvdS,.

Proof (Proof of Lemma 4)

Let (z,v), (2',v") € v4 such that n(zy(z,v)) - v, n(zp(a,v")) v < —1/k.
If &p(z,v) = Pp(2',v") then v = v and zp(z,v) = zp(2’,v). Since z =
xe(zp(z,0),v) = z¢(xp(2',v),v) = 2’ the mapping Py, is one-to-one.

Now we prove the change of variables formula. It suffices to consider a small
neighborhood of 0f2 around z. Without loss of generality we may assume x3 =
n(z1,22) for some ) : R? — R. First we consider the case (0,0,1)-n(zp(z,v)) #
0 so that

T = ap(z,v) = (21, T2, 3) = (T1, T2, 0(T1,72)) € 092,
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for some function ¢ : R? — R.
The change of variable is given by

dSzdv = /1 + |Ve[2diydiady
V1
VI+IVelP JV 1+ |Vn2deidzady
IRVEENE
_ VIHIVRP 06 g0
V14 [Vil?

where J is the Jacobian,

(&1, To,v1,v2,03) | | Opy T1 Opy1

J= =0y, 5 Oy dia |

O(x1, x2,v1, V2, v3)

By the definition of zy, (x, v), we have the following identity: v|x — Z| = |v|(z —
z), i.e.

[N

{(z1 — 1) + (w2 — £2)* + [n(21, 22) — (F1, F2)]*}

X1 —jl
= |’U| xTo 7‘%2
n(x1, z2) — o(T1,T2)

Denote D = {(z1 — #1)? + (w2 — %2)? + [n(21, x2) — ©(F1,72)]?}. Directly
from (81)

[ [(1'1 —F1)+(n— w)@ilcp} D=2y — |v| [(xg — &)+ (g — <p)852<p] D™ 3w
(@1 =31) + (= )05, 0| D 5vs [(w2 = &2) + (1~ ©)9z, 0| D vz — Jo]
x [89613731 8x2i’li|

azl 572 812532

[0 (@ =)+ (= @) m) —fel 01D (@2 = E2) + (0~ ©)rym) } |
v2D72 ((z1 — 1) + (n — )0wym)  v2D” 2 ((22 — T2) + Oayn(n — @) — [v]

Direct computations yield

o] = D=4 o1 (@1 — &1) + vi(n = ©)0a + va(@s — 2) + v2(n = ©)u,)

jv| - D3 [Uz(@ — T2) +v2(n — )0z, +vi(z1 — T1) +v1(n — 50)3214
_ 0> = [(01)* + (v2)® + (v3) (V10,7 + V202,m)] (D, Dy —1) - v
‘UIQ - [(Ul)Q + (U2 2 + (’U3)(’U1851<)0 + U2812 ] (651@5 3922% 71) v
1+|Vn2  n(z)-v
X — .
14 |Vy|? n(Z) v

<

Then we use (80) to conclude the proof.
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Secondly we consider the case of nj(xp(x,v)) # 0 or na(zp(z,v)) # 0.
Without loss of generality we may assume ns(zp(x,v)) # 0 so that

T = rp(x,v) = (L1, T2, T3) = (T1, (%1, T3), T3),

for some function ¢ : R? — R. Notice that (80) still holds with Z replaced by

Z3. From the fact that v|z — Z| = |v|(x — &) we have
1 Ul
{(z1 = 21)* + (22 — (1, 83)) + [n(21, 22) — T3]} 2 | 02
v
N ° (82)
xr1 — I

= |v| | 22— @(Z1,73)
77(.(1;‘17{,62) — 573.

We define D = {(z1 — 1)% + (22 — p(&1,%3))? + [n(z1, 22) — F3]%}.
By direct computation

1 .1
{[(11—51)+(12—9’)351w}v15’ 2 — vl [(zz—v)353w+(n—is)}v1D 2 }
U R
[(21 = 1) + (22 — ©)8z, 9|v3D "2 [(@2 — ©)0z40 + (1 — 33)]vsD” 2 — |v]

« | Oz1 %1 Oxp®1
8z, &3 Opo iy

[ -2+ 0 - 830wy n]or D72~y [(e2 = @) + (n = 33)0zy n] vy DTL/2
[(@1 = 31) + (n — 33)0y n]vg D™ 1/2 = |v]0zy 1 [(w2 — @) + (1 = 33)0uyn]vg D1/ = |v]0gyn |

and

det lea:cl 612%1
Oz 3 Ozy @3

_1 R
10120551 — [(x1 — #1) + (1 — #3)0zy n]v11v|D” 2 0zyn + [(z2 — ©) + (1 — #3)wgn| D 2 [v](v18zy 1 — vg)

Y __1
[v12 = [(21 = 31) + (@2 — ©)0z, @] Iv|v1 D 2 = [(wg — ©)0z, % + (n — #3)]|vlvg D 2

v10zyn +vadxyn — vz (611 n, 8zqm, —1) v

—v10z, ¢ +va — 30z,  —(9z, 0 —1,055%0) v

V14 vn|2 , @)
Vi+1ve2 n@ v

Then we use (80) (with & replaced by Z3) to conclude the proof.

