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We consider the Boltzmann equation in a general non-convex domain with the diffuse boundary condition. We establish optimal BV estimates for such solutions. Our method consists of a new W 1,1 -trace estimate for the diffuse boundary condition and a delicate construction of an ε-tubular neighborhood of the singular set.

Introduction

Boundary effects play an important role in the dynamics of solutions of the following so-called Boltzmann equation

∂ t F + v • ∇ x F = Q(F, F ), (1) 
where F (t, x, v) ≥ 0 denotes the particle distribution in the phase space Ω×R 3 . Here t stands for the time variable, x for the space variables, and v for the velocity variables. Throughout this paper, the collision operator takes the form

Q(F 1 , F 2 ) := Q gain (F 1 , F 2 ) -Q loss (F 1 , F 2 ) = R 3 S 2 |v -u| κ q 0 (θ) F 1 (u )F 2 (v ) -F 1 (u)F 2 (v) dωdu, (2) 
where

u = u + [(v -u) • ω]ω, v = v -[(v -u)
• ω]ω and 0 ≤ κ ≤ 1 (hard potential) and 0 ≤ q 0 (θ) ≤ C| cos θ| (angular cutoff) with cos θ = v-u |v-u| • ω with ω ∈ S 2 . We denote the global Maxwellian

µ(v) = exp - |v| 2 2 .
Throughout this paper we assume that Ω is a bounded open subset of R 3 . The boundary ∂Ω is locally a graph of a given C 2 function: for each point x 0 ∈ ∂Ω there exist r > 0 and a C 2 function η : R 2 → R such that, up to a rotation and relabeling, we have ∂Ω ∩ B(x 0 ; r) = x ∈ B(x 0 ; r) : x 3 = η(x 1 , x 2 ) , Ω ∩ B(x 0 ; r) = x ∈ B(x 0 ; r) : x 3 > η(x 1 , x 2 ) .

(

) 3 
The boundary of the phase space Ω × R 3 is

γ := {(x, v) ∈ ∂Ω × R 3 }. ( 4 
)
We denote n = n(x) the outward normal unit vector at x ∈ ∂Ω. We decompose γ as

γ -= {(x, v) ∈ ∂Ω × R 3 : n(x) • v < 0},
(the incoming set),

γ + = {(x, v) ∈ ∂Ω × R 3 : n(x) • v > 0},
(the outgoing set),

γ 0 = {(x, v) ∈ ∂Ω × R 3 : n(x) • v = 0},
(the grazing set).

It is important to point out that the boundary condition is imposed only for the incoming set γ -for general kinetic PDEs. We consider the diffuse boundary condition in this paper: for (x, v) ∈ γ -

F (t, x, v) = c µ µ(v) n(x)•u>0 F (t, x, u){n(x) • u}du, (5) 
where the constant c µ is chosen to satisfies c µ n(x)•u>0 µ(u){n(x) • u}du = 1. Despite extensive developments in the study of the Boltzmann equation, many basic questions regarding solutions in a physical bounded domain, such as their regularity, have remained largely open. This is partly due to the characteristic nature of boundary conditions in kinetic theory: Consider the simple transport equation v • ∇ x f (x, v) = 0 with the given boundary condition f | γ-= g. Then we solve f (x, v) = g(x b (x, v), v) = g(x -t b (x, v)v, v) where t b (x, v) is the backward exit time defined as t b (x, v) := sup({0} ∪ {τ > 0 : x -sv ∈ Ω for all 0 < s < τ }),

x b (x, v) := x -t b (x, v)v. (6) 
Similarly the forward exit time t f is defined as t f (x, v) := sup({0} ∪ {τ > 0 : x + sv ∈ Ω for all 0 < s < τ }),

x f (x, v) := x + t f (x, v)v. (7) 
Since x b (x, v) has singular behavior (even not continuous) if n(x b (x, v))•v = 0, we expect f to be singular on the singular set:

S B := {(x, v) ∈ Ω × R 3 : n(x b (x, v)) • v = 0}, (8) 
which is the collection of all the characteristics emanating from the grazing set γ 0 .

In [START_REF] Guo | Decay and Continuity of Boltzmann Equation in Bounded Domains[END_REF], it is shown that in convex domains, the solutions of the Boltzmann equation are continuous away from the grazing set γ 0 . On the other hand, in [START_REF] Kim | Formation and propagation of discontinuity for Boltzmann equation in nonconvex domains[END_REF], it is shown that the singularity (discontinuity) does occur for Boltzmann solutions in a non-convex domain, and such singularity propagates along the singular set S B . Very recently in [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF] the authors were able to establish weighted C 1 estimates in convex domains for all basic boundary conditions. The main purpose of this paper is to establish the first BV regularity estimate for the Boltzmann solution in non-convex domains.

We denote • ∞ the L ∞ ( Ω ×R 3 ) norm, while • p is the L p (Ω ×R 3 ) norm. We denote | • | p the L p (∂Ω × R 3 , dS x dv) norm and | • | γ,p the L p (∂Ω × R 3 ) = L p (∂Ω × R 3 , dγ) norm where dγ = |n(x) • v|dS x dv with the surface measure dS x on ∂Ω. We write | • | γ±,p = | • 1 γ± | γ,p . For a function f on Ω × R 3 , we denote f γ its trace on γ whenever it exists.

A function

f ∈ L 1 (Ω × R 3 ) has bounded variation in Ω × R 3 if sup Ω×R 3 f divϕdxdv : ϕ ∈ C 1 c (Ω × R 3 ; R 3 × R 3 ), |ϕ| ≤ 1 < ∞.
We define f BV := f L 1 (Ω×R 3 ) + f BV , where

f BV := sup Ω×R 3 f divϕdxdv : ϕ ∈ C 1 c (Ω ×R 3 ; R 3 ×R 3 ), |ϕ| ≤ 1 < ∞.
Now we are ready to state the main theorem.

Theorem 1 Let Ω be a bounded open subset of R 3 with C 2 boundary ∂Ω as in [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]. Assume that 0 ≤ κ ≤ 1 in (2), F 0 = √ µf 0 ≥ 0, f 0 ∈ BV (Ω × R 3 ), and e θ|v| 2 f 0 ∞ < +∞ for 0 < θ < 1 4 . Then there exists T = T ( e θ|v| 2 f 0 ∞ ) > 0 such that F = √ µf solves the Boltzmann equation [START_REF] Cercignani | The mathematical theory of dilute gases[END_REF] with the diffuse boundary condition [START_REF] Guo | Decay and Continuity of Boltzmann Equation in Bounded Domains[END_REF] and f ∈ L ∞ ([0, T ]; BV (Ω × R 3 )) and ∇ x,v f dγ is a Radon measure on ∂Ω × R 3 . Moreover, for all 0 ≤ t ≤ T ,

f (t) BV T,Ω f 0 BV + P ( e θ|v| 2 f 0 ∞ ), (9) 
for some polynomial P and ∇ x,v f γ (t) is a Radon measure σ t on ∂Ω × R 3 such that T 0 |σ t (∂Ω × R 3 )|dt T,Ω f 0 BV + P ( e θ|v| 2 f 0 ∞ ).

We remark that the result holds even without any size restriction for the initial datum within a small time. On the other hand, if e θ|v| 2 g 0 ∞ 1 for F 0 = µ + √ µg 0 ≥ 0 (g 0 = f 0 -√ µ), then Theorem 1 holds for g(t) for all t ≥ 0: g(t) BV t,Ω g 0 BV + P ( e θ|v| 2 g 0 ∞ ).

Due to our weight function e θ|v| 2 for 0 < θ < 1 4 , these estimates imply that f ∼ e -θ|v| 2 ∼ µ(v) 2θ .

Moreover the BV regularity (even in the bulk) is the best regularity we can expect. The reason is that in general the singular set S B is a co-dimension 1 subset in the phase space Ω × R 3 .

Remark 1 Assume that the domain Ω is non-convex, i.e., there exist at least one point x 0 ∈ ∂Ω and u ∈ R 3 and (u 1 , u 2 ) = 0 such that (3) and i,j=1,2 u i u j ∂ i ∂ j η(x 0 ) < 0, (strictly non-convex point).

(10)

Then the singular set S B is a co-dimension 1 subset of Ω × R 3 . Moreover if we restrict the singular set to the characteristics emanating from the strictly non-convex points (x, v) ∈ S B : (x b (x, v), v) is a strictly non-convex point , then this set is a co-dimension 1 submanifold of Ω × R 3 .

We prove Remark 1 in the appendix. Since discontinuous solutions were constructed for non-convex domains in [START_REF] Kim | Formation and propagation of discontinuity for Boltzmann equation in nonconvex domains[END_REF], this remark shows that the Boltzmann solutions are singular on the co-dimensional 1 subset S B . Then it is standard to conclude that the best possible regularity space is indeed the BV space ( [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]), which implies that Theorem 1 is optimal.

The equation for f = F/ √ µ where F solves (1) is

∂ t f + v • ∇ x f + ν( √ µf )f = Γ gain (f, f ), in Ω × R 3 , (11) 
where

Γ gain (f 1 , f 2 ) := 1 √ µ Q gain ( √ µf 1 , √ µf 2 ), ν( √ µf 1 )f 2 := 1 √ µ Q loss ( √ µf 1 , √ µf 2 ). ( 12 
)
The boundary condition for f = F/ √ µ where F satisfies (5) is

f (t, x, v) = c µ µ(v) n(x)•u>0 f (t, x, u) µ(u){n(x) • u}du, on (x, v) ∈ γ -. (13) 
The local-in-time existence of the solution f with sup 0≤t≤T e θ|v| 2 f (t) ∞ e θ |v| 2 f 0 ∞ for 0 < θ < θ < 1 4 is standard (e.g. Lemma 6 in [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF]). We now illustrate the main ideas of the proof of Theorem 1. For simplicity we assume that f solves the following simpler problem

∂ t f + v • ∇ x f + νf = H, f | t=0 = f 0 , (14) 
with the boundary condition (13), and where ν = ν(t, x, v) ≥ 0, H, and ν are smooth enough. We note that in general solutions f of ( 14) are discontinuous on S B and (distributional) derivatives do not exist [START_REF] Kim | Formation and propagation of discontinuity for Boltzmann equation in nonconvex domains[END_REF]. In order to take (distributional) derivatives we employ the following approximation scheme using some smooth cut-off function χ ε (x, v) vanishing on some open neighborhood of S B :

∂ t f ε + v • ∇ x f ε + νf ε = χ ε H in (x, v) ∈ Ω × R 3 , f ε | t=0 = χ ε f 0 in (x, v) ∈ Ω × R 3 , f ε (t, x, v) = χ ε c µ µ(v) n(x)•u>0 f ε (t, x, u) µ(u){n(x) • u}du, on (x, v) ∈ γ -. (15) 
Due to the cut-off χ ε , the solution of (15) f ε vanishes on some open subset of Ω × R 3 containing the singular set S B defined in (8). Therefore f ε is smooth. Once we can show that f ε is uniformly bounded in L ∞ and ∂f ε is uniformly bounded in L 1 (Ω × R 3 ) then we conclude that f ε converges to f strongly in L 1 up to a subsequence. Combining this L 1 convergence and the uniform L ∞ bound we conclude that f ∈ BV solves (14) with (13). We apply (distributional) derivatives ∂ ∈ {∇ x , ∇ v } to the equation and obtain

|∂ t ∂f ε + v • ∇ x ∂f ε + ν∂f ε | ≤ |∂f ε | + |∂νf ε | + |∂χ ε H| + |χ ε ∂H|.
On the other hand at the boundary we use an orthonormal transformation T (x) flattening the boundary in order to remove a x-dependence of the integration range: [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF]). Instead the geometric x-dependence enters into the velocity component and hence after differentiating in x tangentially we have an extra v-derivative. For the normal derivative in x we use the equation. Overall the derivatives of the boundary terms are bounded as in [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF]:

{n(x) • u > 0} → {(T -1 u) 3 > 0} (see (17) -(21) in
|∂f ε | ∼ |∂χ ε | + 1 |n • v| n•u>0 |∂f ε |{n • u}du + 1 |n • v| |H| + |νf | , on γ -.
We then apply the energy-type estimate (Green's identity, Lemma 8) and the above boundary control to have

∂f ε (t) 1 + t 0 |∂f ε | γ+,1 + t 0 ν∂f ε (s) ds ∂χ ε f (0) 1 + t 0 |∂f ε | γ-,1 + t 0 ∂χ ε H 1 + "good terms" t ∂χ ε 1 + |∂χ ε | γ-,1 (A) + C t 0 |∂f ε | γ+,1 (B) 
+ "good terms".

The first main difficulty is to construct a smooth cut-off function χ ε which vanishes on an open neighborhood of S B and makes (A) be finite at the same time. We carefully construct, in Lemma 1, an open neighborhood O ε of S B . More precisely O ε is a collection of ε-tubular neighborhoods of forward trajectories emanating from the grazing set γ 0 . Also we show that O ε contains all points whose distance from S B is less than ε. Such ε-thickness is important for constructing cut-off functions. In fact we construct smooth cut-off functions χ ε by convoluting the characteristic function 1 Ω×R 3 \Oε with some standard mollifier. Moreover the ε-thickness guarantees that the cut-off function vanishes around S B . Fortunately χ ε satisfies the desired bound (A) < ∞, that is, χ ε is uniformly bounded in W 1,1 . (Lemma 2 and Proposition 1 , whose proofs are delicate) Since

χ ε is a standard ε-mollification of 1 Ω×R 3 \Oε we have ∂χ ε ∼ ∂[1 -χ ε ] ∼ 1 ε ( 1 ε 6 1 |x|+|v|<ε ) * 1 Oε . For example a desired estimate for |∂χ ε | γ-,1 is (x,v)∈γ-, |v| 1 1 Oε (x, v)|n(x) • v|dvdS x ∼ ε.
Let us denote O ε a collection of ε-tubular neighborhoods of forward trajectories emanating from γ 0 . Unfortunately there could be infinitely many grazing trajectories passing by x, which might lead to

(x,v)∈γ-, |v| 1 1 Oε (x, v)|n(x) • v|dvdS x ∼ {number of grazing at x} × |v| 1 1 ε-tubular neighborhood (v)|n(x) • v|dv ∼ ∞.
Instead we establish the geometric Lemma 3 to show that |n

(x) • v| √ ε if (x, v) ∈ O ε .
For the proof, we decompose O ε carefully in position and velocity with varying grazing trajectories. We remark that |∂χ ε | γ+,1 < ∞ may not be true in general.

