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We study the ground state properties of N spinless free fermions in a d-dimensional confining
potential. We find that any n-point correlation function has a simple determinantal structure that
allows us to compute several properties exactly for large N . We show that the average density has
a finite support with an edge, and near this edge the density exhibits a universal (valid for a wide
class of potentials) scaling behavior for large N . The associated edge scaling function is computed
exactly and it generalizes the 1d result known from random matrix theory. In addition, we calculate
the kernel (that characterizes any n-point correlation function) for large N and show that, when
appropriately scaled, it depends only on dimension d, but has otherwise universal scaling forms,
both in the bulk as well as at the edges. The edge kernel, for higher d, generalizes the Airy kernel
in one dimension, well known from random matrix theory.

PACS numbers: 05.30.Fk, 02.10.Yn,02.50.-r,05.40.-a

Over the past few years, experimental developments
in the construction of optical traps and cooling protocols
have allowed the study of systems of confined utracold
atoms [1, 2]. Non-interacting fermions or bosons at low
temperatures are of particular interest as they exhibit
purely quantum effects. For example, Bose-Einstein con-
densation [1, 2] has been observed experimentally in sev-
eral cold atom systems. There are also nontrivial quan-
tum effects in non-interacting fermionic atoms, arising
purely from the Pauli exclusion principle. A well studied
example is a system of N spinless fermions in a one-
dimensional harmonic potential, V (x) = 1

2mω
2x2 [3–12].

At zero temperature, T = 0, the many-body ground
state wavefunction Ψ0(x1, · · · , xN ) can be easily com-
puted from the Slater determinant yielding [4, 10, 12]

|Ψ0(x1, · · · , xN )|2 =
1

zN

∏
i<j

(xi − xj)2e−α
2 ∑N

i=1 x
2
i , (1)

where α =
√
mω/~ has the dimension of inverse length

and zN is a normalization constant. The squared wave-
function |Ψ0(x1, · · · , xN )|2, characterizing the quantum
fluctuations at T = 0, can then be interpreted as the
joint distribution of the eigenvalues of an N × N ran-
dom matrix belonging to the Gaussian Unitary Ensemble
(GUE) [13, 14]. Consequently, several zero temperature
properties in this one-dimensional fermionic system have
been computed analytically [5–12] using established re-
sults from random matrix theory (RMT). For example,
the average density of fermions is given, for large N , by
the celebrated Wigner semi-circular law [13, 14]:

ρN (x) ≈ α√
N
fW

(
αx√
N

)
; fW (z) =

1

π

√
2− z2 (2)

with sharp edges at ±
√

2N/α. These sharp edges get
smeared for finite but large N over a width wN ∼ N−1/6

and the density near the edge (say, the right one) is de-
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FIG. 1. (Color online) (a) Plot of ρN (x, y) vs. x and y for
N = 28 fermions in a harmonic potential in d = 2 obtained
from the exact evaluation [15] of Eqs. (8) and (9). (b) Plot
of ρN (x, y) in the (x, y) plane predicted from the asymptotic
formula Eq. (4). (c) Comparison of (a) and (b) for y = 0 (the
region below the asymptotic result is shown via the shaded
region).

scribed by a finite size scaling form [16, 17]

ρN (x) ≈ 1

N wN
F1

[
x−
√

2N/α

wN

]
(3)

with wN = N−1/6/(α
√

2) and F1(z) = [Ai′(z)]2 −
z[Ai(z)]2, where Ai(z) is the Airy function. Far left from
the right edge, using F1(z) ∼

√
|z|/π as z → −∞, one

can show that the scaling form (3) smoothly matches
with the semi-circular density in the bulk (2). The edge
scaling function F1(z) has been shown [9] to be univer-
sal, i.e., independent of the precise shape of the confin-
ing potential V (x). In addition, all n-point correlation
functions at zero temperature can be expressed as deter-
minants constructed from a fundamental quantity called
the kernel (see later for its precise definition). For large
N , and away from the edge, the appropriately scaled ker-
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nel converges [9] to the universal sine-kernel form known
from RMT [13, 14]. In contrast, near the edges, it ap-
proaches [9] the universal Airy kernel also well known
from RMT [17, 18]. Recently, for one-dimensional traps,
several of the zero temperature results for the density as
well as the kernel have been extended to finite tempera-
ture [19].