Proof (Proof of Proposition 2)
It suffices to prove the estimate (79).
Using (78), we obtain

t t

IW ()| o= / // |W L (s, 2, 0)||n(z) - v]dS,duds
0 0 n(x)-v<0
S (A)+(B),

~

where

= [ t /I g ) () S,

(B) := /Ot //n(m)'v<0 |R™ (s, z,v) {1 + |n(z) - v|}dS,dvds.
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Clearly the last term (B) is bounded by the RHS of (79).
Focus on (A). Recall the almost grazing set 7 and the non-grazing set
74+ \7 in (16) and (17). We split the outgoing part as

7 =11 U\

Due to Lemma 7 in Appendix A, the non-grazing part 7+\'yi of the integral
is bounded as

/// <ion \|h0||1+/ ||, + |10 + v - Vo + )™ (s)]], }ds
0 Y+ \s 0

t t
<esn ol + / I+ / NI
0 0
(83)

For the almost grazing set 'yi, we claim that the following truncated term
with a number k£ € N is uniformly bounded in & as follows:

t
/0 //meem, Li@.)ers y L1/ k< n(en (@) o}

n(z)v>0
| (s, x,v) |;L(v)i {n(z) - v}dvdS,ds

¢ (84)
< 0(s) / W8], 1

t t
+Cofimll + [l [ m

Proof of Claim (84): In order to show (84) we use the Duhamel formula of the
equation (77) together with (78): for (z,v) € ¥} and 1 < |n(zp(z,v)) - v|

(W7 (852, 0) [ 1 (2,0)€2 } L{1/ k< In(ap (2.0)-01}

< Agscty (@t ho(z — sv,0)| + / |H™ (1,2 — (s — T)v,v)|dT

max{0,s—tp (x,v)}

(v)
+ Lissty (2,0)} L{1 k< |n (20 (2,0))-0]} C1V 1(V) (1 R YT

[n(@p(z,v)) - vl
< B35 — b, 0), 2 (2, 0), 01) (o) { (,0)) - 01}
(zp (z,v))v1>0

1 1 1 _ et
+ e tn(en)) {1/k<\n<xb(z,v>>-v|}( + |n(xb(x7v)).v|)

X |Rm71(5 - tb(xa U),:Z?b(flf,’l)),l)”.
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We plug this estimate into the left hand side of (84) to have

/ //xean {(e.0)e8 Y H1/k<In(ap (o, v))-o[} R (s, 2, 0) (v )3 {n(z) - v}dvdSyds

n(z)-v>0
1
< [*[], 1ttt thote = s 0)la) ne) -olas.duds (85)
T+
¢ 1
+/ //5 101 /k<n(ap (z,0)-0[} (V) T () - v|
0 s
X / |H™ (1,2 — (s — 7)o, v)|drdSeduds (86)
max{0,s—tp (z,v)}
+///11k M()% In(z) vl Toost
{1/k<|n(zp (=,v))v|} In(zp(z,v)) - vl (@ (2,0)) 01 >0 {s>tp(z,v)}
x|h™ (s — tp(, ), zp (2, v), v1)|u(v1) 1 {n(zp(z,v)) - v1 }dv1dSzdvds
(87)
/ // ) ) oyt @) ol
{s>tp (z,0)} H{1/k<|n(zp (z,v)) v} HV |7L(£Eb(.’E U)) ,Ul
X|R™ (s — tp(z,v), zp(x,v),v)|dSzdvds. (88)

Estimate of (85): Note that x € 02 in (85). Without loss of generality we
may assume that there exists 7 : R? — R such that x3 = n(z1,22). We apply
the following change of variables: for fixed v € R3,

(11,20;58) € R? x {0 < s < tp(x,v)}
oy = (11 — sv1, T — Svg,m(T1, T2) — svz) € 2.

Clearly such mapping is one-to-one.
We compute the Jacobian:

1 0 —1
0

dor (G ) —qer (0 1 u
11,22, 8 8x177($17x2) 8$2n($1,$2> —U3

896177

=v- 890277 :U'n\/1+|ax177|2+|896277|2'
-1
Therefore

{vn(z)}dS.ds = {vn(@)}/1+[02,7|2 + |9s,n[2dz1d22ds = dy = dydyzdys,
and

t
(85)§/ dv/ ds dsS,
R3 on

1
1{(x v) €’y+}1{1/k<\n(:rb(x v v|}|h0(x - S’U,’U)‘/J(U)‘* |7’L(.17) ' ’U|

)
/dv/dy|h0 y, 0)l(v)d

< lhol[1-

(89)
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Estimate of (86): Considering the region of { (7, s) € [0,#]x[0,#] : max{0, s—
th(z,v)} <7< s},

t min{t,7+tp(z,v)}
(86) S/ dv/ dT/ ds ds,
R3 0 T o0 (90)

|H™ (1,2 — (s — 7)v,0)|u(v) T n(z) - vl.

Note that = € 9f2. Without loss of generality we may assume that zg =
n(z1,22) for n : R? — R. We apply the change of variables: for fixed v € R?
and 7 € [0,¢],

(w1, 795 8) € R? x [r,min{t, 7 + tp(z,v)}]

= y= (1 — (s—7)vr, 22 — (s — T)va,n(z1, 22) — (8 — T)v3).