The second main difficulty is to control the outgoing term (B). We denote the (outgoing) almost grazing set

γ δ + := {(x, v) ∈ γ + : v • n(x) < δ or |v| > 1/δ}, ( 16 
)
and the (outgoing) non-grazing set

γ + \γ δ + = {(x, v) ∈ γ + : v • n(x) ≥ δ and |v| ≤ 1/δ}. (17) 
In fact the γ + \γ δ + contribution can be controlled by the bulk integration and the initial data by the trace theorem. However the γ δ + contribution cannot be bounded by the bulk integration nor t 0 |∂f ε | γ+,1 in the LHS of the energy-type estimate since the constant C > 0 of (B) can be large in general. The new idea is to use the Duhamel formula along the trajectory once again (Double iteration scheme) to extract an extra small constant to close the estimate. We evaluate ∂f ε along the characteristics and use the bound of ∂f ε on γ -to have

t 0 |∂f ε | γ δ + ,1 = t 0 (x,v)∈γ δ + |∂f ε (s, x, v)|{n(x) • v}dS x dvds ∼ t 0 ds (x,v)∈γ δ + |∂f ε (s -t b (x, v), x b (x, v), v)|{n(x) • v}dS x dv ∼ t 0 (x,v)∈γ δ + {n(x) • v}|∂χ ε (x b (x, v), v)|dS x dvds (18) + t 0 (x,v)∈γ δ + n(x) • v n(x b (x, v)) • v × n(x b )•u>0 |∂f ε (x b (x, v), u)|{n(x b (x, v)) • u}dudS x dvds. (19) 
In Lemma 4, we establish a crucial change of variables (

x, v) → (x b (x, v), v) with |n(x) • v|dS x dv |n(x b ) • v|dS x b dv. Clearly (18) is bounded by |∂χ ε | γ-,1 .
For (19) we use Lemma 4 to convert x-integration into x b -integration and remove the singular factor

n(x)•v n(x b (x,v))•v . Furthermore, since x ∈ ∂Ω we have x = x b (x b , -v) and (x, v) ∈ γ δ + which implies (x b (x b , -v), v) ∈ γ δ + .
Then we can bound the last term by sup

x b ∈∂Ω 1 (x b (x b ,-v),v)∈γ δ + dv × t 0 |∂f ε | γ+,1 .
Using the covering lemma of [START_REF] Guo | Decay and Continuity of Boltzmann Equation in Bounded Domains[END_REF] (Lemma 9), we are able to extract an extra small constant from sup x b ∈∂Ω 1 (x b (x b ,-v),v)∈γ δ + dv. Finally in order to study the nonlinear problem with diffuse boundary condition we employ some approximation scheme. On each sequence the problem is a linear problem with given boundary data but the solutions are vanishing on the singular set S B . Thanks to the crucial properties of the smooth cut-off function χ ε we are able to achieve uniform estimates via energy-type estimates with the new estimate for the outgoing term. The quadratic nonlinear terms are controllable due to the known pointwise estimates of the solutions ( [START_REF] Guo | Decay and Continuity of Boltzmann Equation in Bounded Domains[END_REF][START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF]).

The plan of the paper is the following: In Section 2 we construct the desired ε-neighborhood of the singular set and its smooth cut-off functions. Then we prove the quantitative estimates of the cut-off functions and their derivatives in the bulk and on the boundary. In Section 3 we establish the new trace theorem using double iteration. In Appendix A we recall some basic geometric results. In the Appendix B we show that the singular set is co-dimension 1 in general.

2 The ε-Neighborhood of the Singular set

In this section, we construct, in Lemma 1, an open covering of the singular set S B of (8) and construct a smooth function that cuts off the open covering. Moreover, we prove the crucial properties of such cut-off functions in Lemma 2, and Proposition 1.

Construction of Neighborhoods

Lemma 1 For 0 < ε ≤ ε 1 1 and θ > 0, we construct an open set O ε,ε1 ⊂ R 3 × R 3 , such that, S B ⊂ O ε,ε1 . (20) 
There exists

C * = C * (Ω) 1 such that for any 0 < ε ≤ ε 1 1 O ε,ε1 ⊂ O ε,C * ε1 . (21) 
Moreover there exist

C 1 = C 1 (θ, Ω, C * ) > 0, C 2 = C 2 (Ω, C * ) > 0, such that Ω×R 3 1 O ε,C * ε (x, v)e -θ|v| 2 dvdx < C 1 ε, (22) 
and

dist Ω × R 3 \O ε,C * ε , S B > C 2 ε. ( 23 
)
Proof Construction of O ε,ε1 : Let us fix δ > 0 (δ will be chosen later in (26)).

Since the boundary ∂Ω is locally a graph of smooth functions, there exists a finite number M Ω,δ of small open balls U 1 , U 2 , .., U M Ω,δ ⊂ R 3 with diam(U m ) < 2δ for all m, such that

∂Ω ⊂ M Ω,δ m=1 [ U m ∩ ∂Ω ] with M Ω,δ = O( 1 δ 2 ), (24) 
and for every m, inside U m the boundary U m ∩ ∂Ω is exactly described by a smooth function η m defined on a (small) open set

A m ⊂ R 2 .
For all m, without loss of generality (up to rotations and translations depending on m, and up to reducing the size of the ball U m ) we will always assume that

U m ∩ ∂Ω = (x 1 , x 2 , η m (x 1 , x 2 )) ∈ A m × R , (25) 
U m ∩ Ω = (x 1 , x 2 , x 3 ) ∈ A m × R : x 3 > η m (x 1 , x 2 ) , and (0, 0) ∈ A m ⊂ open [-δ, δ] × [-δ, δ], ∂ 1 η m (0, 0) = 0 = ∂ 2 η m (0, 0). Therefore n(0, 0, η m (0, 0)) = 1 1 + |∂ 1 η m (0, 0)| 2 + |∂ 2 η m (0, 0)| 2 (∂ 1 η m (0, 0), ∂ 2 η m (0, 0), -1)
= (0, 0, -1).

Recall that ∂Ω is locally C 2 . Then we can choose δ > 0 small enough to satisfy for all m ∈ {1, .., M Ω,δ }

|∂ 1 η m (x 1 , x 2 ) -∂ 1 η m (0, 0)| + |∂ 2 η m (x 1 , x 2 ) -∂ 2 η m (0, 0)| =|∂ 1 η m (x 1 , x 2 )| + |∂ 2 η m (x 1 , x 2 )| ≤ 1 8 for (x 1 , x 2 ) ∈ A m , (26) 
and

|∂ 2 1 η m (x 1 , x 2 )| + |∂ 2 2 η m (x 1 , x 2 )| + |∂ 1 ∂ 2 η m (x 1 , x 2 )| ≤ C η for (x 1 , x 2 ) ∈ A m .
(27) Now we define the lattice point on A m as c m,i,j,ε := (εi, εj) for -

N ε ≤ i, j ≤ N ε = O( δ ε ). ( 28 
)
Then we define the (i, j)-rectangular R m,i,j,ε,ε1 which is centered at c m,i,j,ε and whose side is 2ε 1 :

R m,i,j,ε,ε1 := (x 1 , x 2 ) : εi-ε 1 < x 1 < εi+ε 1 and εj-ε 1 < x 2 < εj+ε 1 ∩ A m . (29) Note that if ε 1 ≥ ε then {R m,i,j,ε,ε1 } is open covering of A m , i.e. A m ⊂ -Nε≤i,j≤Nε R m,i,j,ε,ε1 with N ε = O( δ ε ). (30) 
For each rectangle we define the representative outward normal

n m,i,j,ε := 1 1 + |∂ 1 η m (c m,i,j,ε )| 2 + |∂ 2 η m (c m,i,j,ε )| 2   ∂ 1 η m (c m,i,j,ε ) ∂ 2 η m (c m,i,j,ε ) -1   .
Let {x 1,m,i,j,ε , x2,m,i,j,ε } ⊂ S 2 be an orthonormal basis of the tangent space of ∂Ω at (c m,i,j,ε , η m (c m,i,j,ε )). Remark that the three vectors x1,m,i,j,ε , x2,m,i,j,ε , and n m,i,j,ε are fixed for each m, i, j, ε and that {x 1,m,i,j,ε , x2,m,i,j,ε , n m,i,j,ε } is an orthonormal basis of R 3 . We split the tangent velocity space at (c m,i,j,ε , η m (c m,i,j,ε )) ∈ ∂Ω as

v ∈ R 3 : v • n m,i,j,ε = 0 ⊆ Lε =0 Θ m,i,j,ε,ε1, , with L ε = O( 1 ε ),
where

Θ m,i,j,ε,ε1, := r v cos θ v cos φ v x1,m,i,j,ε + r v sin θ v cos φ v x2,m,i,j,ε + r v sin φ v n m,i,j,ε ∈ R 3 : |r v sin φ v | < 8C η ε 1 for r v ∈ [0, 1], | sin φ v | < 8C η ε 1 for r v ∈ [1, ∞), |θ v -ε | < ε 1 for r v ∈ [0, ∞) , (31) 
with the constant C η > 0 from (27).

Remark that for ε 1 ≥ ε,

Lε =0 Θ m,i,j,ε,ε1, = v ∈ R 3 : |v • n m,i,j,ε | < 8C η ε 1 for |v| ≤ 1, or v |v| • n m,i,j,ε < 8C η ε 1 for |v| ≥ 1 . (32) 
Now we are ready to construct the desired open cover corresponding to R m,i,j,ε,ε1 × Θ m,i,j,ε,ε1, as O m,i,j,ε,ε1, :=

x∈X m,i,j,ε,ε 1 , B R 3 (x; ε 1 ) × Θ m,i,j,ε,ε1, , (33) 
where X m,i,j,ε,ε1,

:= (x 1 , x 2 , η m (x 1 , x 2 )) + τ [cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε ] + sn m,i,j,ε ∈ R 3 : (x 1 , x 2 ) ∈ R m,i,j,ε,ε1 , θ ∈ ε -ε 1 , ε + ε 1 , s ∈ (-ε 1 , ε 1 ) τ ∈ 0, t f (x 1 , x 2 , η m (x 1 , x 2 )), cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε . (34) 
We note that O m,i,j,ε,ε1, is an infinite union of open sets and hence is an open set.

Finally we define

O ε,ε1 := m,i,j, O m,i,j,ε,ε1, ∪ R 3 × B R 3 (0; ε 1 ) , (35) 
where

1 ≤ m ≤ M Ω,δ = O( 1 δ 2 ), -N ε ≤ i, j ≤ N ε = O( δ ε ), 0 ≤ ≤ L ε = O( 1 ε ). Since O ε,ε1 is a union of open sets, it is an open set.
Proof of (20): Suppose there exists (x, v) ∈ S B . By the definition of S B in (8) there exists y = x b (x, v) ∈ ∂Ω, such that x = y + t b (x, v)v and v • n(y) = 0 from ( 6) and [START_REF] Kim | Formation and propagation of discontinuity for Boltzmann equation in nonconvex domains[END_REF]. Then y ∈ U m for some m. Without loss of generality (up to rotations and translations) we may assume that y = (y 1 , y 2 , η m (y 1 , y 2 )) and (y 1 , y 2 ) ∈ R m,i,j,ε,ε1 for some i, j.

Firstly we consider the case of |v| ≥ 1. Then we check that

n m,i,j,ε • v |v| ≤ n(y 1 , y 2 , η m (y 1 , y 2 )) • v |v| + [n m,i,j,ε -n(y 1 , y 2 , η m (y 1 , y 2 ))] • v |v| ≤ 0 + n(c m,i,j,ε , η m (c m,i,j,ε )) -n(y 1 , y 2 , η m (y 1 , y 2 )) ≤ |∇η m (c m,i,j,ε ) -∇η m (y 1 , y 2 )| + 1 + |∇η m (y 1 , y 2 )| 2 -1 + |∇η m (c m,i,j,ε )| 2 1 + |∇η m (c m,i,j,ε )| 2 ≤ 2|∇η m (c m,i,j,ε ) -∇η m (y 1 , y 2 )|,
where we used the Taylor expansion at the last line. Using (27), we have

|∇η m (c m,i,j,ε ) -∇η m (y 1 , y 2 )| ≤ 4ε 1 × η m C 2 (Rm,i,j,ε,ε 1 ) ≤ 4ε 1 × η m C 2 (Am) ≤ 4C η ε 1 .
Therefore we conclude

n m,i,j,ε • v |v| ≤ 8C η ε 1 .
By (32), v ∈ Lε =0 Θ m,i,j,ε,ε1, and hence (x, v) ∈ O ε,ε1 . Secondly we consider the case of |v| ≤ 1. Then from (27) and following the similar estimate of |v| ≥ 1 case

|v • n m,i,j,ε | ≤ |v • n(y)| + |v • (n(y) -n m,i,j,ε )| ≤ 4ε 1 η C 2 (Rm,i,j,ε,ε 1 ) ≤ 4ε 1 η C 2 (Am) ≤ 8C η ε 1 .
By the statement of (32

), v ∈ Lε =0 Θ m,i,j,ε,ε1, and hence (x, v) ∈ O m,i,j,ε,ε1, ⊂ O ε,ε1 .
Proof of (21): It suffices to show that there exists a constant

C * 1 such that if (x, v) ∈ O ε,ε1 then (x, v) ∈ O ε,C * ε1 .
Since in the definition (35) the union on m, i, j, is finite, we have

O ε,ε1 = m,i,j, O m,i,j,ε,ε1, ∪ R 3 × v ∈ R 3 : |v| ≤ ε 1 = R 3 × v ∈ R 3 : |v| ≤ ε 1 ∪ m,i,j, x∈X m,i,j,ε,ε 1 , B R 3 (x; ε 1 ) × Θ m,i,j,ε,ε1, .
First we define an open set including the underbraced set (a closed set). For 0 < ς, we define

x∈X m,i,j,ε,ε 1 , y∈B R 3 (x;ε1) B R 3 (y; ς) = z ∈ R 3 : there exists x ∈ X m,i,j,ε,ε1, and y ∈ B R 3 (x; ε 1 ) such that z ∈ B R 3 (y; ς) . ( 36 
)
Since it is an infinite union of open balls, ( 36) is open and the underbraced set is contained in (36) for any ς > 0. Now we claim that, there exists

C * = C * (Ω) 1 such that for 0 < ε ≤ ε 1 1, there exists 0 < ς = ς(ε 1 , C * ) 1 such that x∈X m,i,j,ε,ε 1 , y∈B R 3 (x;ε1) B R 3 (y; ς) ⊂ x∈X m,i,j,ε,C * ε 1 , B R 3 (x; C * ε 1 ). ( 37 
) Choose z ∈ x∈X m,i,j,ε,ε 1 , y∈B R 3 (x;ε1) B R 3 (y; ς). From (36) there exist x ∈ X m,i,j,ε,ε1, and y ∈ B R 3 (x; ε 1 ) such that z ∈ B R 3 (y; ς). If we choose ς < ε 1 then |x -z| ≤ |x -y| + |y -z| ≤ 2ε 1 < C * ε 1 and therefore z ∈ B R 3 (x; C * ε 1 ).
Clearly x ∈ X m,i,j,ε,C * ε1, . This proves our claim (37).