In many experimental setups, the optical traps are ac-
tually in higher dimensions d > 1. For d > 1, unfortu-
nately there is no obvious relation between free fermions
in a trap and RMT. Consequently, calculating analyt-
ically the zero temperature properties of spinless free
fermions in a d-dimensional confining potential is a chal-
lenging problem. It turns out that while the bulk prop-
erties can be estimated rather accurately using the local
density approximation (LDA, also known as the Thomas-
Fermi approximation) [20, 21], the density near the edge,
where the Thomas-Fermi approximation breaks down, is
much harder to compute. Similarly, one would also like to
analytically compute the edge scaling of the kernel for d-
dimensional traps. Another natural question is whether
the universality observed in the one-dimensional case per-
sists in higher dimensions. In this Letter, we compute
analytically the density and the kernel for large N for
a d-dimensional confining trap. We demonstrate that,
for large N , the edge density and the edge kernel, suit-
ably scaled, are described by universal scaling functions,
independent of the details of the trap potential.

It is useful to summarize our main results. For sim-
plicity, we first focus on the harmonic potential V (r) =
1
2mω

2r2, for which we show that the average density of
the fermions at zero temperature for large N is given by

ρN (x) ≈ 1

N

( m

2π~2

)d/2 [µ− 1
2mω

2r2]d/2

Γ(d/2 + 1)
, (4)

where r = |x| and µ ≈ ~ω[Γ(d + 1)N ]1/d is the Fermi
energy for large N . This is a generalization of the 1d
semi-circular law found in RMT and is shown in a scal-
ing form in Eq. (2) (see Fig. 1 for d = 2). The den-
sity in Eq. (4) has a finite support of radius redge =

(
√

2/α) [Γ(d+ 1)]
1/(2d)

N1/(2d) where α =
√
mω/~. For

finite but large N , the density near this edge ρN (x) ≡
ρedge(x) gets smeared over a scale of order N−1/(6d) and
is described by a finite size scaling form

ρedge(x) ≈ 1

N

1

wdN
Fd

(
r − redge

wN

)
, (5)

where wN = bdN
− 1

6d , with bd = [Γ(d+ 1)]
− 1

6d /(α
√

2),
denotes the width of the edge regime. We also find that
the scaling function Fd(z) is given explicitly by

Fd(z) =
1

Γ(d2 + 1)2
4d
3 π

d
2

∫ ∞
0

du u
d
2Ai(u+ 22/3 z) , (6)

a plot of which is shown in Fig. 2 for d = 1, 2, 3. In d = 1
it reduces to the RMT result F1(z) = [Ai′(z)]2−z[Ai(z)]2
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FIG. 2. (Color online) Plot of the scaling functions Fd(z) in
Eq. (6) for d = 1, 2, 3 (top to bottom) for the density near
the edge. The oscillatory structure of the scaling function
becomes less pronounced as the dimension d increases.

mentioned earlier [16, 17]. Furthermore, going beyond
the one-point function, i.e., the density, we show that the
n-point correlation function in the ground state can be
written as an n× n determinant whose entries are given
by a two-point function called the kernel. We compute
the asymptotic properties of this kernel explicitly both
in the bulk [see Eq. (17)] as well as at the edges [see
Eq. (20)] and derive the associated scaling functions in
all dimensions. In d = 1, they reduce to the well known
Sine and the Airy kernel respectively. We then show that
these d-dependent scaling functions associated with the
bulk and the edge kernel as well as the edge density in
Eq. (6) are universal, i.e., they are valid for a generic
class of spherically symmetric potentials [22].