The Jacobian is {v - n(z)}/1 + [0z,1]% + [0x,n]? and {v - n(z)}dsdS, < dy.
Applying the change of variables to (90) we have

(86) < /0 t /R 3 /Q (H™ Y (r, 1, 0) a(v) } dydudr. (91)

Estimate of (87): This part is the most delicate among (85)—(88). Rewrite
(87) as

t
d as, [ dv [ dv 1 Liia (0] )
/o S/fm /R “/Rs U1 Y (wwyerty Hnten o)) 01>0)

@)l (©2)
[n(zn(z,v)) - vl
In(zp(2,v)) - v1||h™ (s — tp (2, v), Tu (2, v), v1)].

1
1oty (@0)} L{n(an (@,0))v]>1 /K (01)  1(0)

First we apply the following change of variables
s€[0,t] = §=s—tp(z,v) €0, — tp(x,v)], (93)

where we have used the fact that s is integrated over [tp(z,v),t]. Clearly the
Jacobian is 1 so that ds = ds and hence

¢
(92) S/ d§/ dSI/ dv duvy 1{(%,‘})6,\/1} l{n(zb(m’v)).yl>0}
0 Gle; RS JR® —_———

(94)

1{.n(xb>.v>1/k}u<v1>iu<v>%mmm(z,v)) -
|hm_1(§7 p(x,v),v1)|.

Let us denote

&

= ap(z,v). (95)
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Note that since (x,v) € 74 and |n(zp(z,v)) - v| > 1/k, from Lemma 4, the
mapping (x,v) — (Z,v) is one-to-one and

th(z,v) = tp(zp(x,v), —v),

x = xp(x,v) +tp(z,v)v = 2p(x,v) + tp(zp(z,v), —v)v
=rp(z,v) — tp(zp(2,v), —v)(—v)
= I — tp(Z, —v)(—v),

and hence we can rewrite the underbraced term in (94) as

Lzwyertt = Lo<n@—to(@ —v)(~0)-v<s or [o]>1/5} (96)

Now we apply the change of variables of Lemma 4: for (x,v) € v4 and
[n(xp(z,v)) - v| = |n(&) - v| > 1/k, we apply the change of variables

(z,v) = (Z,v) := (xp(z,v),v). (97)

From Lemma 4, the Jacobian is

o o(z,v)\ . 0% _ n(z) -v| 1+ |Vnl?
d t<3(l‘7v)> _dt<3$> n(z)-v| /14 |Vel2’
and dS; := Zggz ds,.

Then from (94) and (96),
(92) <

t
/d§/ dv1/ dv/ dSz{Lo<n(z—tn(7,—v)(—v))v<s + Ljo|>1/6 }
0 R3 R3 o0

X L{n(@)01 50} Lin(@) o1/ 0(0) 2 (1) 3 [0(E) - vi| A5, 2, 01))]
t
g/ // B3, 2, 1) [u(01) 2 () - v1|dSsduvyds
0 T+

1
X Sup/ 1{—6<n(;2—tb(i,—v)(—v))~(—v)<0}ﬂ(v)de
#con Jr3

t
+0(5)/ // IW (5, &, v1)|p(v1) 7 |n(E) - v1|dSzdvds,
0 T+

where we extracted O(8) from [ps 1yj=1/60(v)2dv S e™ 15 [oq pu(v)Tdo.
We claim the following:

(98)

Claim : For any small 0 < §’ < 1, we can choose sufficiently small 0 < § <
1 such that

1
Sup/ 1{scn(imty(#,—0)(—0))-(—v) <o} (v) 2dv < 4. (99)
zcon Jrs
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This is a consequence of Lemma 9. For given 6’ > 0, we choose a sufficiently

large N > £ and we take 5 ;v > 0 as in Lemma 9. Then we choose a

sufficiently small 6 = 6(8’, N) > 0 such that § < Js x in Lemma 9. Due to
Lemma 9 and (121),
max sup mz{v € R3: |v| <N, |n(zp(Z, —v)) - (—v)|] < 0}
v zeB(zimi)
< maxmz(O,,) <§'.

Finally we conclude the claim (99) by

/ 1{—5<n(mb(§,—v))~(—v)<0};U'(v)Edv

e

e N4 —I—maxmg((’) )

< e*4<61'>2 + 4.
Therefore, from (94), (98), (99), we have, for 0 < 4,0’ < 1,
(87) S[0(0) + O(&")]

t . 100
. / / |13, &, 01)|p(01) T [n(F) - v1]dSzdods. 00
0 Jyt

Estimate of (88): We apply the change of variables (93) and then apply
(97) and use Lemma 4 to bound

(88) / / / Rm 1(3,%,v)|dSzdvds. (101)
o0 JR3

Finally from (89), (91), (100) and (101), we prove our claim (84).

The last step is to pass a limit k& — oo. Clearly the sequence is non-
decreasing in k:

0 < Lt Cpngan (o)) oy 7 (8,2 0)] S Tt ey (2,0))-03 [P (5,2, 0))].