On the other hand, from (31), C * 1 and the fact that the vectors x1,m,i,j,ε , x2,m,i,j,ε , and n m,i,j,ε are fixed for given m, i, j, Θ m,i,j,ε,ε1,

= v = r v cos θ v cos φ v x1,m,i,j,ε + r v sin θ v cos φ v x2,m,ij,ε + r v sin φ v n m,i,j,ε ∈ R 3 : |r v sin φ v | ≤ 8C η ε 1 for r v ∈ [0, 1], | sin φ v | ≤ 8C η ε 1 for r v ∈ [1, ∞), |θ v -ε | ≤ ε 1 for r v ∈ [0, ∞) ⊂ v = r v cos θ v cos φ v x1,m,i,j,ε + r v sin θ v cos φ v x2,m,ij,ε + r v sin φ v n m,i,j,ε ∈ R 3 : |r v sin φ v | < 8C η C * ε 1 for r v ∈ [0, 1], | sin φ v | < 8C η C * ε 1 for r v ∈ [1, ∞), |θ v -ε | < C * ε 1 for r v ∈ [0, ∞) = Θ m,i,j,ε,C * ε1, . (38) 
Finally we conclude, from (37) and (38),

O ε,ε1 ⊂ m,i,j, x∈X m,i,j,ε,C * ε 1 , B R 3 (x; C * ε 1 ) × Θ m,i,j,ε,C * ε1, ∪ R 3 × B R 3 (0; C * ε 1 ) = O ε,C * ε1 .
Proof of (22): From (35), we deduce

Ω×R 3 1 O ε,C * ε (x, v)e -θ|v| 2 dvdx ≤ m,i,j, Ω×R 3 1 O m,i,j,ε,C * ε, (x, v)e -θ|v| 2 dvdx + m 3 (Ω)O(|ε| 3 ) ≤ M Ω,δ (2N ε ) 2 L ε × sup m,i,j, Ω×R 3 1 O m,i,j,ε,C * ε, (x, v)e -θ|v| 2 dvdx +m 3 (Ω)O(|ε| 3 ) Ω O( 1 ε 3 ) × sup m,i,j, Ω×R 3 1 O m,i,j,ε,C * ε, (x, v)e -θ|v| 2 dvdx + O(|ε| 3 ).
Therefore, to prove (22), it suffices to show sup

m,i,j, Ω×R 3 1 O m,i,j,ε,C * ε, (x, v)e -θ|v| 2 dvdx δ,Ω ε 4 . (39) 
From (31),

R 3 1 Θ m,i,j,ε,C * ε, (v)e -θ|v| 2 dv = |v|≤1 + |v|≥1 ≤ |rv sin φv|≤8CηC * ε d|r v sin φ v | × ∞ 0 |r v cos φ v |e -θ|rv cos φv| 2 d|r v cos φ v | |θv-ε |<C * ε dθ v + ∞ 1 |r v | 2 e -θ|rv| 2 dr v | sin φv|<8CηC * ε dφ v |θv-ε |<C * ε dθ v Ω ε 2 . Now we claim that, for ε 1 ≥ ε, m 3 x∈X m,i,j,ε,ε 1 , B R 3 (x; ε 1 ) Ω ε 2 1 . ( 40 
)
Without loss of generality we assume that i = j = 0 and l = 0. Therefore c m,i,j,ε = 0 in (28) and

X m,i,j,ε,ε1, ⊂ (x 1 , x 2 , η m (x 1 , x 2 )) + τ [cos θe 1 + sin θe 2 ] + se 3 ∈ R 3 : (x 1 , x 2 ) ∈ (-ε 1 , ε 1 ) 2 , θ ∈ (-ε 1 , ε 1 ), τ ∈ 0, t f ((x 1 , x 2 , η(x 1 , x 2 )), cos θe 1 + sin θe 2 ) , s ∈ (-ε 1 , ε 1 ) .
Since Ω is bounded, we have that diam(Ω) = sup x,y∈Ω |x -y| < +∞ and hence

t f ((x 1 , x 2 , η(x 1 , x 2 )), cos θe 1 + sin θe 2 ) ≤ diam(Ω).
We have

x∈X m,i,j,ε,ε 1 , B R 3 (x; ε 1 ) ⊂ 2diam(Ω) τ =0 B R 3 (τ e 1 ; [10 + η C 1 (Am) + τ η C 2 (Am) ]ε 1 ). More precisely x∈X m,i,j,ε,ε 1 , B R 3 (x; ε 1 ) is included in the truncated cone with height diam(Ω), top radius [10 + η C 1 (Am) ]ε 1 , and the bottom radius [10 + η C 1 (Am) + diam(Ω) η C 2 (Am) ]ε 1 .
Therefore, using ( 26) and ( 27), we conclude (40)

m 3 x∈X m,i,j,ε,ε 1 , B R 3 (x; ε 1 ) ≤ m 3 2diam(Ω) τ =0 B R 3 (τ e 1 ; [10 + η C 1 (Am) + τ η C 2 (Am) ]ε 1 ) ≤ 3 diam(Ω) 10 + η C 1 (Am) + diam(Ω) η C 2 (Am) 2 × (ε 1 ) 2 ≤ 3 diam(Ω) 10 + 1 8 + C η diam(Ω) 2 (ε 1 ) 2 Ω ε 2 1 .
Finally selecting

ε 1 = C * ε in (40) we conclude (39) as m 3 x∈X m,i,j,ε,C * ε, B R 3 (x; C * ε) × R 3 1 Θ m,i,j,ε,C * ε, (v)e -θ|v| 2 dv m 3 x∈X m,i,j,ε,C * ε, B R 3 (x; ε 1 ) × (ε) 2 ε 4 .
Proof of ( 23): Due to (20), it suffices to show that there exists

C 2 = C 2 (C * ) > 0 such that dist Ω × R 3 \O ε,C * ε , O ε,ε > C 2 ε. (41) By the definition of O ε,ε in (35), dist( Ω × R 3 \O ε,C * ε , O ε,ε ) = inf |(x, v) -(y, u)| : (x, v) ∈ (O ε,C * ε ) c , (y, u) ∈ O ε,ε = inf m,i,j, inf |(x, v) -(y, u)| : (x, v) ∈ (O ε,C * ε ) c , (y, u) ∈ O m,i,j,ε,ε, ∪ [R 3 × B R 3 (0; ε)] ≥ inf m,i,j, inf |(x, v) -(y, u)| : (x, v) ∈ (O m,i,j,ε,C * ε, ) c ∩ [R 3 × B R 3 (0; C * ε) c ], (y, u) ∈ O m,i,j,ε,ε, ∪ [R 3 × B R 3 (0; ε)] = inf m,i,j, min inf |(x, v) -(y, u)| : (y, u) ∈ R 3 × B R 3 (0; ε), (x, v) ∈ (O m,i,j,ε,C * ε, ) c ∩ [R 3 × B R 3 (0; C * ε) c ] , (42) inf |(x, v) -(y, u)| : (x, v) ∈ (O m,i,j,ε,C * ε, ) c ∩ [R 3 × B R 3 (0; C * ε) c ], (y, u) ∈ O m,i,j,ε,ε, ∩ [R 3 × B R 3 (0; ε) c ] . (43) 
Clearly,

(42) ≥ inf |(x, v) -(y, u)| : (x, v) ∈ R 3 × B R 3 (0; C * ε) c , (y, u) ∈ R 3 × B R 3 (0; ε) ≥ inf |v -u| : v ∈ B R 3 (0; C * ε) c , u ∈ B R 3 (0; ε) = (C * -1)ε.
Now we claim that ( 43) is bounded below by the minimum of ( 44) and (45):

(43)

≥ min inf |(x, v) -(y, u)| : (x, v) ∈ x∈X m,i,j,ε,C * ε , B R 3 (x; C * ε) × Θ m,i,j,ε,C * ε, c \B R 3 (0; C * ε) , (y, u) ∈ x∈X m,i,j,ε, C * 2 ε, B R 3 (x; C * 2 ε) × Θ m,i,j,ε,ε, \B R 3 (0; ε) , (44) inf |(x, v) -(y, u)| : (x, v) ∈ x∈X m,i,j,ε,C * ε, B R 3 (x; C * ε) c × R 3 \B R 3 (0; C * ε) , (y, u) ∈ x∈X m,i,j,ε, C * 2 ε, B R 3 (x; C * 2 ε) × Θ m,i,j,ε,ε, \B R 3 (0; ε) .(45) Firstly, we divide {(x, v) ∈ (O m,i,j,ε,C * ε, ) c } in (43) into two parts: from the definition of O m,i,j,ε,C * ε, in (33), we deduce that (O m,i,j,ε,C * ε, ) c = x∈X m,i,j,ε,C * ε, B R 3 (x; C * ε) × Θ m,i,j,ε,C * ε, c ∪ x∈X m,i,j,ε,C * ε, B R 3 (x; C * ε) c × R 3 .
Therefore, (43) is bounded below by the minimum of the following two numbers:

inf |(x, v) -(y, u)| : (x, v) ∈ x∈X m,i,j,ε,C * ε, B R 3 (x; C * ε) × [ Θ m,i,j,ε,C * ε, c \B R 3 (0; C * ε) c ], (y, u) ∈ O m,i,j,ε,ε, ∩ [R 3 × B R 3 (0; ε) c ] , inf |(x, v) -(y, u)| : (x, v) ∈ x∈X m,i,j,ε,C * ε, B R 3 (x; C * ε) c × [R 3 \B R 3 (0; C * ε)], (y, u) ∈ O m,i,j,ε,ε, ∩ [R 3 × B R 3 (0; ε) c ] . (46) 
Secondly, we consider

{(y, u) ∈ O m,i,j,ε,ε, }. From (37) with ε 1 = ε, for some ς = ς(ε, C * ) > 0 x∈X m,i,j,ε,ε, B R 3 (x; ε) ⊂ x∈X m,i,j,ε,ε, y∈B R 3 (x;ε) B R 3 (y; ς) ⊂ x∈X m,i,j,ε, C * 2 ε, B R 3 (x; C * 2 ε),
and from the definition of O m,i,j,ε,ε, in (33), we conclude

O m,i,j,ε,ε, = x∈X m,i,j,ε,ε, B R 3 (x; ε) × Θ m,i,j,ε,ε, ⊂ x∈X m,i,j,ε, C * 2 ε, B R 3 (x; C * 2 ε) × Θ m,i,j,ε,ε, .
Therefore, the first number of ( 46) is bounded below by (44) and the second of ( 46) by ( 45). This proves the claim. Now we claim that (44) ε, and (45) ε.

Firstly, we prove (44

) ε. Let v ∈ Θ m,i,j,ε,C * ε, c \B R 3 (0; C * ε). By (31) v = r v cos θ v cos φ v x1,m,i,j,ε + r v sin θ v cos φ v x2,m,i,j,ε + r v sin φ v n m,i,j,ε ,
where

|r v sin φ v | ≥ 8C η C * ε and |r v | ≤ 1, or | sin φ v | ≥ 8C η C * ε and |r v | ≥ 1, (47) 
or |θ v -ε | ≥ C * ε. Let u ∈ Θ m,i,j,ε,ε, \B R 3 (0; ε). Again from (31) we have u = r u cos θ u cos φ u x1,m,i,j,ε + r u sin θ u cos φ u x2,m,i,j,ε + r u sin φ u n m,i,j,ε ,
where

|θ u -ε | ≤ ε,
and

|r u sin φ u | ≤ 8C η ε for |r u | ≤ 1, (48) 
and

| sin φ u | ≤ 8C η ε for |r u | ≥ 1. If |θ v -ε | ≥ C * ε then clearly |v -u| ε since |θ u -ε | ≤ ε. Now we consider the case of |θ v -ε | ≤ C * ε. If |r v | ≤ 1 (therefore |r v sin φ v | ≥ 8C η C * ε from (47)) and |r u | ≤ 1 (therefore |r u sin φ u | ≤ 8C η ε from (48)) then |v -u| ≥ |(v -u) • n m,i,j,ε | ≥ |v • n m,i,j,ε | -|u • n m,i,j,ε | ≥ |r v sin φ v | -|r u sin φ u | ≥ 8C η C * ε -8C η ε ε.

On the other hand if |r

v | ≥ 1 and |r u | ≤ 1 (therefore | sin φ v | ≥ 8C η C * ε from (47) and |r u sin φ u | ≤ 8C η ε from (48)), then |v -u| ≥ |(v -u) • n m,i,j,ε | ≥ |r v sin φ v -r u sin φ u | ≥ |r v sin φ v | -|r u sin φ u | ≥ | sin φ v | -8C η ε ≥ 8C η C * ε -8C η ε ε. If |r v | ≤ 1 and |r u | ≥ 1, then |r v sin φ v | ≥ 8C η C * ε from (47) and | sin φ u | ≤ 8C η ε from (48). Fix 0 < c * 1 C * . If C * -c * ≥ |r u |, then |v -u| ≥ |(v -u) • n m,i,j,ε | ≥ |v • n m,i,j,ε | -|u • n m,i,j,ε | = |r v sin φ v | -|r u sin φ u | ≥ 8C η C * ε -|r u | × 8C η ε ≥ 8C η ε(C * -|r u |) ≥ 8C η ε × c * .
On the other hand, if

C * -c * ≤ |r u |, then |v -u| ≥ [u -(u • n m,i,j,ε )n m,i,j,ε ] -[v -(v • n m,i,j,ε )n m,i,j,ε ] ≥ |r u || cos φ u | -|r v || cos φ v | ≥ |r u | 1 -64(C η ) 2 ε 2 -| cos φ v | ≥ (C * -c * ) 1 -64(C η ) 2 ε 2 -1 1.
If

|r v | ≥ 1 and |r u | ≥ 1 then | sin φ v | ≥ 8C η C * ε and | sin φ u | ≤ 8C η ε from (47) and (48). Then |v -u| ≥ |(v -u) • n m,i,j, | |r v || sin φ v -sin φ u | C η (C * -1)ε.
Combining all cases, we deduce (44) ε. Secondly, we prove (45) ε. The proof is due to

(45) ≥ inf |x -y| : x ∈ z∈X m,i,j,ε,C * ε, (B R 3 (z; C * ε)) c , y ∈ z∈X m,i,j,ε, C * 2 ε, B R 3 (z; C * 2 ε) ≥ inf |x -y| : x ∈ z∈X m,i,j,ε, C * 2 ε, (B R 3 (z; C * ε)) c , y ∈ z∈X m,i,j,ε, C * 2 ε, B R 3 (z; C * 2 ε) ≥ inf z∈X m,i,j,ε, C * 2 ε, inf |x -y| : x ∈ (B R 3 (z; C * ε)) c , y ∈ B R 3 (z; C * 2 ε) ≥ C * 2 ε.

Construction of Cut-off functions

Recall the standard mollifier ϕ : R

3 × R 3 → [0, ∞), ϕ(x, v) := C exp 1 |x| 2 + |v| 2 -1 , for |x| 2 + |v| 2 < 1, ϕ(x, v) := 0, for |x| 2 + |v| 2 ≥ 1,
where the constant C > 0 is selected so that

R 3 ×R 3 ϕ(x, v)dvdx = 1. For each ε > 0, set ϕ ε (x, v) := (ε/ C) -6 ϕ( |x| 2 + |v| 2 ε/ C ), (49) 
where C C * 1. Clearly ϕ ε is smooth and bounded and satisfies

R 3 ×R 3 ϕ ε (x, v)dvdx = 1, spt(ϕ ε ) ⊂ B R 3 ×R 3 (0; ε/ C).
Definition 1 We define a smooth cut-off function

χ ε : Ω × R 3 → [0, 2] as χ ε (x, v) := 1 Ω×R 3 \O ε,C * ε * ϕ ε (x, v) = R 3 ×R 3 1 Ω×R 3 \O ε,C * ε (y, u)ϕ ε (x -y, v -u)dudy. ( 50 
)
The following properties of the cut-off function are crucial for our analysis.

Lemma 2 For θ > 0, there exist C C * 1 in ( 49) and ( 50) and

ε 0 = ε 0 (Ω) > 0 such that if 0 < ε < ε 0 then S B ⊂ (x, v) ∈ Ω × R 3 : χ ε (x, v) = 0 , (51) 
and, for either

∂ = ∇ x or ∂ = ∇ v , Ω×R 3 [1 -χ ε (x, v)]e -θ|v| 2 dvdx Ω ε, ( 52 
)
Ω×R 3 |∂χ ε (x, v)|e -θ|v| 2 dvdx Ω 1. ( 53 
)
Proof Firstly we prove (51

). Let (x, v) ∈ S B . Due to (49) if |(x, v) -(y, u)| ≥ ε/ C then ϕ ε (x -y, v -u) = 0. Therefore (50) = B R 6 ((x,v);ε/ C) 1 Ω×R 3 \O ε,C * ε (y, u)ϕ ε (x -y, v -u)dydu.
On the other hand, due to (23) with ε 1 = ε and C C * , we have (y, u) ∈ O ε,C * ε and

1 Ω×R 3 \O ε,C * ε (y, u) ≡ 0, on (y, u) ∈ B R 6 ((x, v); ε/ C).
Therefore we conclude χ ε (x, v) = 0 and (51).