We start with N spinless free fermions in a d-
dimensional potential V (x). The single particle
eigenfunctions ψk(x) satisfy the Schrödinger equation,
Ĥψk(x) = εkψk(x), where Ĥ = −~2/(2m)∇2 + V (x)
is the Hamiltonian and the energy eigenvalues εk are
labelled by d quantum numbers denoted by k. At
zero temperature, the ground state many-body wave-
function can be expressed as an N × N Slater deter-
minant, Ψ0(x1, · · · ,xN ) = (1/

√
N !) det[ψk(xj)], con-

structed from the N single particle wavefunctions with
energy up to the Fermi level µ [23]. For a sufficiently con-
fining potential, µ generically increases with increasing
N [9, 20]. For example, for a d-dimensional harmonic os-
cillator V (x) ≡ V (r) = mω2r2/2, µ ≈ ~ω[Γ(d+ 1)N ]1/d.
Using det(A) det(B) = det(AB), the squared many-body
wavefunction can then be expressed as a determinant

|Ψ0(x1, · · · ,xN )|2 =
1

N !
det

1≤i,j≤N
Kµ(xi,xj) (7)

where the kernel Kµ(x,y) is given by

Kµ(x,y) =
∑
k

θ(µ− εk)ψ∗k(x)ψk(y) . (8)
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Here θ(x) is the Heaviside theta function. As in d = 1
[see Eq. (1)], the squared wavefunction in (7) can be in-
terpreted as the joint probability density of N points in a
d-dimensional space. By integrating out theN−n coordi-
nates of |Ψ0(x1, · · · ,xN )|2 in Eq. (7), one can show (see
Supp. Mat. [24]) that the n-point correlation function
can be expressed as an n× n determinant whose entries
are given precisely by the kernel Kµ(x,y) in Eq. (8). In
particular, for n = 1, the density ρN (x) is given by

ρN (x) =
1

N
Kµ(x,x) . (9)

Thus, the knowledge of the kernel provides a complete de-
scription of the statistical properties of the ground state.

To compute the kernel, we first establish a simple but
very general relation between the kernel and the prop-
agator of the single particle quantum problem. Taking
derivative of Eq. (8) with respect to (w.r.t.) µ and per-
forming a Laplace transform w.r.t. µ of the resulting
relation, one finds∫ ∞

0

∂Kµ(x,y)

∂µ
e−µ

t
~ dµ =

∑
k

e−t
εk
~ ψ∗k(x)ψk(y) . (10)

The right hand side of (10) is simply the single particle

propagator G(x,y; t) = 〈x|e− t
~ Ĥ |y〉 in imaginary time.

Integrating the left hand side of Eq. (10) by parts and
inverting the Laplace transform, using Bromwich inver-
sion formula, gives

Kµ(x,y) =

∫
Γ

dt

2πi

1

t
exp

(µ
~
t
)
G(x,y; t) , (11)

where Γ denotes the Bromwich integration contour.
While Eq. (11) is general and holds for arbitrary poten-
tial V (x), calculating the propagator G(x,y; t) explicitly
is hard for general V (x). Below, we first focus on the spe-
cific case of a harmonic oscillator for which G is known
explicitly [25]

G(x,y; t) =

(
α2

2π sinh (ω t)

)d/2
e−

α2

2 sinh (ω t)
Q(x,y;t)(12)

where Q(x,y; t) = (x2 + y2) cosh (ω t)− 2x · y. General
potentials V (x) will be considered later.

Global density. We first evaluate the global density
ρN (x) in Eq. (9) by putting x = y in Eq. (11). The dom-
inant contribution to the Bromwich integral in Eq. (11)
with x = y comes from the small t region. Expanding
the propagator to leading order for small t, the integral
can be done explicitly to give the result in Eq. (4). Note
that the normalization condition

∫
dx ρN (x) = 1 fixes

the Fermi energy µ ≈ ~ω[Γ(d + 1)N ]1/d. The density
thus has a radially symmetric finite support that van-
ishes at the edge as ∼ (redge − r)d/2 (see Fig. 1), where

redge =
√

2µ/(mω2) ∼ N1/(2d). Since N particles are
packed within a volume of radius redge ∼ N1/(2d), the

typical inter-particle distance `typ can be estimated very
simply: N`dtyp ∼ rdedge, implying `typ ∼ N−1/(2d).
Edge density. We next investigate the density near

redge for finite but largeN . To derive the asymptotic edge
behavior, we again start with the propagator G(x,x; t),
but now we set r = |x| = redge + z bdN

−φ where φ is yet

to be determined and bd = [Γ(1 + d)]
− 1

6d /(α
√

2). Ex-
panding the propagator for small t and keeping terms up
to order O(t3), we find that φ = 1/(6d) in order that the
two leading terms scale in the same way for large N with
z fixed (see Supp. Mat. [24]). Subsequently, evaluating
the kernel in Eq. (11) and using Eq. (9), upon identifying
wN = bdN

