
HAL Id: hal-01250721
https://hal.science/hal-01250721

Submitted on 5 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing the Longest Unbordered Substring
Pawel Gawrychowski, Gregory Kucherov, Benjamin Sach, Tatiana

Starikovskaya

To cite this version:
Pawel Gawrychowski, Gregory Kucherov, Benjamin Sach, Tatiana Starikovskaya. Computing the
Longest Unbordered Substring. Proc. of the 22nd International Symposium on String Processing
and Information Retrieval (SPIRE), September 1-4, 2015, London, UK, Sep 2015, London, United
Kingdom. pp.12, �10.1007/978-3-319-23826-5_24�. �hal-01250721�

https://hal.science/hal-01250721
https://hal.archives-ouvertes.fr


Computing the Longest Unbordered Substring

Pawel Gawrychowski1, Gregory Kucherov2, Benjamin Sach3, and Tatiana
Starikovskaya3

1 Warsaw Center of Mathematics and Computer Science
2 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est & CNRS
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Abstract. A substring of a string is unbordered if its only border is
the empty string. The study of unbordered substrings goes back to the
paper of Ehrenfeucht and Silberger [7]. The main focus of [7] and of
subsequent papers was to elucidate the relationship between the longest
unbordered substring and the minimal period of strings. In this paper, we
consider the algorithmic problem of computing the longest unbordered
substring of a string. The problem was introduced recently in [12], where
the authors showed that the average-case running time of the simple,
border-array based algorithm can be bounded by O(n2/σ4) for σ being
the size of the alphabet. (The worst-case running time remained O(n2).)
Here we propose two algorithms, both presenting substantial theoretical
improvements to the result of [12]. The first algorithm has O(n logn)
average-case running time and O(n2) worst-case running time, and the
second algorithm has O(n1.5) worst-case running time.

1 Introduction

A proper prefix of a string that is simultaneously its suffix is called a border. If
the only border of a substring is the empty string, then this substring is called
unbordered. The study of unbordered substrings commenced in the 1979 paper of
Ehrenfeucht and Silberger [7]. The main focus of [7] and of subsequent papers [1,
5, 9] was to clarify the relationship between the maximal length of an unbordered
substring of a string and its periodicity. As a result of this line of research, it
was shown that in order to guarantee the equality between the maximal length
of an unbordered substring and the minimal period, either the former should
be smaller than 3/7 of the string length, or the latter should be smaller than
1/2 of the string length, where both bounds are tight. In this work, we focus
on the computational problem that can be considered complementary to the
previous study: Given a string T of length n, compute its unbordered substring
of maximal length.

It is well-known that the minimal period can be easily computed on O(n)
time by a variant of the Knuth-Morris-Pratt algorithm [13]. Note that if a string
is periodic, i.e. its minimal period is at most half of the string length, then a
longest unbordered substring can be found as an unbordered conjugate of string’s
root (which is a substring of minimal period length). This computation can be
done in O(n) time as well [6].



However, this approach is not applicable in the general case. It can be easily
seen that an unbordered substring cannot be longer than the minimal period
of the string (as any substring longer than the period has a border). For most
strings, the maximal length of an unbordered substring, and consequently their
minimal period, are large. (More formally, it was shown recently that the average
maximal length of an unbordered substring of a string of length n is at least
(1− 8/σ4)n for alphabets of size σ [12].) In this case, it is no longer possible to
exploit the relation between unbordered substrings and the minimal period. A
straightforward way to compute the longest unbordered substring is to compute
the border array of each suffix of the string [13]. This algorithm has quadratic
worst-case running time, and no better worst-case bound has been obtained, to
the best of our knowledge. In [13], it was shown that the average-case running
time of this algorithm is O(n2/σ4). The average-case time complexity captures
the ‘typical’ running time of the algorithm, rather than the running time on most
hard problem instances [14]. Other problems on strings studied under this model
include pattern matching, edit distance, suffix trees, and more (see e.g. [10]).