Secondly we deduce (52). We use (22) with ε 1 = ε to have

R 3 ×R 3 R 3 ×R 3 1 -1 Ω×R 3 \O ε,C * ε (y, u) ϕ ε (x -y, v -u)e -θ|v| 2 dudydvdx ≤ R 3 ×R 3 1 O ε,C * ε (y, u)e -θ 2 |u| 2 dudy R 3 ×R 3 ϕ ε (x -y, v -u)e θ|v-u| 2 dvdx ≤ C 1 ε 2 B R 6 (0;ε/ C) ϕ ε (x, v)e θε 2 / C2 dvdx ε,
where we used

-θ|v| 2 = θ|v -u| 2 -θ|v -u| 2 -θ|v| 2 ≤ θ|v -u| 2 - θ 2 |u| 2 . ( 54 
)
Thirdly we prove (53). Note that from a standard scaling argument and (49)

|∂ϕ ε (x, v)| C6 ε 7 1 B R 6 (0;ε/ C) (x, v). We also note that ∂χ ε = -∂[1 -χ ε ]. Therefore, by Lemma 1, Ω×R 3 |∂χ ε (x, v)|e -θ|v| 2 dvdx = [1 -1 Ω×R 3 \O ε,C * ε (y, u)]∂ϕ ε (x -y, v -u)e -θ|v| 2 dudy dvdx ≤ R 3 ×R 3 1 O ε,C * ε (y, u)e -θ 2 |u| 2 dudy R 3 ×R 3 O(ε -7 C6 )1 B R 6 (0;ε/ C) (x, v)dvdx ≤ O(ε) × O(ε -1 )
1.

Proposition 1 With the same constants C C * 1 as in Lemma 2 and 0 < ε < ε 0 ,

S B ∩ [∂Ω × R 3 ] ⊂ (x, v) ∈ ∂Ω × R 3 : χ ε (x, v) = 0 . ( 55 
)
Moreover if |(y, u)| ≤ ε/ C for C C * 1 then ∂Ω n(x)•v<0 1 O ε,C * ε (x-y, v -u)e -θ|v-u| 2 |n(x-y)•(v -u)|dvdS x ε, (56) and γ 
- [1 -χ ε (x, v)]e -θ|v| 2 dγ Ω ε, (57) γ 
- |∂χ ε (x, v)|e -θ|v| 2 dγ Ω 1. ( 58 
)
The following fact is crucial to prove Proposition 1 and especially (56):

Lemma 3 We fix m 0 = 1, 2, • • • , M Ω,δ in (24)
. From (25), we may assume (up to rotations and translations) there exists a C 2 -function 28), (29), and (30))

η m0 : [-δ, δ] × [-δ, δ] → R, whose graph is the boundary U m0 ∩ ∂Ω. Let (x 1 , x 2 ) ∈ A m0 ∩ [-δ/2, δ/2]×[-δ/2, δ/2] and (x 1 , x 2 ) ∈ R m0,i0,j0,ε,C * ε for |i 0 |, |j 0 | ≤ N ε . (see (
Suppose i) |y| ≤ ε/ C and

(x 1 , x 2 , η m0 (x 1 , x 2 )) -y, v ∈ O ε,C * ε , (59) 
and ii) for large but fixed s * 1,

-1 ≤ n m0 (0, 0) • v |v| ≤ -s * C 2 √ ε, with C 2 := 8C * 3 1 + η m0 C 2 (Am 0 ) 1/2 , ( 60 
)
where n m0 (0, 0) = 1 √ 1+|∇ηm 0 (0,0)| 2 (∇η m0 (0, 0), -1). Then either |v| < ε 1/3 or there exists (i, j)

∈ [-N 1 + i 0 , N 1 + i 0 ] × [-N 1 + j 0 , N 1 + j 0 ], with N 1 := 8C 3 √ ε , C 3 := 4C * + 8C * 1 + η m0 C 1 (Am 0 ) 1/2 + 2/ C s * C 2 , (61) 
such that

(x 1 , x 2 , η m0 (x 1 , x 2 ))-y, v ∈ 0≤ ≤Lε O m0,i,j,ε,C * ε, ∩ Ω×{v ∈ R 3 : |v| ≥ ε 1/3 },
and

n m0 (0, 0) • v |v| ≤ C 4 √ ε with C 4 = C 3 1 + η m0 C 2 (Am 0 ) . (62) 
Remark that the constant N 1 in (61) does not depend on x, y, v.

Proof (Proof of Lemma 3) Without loss of generality (up to rotations and translations), we may assume (i 0 , j 0 ) = (0, 0) and η m0 (0, 0) = 0 and ∇η m0 (0, 0) = 0. (63)

Consider the case of |v| ≥ ε 1/3 . Since (x 1 , x 2 , η m0 (x 1 , x 2 )) -y, v ∈ O ε,C * ε we use the definition of O ε,C * ε in (35) to have either |v| < C * ε (64)-(i) or (x -y, v) ∈ m,i,j, O m,i,j,ε,C * ε, (64)-(ii) . (64) 
For small 0 < ε 1, we can exclude the case of ( 64)

-(i) since |v| > ε 1/3 C * ε.
Consider the case of (64) -(ii). In this case, we claim that

(x 1 , x 2 , η m0 (x 1 , x 2 )) -y, v ∈ i,j, O m0,i,j,ε,C * ε, . (65) 
From ( 64) -(ii) and the definition of O m0,i,j,ε,C * ε, in (33), there exist m, i, j, such that

(x 1 , x 2 , η m0 (x 1 , x 2 )) -y, v ∈ p∈X m,i,j,ε,C * ε, B R 3 (p; C * ε) × Θ m,i,j,ε,C * ε, .
In particular, there exists p ∈ X m,i,j,ε,C * ε, satisfying

p -(x 1 , x 2 , η m0 (x 1 , x 2 )) -y < C * ε.
By the definition of X m,i,j,ε,C * ε, in (34),

p = (p 1 , p2 , η m (p 1 , p2 )) + τ cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε + sn m,i,j,ε , for some (p 1 , p2 ) ∈ R m,i,j,ε,C * ε , θ ∈ (ε -C * ε, ε + C * ε), τ ∈ [0, t f ((p 1 , p2 , η m (p 1 , p2 )), cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε )], s ∈ [-ε, ε].
By the definition of t f in [START_REF] Kim | Formation and propagation of discontinuity for Boltzmann equation in nonconvex domains[END_REF],

z := p -sn m,i,j,ε = (p 1 , p2 , η m (p 1 , p2 
)) + τ cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε ∈ Ω.

And

|z -(x 1 , x 2 , η m0 (x 1 , x 2 )) -y | ≤ |z -p| + |p -(x 1 , x 2 , η m0 (x 1 , x 2 )) -y | ≤ 2C * ε. (66) 
From ( 63), (66), and |y| ≤ ε/ C, we deduce

|z -(0, 0, η m0 (0, 0))| ≤ |z -(x 1 , x 2 , η m0 (x 1 , x 2 )) -y | + |(x 1 , x 2 , η m0 (x 1 , x 2 )) -(0, 0, η m0 (0, 0))| + |y| ≤ 2C * ε + 4C * ε(1 + η m0 C 1 (Am 0 ) ) + ε/ C. Denote (z 1 , z2 ) = (p 1 , p2 )
. By the definition of t b and t f in ( 6) and ( 7)

x b (z, cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε + 0n m,i,j,ε ) = (z 1 , z2 , η m0 (z 1 , z2 )). ( 67 
)
On the other hand, by the definition of Θ m,i,j,ε,C * ε, in (31),

v |v| = cos θ v cos φ v x1,m,i,j,ε + sin θ v cos φ v x2,m,i,j,ε + sin φ v n m,i,j,ε , with |θ v -ε | < C * ε, (68) 
and

|v • n m,i,j,ε | < 8C η C * ε, for ε 1/3 ≤ |v| ≤ 1, v |v| • n m,i,j,ε < 8C η C * ε, for 1 ≤ |v|.
Therefore, for 0 < ε 1,

v |v| • n m,i,j,ε = | sin φ v | < max 8C η C * ε 2/3 , 8C η C * ε ≤ 16C η C * ε 2/3 . ( 69 
)
Now we estimate as

n m0 (0, 0) • (cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε + 0n m,i,j,ε ) ≤ n m0 (0, 0) • v |v| + n m (0, 0) • v |v| -(cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε + 0n m,i,j,ε ) (a) 
.

We use (68), (69), and θ

∈ (ε -C * ε, ε + C * ε) to conclude that, for 0 < ε 1, (a) ≤ 2 | cos θ v -cos θ| + | cos θ v cos φ v -1| + | sin θ v -sin θ| +| sin θ v cos φ v -1| + | sin φ v | ≤ 2{4C * ε + 16C η C * ε 2/3 + 2(16) 2 C 2 η C 2 * ε 4/3 } ≤ 200C η C * ε 2/3 .
Finally from (60), for 0 < ε 1,

-1 ≤ n m0 (0, 0) • (cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε + 0n m,i,j,ε ) ≤ -s * × C 2 √ ε + 400C η C * ε 2/3 ≤ - s * C 2 2 √ ε. (70) 
Now we are ready to prove the first claim (65). Denote û := cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε .

Recall that |z| ≤ (2C * + 4C * [1 + η m0 C 1 (Am 0 ) ] + 1/ C)ε and z ∈ Ω. Therefore for 0 < ε 1 the function η m0 is defined around (z 1 , z 2 ) and z 3 > η m0 (z 1 , z 2 ). We define, for |τ | 1,

Φ(τ ) = z 3 -û3 τ -η m0 (z 1 -û1 τ, z 2 -û2 τ ). ( 71 
)
Clearly Φ(0) > 0. Expanding Φ(τ ) in τ , from -û 3 = n m0 (0, 0)•(cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε ), and (70), we have

Φ(τ ) ≤ -û 3 τ + |z 3 | + |η m0 (z 1 -û1 τ, z 2 -û2 τ )| ≤ -s * × C 2 2 √ ετ + (2C * + 4C * [1 + η m0 C 1 (Am 0 ) ] + 1/ C)ε + η m0 C 2 (Am 0 ) (2C * + 4C * [1 + η m0 C 1 (Am 0 ) ] + 1/ C) 2 ε 2 + η m0 C 2 (Am 0 ) |τ | 2 ,
where we have used

η m0 (z 1 -û1 τ, z 2 -û2 τ ) = η m0 (z 1 , z 2 ) + τ 0 d ds η m0 (z 1 -û1 s, z 2 -û2 s)ds = η m0 (z 1 , z 2 ) -(û 1 , û2 ) • ∇η m0 (z 1 , z 2 )τ + τ 0 s 0 d ds 2 1 η m (z 1 -û1 s 1 , z 2 -û2 s 1 )ds 1 ds ≤ η m0 C 2 (Am 0 ) |z| 2 2 -(û 1 , û2 ) • ∇η m0 (0, 0)|τ | + η m0 C 2 (Am 0 ) |z||τ | + η m0 C 2 (Am 0 ) |τ | 2 2 ≤ η m0 C 2 (Am 0 ) |z| 2 + |τ | 2 . Now we plug τ = 1 s * × C 3 √ ε with the constant C 3 in (61) to have, for s * 1 and 0 < ε 1, Φ(τ ) ≤ - C 2 C 3 2 -2C * + 4C * [1 + η m0 C 1 (Am 0 ) ] + 1/ C - η m0 C 2 (Am 0 ) C 2 3 (s * ) 2 ε + O(ε 2 ) < 0.
By the mean value theorem, there exists at least one τ ∈ (0, C 3 √ ε] satisfying Φ(τ ) = 0. We choose the smallest one of them and denote it as τ 0 ∈ (0,

C 3 √ ε]
. By this definition and (67), for 0 < ε 1,

x b (z, û) = x b (z, cos θx 1,m,i,j,ε + sin θx 2,m,i,j,ε ) = z -τ 0 û = z 1 -τ 0 û1 , z 2 -τ 0 û2 , z 3 -τ 0 û3 .
Therefore, x b (z, û) ∈ ∂Ω ∩ U m0 and this proves (65). For 0 < ε 1

| z 1 -τ 0 û1 , z 2 -τ 0 û2 | ≤ 2C * + 4C * (1 + η m0 C 1 (Am) + 1/ C) ε + C 3 √ ε ≤2C 3 √ ε.
Moreover,

z 1 -τ 0 û1 , z 2 -τ 0 û2 ∈ R m0,i,j,ε,C * ε , for |i -i 0 |, |j -j 0 | ≤ (2C 3 √ ε)/ε ≤ 2C 3 1 √ ε ≤ N 1 .
We only need to prove (62). From (69) and ( 61)

n m0 (0, 0) • v |v| ≤ n m0,i,j,ε,C * ε • v |v| + (n m0 (0, 0) -n m0,i,j,ε,C * ε ) • v |v| ≤ 16C η C * ε 2/3 + n m0 C 1 (Am 0 ) |N 1 ε + C * ε| ≤ 16C η C * ε 2/3 + n m0 C 1 (Am 0 ) 2C 3 √ ε + C * ε ≤ 10C 3 (1 + η m0 C 2 (Am 0 ) ) √ ε ≤ C 4 √ ε,
and (62) follows.