We claim the following;:
Claim : As k — oo,

L om 1.m
1{%<|n(3:b(;c,v))~v|}u(v)4|h (S,.’L’,’U)| - /L(U)4|h (S,LE,U)|,
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a.e. (x,v) € v with dvy. Tt sufﬁces t0 show L1 i1y, (2,0))-0]} (U )i — p(v)i

a.e. on 4. For e >0 and N > ¢~ >> 1, choose k > 1 such that + 7 < 0en in
Lemma 9. Then

1
[1 = Yjn(on(@,0))0/> 13 (T v)}u(vﬂ

W=

< lggifm LB (T) X Lijn(ap (@,0)) 0] < L (V)

Bl

< .
< max 1B (T) X L{jn(ay (@,0))v]<6. n } (V)

< max g (@) X {1guenwco) @u@)t + 1y (eI (o)

1<i<le,n,@

0ol
%/—’

and hence

1
1= L (e (a0))-0]> 23 (@ 0) (V) 2dy

+

1
< 1g, veo dvdS, + O(—
- lﬁirglaffv,n /8(2 /n'v>0 {lvl<Nwe0:} &Y (N)

1
Se+0(3) S=

—~

which concludes the claim.
Now we use the monotone convergence theorem to conclude

t
m 1
/ /5 L1 /k<n(en (@) o]} [P (8, 2, 0) | p(v) T dyds

—>// [h™ (s, 2, v)|u(v )4dvds,
74

as k — oo and therefore fot fﬂ/,; |hm(s7x,v)|u(v)id’yds has the same upper
+
bound of (84). Together with (83) we conclude (79).

4 Linear and Nonlinear Estimates

The main purpose of this section is to prove the main theorem (Theorem 1).
To estimate solutions of the nonlinear equation (1) with the diffuse BC (5) we
use following approximation scheme.
For fy € BV (£2xR?) and H60|”‘2f0||oo < 0o we choose f§ € BV (£2xR3)N
L. W
O (92 x R?) satistying [|e”II"[f§ — follloc = 0 and [[Veu f5lli = [foll 5v-
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Consider the sequence f&™ defined by f° = x.f§ and for all m > 0,

Duf* ™ 4w Vo fom () £

= XeLgain(f5, f5™), in 2 xR,

om0, 2,0) = xe fi(x,v), in 2 x R

femti(t, z,v) = Xs(z,v)c#mﬁm.uw otz u)y/p{n - uldu, on -,
(102)

where x. is defined in (50).
In order to study such sequences, we first consider a linear equation with
the in-flow boundary condition

ft,z,v)|ly. =gt z,v). (103)

Let {r1(x), =2(z)} be a basis of the tangent space at = € 92 (therefore
{r1(x), 72(z),n(z)} is an orthonormal basis of R?). Denote 9, to be the (tan-
gential) 7;—directional derivative and 9,, to be the normal derivative.

Lemma 5 Assumeld is an open subset of R3 x R? such that g C U. Assume
fo(z,v) =0, g(t,z,v) =0, H(t,z,v) =0, for (t,z,v) € [0, T]x{UN(N2xR3)}.

(104)
Assume further that for 0 < 0 < i,

e fo € L2 (xR, g € L2((0, T]x7-), " H € L([0, T]x 2xR?),
and

vmf07 vva € Ll(g X Rd)a
1
g ——{ _9,4- - 1)0 g — H
anga TL(LB) -U{ atg zz:(v Tz)ang Vg+ }a
va,670|”|2Vx1/,679|“‘zvvy e LY[0,T] x v_),
VoH, Vo H, e "y, v ey, e LY([0,T] x 2 x R3).

Then there exists a unique solution f to the transport equation (14) with in-
flow boundary condition (103) such that ¢®*I’ f € C°([0,T] x 2 x R?) and
Vaf, Vof € CO([0,T); L (2 x R?)) and the traces satisfy

V:rf:vzgv vvfzvvga on vy—,
V. f(0,2,v) = Vafo, Vof(0,2,0) = V,fo, in 2 xR

where Vg is defined by

Vg = Z Tiﬁng+ %{ - atg_ Z(v 'Ti)aTig_Vg+H}'

i=1,2 i
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Moreover

IVaf ()l + / IVl + / 1V £l
t t

= 19efoll+ [ aghoat [ f[ sen(@an{vas = Vwp) (05
t t

IVuf (&)l + / Vo f 1 + / WVl

=19ufilh+ [ gl [ ] a9 = Vor = Vs,
(106)

Proof We use the Duhamel formula of f:

t
ft,z,v) = 1{t<tb(g“,)}6_ Jo U(t_T’x_TU’U)deO(x —tv,v)

e fotb@'u) v(t—r,x—7v,0)dT

=+ 1{t>tb(w,v)} g(t - tb('ra U): Z‘b(ﬂf, U)7 U)

min{t,tp(z,v)} 5
+ / e Iy l/(t—T,w—‘rv,U)dTH(t — 8,7 — sv, U)dS.
0

(107)
Following Proposition 1 of [6], we have, on {t # tp}
vxf(t7x’v)1{i;£tb}
= 1{t<tb}e_ fg v(t—T,x—Tv,0)dT
t
) {VZfO(x Tt (/ Vev(t—mz - TU,U)dT) Jo(z — tv,v)}
0
+ 1{t>tb}6_ f(fb v(t—T,x—Tv,0)dT
° n(zp) 2
X { Znar,;g - b {Btg + Z(U “Ti)0r, g +vg — H}}(t — by, 7p,0)
. o 2 (108)

tb

t
—Lgseye Jo® vlt=ra—rvv)dr ( Vvt — 7,2 — 7o, U)dT) g(t — tp, Tp,v)

