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Schwarz preconditioning for high order
edge element discretizations of the
time-harmonic Maxwell’s equations

M. Bonazzoli1, V. Dolean1,2, R. Pasquetti1, and F. Rapetti1

Abstract We focus on high order edge element approximations of waveguide
problems. For the associated linear systems, we analyze the impact of two
Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the
Optimized Restricted Additive Schwarz (ORAS), on the convergence of the
iterative solver.

1 Introduction

High order discretizations of PDEs for wave propagation can provide a highly
accurate solution with very low dispersion and dissipation errors. The result-
ing linear systems can however be ill conditioned, so that preconditioning
becomes mandatory. Moreover, the time-harmonic Maxwell’s equations with
high frequency are known to be difficult to solve by classical iterative meth-
ods, like the Helmholtz equation [3]. Domain decomposition methods are
currently the most promising techniques for this class of problems (see [1, 2]).

In order to simulate propagation in waveguide structures, we consider the
second order time-harmonic Maxwell’s equation:

∇×
(

1

µ
∇×E

)
+ (iωσ − ω2ε)E = −iωJ, (1)

in the domain D ⊂ R3 contained between two infinite parallel metallic plates
y = 0 and y = Y . The wave propagates in the x-direction and all physical
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parameters (magnetic permeability µ, electrical conductivity σ, and electric
permittivity ε) are invariant in the z-direction. Equation (1) assumes that
the electric field E(x, t) = Re(E(x)eiωt) has harmonic dependence on time
enforced by the imposed current source J (x, t) = Re(J(x)eiωt), ω being the
angular frequency. We work in a bounded section Ω = (0, X) × (0, Y ) of D
and solve the boundary value problem given by equation (1), where we set
J = 0, with metallic boundary conditions on the waveguide walls:

E× n = 0, on Γw = {y = 0, y = Y },

and impedance boundary conditions at the waveguide entrance and exit:

(∇×E)× n + iκn× (E× n) = gin, on Γin = {x = 0},
(∇×E)× n + iκn× (E× n) = gout, on Γout = {x = X},

κ = ω
√
εµ being the wavenumber and n = (nx, ny, 0) the outward normal to

Γ = ∂Ω. The assumptions on Ω and on the physical parameters distribution
are such that E = (Ex, Ey, 0), which yields ∇×E = (0, 0, ∂xEy − ∂yEx).

The variational formulation of the problem is: find E ∈ V such that∫
Ω

[
µϑE · v + (∇×E) · (∇× v)

]
+

∫
Γin∪Γout

iκ(E× n) · (v × n)

=

∫
Γin

gin · v +

∫
Γout

gout · v, ∀v ∈ V,

with V = {v ∈ H(curl, Ω),v × n = 0 on Γw}, where H(curl, Ω) is the space
of square integrable functions whose curl is also square integrable, ϑ = iωσ−
ω2ε, and µ is supposed constant. To write a finite element discretization of
this problem we introduce a triangulation Th of Ω and a finite dimensional
subspace Vh ⊂ H(curl, Ω). The simplest possible conformal discretization for
the space H(curl, Ω) is given by the low order Nédélec edge finite elements [6]:
the local basis functions are associated with the oriented edges E = {vi, vj}
of a given triangle T of Th and they are given by

wE = λi∇λj − λj∇λi,

where the λ` are the barycentric coordinates of a point w.r.t. the node v`.

2 High order edge finite elements

We adopt here the high order extension of Nédélec elements presented in
[7] and [8]. The definition of the basis functions is rather simple since it
only involves the barycentric coordinates of the simplex. Given a multi-index
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k = (k1, k2, k3) of weight k = k1 + k2 + k3 (where k1, k2, k3 are non negative
integers), we denote by λk the product λk11 λ

k2
2 λ

k3
3 . The basis functions of

polynomial degree r = k + 1 over the triangle T are defined as

we = λkwE , (2)

for all edges E of the triangle T , and for all multi-indices k of weight k.
Notice that these high order elements still yield a conformal discretization of
H(curl, Ω). Indeed, they are products between Nédélec elements, which are
curl-conforming, and the continuous functions λk.

Fig. 1: The small triangles (shaded regions) and their small edges in the
principal lattice of degree r = 3 (left) and r = 5 (right).