Proof (Proof of Proposition 1)

The first statement (55) is clear from (51). Once we assume (56) then it is easy to prove (57), (58):

Firstly we prove (57). Due to properties of the standard mollifier (49), we obtain

x∈∂Ω,n(x)•v<0 1 -χ ε (x, v) e -θ|v| 2 |n(x) • v|dS x dv = x∈∂Ω,n(x)•v<0 R 3 ×R 3 1 -1 Ω×R 3 \O ε,C * ε (x -y, v -u) ϕ ε (y, u)e -θ|v| 2 dudy|n(x) • v|dS x dv ≤ R 3 ×R 3 ϕ ε (y, u)e θ|u| 2 dudy × x∈∂Ω,n(x)•v<0 1 O ε,C * ε (x -y, v -u)e -θ 2 |v-u| 2 |n(x) • v|dS x dv = B R 6 (0;ε/ C) ϕ ε (y, u)e θ 2 |u| 2 dudy × x∈∂Ω,n(x)•v<0
Since |y| + |u| ≤ ε/ C and n(x) • v < 0, we have

n(x) • v = n(x) • v -n(x -y) • (v -u) + n(x -y) • (v -u) = n(x -y) • (v -u) + [n(x) -n(x -y)] • v + n(x -y) • u = n(x -y) • (v -u) + O( ε C )(1 + |v|).
Therefore, we use (56) to bound (57) further as

(57) ≤ B R 6 (0;ε/ C) ϕ ε (y, u)e θ 2 |u| 2 dudy × x∈∂Ω,n(x)•v<0 1 O ε,C * ε (x -y, v -u) e -θ 4 |v-u| 2 e -θ 2 |v| 2 |n(x -y) • (v -u)|dS x dv + O( ε C )e θε 2 2 C2 × m 3 (∂Ω) × R 3 (1 + |v|)e -θ 2 |v| 2 dv Ω ε × e θε 2 2( C) 2 Ω ε.
Secondly we prove (58). Following the same proof of (57) , we deduce

x∈∂Ω,n(x)•v<0 ∂χ ε (x, v)e -θ|v| 2 |n(x) • v|dS x dv = x∈∂Ω,n(x)•v<0 ∂ χ ε (x, v) -1 e -θ|v| 2 |n(x) • v|dS x dv = x∈∂Ω,n(x)•v<0 ∂ R 3 ×R 3 1 O ε,C * ε (y, u)ϕ ε (x -y, v -u)dudy × e -θ|v| 2 |n(x) • v|dS x dv ≤ x∈∂Ω,n(x)•v<0 R 3 ×R 3 1 O ε,C * ε (x -y, v -u)|∂ϕ ε (y, u)|dudy × |n(x) • v|e -θ|v| 2 dS x dv = B R 6 (0;ε/ C) |∂ϕ ε (y, u)|e θ 2 |u| 2 dudy × x∈∂Ω,n(x)•v<0 1 O ε,C * ε (x -y, v -u)e -θ 4 |v-u| 2 e -θ 2 |v| 2 |n(x) • v|dS x dv sup (y,u)∈B R 6 (0;ε/ C) x∈∂Ω,n(x)•v<0 1 O ε,C * ε (x -y, v -u) e -θ 4 |v-u| 2 e -θ 2 |v| 2 (1 + |v|)dS x dv +O( 1 ε ) sup (y,u)∈B R 6 (0;ε/ C) x∈∂Ω,n(x)•v<0 1 O ε,C * ε (x -y, v -u) e -θ 4 |v-u| 2 e -θ 2 |v| 2 |n(x -y) • (v -u)|dS x dv 1.
Proof of (56). Let |(y, u)| ≤ ε/ C. We use (24) to decompose

(56) ≤ M Ω,δ m=1 Um∩∂Ω nm(x)•v<0 1 O ε,C * ε (x -y, v -u)e -θ|v-u| 2 e -θ 2 |v| 2 |n m (x -y) • (v -u)|dvdS x ≤ M Ω,δ × sup m Um∩∂Ω nm(x)•v<0 1 O ε,C * ε (x -y, v -u) e -θ|v-u| 2 e -θ 2 |v| 2 |n m (x -y) • (v -u)|dvdS x Ω 1 δ 2 sup m Um∩∂Ω nm(x)•v<0 1 O ε,C * ε (x -y, v -u) e -θ|v-u| 2 e -θ 2 |v| 2 |n m (x -y) • (v -u)|dvdS x .
For fixed m = 1, 2, • • • , M Ω,δ , we use (25) and (30) again to decompose

Um∩∂Ω nm(x)•v<0 1 O ε,C * ε (x -y, v -u)e -θ|v-u| 2 e -θ 2 |v| 2 |n m (x -y) • (v -u)|dvdS x = Am nm(x1,x2)•v<0 1 O ε,C * ε (x 1 -y 1 , x 2 -y 2 , η m (x 1 , x 2 ) -y 3 , v -u) × e -θ|v-u| 2 e -θ 2 |v| 2 |n m (x -y) • (v -u)|dv 1 + |∇η m (x 1 , x 2 )| 2 dx 1 dx 2 ≤ -Nε≤i,j≤Nε R m,i,j,ε,C * ε nm(x1,x2)•v<0 1 O ε,C * ε (x 1 -y 1 , x 2 -y 2 , η m (x 1 , x 2 ) -y 3 , v -u) × e -θ|v-u| 2 e -θ 2 |v| 2 |n m (x -y) • (v -u)|dv 1 + |∇η m (x 1 , x 2 )| 2 dx 1 dx 2 δ 2 ε 2 sup -Nε≤i,j≤Nε R m,i,j,ε,C * ε nm(x1,x2)•v<0 1 O ε,C * ε (x 1 -y 1 , x 2 -y 2 , η m (x 1 , x 2 ) -y 3 , v -u) × e -θ|v-u| 2 e -θ 2 |v| 2 |n m (x -y) • (v -u)|dv 1 + |∇η m (x 1 , x 2 )| 2 dx 1 dx 2 ,
where

n m (x 1 , x 2 ) = 1 √ 1+|∂1ηm(x1,x2)| 2 +|∂1ηm(x1,x2)| 2   ∂ 1 η m (x 1 , x 2 ) ∂ 2 η m (x 1 , x 2 ) -1   .
We fix i, j. Without loss of generality (up to rotations and translations), we may assume c m,i,j,ε = (0, 0), ∂ 1 η m (0, 0) = 0 = ∂ 2 η m (0, 0), n m,i,j,ε = (0, 0, -1).

We claim

[-C * ε,C * ε] 2 nm(x1,x2)•(v+u)<0 1 O ε,C * ε (x 1 -y 1 , x 2 -y 2 , η m (x 1 , x 2 ) -y 3 , v) × e -θ|v| 2 e -θ 2 |v+u| 2 |n m (x -y) • v|dv 1 + |∇η m (x 1 , x 2 )| 2 dx 1 dx 2 ε 3 . (72) 
Once we prove (72), due to the above estimates for the decomposition, we conclude (56) directly.

For (x 1 , x 2 ) ∈ [-C * ε, C * ε] 2 , |(y, u)| < ε/ C, and n m (x 1 , x 2 ) • (v + u) < 0, we deduce n m,i,j,ε • v = n m (0, 0) • v = n m (x 1 , x 2 ) • (v + u) + n m (0, 0) • v -n m (x 1 , x 2 ) • (v + u) < 0 + |n m (x 1 , x 2 )||u| + |n m (0, 0) -n m (x 1 , x 2 )||v| ≤ ε/ C + 2C * ε η m C 2 ([-C * ε,C * ε] 2 ) |v| ≤ C 5 (1 + |v|)ε, (73) 
where

C 5 = max 1/ C, 2C * η m C 2 ([-C * ε,C * ε] 2 ) . Therefore (72) ≤ [-C * ε,C * ε] 2 nm,i,j,ε•v<C5(1+|v|)ε • • • .
According to Lemma 3, we decompose

[-C * ε,C * ε] 2 nm(0,0)•v≤C5(1+|v|)ε 1 O ε,C * ε (x 1 -y 1 , x 2 -y 2 , η m (x 1 , x 2 ) -y 3 , v) × e -θ|v| 2 e -θ 2 |v+u| 2 |n m (x -y) • v|dv 1 + |∇η m (x 1 , x 2 )| 2 dx 1 dx 2 = [-C * ε,C * ε] 2 -s * C2 √ ε≤nm(0,0)• v |v| ≤C5 1+|v| |v| ε • • • (I) + [-C * ε,C * ε] 2 {-1≤nm(0,0)• v |v| ≤-s * C2 √ ε} • • • (II) . ( 74 
) First we consider (I). If -s * C 2 √ ε ≤ n m (0, 0)• v |v| ≤ 0 then 0 ≤ v 3 = -n m (0, 0)• v ≤ s * C 2 |v| √ ε and for 0 < ε 1 0 ≤ v 3 ≤ 2s * C 2 |v 1 | 2 + |v 2 | 2 √ ε.
Moreover

|n m (x -y) • v| ≤ |n m (0, 0) • v| + n m C 1 ([-C * ε,C * ε] 2 ) (C * + 1/ C)|v|ε ≤ s * C 2 |v| √ ε + 4 η m C 2 ([-C * ε,C * ε] 2 ) (C * + 1/ C)|v|ε. If n m (0, 0) • v |v| ≤ C 5 1+|v| |v| ε then for 0 < ε 1 |v 3 | = |n m (0, 0) • v| ≤ 2C 5 (1 + |v 1 | 2 + |v 2 | 2 )ε. Therefore, (I) = [-C * ε,C * ε] 2 0≤v3≤2s * C2 √ |v1| 2 +|v2| 2 √ ε e -θ|v| 2 s * C 2 |v| √ ε + 4 η m C 2 ([-C * ε,C * ε] 2 ) (C * + 1/ C)|v|ε + [-C * ε,C * ε] 2 |v3|≤2C5(1+ √ |v1| 2 +|v2| 2 )ε e -θ|v| 2 m 2 ([-C * ε, C * ε] 2 ) × √ ε R 2 dv 1 dv 2 e -θ 2 |v1| 2 e -θ 2 |v2| 2 2s * C2 √ |v1| 2 +|v2| 2 √ ε 0 dv 3 + R 2 dv 1 dv 2 e -θ|v1| 2 e -θ|v2| 2 2C5(1+ √ |v1| 2 +|v2| 2 )ε 0 dv 3 ε 3 . ( 75 
)
We decompose (II), according to Lemma 3:

(II) = [-C * ε,C * ε] 2 |v|<ε 1/3 + [-C * ε,C * ε] 2 {-1≤nm(0,0)• v |v| ≤-s * C2 √ ε and |v|≥ε 1/3 } .
The first term is clearly bounded by O(1)ε 3 . For the second term we use (62) to have

-1 ≤ n m (0, 0) • v |v| ≤ -s * C 2 √ ε and |v| ≥ ε 1/3 ⊂ |n m (0, 0) • v |v| | ≤ C 4 √ ε and |v| ≥ ε 1/3 .
Therefore we follow the same proof as for (75) to obtain

(II) ε 3 + [-C * ε,C * ε] 2 |v3|≤2C4 √ |v1| 2 +|v2| 2 √ ε ×e -θ|v| 2 C 4 |v| √ ε + 4 η m C 2 ([-C * ε,C * ε] 2 ) (C * + 1/ C)|v|ε ε 3 . ( 76 
)
We conclude (74) from ( 75) and (76).

New Trace Theorem via the Double Iteration

In this section we prove the following geometric result. For the later purpose (this will be used in the approximation scheme for the nonlinear problem with diffuse BC) we state the result for the sequence of

Proposition 2 Let h 0 ∈ L 1 (Ω×R 3 ). Let (h m ) m≥0 ⊂ L ∞ ([0, T ]; L 1 (Ω×R 3 ))∩ L 1 ([0, T ]; L 1 (γ + , dγ)) solve {∂ t + v • ∇ x + ν}h m+1 = H m , h m+1 | t=0 = h 0 , (77) 
where ν = ν(t, x, v) ≥ 0, and such that the following inequality holds for all

(x, v) ∈ γ - |h m+1 (t, x, v)| ≤ C 1 µ(v) 1 + v |n(x) • v| n(x)•u>0 |h m (t, x, u)|µ(u) 1 4 {n(x) • u}du + 1 + e -C2|v| 2 |n(x) • v| R m , ( 78 
)
where

H m ∈ L 1 ([0, T ]; L 1 (Ω×R 3 )) and R m ∈ L 1 ([0, T ]; L 1 (∂Ω×R 3 , v dS x dv)).
Then for all m ≥ 1,

h m+1 γ- ∈ L 1 ([0, T ]; L 1 (γ -, dγ)) and satisfies, for t ∈ [0, T ] and 0 < δ 1, t 0 |h m+1 (s)| γ-,1 ≤ O(δ) t 0 |h m-1 (s)| γ+,1 + C δ h 0 1 + C δ max i=m,m-1 t 0 h i (s) 1 + t 0 | v R i (s)| 1 + t 0 H i (s) 1 .
(79)

Our proof requires the following lemma:

Lemma 4 Let Ω ⊂ R 3 be an open bounded set with a smooth boundary ∂Ω.

For k ∈ N, consider the map

Φ k : {(x, v) ∈ γ + : n(x b (x, v)) • v < -1/k} → {(x b , v) ∈ γ -: n(x b ) • v < -1/k} , (x, v) → Φ k (x, v) := (x, v) := (x b (x, v), v).
Then Φ k is one-to-one and we have a change of variables formula for all k ∈ N :

1 {n(x)•v<-1/k} |n(x) • v| dvdS x = 1 {n(x b (x,v))•v<-1/k} |n(x) • v| dvdS x . Proof (Proof of Lemma 4) Let (x, v), (x , v ) ∈ γ + such that n(x b (x, v)) • v, n(x b (x , v )) • v < -1/k. If Φ k (x, v) = Φ k (x , v ) then v = v and x b (x, v) = x b (x , v). Since x = x f (x b (x, v), v) = x f (x b (x , v), v) = x the mapping Φ k is one-to-one.
Now we prove the change of variables formula. It suffices to consider a small neighborhood of ∂Ω around x. Without loss of generality we may assume x 3 = η(x 1 , x 2 ) for some η : R 2 → R. First we consider the case (0, 0, 1)

•n(x b (x, v)) = 0 so that x = x b (x, v) = (x 1 , x2 , x3 ) = (x 1 , x2 , ϕ(x 1 , x2 )) ∈ ∂Ω,
for some function ϕ : R 2 → R.

The change of variable is given by

dS xdv = 1 + |∇ϕ| 2 dx 1 dx 2 dv = 1 + |∇ϕ| 2 1 + |∇η| 2 J 1 + |∇η| 2 dx 1 dx 2 dv = 1 + |∇ϕ| 2 1 + |∇η| 2 JdS x dv. ( 80 
)
where J is the Jacobian,

J = ∂(x 1 , x2 , v 1 , v 2 , v 3 ) ∂(x 1 , x 2 , v 1 , v 2 , v 3 ) = ∂ x1 x1 ∂ x2 x1 ∂ x1 x2 ∂ x2 x2 .
By the definition of x b (x, v), we have the following identity: v|x -x| = |v|(xx), i.e.

{(x 1 -x1 ) 2 + (x 2 -x2 ) 2 + [η(x 1 , x 2 ) -ϕ(x 1 , x2 )] 2 } 1 2   v 1 v 2 v 3   = |v|   x 1 -x1 x 2 -x2 η(x 1 , x 2 ) -ϕ(x 1 , x2 )   . (81) Denote D = {(x 1 -x1 ) 2 + (x 2 -x2 ) 2 + [η(x 1 , x 2 ) -ϕ(x 1 , x2 )] 2 }. Directly from (81)   (x 1 -x1 ) + (η -ϕ)∂ x1 ϕ D -1 2 v 1 -|v| (x 2 -x2 ) + (η -ϕ)∂ x2 ϕ D -1 2 v 1 (x 1 -x1 ) + (η -ϕ)∂ x1 ϕ D -1 2 v 2 (x 2 -x2 ) + (η -ϕ)∂ x2 ϕ D -1 2 v 2 -|v|   × ∂x 1 x1 ∂x 2 x1 ∂x 1 x2 ∂x 2 x2 = v 1 D -1 2 (x 1 -x1 ) + (η -ϕ)∂x 1 η -|v| v 1 D -1 2 (x 2 -x2 ) + (η -ϕ)∂x 2 η v 2 D -1 2 (x 1 -x1 ) + (η -ϕ)∂x 1 η v 2 D -1 2 (x 2 -x2 ) + ∂x 2 η(η -ϕ) -|v| .
Direct computations yield

J = |v| -D -1 2 v 1 (x 1 -x1 ) + v 1 (η -ϕ)∂ x1 η + v 2 (x 2 -x2 ) + v 2 (η -ϕ)∂ x2 η |v| -D -1 2 v 2 (x 2 -x2 ) + v 2 (η -ϕ)∂ x2 ϕ + v 1 (x 1 -x1 ) + v 1 (η -ϕ)∂ x1 ϕ = |v| 2 -(v 1 ) 2 + (v 2 ) 2 + (v 3 )(v 1 ∂ x1 η + v 2 ∂ x2 η) |v| 2 -(v 1 ) 2 + (v 2 ) 2 + (v 3 )(v 1 ∂ x1 ϕ + v 2 ∂ x2 ϕ) = (∂ x1 η, ∂ x2 η, -1) • v (∂ x1 ϕ, ∂ x2 ϕ, -1) • v = 1 + |∇η| 2 1 + |∇ϕ| 2 × n(x) • v n(x) • v .
Then we use (80) to conclude the proof.