We give two algorithms for computing an unbordered substring of the max-
imal length: algorithm A and algorithm B. Both algorithms have O(n) space
complexity. The worst-case running time of algorithm A is O(n2) – the same
as of the simple, border-array based algorithm. However, its average-case time
complexity, i.e. the time complexity averaged over all input strings of length n,
is O(n log n) which provides a considerable improvement to the bound of [12].
For algorithm B, we show an O(n1.5) worst-case time bound. To our knowledge,
this is the first sub-quadratic worst-case bound for this problem.

Both algorithms are based on the following idea. In order to find the longest
unbordered substring, it suffices to compute, for each position j, the longest
unbordered substring that ends at j, or in the other words, the smallest position i
such that T [i..j] is unbordered. To compute i, we need to decide which substrings
ending at j have a border. Consider some threshold τ on the border length. We
then distinguish two types of bordered substrings: those having a ‘short’ border
(shorter than τ) and those having only ‘long’ borders (longer than τ). For each j,
there are only τ possible short borders, which will allow us to identify such
borders quickly. On the other hand, we will show that the number of substrings
that have only long borders is small, which will also make it possible to identify
them quickly.

2 Preliminaries

We assume the word-RAM model of computation with Ω(log n)-bit words and
an integer alphabet of polynomial size.

Let Σ be a finite alphabet. The elements of Σ are letters. A finite ordered
sequence of letters (possibly empty) is called a string. Letters in a string are
numbered starting from 1, that is, a string T of length n consists of letters
T [1], T [2], . . . , T [n]. The length n of T is denoted by |T |.



For 1 ≤ i ≤ j ≤ n, T [i..j] is a substring of T with endpoints i and j. A
substring T [1..j] is called a prefix of T , and a substring T [i..n] is called a suffix
of T . A prefix (or a suffix) of T different from T is called proper.

2.1 Borders and periods.

If a proper prefix of a string is simultaneously its suffix, then it is called a border.
A string is called unbordered if the only border it has is the empty string.

We define the border array B of T to contain the lengths of the longest
borders of all prefixes of T , i.e. B[i] is the length of the longest border of T [1..i],
i = 1..n. The last entry in the border array, B[n], contains the length of the
longest border of T . It is well-known that the border array and therefore the
longest border of T can be computed in O(n) time and space [13].

We remark that the border array construction algorithm immediately gives
an O(n2)-time algorithm for computing the longest unbordered substring of T :
It suffices to build the border arrays of all suffixes of T . Then the longest unbor-
dered substring starting at position i will correspond to the rightmost entry in
the border array of T [i..n] containing zero.

A period of T is a positive integer π such that for all i, 1 ≤ i ≤ n − π,
T [i] = T [i + π]. The smallest of all periods of T is called the minimal period
of T . The minimal period of T is equal to n−B[n], and hence can be computed
in O(n) time. Note that if T is unbordered, then its smallest period is equal to
its length. Note also that a border of a border is again a border, and that the
shortest border is unbordered.

We will also exploit the Periodicity lemma:

Lemma 1. If a string T has periods ρ and γ such that ρ+ γ ≤ |T |, then T has
period gcd(ρ, γ), the greatest common divisor of ρ and γ.

Finally, we will make use of the shortest border array B′ of T which is defined
to contain the lengths of the shortest borders of all prefixes of T . That is, for each
i = 1..n, B′[i] is the length of the shortest non-empty border of T [1..i] if T [1..i]
has a non-empty border, and zero otherwise. It is not difficult to see that the
shortest border array of T can be computed in linear time. It suffices to run the
standard border array construction algorithm, then if B[i] is the longest border
of T [1..i], the shortest border of T [1..i] equals B′[B[i]] and can be computed
in O(1) time.