0

min(t,ty) s
+ / e Jo vt—re—ro)dTy H(t — s, @ — vs,v)ds
0

min(t,tp)
7/ e fos v(t—1,x—Tv,v)dT
0

S
X (/ Vev(s — 1,0 — TU,U)dT) H(t — s,z — vs,v)ds,
0
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v'uf(tv Z, ’U)l{t#tb}

o R T 4 Y fol(e— )

—Lacrye” Jo vit=m@—Tv,0)dr /Ot {—7Vev + Vor}(t — 7,2 — 1v,v)d7 fo(z — tv,v)

~Lpiy bl JoP v(t—r,@—rvv)dr

X {22:7'-8 __@n) S ) _ _

= T n(zy) {09 + ;(U 709 +vg H}}(t tb, Tb, V)

+lpsee” o® V(t_f’z_m’”)dT{va(t — th, Th, v)}

—Liesere fop V(th,ach'u,U)dT{ /Otb {—7Vev + Vorv}(t — 1,2 — 70, v)dT}g(t — th, T, V)
min(t, t,) .

+ /0 e Jo V(=T =TT (G o HY(E— 8,7 — vs, v)ds

min(t,t .
_ / (t:tp) e~ J§ v(t—r,z—Tv,0)dT
0

{/ {—7Vev + Vov}(t — 1,2 — Tv,0)dr}H(t — s, — vs,v)ds
0

(109)
Therefore, we have

2 2
IV f (D1 eyt S IV folls + 112! folloo + (€71 glloc}
L2 n 2
0r.g — —— 10, - 7)0r; —-H
+/0 ‘;T g v-n{ tg-i-;(v 7i)0r,9 + vg }‘77,1
t t o 2
IV + [ sl H ) o
0 0
(110)
2
Vo f (D1 grzenylln S tVafolls + Vo foll + e folloo
.2 n 2
t 0r.g — —— {0, - 7;)0r, —H
om0 s ee= s
¢ 2 0|v|?
[ 1¥aghoa + 8 s ) o
0 0<s<t

t t t 2
[ 19+ [ 19uH 0 [ el il
0 0 0

From our assumptions, fo, g, and H have compact supports and the RHS are
bounded. Therefore

Of ety = 00/ Listenys Vaf Lz, Vol izl € L2([0,T]; L (2 x R?)).

Since 0f = 0 around {t = tp} clearly 0f1;4,y is the distributional deriva-
tive of f. Therefore V, f and V,f lie in L>([0,77]; L' (£2 x R3)); this allows
us to apply Lemma 7 to compute the traces on the incoming boundary in
LY([0,T); L (y_,dw)) (by taking limits of the flow along the characteristics:
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see the proof of Proposition 1 in [6] for details). Then, by Green’s identity
(Lemma 8) we know that V., f and V,f lie in C°([0, T]; L*(£2 x R3)) and we
get (105) and (106).

Before going to the proof of main theorem we recall the standard estimate

from [2]: Suppose a; > 0,D > 0 and A; = max{a;,--- ,a;_(y—1)} for fixed
keN.

1 1 2
If apgr < §Am + D then A,, < §A0 + <§) D for m/k > 1. (111)

Now we are ready to prove the main theorem.
Proof (Proof of Theorem 1) We consider the approximation scheme (102).
Now we consider the derivatives of the solution f&™ of (102). Recall that
BV (£2 x R?) has i) a compactness property:
Suppose g¥ € BV and sup ||g¥|| sy < oo
k (112)
then 3 g € BV with g®* — g in L' up to subsequence,

and i) a lower semicontinuity property:

k k . 1 . . k
Suppose g* € BV and g" — g in L;,, then |[fllzy < thI_l)golf 19" | - (113)

Due to the smooth approximation f§ of the initial datum fy and the cut-off
Xe, f&™ is smooth by Lemma 5. We take derivatives 9 € {V,,V,} to have

[5‘,5 +v-V+ u(\/ﬁfﬁ’m)]af@m“
= _—0v- fos,m—b—l _ V(a[\/ﬁfs,m])fs,m+l 4 6X6Fgain(f€’m7 fs,m)
+ Xea[Fgain(fE’ma ™) + (error)
afe}mle(Oa xz, ’U) = aXEfg(I7 1)) + Xsafg(% ’U),
where (error) < e=01Fay||ef1v]® fem || ||ef1vF fem+1(| . For all (z,v) € v_,

|8f€’m+1(t,x7v)|

< V) 1+<”>) [ o i) o) - uda
|77,( n(z)u>0

x) - v
v)y*eC v|? 2 2
L 19 fylloe + 10 (@, 0) VAP folloo),

ol
In(z) - vl

for some polynomial P. Due to quadratic nonlinear term I" we require P(s) =
s(1+ s).
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Then by Proposition 5 and /pf*™ > 0,