Secondly we consider the case of n 1 (x b (x, v)) = 0 or n 2 (x b (x, v)) = 0. Without loss of generality we may assume n 2 (x b (x, v)) = 0 so that

x = x b (x, v) = (x 1 , x2 , x3 ) = (x 1 , ϕ(x 1 , x3 ), x3 ),
for some function ϕ : R 2 → R. Notice that (80) still holds with x2 replaced by x3 . From the fact that v|x -x| = |v|(x -x) we have

{(x 1 -x1 ) 2 + (x 2 -ϕ(x 1 , x3 )) 2 + [η(x 1 , x 2 ) -x3 ] 2 } 1 2   v 1 v 2 v 3   = |v|   x 1 -x1 x 2 -ϕ(x 1 , x3 ) η(x 1 , x 2 ) -x3 .   . (82) We define D = {(x 1 -x1 ) 2 + (x 2 -ϕ(x 1 , x3 )) 2 + [η(x 1 , x 2 ) -x3 ] 2 }. By direct computation    (x 1 -x1 ) + (x 2 -ϕ)∂ x1 ϕ v 1 D-1 2 -|v| (x 2 -ϕ)∂ x3 ϕ + (η -x3 ) v 1 D-1 2 (x 1 -x1 ) + (x 2 -ϕ)∂ x1 ϕ v 3 D-1 2 (x 2 -ϕ)∂ x3 ϕ + (η -x3 ) v 3 D-1 2 -|v|    × ∂x 1 x1 ∂x 2 x1 ∂x 1 x3 ∂x 2 x3 =   (x 1 -x1 ) + (η -x3 )∂x 1 η v 1 D-1/2 -|v| (x 2 -ϕ) + (η -x3 )∂x 2 η v 1 D-1/2 (x 1 -x1 ) + (η -x3 )∂x 1 η v 3 D-1/2 -|v|∂x 1 η (x 2 -ϕ) + (η -x3 )∂x 2 η v 3 D-1/2 -|v|∂x 2 η   ,
and

det ∂x 1 x1 ∂x 2 x1 ∂x 1 x3 ∂x 2 x3 = |v| 2 ∂x 2 η -(x 1 -x1 ) + (η -x3 )∂x 1 η v 1 |v| D-1 2 ∂x 2 η + (x 2 -ϕ) + (η -x3 )∂x 2 η D-1 2 |v|(v 1 ∂x 1 η -v 3 ) |v| 2 -(x 1 -x1 ) + (x 2 -ϕ)∂ x1 ϕ |v|v 1 D-1 2 -(x 2 -ϕ)∂ x3 ϕ + (η -x3 ) |v|v 3 D-1 2 = v 1 ∂x 1 η + v 2 ∂x 2 η -v 3 -v 1 ∂ x1 ϕ + v 2 -v 3 ∂ x3 ϕ = ∂x 1 η, ∂x 2 η, -1 • v -∂ x1 ϕ, -1, ∂ x3 ϕ • v = - 1 + |∇η| 2 1 + |∇ϕ| 2 × n(x) • v n(x) • v .
Then we use (80) (with x2 replaced by x3 ) to conclude the proof.

Proof (Proof of Proposition 2)

It suffices to prove the estimate (79). Using (78), we obtain

t 0 |h m+1 (s)| γ-,1 := t 0 n(x)•v<0 |h m+1 (s, x, v)||n(x) • v|dS x dvds (A) + (B),
where

(A) := t 0 n(x)•v>0 |h m (s, x, v)|µ(v) 1 4 |n(x) • v|dS x dvds, (B) := t 0 n(x)•v<0 |R m (s, x, v)|{1 + |n(x) • v|}dS x dvds.
Clearly the last term (B) is bounded by the RHS of (79). Focus on (A). Recall the almost grazing set γ δ + and the non-grazing set γ + \γ δ + in ( 16) and (17). We split the outgoing part as

γ + = γ δ + ∪ γ + \γ δ + .
Due to Lemma 7 in Appendix A, the non-grazing part γ + \γ δ + of the integral is bounded as

t 0 γ+\γ δ + t,δ,Ω h 0 1 + t 0 h m (s) 1 + [∂ t + v • ∇ x + ν]h m (s) 1 ds t,δ,Ω h 0 1 + t 0 h m 1 + t 0 H m-1 1 . (83) 
For the almost grazing set γ δ + , we claim that the following truncated term with a number k ∈ N is uniformly bounded in k as follows:

Claim:

t 0 x∈∂Ω, n(x)•v>0 1 {(x,v)∈γ δ + } 1 {1/k<|n(x b (x,v))•v|} |h m (s, x, v)|µ(v) 1 4 {n(x) • v}dvdS x ds ≤ O(δ) t 0 |h m-1 (s)| γ+,1 + C δ h 0 1 + t 0 h m-1 (s) 1 + t 0 H m-1 1 + t|R m-1 | 1 . (84) 
Proof of Claim (84): In order to show (84) we use the Duhamel formula of the equation (77) together with (78): for (x, v) ∈ γ δ + and

1 k < |n(x b (x, v)) • v| |h m (s, x, v)|1 {(x,v)∈γ δ + } 1 {1/k<|n(x b (x,v))•v|} ≤ 1 {s<t b (x,v)} |h 0 (x -sv, v)| + s max{0,s-t b (x,v)} |H m-1 (τ, x -(s -τ )v, v)|dτ + 1 {s>t b (x,v)} 1 {1/k<|n(x b (x,v))•v|} C 1 µ(v) 1 + v |n(x b (x, v)) • v| × n(x b (x,v))•v1>0 |h m-1 (s -t b (x, v), x b (x, v), v 1 )|µ(v 1 ) 1 4 {n(x b (x, v)) • v 1 }dv 1 + 1 {s>t b (x,v)} 1 {1/k<|n(x b (x,v))•v|} 1 + e -C2|v| 2 |n(x b (x, v)) • v| × |R m-1 (s -t b (x, v), x b (x, v), v)|.
We plug this estimate into the left hand side of (84) to have

t 0 x∈∂Ω, n(x)•v>0 1 {(x,v)∈γ δ + } 1 {1/k<|n(x b (x,v))•v|} |h m (s, x, v)|µ(v) 1 4 {n(x) • v}dvdSxds ≤ t 0 γ δ + 1 {1/k<|n(x b (x,v))•v|} |h 0 (x -sv, v)|µ(v) 1 4 |n(x) • v|dSxdvds (85) 
+ t 0 γ δ + 1 {1/k<|n(x b (x,v))•v|} µ(v) 1 4 |n(x) • v| × s max{0,s-t b (x,v)} |H m-1 (τ, x -(s -τ )v, v)|dτ dSxdvds (86) 
+ t 0 γ δ + 1 {1/k<|n(x b (x,v))•v|} µ(v) 1 2 |n(x) • v| |n(x b (x, v)) • v| n(x b (x,v))•v 1 >0 1 {s>t b (x,v)} ×|h m-1 (s -t b (x, v), x b (x, v), v 1 )|µ(v 1 ) 1 4 {n(x b (x, v)) • v 1 }dv 1 dSxdvds (87) 
+ t 0 γ δ + 1 {s>t b (x,v)} 1 {1/k<|n(x b (x,v))•v|} µ(v) 1 4 |n(x) • v| |n(x b (x, v)) • v| ×|R m-1 (s -t b (x, v), x b (x, v), v)|dSxdvds. (88) 
Estimate of (85): Note that x ∈ ∂Ω in (85). Without loss of generality we may assume that there exists η : R 2 → R such that x 3 = η(x 1 , x 2 ). We apply the following change of variables: for fixed v ∈ R 3 ,

(x 1 , x 2 ; s) ∈ R 2 × {0 ≤ s ≤ t b (x, v)} → y = (x 1 -sv 1 , x 2 -sv 2 , η(x 1 , x 2 ) -sv 3 ) ∈ Ω.
Clearly such mapping is one-to-one.

We compute the Jacobian:

det ∂(y 1 , y 2 , y 3 ) ∂(x 1 , x 2 , s) = det   1 0 -v 1 0 1 -v 2 ∂ x1 η(x 1 , x 2 ) ∂ x2 η(x 1 , x 2 ) -v 3   = v •   ∂ x1 η ∂ x2 η -1   = v • n 1 + |∂ x1 η| 2 + |∂ x2 η| 2 . Therefore {v•n(x)}dS x ds = {v•n(x)} 1 + |∂ x1 η| 2 + |∂ x2 η| 2 dx 1 dx 2 ds = dy = dy 1 dy 2 dy 3 , and (85) ≤ R 3 dv t 0 ds ∂Ω dS x 1 {(x,v)∈γ+} 1 {1/k<|n(x b (x,v))•v|} |h 0 (x -sv, v)|µ(v) 1 4 |n(x) • v| ≤ R 3 dv Ω dy|h 0 (y, v)|µ(v) 1 4 ≤ h 0 1 . (89) 
Estimate of (86): Considering the region of (τ, s)

∈ [0, t]×[0, t] : max{0, s- t b (x, v)} ≤ τ ≤ s , (86) ≤ R 3 dv t 0 dτ min{t,τ +t b (x,v)} τ ds ∂Ω dS x |H m-1 (τ, x -(s -τ )v, v)|µ(v) 1 4 |n(x) • v|. (90) 
Note that x ∈ ∂Ω. Without loss of generality we may assume that x 3 = η(x 1 , x 2 ) for η : R 2 → R. We apply the change of variables: for fixed v ∈ R 3 and τ ∈ [0, t],

(x 1 , x 2 ; s) ∈ R 2 × [τ, min{t, τ + t b (x, v)}] → y ≡ (x 1 -(s -τ )v 1 , x 2 -(s -τ )v 2 , η(x 1 , x 2 ) -(s -τ )v 3 ). The Jacobian is {v • n(x)} 1 + |∂ x1 η| 2 + |∂ x2 η| 2 and {v • n(x)}dsdS x ≤ dy.
Applying the change of variables to (90) we have

(86) ≤ t 0 R 3 Ω |H m-1 (τ, y, v)|µ(v) 1 4 dydvdτ. ( 91 
)
Estimate of (87): This part is the most delicate among (85)-(88). Rewrite (87) as

t 0 ds ∂Ω dS x R 3 dv R 3 dv 1 1 {(x,v)∈γ δ + } 1 {n(x b (x,v))•v1>0} 1 {s>t b (x,v)} 1 {|n(x b (x,v))•v|>1/k} µ(v 1 ) 1 4 µ(v) 1 2 |n(x) • v| |n(x b (x, v)) • v| |n(x b (x, v)) • v 1 ||h m-1 (s -t b (x, v), x b (x, v), v 1 )|. (92) 
First we apply the following change of variables

s ∈ [0, t] → s = s -t b (x, v) ∈ [0, t -t b (x, v)], (93) 
where we have used the fact that s is integrated over [t b (x, v), t]. Clearly the Jacobian is 1 so that ds = ds and hence

(92) ≤ t 0 ds ∂Ω dS x R 3 dv R 3 dv 1 1 {(x,v)∈γ δ + } 1 {n(x b (x,v))•v1>0} 1 {|n(x b )•v|>1/k} µ(v 1 ) 1 4 µ(v) 1 2 |n(x) • v| |n(x b (x, v)) • v| |n(x b (x, v)) • v 1 | |h m-1 (s, x b (x, v), v 1 )|. (94) 
Let us denote

x := x b (x, v). (95) 
Note that since (x, v) ∈ γ + and |n(x b (x, v)) • v| > 1/k, from Lemma 4, the mapping (x, v) → (x, v) is one-to-one and

t b (x, v) = t b (x b (x, v), -v), x = x b (x, v) + t b (x, v)v = x b (x, v) + t b (x b (x, v), -v)v =x b (x, v) -t b (x b (x, v), -v)(-v) = x -t b (x, -v)(-v),
and hence we can rewrite the underbraced term in (94) as

1 {(x,v)∈γ δ + } = 1 {0<n(x-t b (x,-v)(-v))•v<δ or |v|>1/δ} . (96) 
Now we apply the change of variables of Lemma 4: for (x, v)

∈ γ + and |n(x b (x, v)) • v| = |n(x) • v| > 1/k, we apply the change of variables (x, v) → (x, v) := (x b (x, v), v). (97) 
From Lemma 4, the Jacobian is

det ∂(x, v) ∂(x, v) = det ∂ x ∂x = n(x) • v n(x) • v 1 + |∇η| 2 1 + |∇ϕ| 2 ,
and

dS x := n(x) • v n(x) • v dS x .
Then from ( 94) and ( 96),

≤ t 0 ds R 3 dv 1 R 3 dv ∂Ω dS x 1 0<n(x-t b (x,-v)(-v))•v<δ + 1 |v|>1/δ × 1 {n(x)•v1>0} 1 {|n(x)•v|>1/k} µ(v) 1 2 µ(v 1 ) 1 4 |n(x) • v 1 | |h m-1 (s, x, v 1 )| ≤ t 0 γ+ |h m-1 (s, x, v 1 )|µ(v 1 ) 1 4 |n(x) • v 1 |dS xdv 1 ds × sup x∈∂Ω R 3 1 {-δ<n(x-t b (x,-v)(-v))•(-v)<0} µ(v) 1 2 dv + O(δ) t 0 γ+ |h m-1 (s, x, v 1 )|µ(v 1 ) 1 4 |n(x) • v 1 |dS xdv 1 ds, (92) 
where we extracted O(δ) from

R 3 1 |v|>1/δ µ(v) 1 2 dv e -1 10δ R 3 µ(v) 1 4
dv. We claim the following: Claim : For any small 0 < δ 1, we can choose sufficiently small 0 < δ 1 such that

sup x∈∂Ω R 3 1 {-δ<n(x-t b (x,-v)(-v))•(-v)<0} µ(v) 1 2 dv ≤ δ . (99) 
This is a consequence of Lemma 9. For given δ > 0, we choose a sufficiently large N 1 δ and we take δ δ ,N > 0 as in Lemma 9. Then we choose a sufficiently small δ = δ(δ , N ) > 0 such that δ δ δ ,N in Lemma 9. Due to Lemma 9 and (121),

max i sup x∈B(xi;ri) m 3 {v ∈ R 3 : |v| ≤ N, |n(x b (x, -v)) • (-v)| ≤ δ} ≤ max i m 3 (O xi ) ≤ δ .
Finally we conclude the claim (99) by

R 3 1 {-δ<n(x b (x,-v))•(-v)<0} µ(v) 1 2 dv = |v|≥N + |v|≤N ≤ e -N 2 /4 + max i m 3 (O i ) ≤ e -1 4(δ ) 2 + δ .
Therefore, from (94), ( 98), (99), we have, for 0 < δ, δ 1,

(87) [O(δ) + O(δ )] × t 0 γ+ |h m-1 (s, x, v 1 )|µ(v 1 ) 1 4 |n(x) • v 1 |dS xdv 1 ds. ( 100 
)
Estimate of (88): We apply the change of variables (93) and then apply (97) and use Lemma 4 to bound (88)

t 0 ∂Ω R 3 µ(v) 1 4 |R m-1 (s, x, v)|dS xdvds. (101) 
Finally from (89), (91), (100) and (101), we prove our claim (84).