An interesting point of the proposed construction is the possible geomet-
rical localization of the basis functions: the couples {k, E} appearing in (2)
are in one-to-one correspondence with small edges e in the principal lattice
of degree r of T (see Fig. 1). More precisely, the small edge e = {k, E} is the
small edge parallel to E that belongs to the small triangle of barycentre G of

coordinates λi(G) = 1/3+ki
k+1 , i = 1, 2, 3. Thanks to the definition of the basis

the circulation of each basis function along a small edge is a constant that
does not depend on the triangle T of the mesh.

Even if the described basis functions are very easy to generate, they don’t
really form a basis as they are not linearly independent. Indeed, for each small
triangle which is not homothetic to the big one (the white ones in Fig. 1) one
can check that the sum of the basis functions associated with its small edges
is zero. Hence a redundant function should be eliminated for each ‘reversed’
small triangle.

3 Schwarz preconditioning

As shown numerically in [7], the matrix of the linear system resulting from the
described high order discretization is ill conditioned. Therefore, we use and
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compare two domain decomposition preconditioners, the Optimized Additive
Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS)

M−1OAS =

Nsub∑
s=1

RTs A
−1
s Rs, M−1ORAS =

Nsub∑
s=1

R̃Ts A
−1
s Rs,

where Nsub is the number of overlapping subdomains Ωs into which the
domain Ω is decomposed. The matrices As are the local matrices of the
subproblems with impedance boundary conditions (∇×E)×n+iκn×(E×n)
as transmission conditions between subdomains.

In order to describe the matrices Rs, R̃s, let N be the set of degrees of
freedom and N =

⋃Nsub

s=1 Ns its decomposition into the subsets corresponding
to different subdomains. The matrix Rs is a #Ns × #N boolean matrix,
which is the restriction matrix from Ω to the subdomain Ωs. Its (i, j) entry
is equal to 1 if the i-th degree of freedom in Ωs is the j-th one in the whole
Ω. Notice that RTs is then the extension matrix from the subdomain Ωs to

Ω. The matrix R̃s is a #Ns×#N restriction matrix, like Rs, but with some
of the unit entries associated with the overlap replaced by zeros: this would
correspond to a decomposition into non overlapping subdomains Ω̃s ⊂ Ωs
(completely non overlapping, not even on their border!) (see [4]). This way∑Nsub

s=1 R̃Ts Rs = I, that is the matrices R̃s give a discrete partition of unity
(which is made only of 1 and 0).

4 Numerical results

We present the results obtained for a waveguide with X = 0.0502 m,
Y = 0.00254 m, with the physical parameters: ε = ε0 = 8.85 · 10−12 F m−1,
µ = µ0 = 1.26 · 10−6 H m−1 and σ = 0.15 S m−1. We consider three angular
frequencies ω1 = 16 GHz, ω2 = 32 GHz, and ω3 = 64 GHz, which correspond
to wavenumbers κ1 = 153.43 m−1, κ2 = 106.86 m−1, κ3 = 213.72 m−1, vary-
ing the mesh size h according to the relation h2 · κ3 = 2 [5].

We solve the linear system with GMRES (with a tolerance of 10−6), start-
ing with a random initial guess, which ensures, unlike a zero initial guess, that
all frequencies are present in the error. We compare the ORAS and OAS pre-
conditioners, taking a stripwise subdomains decomposition, along the wave
propagation, as shown in Fig. 2. Indeed, this is a preliminary testing of the
discretization method and the preconditioner on a simple geometry which is
the two-dimensional rectangular waveguide propagating only one mode; in
this case, it is not necessary to consider more complicated or general decom-
positions.

In our tests we vary the polynomial degree r = k+1, the angular frequency
ω and so the wavenumber κ, the number of subdomains Nsub, and finally the
overlap size δovr. Here, δovr = h, 2h, 4h means that we consider an overlap



Schwarz preconditioning for high order edge elements 5

1

Ω
2

Ω
3

Ω

Fig. 2: The stripwise decomposition of the domain.

Table 1: Influence of k (ω = ω2, Nsub = 2, δovr = 2h).

k Ndofs NiterNp Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}

0 282 179 5(10) 1.04e−1(1.38e+1) 0(4) 0(12)

1 884 559 6(15) 1.05e−1(1.63e+1) 0(8) 0(40)

2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
3 3048 1946 6(21) 1.05e−1(8.36e+2) 0(16) 0(144)

4 4610 2950 6(26) 1.05e−1(1.57e+3) 0(20) 0(220)

Table 2: Influence of ω (k = 2, Nsub = 2, δovr = 2h).