−1/(6d), the edge density satisfies the scaling
form in Eq. (5) where the scaling function is given by

Fd(z) = (4π)−d/2
∫

Γ

dτ

2πi

1

τd/2+1
e−τ z+τ

3/12 . (13)

Using the integral representation of the Airy function,
Ai(z) = 1/(2πi)

∫
Γ
dτ e−τz+τ

3/3, the integral in Eq. (13)
reduces to the expression announced in Eq. (6) (see Supp.
Mat. [24]). This thus generalizes to arbitrary d the 1d re-
sult, F1(z) = [Ai′(z)]2 − z[Ai(z)]2, obtained from RMT
[16, 17]. The asymptotic behaviors of Fd(z) can be com-
puted explicitly (see Supp. Mat. [24]) with the result

Fd(z) ≈ (8π)−
d+1
2 z−

d+3
4 e−

4
3 z

3/2

as z →∞ (14)

≈ (4π)−
d
2

Γ(d/2 + 1)
|z| d2 as z → −∞ . (15)

One can show that when z → −∞, i.e., when r � redge,
the asymptotic behavior in Eq. (15) matches smoothly
with the bulk density in Eq. (4).
Bulk kernel. We next consider the large N scaling

behavior of the kernel Kµ(x,y) in Eq. (11) where the
two points x and y are both far from the edge, while
their relative separation |x − y| is on the scale of the
inter-particle distance `typ ∼ N−1/(2d) . Once again, we
start from our central equation (11). In the expression
of the propagator G(x,y; t) in Eq. (12), we first rewrite
Q(x,y; t) = (x−y)2 + (x2 +y2)(cosh(ω t)− 1). We then
expand the propagator for small t to leading order to
obtain

Kµ(x,y) ≈
(
α2

2πω

) d
2
∫

Γ

dt

2πi

1

t
d
2 +1

e
(µ−V (|x|))t

~ −α
2(x−y)2

2ωt

(16)
where V (|x|) = V (r) = mω2r2/2. Fortunately, this inte-
gral can be done exactly (see Supp. Mat. [24]). We find
that the bulk kernel has the scaling form, Kµ(x,y) ≈
`−dKbulk(|x − y|/`), where ` = [NρN (x)γd]

−1/d is the
typical separation in the bulk and γd = πd/2[Γ(d/2 + 1)].
The bulk scaling function is given explicitly by

Kbulk(x) =
Jd/2(2x)

(πx)d/2
(17)

where Jd/2(z) is the standard Bessel function of the first

kind. In d = 1, using J1/2(z) =
√

2/(πz) sin z, our result
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in Eq. (17) again reduces to the standard sine-kernel in
RMT [13]. The result in Eq. (17) is in full agreement
with the heuristic derivation using the LDA [20] (see also
Supp. Mat. [24]). However, the LDA becomes invalid
near the edge where the local density is rapidly varying.
We will see below that our approach yields exact results
even in this edge regime where the LDA fails.

Edge kernel. Turning to the large N behavior of the
kernel Kµ(x,y) near the edge, we set x = redge + wN a
and y = redge + wN b, following the scaling of the
edge density in Eq. (5). Here redge denotes any point
on the boundary of the support of the global density
with |redge| = redge =

√
2µ/(mω2) ∼ N1/(2d). As be-

fore, the width wN = bdN
−1/(6d) with bd = [Γ(d +

1)]−1/(6d)/(α
√

2). Thus a and b are dimensionless vec-
tors. We substitute these scaling variables x and y in
Q(x,y; t) = (x−y)2+(x2+y2)(cosh(ω t)−1) and expand
Q up to order t3 for small t. Substituting these results
in Eq. (11) and after a suitable change of variables (see
Supp. Mat. [24]), one arrives at the edge behavior of the
kernel

Kµ(x,y) ≈ 1

CdwdN

∫
Γ

dτ

2πi

1

τ
d
2 +1

e
− (a−b)2

28/3τ
− (an+bn)τ

21/3
+ τ3

3 ,

(18)

with Cd = (2
4
3
√
π)d, and where an = a · redge/redge and

bn = b · redge/redge are projections of a and b in the
radial direction. One can make a further simplification
of Eq. (18) by using the integral representation of the
diffusive propagator

e−
(a−b)2

4D τ

(4πD τ)
d
2

=

∫
ddq

(2π)d
e−D q2τ−iq·(a−b) . (19)