The last step is to pass a limit k → ∞. Clearly the sequence is nondecreasing in k:

0 ≤ 1 { 1 k <|n(x b (x,v))•v|} |h m (s, x, v)| ≤ 1 { 1 k+1 <|n(x b (x,v))•v|} |h m (s, x, v)|.
We claim the following: Claim : As k → ∞,

1 { 1 k <|n(x b (x,v))•v|} µ(v) 1 4 |h m (s, x, v)| → µ(v) 1 4 |h m (s, x, v)|,
Consider the sequence f ε,m defined by f ε,0 = χ ε f ε 0 and for all m ≥ 0,

∂ t f ε,m+1 + v • ∇ x f ε,m+1 + ν( √ µf ε,m )f ε,m+1 = χ ε Γ gain (f ε,m , f ε,m ), in Ω × R 3 , f ε,m+1 (0, x, v) = χ ε f ε 0 (x, v), in Ω × R 3 , f ε,m+1 (t, x, v) = χ ε (x, v)c µ µ(v) n(x)•u>0 f ε,m (t, x, u) √ µ{n • u}du, on γ -, (102) 
where χ ε is defined in (50).

In order to study such sequences, we first consider a linear equation with the in-flow boundary condition

f (t, x, v)| γ-= g(t, x, v). ( 103 
)
Let {τ 1 (x), τ 2 (x)} be a basis of the tangent space at x ∈ ∂Ω (therefore {τ 1 (x), τ 2 (x), n(x)} is an orthonormal basis of R 3 ). Denote ∂ τi to be the (tangential) τ i -directional derivative and ∂ n to be the normal derivative.

Lemma 5 Assume U is an open subset of R 3 ×R 3 such that S B ⊂ U. Assume f 0 (x, v) ≡ 0, g(t, x, v) ≡ 0, H(t, x, v) ≡ 0, for (t, x, v) ∈ [0, T ]×{U∩( Ω×R 3 )}.
(104) Assume further that for 0 < θ < 1 4 ,

e θ|v| 2 f 0 ∈ L ∞ (Ω×R 3 ), e θ|v| 2 g ∈ L ∞ ([0, T ]×γ -), e θ|v| 2 H ∈ L ∞ ([0, T ]×Ω×R 3 ), and 
∇ x f 0 , ∇ v f 0 ∈ L 1 (Ω × R 3 ), ∂ τi g, 1 n(x) • v -∂ t g - i (v • τ i )∂ τi g -νg + H , ∇ v g, e -θ|v| 2 ∇ x ν, e -θ|v| 2 ∇ v ν ∈ L 1 ([0, T ] × γ -), ∇ x H, ∇ v H, e -θ|v| 2 ∇ x ν, e -θ|v| 2 ∇ v ν ∈ L 1 ([0, T ] × Ω × R 3 ).
Then there exists a unique solution f to the transport equation ( 14) with inflow boundary condition (103) such that e θ|v| 2 f ∈ C 0 ([0, T ] × Ω × R 3 ) and

∇ x f, ∇ v f ∈ C 0 ([0, T ]; L 1 (Ω × R 3
)) and the traces satisfy

∇ x f = ∇ x g, ∇ v f = ∇ v g, on γ -, ∇ x f (0, x, v) = ∇ x f 0 , ∇ v f (0, x, v) = ∇ v f 0 , in Ω × R 3 ,
where ∇ x g is defined by

∇ x g = i=1,2 τ i ∂ τi g + n n • v -∂ t g - i (v • τ i )∂ τi g -νg + H . Moreover ∇ x f (t) 1 + t 0 |∇ x f | γ+,1 + t 0 ν∇ x f 1 = ∇ x f 0 1 + t 0 |∇ x g| γ-,1 + t 0 Ω×R 3 sgn(∇ x f ) ∇ x H -∇ x νf , (105) 
∇ v f (t) 1 + t 0 |∇ v f | γ+,1 + t 0 ν∇ v f 1 = ∇ v f 0 1 + t 0 |∇ v g| γ-,1 + t 0 Ω×R 3 sgn(∇ v f ) ∇ v H -∇ x f -∇ v νf . ( 106 
)
Proof We use the Duhamel formula of f :

f (t, x, v) = 1 {t<t b (x,v)} e -t 0 ν(t-τ,x-τ v,v)dτ f 0 (x -tv, v) + 1 {t>t b (x,v)} e -t b (x,v) 0 ν(t-τ,x-τ v,v)dτ g(t -t b (x, v), x b (x, v), v) + min{t,t b (x,v)} 0 e -s 0 ν(t-τ,x-τ v,v)dτ H(t -s, x -sv, v)ds. (107) 
Following Proposition 1 of [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF], we have, on

{t = t b } ∇xf (t, x, v)1 {t =t b } = 1 {t<t b } e -t 0 ν(t-τ,x-τ v,v)dτ × ∇xf 0 (x -tv, v) - t 0 ∇xν(t -τ, x -τ v, v)dτ f 0 (x -tv, v) + 1 {t>t b } e -t b 0 ν(t-τ,x-τ v,v)dτ × 2 i=1 τ i ∂τ i g - n(x b ) v • n(x b ) ∂tg + 2 i=1 (v • τ i )∂τ i g + νg -H (t -t b , x b , v) -1 {t>t b } e -t b 0 ν(t-τ,x-τ v,v)dτ t b 0 ∇xν(t -τ, x -τ v, v)dτ g(t -t b , x b , v) + min(t,t b ) 0 e -s 0 ν(t-τ,x-τ v,v)dτ ∇xH(t -s, x -vs, v)ds - min(t,t b ) 0 e -s 0 ν(t-τ,x-τ v,v)dτ × s 0 ∇xν(s -τ, x -τ v, v)dτ H(t -s, x -vs, v)ds, (108) 
∇vf (t, x, v)1 {t =t b } = 1 {t<t b } e -t 0 ν(t-τ,x-τ v,v)dτ [-t∇xf 0 + ∇vf 0 ](x -tv, v) -1 {t<t b } e -t 0 ν(t-τ,x-τ v,v)dτ t 0 {-τ ∇xν + ∇vν} (t -τ, x -τ v, v)dτ f 0 (x -tv, v) -1 {t>t b } t b e -t b 0 ν(t-τ,x-τ v,v)dτ × 2 i=1 τ i ∂τ i g - n(x b ) v • n(x b ) ∂tg + 2 i=1 (v • τ i )∂τ i g + νg -H (t -t b , x b , v) + 1 {t>t b } e -t b 0 ν(t-τ,x-τ v,v)dτ ∇vg(t -t b , x b , v) -1 {t>t b } e -t b 0 ν(t-τ,x-τ v,v)dτ t b 0 {-τ ∇xν + ∇vν} (t -τ, x -τ v, v)dτ g(t -t b , x b , v) + min(t,t b ) 0 e -s 0 ν(t-τ,x-τ v,v)dτ {∇vH -s∇xH}(t -s, x -vs, v)ds - min(t,t b ) 0 e -s 0 ν(t-τ,x-τ v,v)dτ { s 0 {-τ ∇xν + ∇vν} (t -τ, x -τ v, v)dτ }H(t -s, x -vs, v)ds (109) 
Therefore, we have

∇xf (t)1 {t =t b } 1 ∇xf 0 1 + t{ e θ|v| 2 f 0 ∞ + e θ|v| 2 g ∞} + t 0 2 i=1 τ i ∂τ i g - n v • n ∂tg + 2 i=1 (v • τ i )∂τ i g + νg -H γ -,1 + t 0 ∇xH(s) 1 + t 0 s e θ|v| 2 H(s) ∞ (110) ∇vf (t)1 {t =t b } 1 t ∇xf 0 1 + ∇vf 0 1 + t e θ|v| 2 f 0 ∞ +t t 0 2 i=1 τ i ∂τ i g - n v • n ∂tg + 2 i=1 (v • τ i )∂τ i g + νg -H γ -,1 + t 0 |∇vg| γ -,1 + t 2 sup 0≤s≤t |e θ|v| 2 g(s)|γ -,∞ + t 0 ∇xH 1 + t 0 ∇vH 1 + C t 0 e θ|v| 2 H ∞.
From our assumptions, f 0 , g, and H have compact supports and the RHS are bounded. Therefore

∂f 1 {t =t b } = [∂ t f 1 {t =t b } , ∇ x f 1 {t =t b } , ∇ v f 1 {t =t b } ] ∈ L ∞ ([0, T ]; L 1 (Ω × R 3 )). Since ∂f ≡ 0 around {t = t b } clearly ∂f 1 {t =t b } is the distributional deriva- tive of f . Therefore ∇ x f and ∇ v f lie in L ∞ ([0, T ]; L 1 (Ω × R 3
)); this allows us to apply Lemma 7 to compute the traces on the incoming boundary in L 1 ([0, T ]; L 1 (γ -, dγ)) (by taking limits of the flow along the characteristics: see the proof of Proposition 1 in [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF] for details). Then, by Green's identity (Lemma 8) we know that ∇ x f and ∇ v f lie in C 0 ([0, T ]; L 1 (Ω × R 3 )) and we get (105) and (106).

Before going to the proof of main theorem we recall the standard estimate from [START_REF] Esposito | Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law[END_REF]: Suppose a i ≥ 0, D ≥ 0 and

A i = max{a i , • • • , a i-(k-1) } for fixed k ∈ N. If a m+1 ≤ 1 8 A m + D then A m ≤ 1 8 A 0 + 8 7 D for m/k 1. ( 111 
)
Now we are ready to prove the main theorem.

Proof (Proof of Theorem 1) We consider the approximation scheme (102). Now we consider the derivatives of the solution f ε,m of (102). Recall that BV (Ω × R 3 ) has i) a compactness property:

Suppose g k ∈ BV and sup k g k BV < ∞ then ∃ g ∈ BV with g k → g in L 1 up to subsequence, (112) 
and ii) a lower semicontinuity property:

Suppose g k ∈ BV and g k → g in L 1 loc then f BV ≤ lim inf k→∞ g k BV . (113) 
Due to the smooth approximation f ε 0 of the initial datum f 0 and the cut-off χ ε , f ε,m is smooth by Lemma 5. We take derivatives ∂ ∈ {∇ x , ∇ v } to have

∂ t + v • ∇ x + ν( √ µf ε,m ) ∂f ε,m+1 = -∂v • ∇ x f ε,m+1 -ν(∂[ √ µf ε,m ])f ε,m+1 + ∂χ ε Γ gain (f ε,m , f ε,m ) + χ ε ∂[Γ gain (f ε,m , f ε,m )] + (error) ∂f ε,m+1 (0, x, v) = ∂χ ε f ε 0 (x, v) + χ ε ∂f ε 0 (x, v), where (error) ≤ e -θ|v| 2 ∂ν e θ|v| 2 f ε,m ∞ e θ|v| 2 f ε,m+1 ∞ . For all (x, v) ∈ γ -, |∂f ε,m+1 (t, x, v)| µ(v) 1 + v |n(x) • v| n(x)•u>0 |∂f ε,m (t, x, u)|µ(u) 1 4 {n(x) • u}du + v κ e -C θ |v| 2 |n(x) • v| e θ|v| 2 f 0 ∞ + |∂χ ε (x, v) µ(v)|P ( e θ|v| 2 f 0 ∞ ),
for some polynomial P . Due to quadratic nonlinear term Γ we require P (s) = s(1 + s).

Then by Proposition 5 and

√ µf ε,m ≥ 0, ∂f ε,m+1 (t) 1 + t 0 |∂f ε,m+1 (s)| γ+,1 e -θ |v| 2 ∂χ ε 1 e θ |v| 2 f 0 ∞ + ∂f ε 0 1 + t 0 |∂f ε,m+1 (s)| γ- + t 0 ∂f ε,m+1 (s) 1 ds + P ( e θ|v| 2 f ε,m ∞ ) × t + t Ω×R 3 e -C θ |v| 2 |∂χ ε | + t 0 ∂f ε,m (s) 1 ds , (114) 
where we have used Lemma 10 in Appendix A.

Applying Lemma 2 and Proposition 1 to (114), we obtain

∂f ε,m+1 (t) 1 + t 0 |∂f ε,m+1 (s)| γ+,1 e θ |v| 2 f 0 ∞ + f 0 BV + t 0 |∂f ε,m+1 (s)| γ-,1 + t[1 + P ( e θ |v| 2 f 0 ∞ )] sup 0≤s≤t ∂f ε,m+1 (s) 1 ds + tP ( e θ |v| 2 f 0 ∞ ). (115) 
On the other hand, we apply Proposition 2 and Lemma 7 to bound

t 0 |∂f ε,m+1 | γ-,1 O(δ) t 0 |∂f ε,m-1 | γ+,1 + C δ { f 0 BV + tP ( e θ |v| 2 f 0 ∞ )} + C δ t[1 + P ( e θ |v| 2 f 0 ∞ )] max i=m,m-1 sup 0≤s≤t ∂f ε,i (s) 1 . (116) 
Finally from (115) and (116), chosing δ 1 and T := T (f 0 ) small enough, we have for all 0 ≤ t ≤ T

sup 0≤s≤t ∂f ε,m+1 (s) 1 + t 0 |∂f ε,m+1 (s)| γ,1 ≤ C{ f 0 BV + P ( e θ |v| 2 f 0 ∞ )} + 1 8 max i=m,m-1 sup 0≤s≤t ∂f ε,i (s) 1 + t 0 |∂f ε,i | γ,1 . Now using (111) we conclude sup 0≤s≤t ∂f ε,m (s) 1 + t 0 |∂f ε,m (s)| γ,1 f 0 BV + P ( e θ|v| 2 f 0 ∞ )
for all m ∈ N.

(117) Now we pass the to limit in m and then in ε to conclude the main theorem.

From the compactness (112) and a lower semicontinuity (113) we conclude sup 0≤s≤t f (s) BV f 0 BV + P ( e θ|v| 2 f 0 ∞ ).

On the other hand for a fixed 0 < ε 1, it is clear that {f ε,m } ∞ m=1 is Cauchy for the norm sup 0≤t≤T e θ |v| 2 • ∞ for 0 < θ < θ < 1 4 and some 0 < T 1. The key element of the proof is to utilize the exponential weight in v to suppress the |v| growth in the gain term estimate at least for some short time. For details, see Lemma 6 in [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF]. Therefore f ε,m → f ε up to a subsequence for the norm sup 0≤t≤T e θ |v| 2 • ∞ and f ε satisfies (102) with f ε,m+1 and f ε,m replaced by f ε by the trace theorem. Moreover since |χ ε | ≤ 1 for 0 < ε 1, sup 0≤t≤T e θ |v| 2 f ε (t) ∞ is uniformly bounded in ε for 0 < ε 1 and 0 < T 1. Now we combine such uniform bounds in a weighted L ∞ and L 1 convergence up to a subsequence to conclude that the limiting function f solves the Boltzmann equation ( 11) and the diffuse boundary condition (13).