t
lo = (@) + / 055 (3)] 1

t
0’ 2 ’ 2
S e PRaxell e folloo + ||3f§H1+/ 0= (s)l5-
0

. (114)
" / |97+ (5)lads + P(lle"" £ o)
0
t
et [[ o+ [ o shds),
QxR3 0
where we have used Lemma 10 in Appendix A.
Applying Lemma 2 and Proposition 1 to (114), we obtain
t
lorm @l + [ 107" (5
t
S 1" follow + 1 foll v + / 05" ($)a (115)
0
1+ P foloo)] sup 1975 (s)nds + tP([le” 1 fol o).
On the other hand, we apply Proposition 2 and Lemma 7 to bound
t
/ |af€’m+1"y,,1
0
t
< 0(9) / 07"y, 1+ Collfollav + P11 follo)}  (116)
0

’ 2 .
+Cstll+ Pl folloo)] _max_ sup [0 (s)]lr-
t=mm—19<s<¢

Finally from (115) and (116), chosing § < 1 and T' := T'(fo) small enough,
we have for all 0 <¢ < T

t
sup 85 (s)]l1 + / 055 (5)], 4
0

0<s<t

< Allfollzv + P(Ule”1” foll o)}

1 4 "o e
b max { s Jor(o)l + [ joreiha ).
0<s<t 0

8 i=m,m—1

Now using (111) we conclude

t
sup ||3f5’m(5)||1+/O 015" ()la S Iollsy + Pl folloo)

0<s<t

(117)
for all m € N.



44 Y. Guo et al.

Now we pass the to limit in m and then in € to conclude the main theorem.
From the compactness (112) and a lower semicontinuity (113) we conclude

2
sup [|£(s)lsv < Ifollsv + P folloo)-
0<s<t

On the other hand for a fixed 0 < ¢ < 1, it is clear that {f&™}>_, is
1

Cauchy for the norm supyc,<p [|e?1*F - ||lo for 0 < ¢ < 6 < 7 and some
0 < T < 1. The key element of the proof is to utilize the exponential weight
in v to suppress the |v| growth in the gain term estimate at least for some
short time. For details, see Lemma 6 in [6]. Therefore f=™ — f° up to a
subsequence for the norm supy<,<qp [|€? 1" - || and f satisfies (102) with
e+ and f©™ replaced by f¢ by the trace theorem. Moreover since |x.| < 1
for 0 < & < 1, supge;er ||€? 1 £2(#)[| 0o is uniformly bounded in & for 0 < & <
1 and 0 < T < 1. Now we combine such uniform bounds in a weighted L> and
L' convergence up to a subsequence to conclude that the limiting function f
solves the Boltzmann equation (11) and the diffuse boundary condition (13).

For the boundary term we use the weak compactness of measures: If o* is
a signed Radon measure on 942 x R? satisfying sup,, ¥ (962 x R3) < oo then
there exists a Radon measure ¢ such that o* — ¢ in M.

More precisely we define, for almost-every s, and for any Lebesgue-measurable
set A C 012 x R3,

T
o5 (A) = (05T (A), 0 (A), 0 (A), 0 (4), 05 (A), 035 (A))

s,xt s,x2 5,23 s,vt 5,02 5,03

= / Ve fo™(s)dy € R.
A
Then there exists a Radon measure o such that o5 — o, in M, i.e.

/ gofe™(s)dy — gdos forall g€ C%(002 xR?).  (118)
INXR3 0N xR3

It is standard (Hahn’s decomposition theorem) to decompose oy = 05 4+ —
05— with 0, + > 0. Denote |05|pq(y) = 05,4(002 X R?) + 0, (092 x R?).
Then by the lower semicontinuity property of measures we have |0 |4y <
liminf |05 | yq(y) = lminf [0fS™(11(,, 5o that by (117) [ |os|mds <

Il foll Bv+P(|[e?"” follso). Due to (118), the (distributional) derivatives V., f(s)|-
equal the Radon measure o, on 92 x R? in the sense of distributions.

A Some Basic Results

We collect some basic known results such as the derivatives of ¢y, and zy,, the standard trace
theorem, integration by parts formula, and the size of singular set.
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Lemma 6 ([5,2]) If

v-n(zp(z,v)) <0, (119)
then (tp(z,v), zp(x,v)) are smooth functions of (x,v) such that
t

oty = M@0) g ten(m)
v-n(zp) v n(zp)

_ n(zp) _ ton(zp)

Vezp =1 — ————®v, Vozp = —tpl + ———= Qv
v n(wy) v-n(zp)

Recall the almost grazing set vi defined in (16). We first estimate the outgoing trace
on 71 \ 72

Lemma 7 (Outgoing trace theorem, [6]) Assume that ¢ > 0. For any small parameter
8 > 0, there exists a constant Cs 1, > 0 such that for any h in L'([0,T] x 2 x R?) with
Oth +v - Vih + @h lying in LY([0,T] x 2 x R3), we have for all 0 <t < T,

t t
L[ s < o | ol + [ I+ ([0 +0- T+ h(o) Jas
0 Jyp\vg 0

Furthermore, for any (s,z,v) in [0,T] x 2 xR3 the function h(s+s', 2+ s'v,v) is absolutely
continuous in s’ in the interval [— min{tp(z,v), s}, min{ty (z, —v), T — s}].