κ Ndofs NiterNp Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}

153.43 339 232 5(11) 2.46e−1(1.33e+1) 0(6) 0(45)

106.86 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
213.72 7335 4068 9(24) 3.03e−1(2.73e+1) 0(18) 0(123)

Table 3: Influence of Nsub (k = 2, ω = ω2, δovr = 2h).

Nsub Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}

2 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4 10(27) 5.33e−1(1.96e+1) 0(38) 0(252)

8 19(49) 7.73e−1(1.96e+1) 0(87) 0(588)

Table 4: Influence of δovr (k = 2, ω = ω2, Nsub = 2).

δovr Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}

1h 10(20) 1.95e+1(1.96e+1) 3(12) 0(39)
2h 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4h 5(14) 1.06e−1(1.96e+1) 0(12) 0(174)
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of 1, 2, 4 mesh triangles along the horizontal direction. Tables 1–4 show the
total number of degrees of freedom Ndofs, the number of iterations Niter for
convergence of GMRES preconditioned with ORAS(OAS) (NiterNp refers to
GMRES without any preconditioner), the greatest distance in the complex
plane between (1, 0) and the eigenvalues of the preconditioned matrix, the
number of eigenvalues that have distance greater than 1, and the number of
eigenvalues that have distance equal to 1 (up to a tolerance of 10−10). Indeed,
if A is the system matrix and M is the domain decomposition preconditioner,
then I −M−1A is the iteration matrix of the domain decomposition method
used as an iterative solver. So, here we see if the eigenvalues of the precon-
ditioned matrix M−1A are contained in the unitary disk centered at (1, 0).
Notice that the matrix of the system doesn’t change when Nsub or δovr vary,
so in Tables 3–4 we don’t report Ndofs = 1806 and NiterNp = 1138 again. In
Figs. 3 and 4 we show for certain values of the parameters the whole spec-
trum of the matrix preconditioned with ORAS and OAS respectively (notice
that many eigenvalues are multiple).
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(a) k = 2, ω2, Nsub = 2, δovr = 2h
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(b) k = 2, ω3, Nsub = 2, δovr = 2h
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(c) k = 2, ω2, Nsub = 4, δovr = 2h
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(d) k = 2, ω2, Nsub = 8, δovr = 2h

Fig. 3: Spectrum in the complex plane of the ORAS-preconditioned matrix.
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(a) k = 2, ω2, Nsub = 2, δovr = 2h
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(b) k = 2, ω3, Nsub = 2, δovr = 2h
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(c) k = 2, ω2, Nsub = 4, δovr = 2h
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(d) k = 2, ω2, Nsub = 8, δovr = 2h

Fig. 4: Spectrum in the complex plane of the OAS-preconditioned matrix.

We can see that the non preconditioned GMRES is very slow, and the
ORAS preconditioning gives much faster convergence than the OAS precon-
ditioning. Moreover, convergence becomes slower when k, ω or Nsub increase,
or when the overlap size decreases; actually, when varying k, the number of
iterations for convergence using the ORAS preconditioner is equal to 5 for
k = 0 and then it stays equal to 6 for k > 0.

Notice also that for 2 subdomains the spectrum is well clustered inside
the unitary disk with the ORAS preconditioner, except for the case with
δovr = h, in which 3 eigenvalues are outside with distances from (1, 0) equal
to 19.5, 19.4, 14.4. Then, for 4 and 8 subdomains the spectrum is not so well
clustered. With the OAS preconditioner there are always eigenvalues outside
the unitary disk. For all the considered cases, the less clustered the spectrum,
the slower the convergence.
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5 Conclusion

Numerical experiments have shown that Schwarz preconditioning improves
significantly the GMRES convergence for different values of physical and
numerical parameters, and that the ORAS preconditioner always performs
much better than the OAS preconditioner. The only advantage of the OAS
method is to preserve the symmetry of the preconditioner. Finally, it has
been pointed out that the spectrum of the preconditioned matrix reflects the
convergence qualities, which improve when the eigenvalues are well clustered
inside the unitary disk centered at (1, 0).
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