2.2 Suffix trees and auxiliary data structures.

The (generalized) suffix tree of a set of strings S is a compacted trie of suffixes
of the strings in S, where the suffixes of the i-th string are appended with a
special letter $i that does not belong to the alphabet Σ [15]. In this paper, we
will consider the suffix trees for the following sets of strings:

– a singleton set containing T ,



– a singleton set containing the reverse of T ,
– a two-element set consisting of T and some substring S of T .

We assume that we know string depths of all branching nodes. The string
depth of a node is the length of the string formed by the labels from the root to
that node.

We also will assume that we have access to the corresponding suffix array for
each suffix tree. The j-th entry in the suffix array gives the position i of the start
of the j-th largest suffix in lexicographical order. We assume that each entry in
the suffix array holds a pointer to the corresponding leaf in the suffix tree and
vice versa. Furthermore we assume each internal node in the suffix tree holds a
pointer to the leftmost and rightmost leaves in each subtree. We remark that
the suffix array is not strictly required to achieve the claimed bounds in either
algorithm but it will simplify the explanation.

As is relatively standard, we augment each tree with the lowest common
ancestor (LCA) and the range minimum query (RMQ) data structures [2]. The
RMQ data structure is built on top of the suffix array for the corresponding
tree. We omit the definitions as these data structures are used only indirectly
via Lemmas 2 and 3 below. On alphabets of size |T |O(1) all suffix trees, as well
as the suffix arrays, the LCA and the RMQ data structures, can be constructed
in O(|T |) time and occupy O(|T |) space [8, 2]. Augmented in this way, the suffix
trees become a very powerful tool:

Lemma 2. Using the augmented suffix trees/arrays of T and the reverse of T ,
the following queries can be answered in O(1) time:

1. Given endpoints of two substrings S1 and S2 of T , decide whether S1 = S2,
2. Given an interval in the suffix array of T find the suffix in the interval with

the smallest starting position,
3. Given endpoints of two substrings S1, S2 of T , compute the longest common

suffix of S1 and S2,
4. Given endpoints of two substrings S1, S2 of T compute the largest integer

α and the longest suffix S of S1 such that SSα1 is a suffix of S2. Here Sα1
denotes the string formed by α repetitions of S1.

Lemma 3. Using the suffix tree of T and the suffix tree of T and some sub-
string S of T , the following queries can be answered in O(|T |) time:

1. Retrieve all suffixes of T that are not prefixes of other suffixes of T , sorted
in lexicographic order,

2. For each suffix T [i..n] of T , compute the length of its longest prefix Pi that
occurs in S and the first position of such an occurrence.

Lemmas 2 and 3 are proved using standard suffix tree algorithms, perhaps
with the only exception of Query 4 of Lemma 2. We answer this query in the
following way. First, we find the longest common suffix of S1 and S2 (Query 3 of
Lemma 2). If its length is smaller than |S1|, we set α to zero and S to the suffix.
Otherwise, S1 is a suffix of S2. Let S2 = T [i..j]. Then SSα−11 is equal to the
longest common suffix of T [i..j] and T [1..j − |S1|+ 1] and can be found in O(1)
time by one more Query 3 of Lemma 2.



3 Algorithm A

In this section we describe algorithm A, which has O(n2) worst-case time com-
plexity and O(n log n) average-case time complexity. Recall from the introduc-
tion, that both our algorithms set a threshold to distinguish between short and
long borders. For algorithm A, we set the threshold, τ to 6 log n. That is, a non-
empty border is short if its length is smaller than 6 log n, and long otherwise.
We start with the following lemma which says that strings containing substrings
with long borders are very rare. We can therefore afford to process them less
efficiently and still achieve a good average-case time complexity.

Lemma 4. Consider a random string T of length n with i.i.d. distribution of
letters over a non-unary alphabet. The probability that T contains a substring
with a long border is smaller than 1

n .