For the boundary term we use the weak compactness of measures: If σ k is a signed Radon measure on ∂Ω × R 3 satisfying sup k σ k (∂Ω × R 3 ) < ∞ then there exists a Radon measure σ such that σ k σ in M. More precisely we define, for almost-every s, and for any Lebesgue-measurable

set A ⊂ ∂Ω × R 3 , σ ε,m s (A) = σ ε,m s,x 1 (A), σ ε,m s,x 2 (A), σ ε,m s,x 3 (A), σ ε,m s,v 1 (A), σ ε,m s,v 2 (A), σ ε,m s,v 3 (A) T := A ∇ x,v f ε,m (s)dγ ∈ R 6 .
Then there exists a Radon measure σ s such that σ ε,m s σ s in M, i.e.

∂Ω×R 3 g∂f ε,m (s)dγ → ∂Ω×R 3 gdσ s for all g ∈ C 0 c (∂Ω × R 3 ). ( 118 
)
It is standard (Hahn's decomposition theorem) to decompose σ s = σ s,+σ s,-with σ s,± ≥ 0. Denote

|σ s | M(γ) = σ s,+ (∂Ω × R 3 ) + σ s,-(∂Ω × R 3 ).
Then by the lower semicontinuity property of measures we have

|σ s | M(γ) ≤ lim inf |σ ε,m s | M(γ) = lim inf |∂f ε,m s | L 1 (γ)
, so that by (117) t 0 |σ s | M(γ) ds f 0 BV +P ( e θ|v| 2 f 0 ∞ ). Due to (118), the (distributional) derivatives ∇ x,v f (s)| γ equal the Radon measure σ s on ∂Ω × R 3 in the sense of distributions.

A Some Basic Results

We collect some basic known results such as the derivatives of t b and x b , the standard trace theorem, integration by parts formula, and the size of singular set.

Lemma 6 ([5, 2]) If v • n(x b (x, v)) < 0, (119) then (t b (x, v), x b (x, v)) are smooth functions of (x, v) such that ∇xt b = n(x b ) v • n(x b ) , ∇vt b = - t b n(x b ) v • n(x b ) , ∇xx b = I - n(x b ) v • n(x b ) ⊗ v, ∇vx b = -t b I + t b n(x b ) v • n(x b ) ⊗ v.
Recall the almost grazing set γ δ + defined in (16). We first estimate the outgoing trace on γ + \ γ δ + . Lemma 7 (Outgoing trace theorem, [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF]) Assume that ϕ ≥ 0. For any small parameter δ > 0, there exists a constant C δ,T,Ω > 0 such that for any h in L

1 ([0, T ] × Ω × R 3 ) with ∂th + v • ∇xh + ϕh lying in L 1 ([0, T ] × Ω × R 3 ), we have for all 0 ≤ t ≤ T, t 0 γ + \γ δ + |h|dγds ≤ C δ,T,Ω h 0 1 + t 0 h(s) 1 + [∂t + v • ∇x + ϕ]h(s) 1 ds . Furthermore, for any (s, x, v) in [0, T ] × Ω × R 3 the function h(s + s , x + s v, v) is absolutely continuous in s in the interval [-min{t b (x, v), s}, min{t b (x, -v), T -s}].
We remark that for the outgoing part, our estimate is global in time without cut-off, in contrast to the general trace theorem.

Lemma 8 (Green's Identity, [START_REF] Guo | Decay and Continuity of Boltzmann Equation in Bounded Domains[END_REF][START_REF] Esposito | Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law[END_REF])

For p ∈ [1, ∞) assume that f, ∂tf + v • ∇xf + ϕf ∈ L p ([0, T ] × Ω × R 3 ) with ϕ ≥ 0 and fγ -∈ L p ([0, T ] × ∂Ω × R 3 ; dtdγ). Then f ∈ C 0 ([0, T ]; L p (Ω × R 3 )) and fγ + ∈ L p ([0, T ] × ∂Ω × R 3 ; dtdγ) and for almost every t ∈ [0, T ] : f (t) p p + t 0 |f | p γ + ,p = f (0) p p + t 0 |f | p γ -,p + t 0 Ω×R 3 {∂tf + v • ∇xf + ϕf }p|f | p-2 f.
Lemma 9 (Lemma 17 and Lemma 18 of [START_REF] Guo | Decay and Continuity of Boltzmann Equation in Bounded Domains[END_REF]) Let Ω ⊂ R 3 be an open bounded set with a smooth boundary ∂Ω. Then, for all x ∈ Ω, we have Lemma 10 (Lemma 5 of [START_REF] Guo | Regularity of the Boltzmann Equation in Convex Domains[END_REF]) For any smooth function g = g(x, v) and ∂ ∈ {∇x, ∇v} and 0 < θ < B The singular set S B is a Co-Dimension 1 subset

We prove Remark 1. It suffices to show that S B ∩ Ω ×R 3 is a co-dimension 1 submanifold of Ω × R 3 . More precisely we will show that if (x 0 , v 0 ) ∈ Ω × R 3 satisfies n(x b (x 0 , v 0 )) • v 0 = 0 and the boundary is strictly non-convex (10) at (x b (x 0 , v 0 ), v 0 ) then there exists 0 < ε 1 such that the following set is a 5 dimensional submanifold: (x, v) ∈ S B ∩ B((x 0 , v 0 ); ε) :

x b (x, v) ∼ x b (x 0 , v 0 ) ⊂ Ω × R 3 . ( 122 
)
Without loss of generality we may assume x b (x 0 , v 0 ) = (0, 0, 0) = 0 and v 0 = e 1 and n(0, 0, 0) = -e 3 so that ∂Ω is locally a graph of a function η : R 2 → R and ∇η(0, 0) = 0. Therefore the strictly non-convex condition (10) at (x b (x 0 , v 0 ), v 0 ) = (0, e 1 ) implies

∂ 1 ∂ 1 η(0, 0) = 0. ( 123 
)
Clearly, (122) is contained in

(x + sv, v) ∈ Ω × R 3 : x ∈ ∂Ω, n(x) • v = 0, (x, v) ∼ (x 0 , v 0 ), s ∈ [0, ∞) . (124) 
Consider (x, v) ∼ (x 0 , v 0 ). We choose a basis for the tangent space:

τ 1 = 1 1 + |∇η| 2   1 0 ∂ 1 η   , τ 2 = 1 1 + |∇η| 2 1 + (∂ 1 η) 2   -∂ 1 η∂ 2 η 1 + (∂ 1 η) 2 ∂ 2 η   .
For (x 1 , x 2 , θ, rv, s) ∈ R 2 × [0, 2π) × [0, ∞) × [0, ∞) we write (x + sv, v) in (124) as X(x 1 , x 2 , θ, rv, s) :=   x 1 x 2 η(x 1 , x 2 )   + srv cos θ τ 1 (x 1 , x 2 ) + srv sin θ τ 2 (x 1 , x 2 ), V (x 1 , x 2 , θ, rv, s) := rv cos θ τ 1 (x 1 , x 2 ) + rv sin θ τ 2 (x 1 , x 2 ).

In order to prove Remark 1 it suffices to show that the followings are linearly independent

∂x 1 X ∂x 1 V , ∂x 2 X ∂x 2 V , ∂ θ X ∂ θ V , ∂sX ∂sV , ∂r v X ∂r v V ∈ R 6 .
That is it suffices to show that the normal is non-vanishing:

N := det       
e 1 e 2 e 3 e 4 e 5 e 6 ∂x 1 X

1 ∂x 1 X 2 ∂x 1 X 3 ∂x 1 V 1 ∂x 1 V 2 ∂x 1 V 3 ∂x 2 X 1 ∂x 2 X 2 ∂x 2 X 3 ∂x 2 V 1 ∂x 2 V 2 ∂x 2 V 3 ∂ θ X 1 ∂ θ X 2 ∂ θ X 3 ∂ θ V 1 ∂ θ V 2 ∂ θ V 3 ∂sX 1 ∂sX 2 ∂sX 3 0 0 0 ∂r v X 1 ∂r v X 2 ∂r v X 3 ∂r v V 1 ∂r v V 2 ∂r v V 3        .
To compute the normal we need to know

∂ 1 τ 1 (x 1 , x 2 ) = ∂ 2 1 η [1 + (∇η) 2 ] 3/2   -∂ 1 η 0 1   + ∂ 2 η [1 + (∇η) 2 ] 3/2   0 0 ∂ 2 η∂ 2 1 η -∂ 1 η∂ 1 ∂ 2 η   , ∂ 2 τ 1 (x 1 , x 2 ) = 1 [1 + (∇η) 2 ] 1/2   0 0 ∂ 1 ∂ 2 η   - 1 [1 + (∇η) 2 ] 3/2   ∇η • ∇∂ 2 η 0 ∂ 1 η∇η • ∇∂ 2 η   , ∂ 1 (τ 2 ) 1 = (∂ 1 η) 2 ∂ 2 η∂ 2 1 η [1 + (∂ 1 η) 2 ] 3/2 [1 + |∇η| 2 ] 1/2 + (∂ 1 η) 2 ∂ 2 η∂ 2 1 η + ∂ 1 η(∂ 2 η) 2 ∂ 1 ∂ 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 3/2 - ∂ 2 1 η∂ 2 η + ∂ 1 η∂ 1 ∂ 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 1/2 , ∂ 2 (τ 2 ) 1 = ∂ 1 η∂ 2 η∂ 1 ∂ 2 η [1 + (∂ 1 η) 2 ] 3/2 [1 + |∇η| 2 ] 1/2 + (∂ 1 η) 2 ∂ 2 η∂ 1 ∂ 2 η + ∂ 1 η(∂ 2 η) 2 ∂ 2 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 3/2 - ∂ 1 ∂ 2 η∂ 2 η + ∂ 1 η∂ 2 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 1/2 , ∂ 1 (τ 2 ) 2 = ∂ 1 η∂ 2 1 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 1/2 - [1 + (∂ 1 η) 2 ] 1/2 [∂ 1 η∂ 2 1 η + ∂ 2 η∂ 1 ∂ 2 η] [1 + |∇η| 2 ] 3/2 , ∂ 2 (τ 2 ) 2 = ∂ 1 η∂ 1 ∂ 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 1/2 - [1 + (∂ 1 η) 2 ] 1/2 [∂ 1 η∂ 1 ∂ 2 η + ∂ 2 η∂ 2 2 η] [1 + |∇η| 2 ] 3/2 , ∂ 1 (τ 2 ) 3 = - ∂ 1 η∂ 2 η∂ 2 1 η [1 + (∂ 1 η) 2 ] 3/2 [1 + |∇η| 2 ] 1/2 - ∂ 1 η∂ 2 η∂ 2 1 η + (∂ 2 η) 2 ∂ 1 ∂ 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 3/2 + ∂ 1 ∂ 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 1/2 , ∂ 2 (τ 2 ) 3 = - ∂ 1 η∂ 2 η∂ 2 2 η [1 + (∂ 1 η) 2 ] 3/2 [1 + |∇η| 2 ] 1/2 - ∂ 1 η∂ 2 η∂ 1 ∂ 2 η + (∂ 2 η) 2 ∂ 2 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 3/2 + ∂ 2 2 η [1 + (∂ 1 η) 2 ] 1/2 [1 + |∇η| 2 ] 1/2 .
We evaluate the normal at (x 1 , x 2 , θ, s, rv) = (0, 0, 0, s, rv). Since ∂ 1 η(0, 0) = 0 = ∂ 2 η(0, 0), n(0, 0) = e 3 , τ 1 (0, 0) = e 1 , τ 2 (0, 0) = e 2 , 

       =        0 0 r 2 v ∂ 1 ∂ 1 η(0, 0) 0 0 srv∂ 1 ∂ 1 η(0, 0)        = 0.
Therefore N (x 1 , x 2 , θ, s, rv) = 0 for (x 1 , x 2 , θ) ∼ (0, 0, 0). This proves the claim.

m 3

 3 {v ∈ R 3 : n(x b (x, v)) • v = 0} = 0. (120)Moreover, for any ε > 0 and N 1, there exist δ ε,N > 0 and l = l ε,N,Ω balls B(x 1 ; r 1 ), B(x 2 ; r 2 ), • • • , B(x l ; r l ) with x i ∈ Ω and covering Ω (i.e. Ω ⊂ B(x i ; r i )), as well asl open sets Ox 1 , Ox 2 , • • • , Ox l ⊂ B N := {v ∈ R 3 : |v| ≤ N }, with m 3 (Ox i ) < ε for all 1 ≤ i ≤ l ε,N,Ω , such that for any x ∈ Ω, there exists i = 1, 2, • • • , l ε,N,Ω such that x ∈ B(x i ; r i ) and |v • n(x b (x, v))| > δ ε,N , for all v / ∈ Ox i . In particular, Ox i ⊃ x∈B(x i ;r i ) {v ∈ B N : |v • n(x b (x, v))| ≤ δ ε,N }. (121)Proof The details of the proof are recorded in[START_REF] Guo | Decay and Continuity of Boltzmann Equation in Bounded Domains[END_REF]. The proof of (120) is due to Sard's theorem: For fixed x ∈ Ω we consider the following mappingφx : ∂Ω → S 2 , φx : y ∈ ∂Ω → -y -x |y -x| . If n(x b (x, v)) • v = 0 then v |v| is a critical value of φx at y = x b (x, v).Then by Sard's theorem the Lebesgue measure of such set on S 2 is zero. Now we fix 0 < ε 1 and x ∈ Ω. Due to (120) there exists an open setOx ∈ R 3 such that m 3 (Ox) < ε and |v • n(x b (x, v))| = 0 for v / ∈ Ox. By Lemma 6, v → v • n(x b (x, v))is smooth on the compact set {R 3 \Ox}∩B N . Then by the compactness we have a positive lower bound 2δ ε,N,x > 0 of |v • n(x b (x, v))|. Then by Lemma 6 again, there exists a ball B(x; rx) such that for all y in this ball and all v ∈ {R 3 \Ox} ∩ B N we have |v • n(x b (y, v))| ≥ δ ε,N,x . Then we use the compactness of Ω to extract the finite covering which satisfies (121).

∂ 1 τ 1

 1 (0, 0) = ∂ 1 ∂ 1 η(0, 0)e 3 , ∂ 2 τ 1 (0, 0) = ∂ 1 ∂ 2 η(0, 0)e 3 , ∂ 1 τ 2 (0, 0) = ∂ 1 ∂ 2 η(0, 0)e 3 , ∂ 2 τ 2 (0, 0) = ∂ 2 ∂ 2 η(0, 0)e 3 .Due to (123) we haveN (0, 0, 0, s, rv) = det s∂ 1 ∂ 1 η 0 0 -rv∂ 1 ∂ 1 η 0 1 -s∂ 1 ∂ 2 η 0 0 -rv∂ 1 ∂ 2 η

  1 4 , ∂Γ gain (g, g)1 e θ|v| 2 g ∞ |∂x| ∇xg 1 + |∂v| ∇vg 1 + v κ e -θ|v| 2 |∂v| e θ|v| 2 g 2 ∞ ,

		|ν(∂[ √ µg])g|dvdx			
	Ω×R 3					
	e θ|v| 2	g ∞	Ω R 3 R 3	e -θ 4 |v-u| 2	|∂g(u)|dudvdx	e θ|v| 2	g ∞ ∂g 1 .
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a.e. (x, v) ∈ γ + with dγ. It suffices to show

a.e. on γ + . For ε > 0 and N

, and hence

which concludes the claim. Now we use the monotone convergence theorem to conclude

as k → ∞ and therefore

1 4 dγds has the same upper bound of (84). Together with (83) we conclude (79).

Linear and Nonlinear Estimates

The main purpose of this section is to prove the main theorem (Theorem 1). To estimate solutions of the nonlinear equation ( 1) with the diffuse BC (5) we use following approximation scheme.

For