We remark that for the outgoing part, our estimate is global in time without cut-off, in
contrast to the general trace theorem.

Lemma 8 (Green’s Identity, [5,2]) For p € [1,00) assume that f,0:f + v - Vaof +
of € LP([0,T] x 2 x R3) with ¢ > 0 and f_ € LP([0,T] x 802 x R3;dtdy). Then f €
CO([0,T]; LP(£2 x R3)) and f, € LP([0,T] x 82 x R3;dtdy) and for almost every t € [0,T]

. t t t
Oy A Ty Ty A R CY R S s e

Lemma 9 (Lemma 17 and Lemma 18 of [5]) Let £2 C R® be an open bounded set with
a smooth boundary 052. Then, for all x € {2, we have

mz{v € R®: n(zp(z,v)) -v=0}=0. (120)
Moreover, for any e > 0 and N > 1, there exist 55,1\/_ >0 andl =1l N, balls B(z1;71),
B(z2;72), -+, B(z;m) with ; € 2 and covering 2 (i.e. £ C |JB(xi;74i)), as well as
l open sets Ogy, gy, , 0z C By = {v € R? : |v| < N}, with m3(Os;) < € for
all 1 < i < l. N @, such that for any x € (2, there exists i = 1,2,---,l. N o such that
x € B(z;r;) and
[v-n(zn(z,v))| > 06N, forallvg Oy,
In particular,
Oz, D U {ve By :|v-n(zp(z,v))| < N} (121)
zEB(zi;7;)
Proof The details of the proof are recorded in [5]. The proof of (120) is due to Sard’s
theorem: For fixed « € {2 we consider the following mapping
y—x
ly — x|’

Gp 1002 =S, Gy iy € 0N —

If n(zp(z,v)) -v = 0 then ﬁ is a critical value of ¢, at y = xp(z,v). Then by Sard’s

theorem the Lebesgue measure of such set on S? is zero.

Now we fix 0 < e < 1 and z € 2. Due to (120) there exists an open set O € R? such
that m3(Oz) < € and |v - n(xp(z,v))| # 0 for v ¢ O,. By Lemma 6, v — v - n(zp(z,v)) is
smooth on the compact set {R3\O,}NBy. Then by the compactness we have a positive lower
bound 26, n 5 > 0 of [v-n(zp(x,v))|. Then by Lemma 6 again, there exists a ball B(z;rz)
such that for all y in this ball and all v € {R3\Og} N By we have v n(zp(y,v))| > 8c N,z
Then we use the compactness of {2 to extract the finite covering which satisfies (121).
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Lemma 10 (Lemma 5 of [6]) For any smooth function g = g(z,v) and 8 € {Vz,Vy}
and 0 < 6 < %,

”8Fgain(g7 g)”l
2 2 2
< 1”1 glloo {101 [Vagll + 100l Togll } + () e a0l 1”1 g 12,

//QXR3 |v(9[v/ig))gldvde

2 ey, 2 2
S gl [ [ ] e i ogwlauduas < e glc) 00]h.

B The singular set Sp is a Co-Dimension 1 subset

We prove Remark 1. It suffices to show that Gz N2 xR3 is a co-dimension 1 submanifold of
2 x R3. More precisely we will show that if (zo,v0) € 2 x R3 satisfies n(zp(x0,v0)) -vo = 0
and the boundary is strictly non-convex (10) at (zp(z0,v0),v0) then there exists 0 < e < 1
such that the following set is a 5 dimensional submanifold:

{(z,v) € &g N B((z0,v0);€) : Tb(z,v) ~ Tp(z0,v0)} C 2 x R, (122)

Without loss of generality we may assume zp(zo,v0) = (0,0,0) = 0 and vo = e; and
n(0,0,0) = —e3 so that 942 is locally a graph of a function 7 : R2 — R and V#(0,0) = 0.
Therefore the strictly non-convex condition (10) at (zp(x0,v0),v0) = (0, e1) implies

91011(0,0) # 0. (123)
Clearly, (122) is contained in
{(z+sv,0) € 2xR¥:2 €00, n(z) v=0, (z,v) ~ (zo,v0), s €[0,00)}. (124)

Consider (z,v) ~ (z0,v0). We choose a basis for the tangent space:

1
T = 41 3 0 )
V 1+ [V o1n
1 —01ndan
= 1+ (01n)?
VI+ VP14 (91m)? 8am

For (x1,2,0,74,8) € R? x [0,27) X [0,00) X [0,00) we write (x + sv,v) in (124) as

1
X(z1,22,0,70,8) = 9 + srycos Ti(z1,x2) + srysind Ta(z1,x2),
n(z1, z2)

V(z1,22,0,7y,8) := 1y cos0 T1(x1,T2) + 7y sin 6 ma(z1,x2).