Proof. If T contains a substring with a long border, then there is a substring
T [i..j] with a border of length 6 log n and consequently T contains a pair of equal
substrings of length 6 log n. Furthermore, either these two equal substrings do
not overlap, or they can be shortened to produce two non-overlapping substrings
of length 3 log n, or the length of T [i..j] is at most 9 log n. In the last case, the
period of T [i..j] is at most 9 log n − 6 log n = 3 log n, and the prefix of length
3 log n of T [i..j] and a substring of the same length starting with the next full
repetition of the period do not overlap. So in all the cases, there exist two non-
overlapping equal substrings of length 3 log n.

Now we will show that the probability of a random string to have two non-
overlapping equal substrings of length 3 log n is small. Consider any two such
substrings. Since they do not overlap and their letters are chosen uniformly and
independently, the probability of the substrings being equal is at most 1/n3

(recall that the alphabet cardinality is at least 2). Since there are at most n2

pairs of substrings of length 3 log n, by the union bound the probability of at
least one such pair being equal is at most 1/n. ut

The string, T contains a substring with a long border if and only if the suffix
tree of T contains a branching node with string depth at least 6 log n. We can
check whether this is true in O(n) time. If it is, we run the simple O(n2)-time
algorithm to compute the longest unbordered substring. We can now proceed
under the assumption that T contains no substring with a long border.

Algorithm A considers each position in the string T in turn and determines
the largest unbordered substring that ends at that position. Consider an arbi-
trary position j and a substring T [i..j]. If T [i..j] has a border, the border must be
short and hence equal to one of T [j−6 log n+1..j], T [j−6 log n+2..j], . . . , T [j].
Remember that our objective is to compute the smallest position i such that
T [i..j] is unbordered. It follows that we need to compute the smallest position i
with no occurrence of T [j − 6 log n+ 1..j], T [j − 6 log n+ 2..j], . . . , T [j].

Occurrences of any substring of T form an interval in the suffix array. This
property is immediate from the lexicographical ordering. The positions where
none of these substrings occur correspond exactly to the complement of these



O(log n) intervals. It therefore follows that these ‘complementary’ positions also
form O(log n) disjoint intervals in the suffix array. We can find these ‘comple-
mentary’ intervals by sorting the original intervals. The smallest position i where
none of these substrings occur is the minimum position in any of the complemen-
tary intervals. We can compute the minimum in O(log n) time by performing
Query 2 on each of the intervals in O(1) time and reporting the minimum.

To achieve the O(log n) time complexity there are two bottlenecks that we
must overcome. The first is finding the required intervals in the suffix array for T
and the second is sorting these intervals.

To find the intervals efficiently, we use the following lemma to retrieve the
locus (the node labelled by the substring) of each substring T [j − 6 log n +
1..j], T [j − 6 log n + 2..j], . . . , T [j] in the suffix tree of T in constant time per
substring. If the substring occurs only implicitly in the suffix tree, the locus is
the node at the deeper end of the edge where the substring ends. We can then
determine the suffix array interval corresponding to a locus in O(1) time by
following the pointers to the leftmost and rightmost leaves in the subtree rooted
at the locus and then following the pointers to the corresponding suffix array
locations.

Lemma 5. The suffix tree of T can be preprocessed in O(n log n) time and O(n)
space, so that the locus of any T [j−`..j] such that 0 ≤ ` < 6 log n can be retrieved
in constant time.

Proof. For every leaf corresponding to a suffix T [i..n] we store a bitvector of
length 6 log n, where the `-th bit is set to 1 if the leaf has an ancestor at string
depth 0 ≤ ` < 6 log n. The bitvectors can be constructed in O(n log n) time in a
straightforward manner and occupy O(n) (words of) space.

For each bitvector we build the rank/select data structure [11]. The data
structures can be built in O(n log n) time, occupy O(n) (words of) space, and
allow to compute the number m of 1 in a prefix of a bitvector of given length `
and to find the m-th 1 in a bitvector O(1) time.

Next, we augment the suffix tree with the level ancestor data structure in
O(n) time and space that given an integer d and a node allows to compute the
node’s ancestor of (node) depth d in O(1) time [3].