We choose D = 22/3 and use this in Eq. (18).
Using subsequently the integral representation of the
Airy function Ai(z) mentioned earlier, we arrive at
the scaling behavior of the edge kernel, Kµ(x,y) ≈

1
wdN
Kedge

(
x−redge

wN
,
y−redge

wN

)
where

Kedge(a,b) =

∫
ddq

(2π)d
e−iq·(a−b)Ai1

(
2

2
3 q2 +

an + bn
21/3

)
,

(20)
where Ai1(z) =

∫∞
z
Ai(u)du. Putting a = b in Eq.

(20), followed by an integration by parts, one can check
that Kedge(a,a) reduces to Fd(|a|) in Eq. (6). Also
one can verify, after a few steps of algebra (see Supp.
Mat. [24]), that in d = 1 Eq. (20) reduces to Kedge(a, b) =
KAiry(a, b) = (Ai(a)Ai′(b) − Ai′(a)Ai(b))/(a − b) is the
standard Airy kernel [17, 18].

General potential. Having obtained these explicit re-
sults for harmonic oscillator potential, one naturally won-
ders to what extent these results are universal, i.e., hold
for more general potentials V (x). To investigate this is-
sue of universality, let us first note that for general V (x),
our central equation (11) still holds, though the Fermi

energy µ as well as the propagator G(x,y; t) depend on
V (x). The dependence of the Fermi energy µ onN can be
easily estimated for large N using semi-classical approxi-
mation [9, 20]. In contrast, G(x,y; t) is hard to compute
for general V (x). However, as we have seen in the case
of a harmonic oscillator, only the small t behavior of G is
needed to evaluate Eq. (11) for large N . Fortunately, the
small t expansion of G for general V (x) can be carried
out using perturbation theory [26] (see Supp. Mat. [24]
for a derivation). Using this expansion to leading order
in t in Eq. (11), we find (see Supp. Mat. [24]) that the
global density is given by

ρN (x) ≈ 1

N

( m

2π~2

)d/2 [µ− V (x)]d/2

Γ(d/2 + 1)
, (21)

which generalizes the harmonic oscillator result in
Eq. (4). Note that this result in Eq. (21) coincides
with the one obtained using Thomas-Fermi approxima-
tion [20]. Evaluating Eq. (11) near the edge, as in the
harmonic oscillator case, we find that the edge density
is again given exactly by Eq. (5), where only the loca-
tion of the edge redge and the width wN depend non-
universally on V (x), but the scaling function Fd(z) is
universal, i.e., is the same for all spherically symmetric
potential V (x) = V (r) [22]. The bulk kernel is also given
as in Eq. (17) for the harmonic oscillator, the only V (x)-
dependence appears in the scale factor γd used in defining
the pair of dimensionless vectors u and v. In a similar
fashion, we find that the edge kernel, appropriately cen-
tered and scaled, is also universal (see Supp. Mat. [24]).

Conclusion. We have studied the ground state prop-
erties of N spinless free fermions in a d-dimensional con-
fining trap and shown that in any dimension, the n-
point correlation functions in the ground state have a
determinantal structure with universal scaling properties
for large N . This determinantal structure for the free
fermions problem is well known in 1d, due to its direct
connection with RMT. In this Letter, we have shown that
this structure persists even in higher dimensions, allow-
ing us to derive several new exact results. Our results re-
cover the bulk properties predicted by the heuristic LDA.
However, near the edge where this approximation fails,
our method predicts new universal exact results in all
dimensions d. Our results can be extended to finite tem-
perature [26] in all dimensions. Finally, it would be in-
teresting to see whether one can measure these universal
edge scaling functions in experiments on cold atoms.

We thank C. Salomon for useful discussions. We ac-
knowledge support from PSL grant ANR-10-IDEX-0001-
02-PSL (PLD) ANR grant 2011-BS04-013-01 WALK-
MAT and in part by the Indo-French Centre for the Pro-
motion of Advanced Research under Project 4604-3 (SM
and GS).
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