In order to prove Remark 1 it suffices to show that the followings are linearly independent

G o) G G (o) e

That is it suffices to show that the normal is non-vanishing:

e es e3 e4 es eg
Oz, X1 Oz, X2 Opy X3 Ogy V1 Oz, Vo 0z, V3
Oy X1 Ozy X2 Opy X3 Ogy V1 Oz, Vo 02, V3
09 X1 09gXo 09Xz 09gV1 OgVa 0yV3
0sX1 0sX2 0sX3 0 0 0
Or, X1 Or, X2 Or, X3 Op, V1 Or, V2 Or, V3

N :=det
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To compute the normal we need to know

82?7 _8177 8217 0
iz, @) = — 1 0 + — 0 ,
1 1( 1 2) [1 4 (Vn)2]3/2 ( 1 [1 + (V?])Z}S/Q 6271827’] — 91nD1an

1

1 0 1 Vn-Voan
0271 (21,%2) = ————575 0 -7 0 ,
[+ (Y22 \ 5,000 1+ (Y232 \ 90w - Voo

B1(72)1 = (91m)202m0¢n (01m)05m0¢n + 017(2m)?0102n
[14 (81m)2]3/2[1 + | Vn|?]1/2 [L+ (01m)2]V/2[L + |Vn|2)3/2
0?n02m + O11m0102n
[1+ (81m)2]/2[1 + |V [2]1/2”
B (ra)1 = D1nd2nd1021m (011)20amd10am + D10 (D2n)>03n
(14 (81m)2]3/2[1 + | Vn|2]1/2 [L+ (01m)2]Y/2[1 + |Vn|2)3/2
01021027 + 81103y
[1+ (81m)2]Y/2[1 + |V [2]1/2”
Ou(r)a = a1ndEn _ [+ @1m)*) (01008 + 82181821
[1+ (81m)2]V/2[1 + [V [2]1/2 [1+4|Vn[2]3/2 ’
Do () 01101921 [1 + (917)]*/2[01n0102n + D2nd3n)
2\72)2 = - )
(14 (81m)2]Y/2[1 + | Vn|2]2/2 (14 |Vn[2]3/2
B1(m) d1ndandin D1ndandin + (82n)%0102n
1(12)3 = — - — :
’ (14 (B1m)2I3/2[1 + [Vn|2]1/2 [L+ (81m)2]L/2[1 4 [Vn|2]3/2
0102m
+ 9
[1+ (81m)2]/2[1 + |V [2]1/2
Bo(ra)s = — O1nd2nd3n _ 91nd2nd 2 4 (921)*93n
[L+ (B1m)2]3/2[1 + [Vn2]1/2 [1 4 (i) 2]M/2[1 + [Vn|2]3/2
93n

+ .
[1+ (@um)2]1/2[1 + [V 2)1/2

We evaluate the normal at (z1,z2,0,s,7,) = (0,0,0,s,7,). Since 9117(0,0) = 0 =
02n(0,0),

n(0,0):eg,, 7'1(0,0):131, 7‘2(0,0):82,
0171(0,0) = 81811m(0,0)e3, 8271(0,0) = 9182n(0,0)es,
0172(0,0) = 0192n(0,0)e3, 0272(0,0) = 92021(0,0)es.

Due to (123) we have

e] e2 es3 ey es5 €6 0
1 0 —s60101m 0 0 —r,0101m 0
- 0 1 —s0102m 0 0 —ry01027m _ rﬁalam(o, 0)
N(0,0,0,s,7,) = det 0 s B 0 0 = 0 #0.
ry 0 0 0 0 0 0
s 0 0 10 0 s1,0101m(0, 0)

Therefore N (z1,x2,0,s,7y) # 0 for (z1,z2,60) ~ (0,0,0). This proves the claim.

Acknowledgements: This project was initiated during the Kinetic Program at ICERM,
2011. Y. Guo’s research is supported in part by NSFC grant #10828103 and NSF grant
#DMS-1209437. C. Kim'’s research is supported in part by the Herchel Smith fund at the
University of Cambridge. He thanks Brown University and the Academia Sinica at Taipei
for the kind hospitality and support during his stay. A. Trescases thanks the Division of
Applied Mathematics, Brown University for the kind hospitality during her visit.



48 Y. Guo et al.

References

1. Cercignani, C.; Illner, R.; Pulvirenti, M.: The mathematical theory of dilute gases. Ap-
plied Mathematical Sciences, 106. Springer-Verlag, New York, (1994)

2. Esposito, R.; Guo, Y.; Kim, C. ; Marra, R.: Non-Isothermal Boundary in the Boltzmann
Theory and Fourier Law. Comm. Math. Phys. 323 (2013) 177-239.

3. Evans L.; Gariepy R.: Measure Theory and Fine Properties of Functions, CRC Press,
1991

4. Guo, Y.: Singular Solutions of the Vlasov-Maxwell System on a Half Line. Arch. Rational
Mech. Anal. 131 (1995) 241-304.

5. Guo, Y.: Decay and Continuity of Boltzmann Equation in Bounded Domains. Arch.
Rational Mech. Anal. 197 (2010) 713-809.

6. Guo, Y.; Kim, C.; Tonon, D.; Trescases, A.: Regularity of the Boltzmann Equation in
Convex Domains, arXiv:1212.1694, submitted

7. Kim, C.: Formation and propagation of discontinuity for Boltzmann equation in non-
convex domains. Comm. Math. Phys. 308 (2011) 641-701.