To retrieve the locus of T [j − `..j] we use the rank/select data structure of
the bitvector stored for T [j− `..n] to compute the number m of ancestors of the
corresponding leaf of string depths less than ` in constant time. The locus of
T [j − `..j] is the ancestor of the leaf of depth d = m + 1, and can be retrieved
in O(1) time. ut

To sort the intervals efficiently, we build the suffix tree (and the suffix array)
of the string Tj = T [j−6 log n+1..j]. This gives us the lexicographical ordering of
the substrings T [j−6 log n+1..j], T [j−6 log n+2..j], . . . , T [j]. We can use this to
sort the corresponding intervals as follows. First we remove any substring T [j −
`1+1..j] which has another substring T [j−`2+1..j] as a prefix. This cannot affect
correctness as the interval in the suffix array for T corresponding to occurrences
of T [j − `1 + 1..j] is completely contained within the interval corresponding to



T [j − `2 + 1..j]. These substrings can be removed in O(log n) time by applying
Query 1 of Lemma 3. Finally, the key observation is that the remaining intervals
do not intersect and the order of the remaining intervals within the suffix array
of T corresponds to the lexicographical order of the corresponding substrings.
This gives the desiredO(log n) time to compute the longest unbordered substring
ending at a single position j.

Theorem 1. The worst-case time complexity of algorithm A is O(n2) and the
average-case time complexity is O(n log n). The space complexity of the algorithm
is O(n).

Proof. It is easy to see the bounds on the worst-case time complexity and the
space complexity of the algorithm. We now show the average-case time com-
plexity. If t is the running time in the case when there are no long borders (i.e.
no branching nodes of string depth ≥ 6 log n in the suffix tree of T ), then by
Lemma 4 the average-case time complexity is bounded by O( 1

n · n
2) + 1 · t =

O(n) + t.
It remains to show that t = O(n log n). We start by building the suffix tree

of T and preprocessing it according to Lemma 5 in O(n log n) time. Then, for
each j = 1..n we build the suffix array and suffix tree of Tj and retrieve its suffixes
that are not prefixes of other suffixes in O(log n) time. For each of the retrieved
suffixes we compute the interval of its occurrences. We then sort these intervals
and take the complement of the intervals in O(log n) time. The complement is a
union of at most 6 log n disjoint intervals and we compute the minimum in these
intervals in O(log n) time. The claim follows. ut

We remark that in the case of large alphabets (of size nΩ(1)) it is impossible
to use the algorithm [8] to build the suffix trees of substrings T [j−6 log n+ 1..j]
in linear time. To overcome this technicality, we apply the following alphabet
reduction trick prior to constructing the trees. We partition T into O(n) blocks
of length 12 log n with overlaps of 6 log n positions. We sort letters in each block
and for each letter T [i] store its rank in the block. Each T [j − 6 log n + 1..j]
belongs to at least one of the blocks. To construct its suffix tree, we consider one
of the blocks containing it and replace all letters with their ranks in the block.
This reduces the size of the alphabet to O(log n) and makes it possible to use
the algorithm [8]. The alphabet reduction trick takes O(n log n) extra time and
does not affect the time complexity of the algorithm.

4 Algorithm B

In this section we describe algorithm B, which has O(n1.5) worst-case time com-
plexity. As in Algorithm A, we set a threshold to distinguish between short
and long borders. For algorithm B, we set the threshold, τ to

√
n. That is, a

non-empty border is short if its length is smaller than
√
n, and long otherwise.

First note that we can compute the longest unbordered substring of length
at most 4

√
n in O(n1.5) time by computing the border array of each substring



of length 4
√
n. From now on, we are only interested in unbordered substrings

of length at least 4
√
n. The algorithm will consist of

√
n stages. At stage k

it computes the longest unbordered substring that ends in an interval Jk =
[k
√
n+ 1, (k + 1)

√
n]. Let F ik, i = 1..(k − 3)

√
n, be the set substrings of T that

start at position i and end in Jk. The algorithm considers each i = 1..(k− 3)
√
n

in order and either says that there is no unbordered substring in F ik or retrieves
a substring T [i..j] ∈ F ik. We guarantee that T [i..j] does not have short borders.
Furthermore, if there are unbordered substrings in F ik, we guarantee that T [i..j]
is the longest of them. We refer to T [i..j] as the candidate. After retrieving the
candidate T [i..j], the algorithm checks if it is unbordered. If it is, the algorithm
updates the maximal length of unbordered substrings.

4.1 Candidates

Let Pi be the longest prefix of T [i..n] that occurs in Tk = T [(k− 1)
√
n+ 1..(k+

1)
√
n]. If T [i..j] ∈ F ik has a short border, then this border is a prefix of Pi.

Moreover, if ` is the position of an occurrence of Pi in Tk and `+|Pi|−1 < j, then
T [`..j] has a non-empty border of length at most |Pi|. This simple observation
will allow us to differentiate between substrings with short borders and without
those. We explain the technical details below.

Preprocessing. We start by constructing the suffix tree for two strings T and Tk.
With its help we compute, for each i = 1..(k−3)

√
n, the length and the position

of an occurrence of the longest prefix Pi of T [i..n] that occurs in Tk (Query 2 of
Lemma 3).

Consider all conjugates T [`..(k + 1)
√
n]] $ T [(k − 1)

√
n + 1..` − 1] of Tk$,

where $ is a letter that does not belong to the main alphabet. We compute the
shortest border array for each of the conjugates in O(n) time in total. Obviously,
values in the arrays are bounded by 2

√
n. We sort each array inO(

√
n) time using

bucket sort. Overall, it takes O(n) space and time. For r ∈ [k
√
n+ 1, (k+ 1)

√
n]

let

S`,r =

{
T [`..r], if r > `;

T [`..(k + 1)
√
n] $ T [(k − 1)

√
n+ 1..r], if r < `.

We define rp` to be the largest position in Jk \ [`, ` + p − 1] such that S`,rp`
is either unbordered or has the shortest border of length at least p + 1. For a
fixed `, all values rp` can be computed in O(

√
n) time by scanning the (sorted)

shortest border array for T [`..(k + 1)
√
n]] $ T [(k − 1)

√
n+ 1..`− 1].

Computing candidates. Below we fix i and show how to compute the candidate
in F ik. If Pi is the empty string, T [i..(k + 1)

√
n] is the longest, unbordered sub-

string in F ik and we return it as the candidate. Otherwise, let ` be the position
of an occurrence of Pi in Tk and let p = |Pi|.

Lemma 6. If rp` is not defined, then F ik contains no unbordered substrings.



Proof. It suffices to show that T [i..j] ends with a prefix of Pi for all j ∈ Jk. If
j ∈ [`, ` + p − 1], the claim is obvious. Consider now j ∈ Jk \ [`, ` + p − 1]. We
know that S`,j has a border of length in [1, p], which means that S`,j ends with
a prefix of Pi. Since S`,j is a suffix of T [i..j], we obtain that T [i..j] also ends
with a prefix of Pi. ut

If the condition of the lemma is satisfied, the algorithm says that F ik contains
no unbordered substrings. Otherwise, let j = rp` . Note that |S`,j | ≥ p + 1 by
definition.

Lemma 7. T [i..j] does not have a short border.

Proof. The proof is by contradiction. Suppose that T [i..j] has a short border B.
As B is a prefix of T [i..n] and occurs in Tk, it must be a prefix of Pi (not
necessarily proper). Consequently, S`,j starts with B and ends with B. Hence,
B is a border of S`,j of length |B| ∈ [1, p], which contradicts the definition of j.

ut

Lemma 8. If F ik contains unbordered substrings, then T [i..j] is the longest of
them.

Proof. Let us first show that if a substring T [i..j′] ∈ F ik is unbordered, then
S`,j′ is either unbordered or has the shortest non-empty border of length at
least p + 1. Suppose that the shortest non-empty border of S`,j′ has length in
[1, p]. This border is a prefix of Pi, i.e. S`,j′ ends with a prefix of Pi. Consequently,
T [i..j′] is not unbordered as it starts with Pi and ends with the prefix of Pi, a
contradiction.

It follows that all unbordered substrings in F ik have length at most |T [i..j]|.
It remains to show that if T [i..j] has a long border, then all shorter substrings
in F ik have a non-empty border. As T [i..j] has a long border, for some b ≥

√
n

we have T [i..i + b− 1] = T [j − b + 1..j]. It follows that for all j′ ∈ [k
√
n + 1, j]

we have T [i..i+ b+ j− j′− 1] = T [j− b+ 1..j′], i.e. all substrings T [i..j′] shorter
than T [i..j] have a non-empty border. ut

The algorithm retrieves the candidate T [i..j] in O(1) time. The last two
lemmas guarantee that T [i..j] does not have short borders and if there are un-
bordered substrings in F ik, then T [i..j] is the longest of them. It remains to check
if T [i..j] is unbordered. As it has no short borders, it suffices to check if it has a
long border.

4.2 Long border check

Let Sj be the shortest suffix of T [1..j] such that its period is larger than
√
n/2.

We will show that every long border of T [i..j] ends with an occurrence of Sj .
During the long border check we will scan over a sorted list of occurrences of Sj
to determine if one of them induces a long border of T [i..j].



Preprocessing. Let Sj be the shortest suffix of T [1..j] such that its minimal
period is larger than

√
n/2. If there is no such suffix, Sj is undefined.

Lemma 9. If T [i..j] is unbordered or has only long borders, then Sj is defined
and all long borders of T [i..j] (if any) end with an occurrence of Sj.

Proof. If T [i..j] is unbordered, then its shortest period is equal to its length
which is larger than

√
n. This shows that Sj is defined.

If T [i..j] has only long borders, then consider the shortest of them. Since the
shortest border is always unbordered, its shortest period is equal to its length
which is larger than

√
n. This implies that Sj can only be shorter than this

shortest long border. Thus, Sj is a suffix of the shortest long border, and therefore
a suffix of any long border. ut

Lemma 10. For any j there are at most 2
√
n occurrences of Sj in T .

Proof. Since the minimal period of Sj is larger than
√
n/2, any two occurrences

of Sj are at least
√
n/2 positions apart. ut

Lemma 11. Any two occurrences of suffixes Sj1 6= Sj2 have distinct right end-
points.

Proof. Assume the opposite. Let |Sj1 | > |Sj2 |. By the definition, Sj1 is the
shortest suffix of T [1..j1] such that its minimal period at least

√
n/2. As Sj1

and Sj2 have occurrences with equal right endpoints, Sj2 is a suffix of Sj1 , and,
as a corollary, of T [1..j1]. But, Sj2 is shorter than Sj1 and its minimal period is
larger than

√
n/2. A contradiction. ut

The algorithm will make use of sorted lists of occurrences of distinct suf-
fixes Sj . From above it follows that the length of one list is at most 2

√
n, whereas

the total length of the lists is at most n. We compute the lists in the following way.
Suppose that each Sj is replaced with an integer uj ∈ [1, 2n] so that Sj1 6= Sj2
implies uj1 6= uj2 . We create an array of 2n empty lists and scan positions of
T from the left to the right. For each j = 1..n we add position j to the list uj .
Thus, we can compute the lists in O(n) time. We now describe the replacement
procedure.

Lemma 12. Given j, the length of Sj can be computed in O(
√
n) time.

Proof. We start by computing the minimal periods of suffixes T [j −
√
n +

1..j], T [j −
√
n + 2..j], . . . , T [j]. This can be done by constructing the border

array B of the reverse of T [j−
√
n+ 1..j] in O(

√
n) time: The minimal period of

T [j − `..j] will be equal to `−B[`]. If the minimal period π of T [j −
√
n+ 1..j]

is at least
√
n/2, then Sj is one of the suffixes and we already know it. Suppose

that π ≤
√
n/2. Let T [k..j] be the longest suffix of T [1..j] such that its minimal

period equals π. We can compute T [k..j] in constant time (Query 4 of Lemma 2).
We claim that the minimal period γ of T [k − 1..j] is larger than

√
n/2. Indeed,

T [k..j], as a suffix of T [k− 1..j], is periodic with period γ. If γ ≤
√
n/2, we have

π+ γ ≤
√
n ≤ T [k..j]. By the Periodicity lemma, T [k..j] is periodic with period

gcd(π, γ). Because of the minimality of π, γ must be a multiple of π. It follows
that T [k − 1..j] has period π, which contradicts the definition of T [k..j]. ut



For each j = 1..n we compute the length of Sj . We then build the suffix
tree of the reverse of T . The suffix tree contains at most 2n nodes which we
enumerate from 1 to 2n. As we know, each position can be the right endpoint
of an occurrence of at most one Sj . This suggests the following algorithm. We
consider the leaves of the tree from left to the right. Let the current leaf be
labeled by T [j]T [j − 1] . . . T [1]. We follow the path from the leaf to the root to
find the highest branching node of string depth ≥ |Sj |. Leaves in the subtree
of this node will correspond to the positions j′ such that Sj′ = Sj . We replace
all Sj′ in the subtree with the order number of the node and proceed to the
leftmost suffix outside the subtree. The replacement procedure takes O(n) time
overall.

The check. Throughout stage k we maintain, for all j ∈ Jk, a pointer to the last
position in the list of uj that has been explored by the algorithm. A long border
(if any) of the candidate substring T [i..j] must be induced by an occurrence of
Sj in the interval [i, j]. The algorithm explores occurrences in the list of Sj in
turn starting from the one it stopped at. For each occurrence p ≥ i the algorithm
compares substrings F1 = T [i..p+ |Sj |−1] and F2 = T [j−|F1|+1..j] (Query 1 of
Lemma 2). If they are equal, T [i..j] has a long border. Otherwise, the algorithm
proceeds to the next occurrence in the list. If no occurrence in the list induces a
long border, T [i..j] is unbordered.

4.3 Pseudocode and the bounds

To summarize, we give pseudocode of stage k of algorithm B. Preprocessing for
long border checks (computation of suffixes Sj and their lists) is done before the
first stage (not shown).

Algorithm 1 Stage k of Algorithm B.

1: \\ Preprocessing for candidates
2: Build the suffix tree of T and Tk = T [(k − 1)

√
n+ 1..(k + 1)

√
n]

3: for i = 1..n do
4: Compute the longest prefix Pi of T [i..n] that occurs in Tk

5: for ` = (k − 1)
√
n+ 1..(k + 1)

√
n do

6: Compute the shortest border array of T [`..(k+ 1)
√
n] $ T [(k− 1)

√
n+ 1..`− 1]

7: Sort the array
8: Compute the values rp`
9: \\ Candidate and long border check

10: for i = 1..(k − 3)
√
n do

11: `← position of an occurrence of Pi in Tk

12: j ← r
|Pi|
`

13: if T [i..j] does not have a long border then
14: Update LongestUnbordered



Theorem 2. The worst-case time complexity of algorithm B is O(n1.5). The
space complexity of the algorithm is O(n).

Proof. It suffices to show that one stage of the algorithm takes O(n) time. Pre-
processing takes O(n) time. For each position i = 1..n we spend constant time
plus the time needed for the long border check. The total amount of time needed
for the long border checks is linear in total length of the lists, which is at most n,
as we never check an occurrence in a list twice for any position of T . ut
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