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Adaptive non-uniform sampling of sparse signals for

Green Cognitive Radio

Samba TRAORÉ, Babar AZIZ, Daniel LE GUENNEC, Yves LOUET

IETR/SCEE Centrale-Supélec Campus de Rennes, Avenue de la Boulaie - CS 47601
F-35576 Cesson-Sevigne cedex, France

Abstract

Based on previous results on periodic non-uniform sampling (Multi-Coset) and
using the well known Non-Uniform Fourier Transform through Bartlett's method
for Power Spectral Density estimation, we propose a new smart sampling scheme
named the Dynamic Single Branch Non-uniform Sampler. The idea of our
scheme is to reduce the average sampling frequency, the number of samples
collected, and consequently the power consumption of the Analog to Digital
Converter. In addition to that our proposed method detects the location of the
bands in order to adapt the sampling rate. In this paper, through we show
simulation results that compared to classical uniform sampler or existing multi-
coset based samplers, our proposed sampler, in certain conditions, provides
superior performance, in terms of sampling rate or energy consumption. It is not
constrained by the in�exibility of hardware circuitry and is easily recon�gurable.
We also show the e�ect of the false detection of active bands on the average
sampling rate of our new adaptive non-uniform sub-Nyquist sampler scheme.

Keywords: Non-Uniform sub-Nyquist sampling, Software Radio, Cognitive
radio, Non-Uniform spectrum sensing.

1. Introduction

Radio Frequency (RF) allows modulation of narrow band signals with a
high carrier frequency. The radio signals of human origin are often sparse. In
other words, they are composed of a relatively small number of narrow band
transmissions spread across a wide spectral region. A practical description of5

these signals is the multi-band model where the spectrum of the signal is only
composed of several continuous intervals in a wide spectrum. In addition, new
wireless applications place high demands on the quality of radio resources such
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as bandwidth and spectrum. Moreover, the current trends in wireless technol-
ogy have increased the complexity of the receiver, more speci�cally its Analog10

to Digital Converter (ADC).According to Shannon-Nyquist theorem, a signal
whose spectral support is limited to − fnyq

2 and fnyq

2 can be perfectly recon-
structed by sampling at fnyq. To sample a wide band signal with Nyquist rate
will require a high sampling rate ADC which consumes a lot of energy. To re-
duce the sampling rate, and in turn the energy consumption, several researchers15

have studied the possibility of sub-Nyquist sampling. In [? ] , a sub-Nyquist
sampling method is proposed for sparse multi-band signals, called Modulated
Wideband Converter (MWC). MWC consists of several stages and each stage
uses a di�erent mixing function followed by a low pass �lter and a low uniform
sampling rate. This sampling technique shows that perfect reconstruction is20

possible when the band locations are known. In [? ] [? ], authors have studied
the blind case, where the location of the bands is unknown with an in�exible
and sub optimal sampler scheme in term of sampling rate. Over the recent
years, multi-coset sampling [? ] [? ] [? ] has gained fair popularity and several
methods of implementing the multi-coset sampling have been proposed. The25

most famous architecture is composed of several parallel branches, each with a
time shift followed by a uniform sampler operating at a sampling rate lower than
the Nyquist rate. Recently, a di�erent approach for implementing multi-coset
sampling has been proposed in [? ], which uses uniform samplers operating
at di�erent rates and is known as the Synchronous Mutlirate Sampling. In[?30

], a Dual-sampling architecture is presented for multi-coset sampling which is
basically a subset of the Synchronous Multi rate Sampling and uses only two
uniform samplers. But for optimal reconstruction, all these methods assume
that the number of bands and the maximum bandwidth, a band can have, is
known. In [? ], authors have de�ned some requirements that need to be ful-35

�lled for a sampling system to be e�cient. These requirements are stated as
follows: the sampling rate (average) should be as low as possible, the system
has no prior knowledge of the band locations, and the system can be designed
with existing devices. In this paper, we propose a blind sampler based on multi-
coset sampling scheme which respects the above stated de�nition of an e�cient40

sampler. Our scheme estimates the spectral support, using our non-uniform
spectrum sensing model proposed in [? ? ], to minimize the average sampling
rate, thereby reducing the number of samples as well as energy consumption.
We show that our proposed spectrum sensing model provides accurate results
using less data samples. Its performance is examined at low rate SNR values45

with less data samples. In addition, its power consumption is compared with
regular ADC when the input signal is very sparse and it is found to produce
satisfactory results.

This article is organized as follows. In Section 2, we present the signal model
along with an overview of multi-coset sampling. In Section 3, we present our50

proposed sampling system and explain all its blocks. Then the non-uniform
spectrum sensing model is presented and the functionality of each block is ex-
plained. Numerical results are presented in Section 4 followed by a conclusion
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in the end.

2. Background55

2.1. Multi-band signal Model

Let M(B) be the class of continuous real-valued signals with �nite energy
and band-limited to a subset B.

M(B) =
{
x(t) ∈ L2(R) : X(f) = 0 ∀ f /∈ B

}
(1)

where B = [− fnyq

2 ,
fnyq

2 ] andX(f) =
∫ +∞
−∞ x(t)e−j2πftdt is the Fourier transform

of the signal x(t).
Let F represent the spectral support of the signal de�ned by

F =
⋃N

i=1
[ai, bi] (2)

where F ⊂ B, ai and bi represent, respectively, the lower and upper bound of
each bands, and N is the number of bands in B.60

2.2. Multi-Coset Sampling

Multi-Coset (MC) sampling is a periodic non-uniform sub-nyquist sampling
technique which samples a signal x(t) at a lower rate than the Nyquist rate,
thereby capturing only the amount of information required for an accurate re-
construction of the signal [? ? ]. In short, the process of MC sampling can be65

viewed as �rst sampling the input signal at a uniform rate with period T and
then selecting only p non-uniform samples from L equidistant uniform samples.
The process is repeated for consecutive segments of L uniform samples such
that the p selected samples have a sampling period L. The set C = {ci}p−1i=0

speci�es the p samples that remain in each segment of length L such that70

0 ≤ c0 < c1 < ... < cp−1 ≤ L− 1.
MC sampler is usually implemented by placing p ADCs in parallel as shown

in Fig.1. Each ADC operates uniformly at a period Ts = LT . The ∆i = ciT
represents the time shifts in sampling instants introduced in each branch. It
should be noted that a good choice of the sampling pattern C reduces the margin75

of error due to spectral aliasing and sensitivity to noise in the reconstruction
process [? ]. It is quite evident from Fig.1 that once the sampling parameters
(such as p) are selected, architecture of the MC sampler will remain unchanged
irrespective of the input signal characteristics. In other words, once designed,
the sampler in Fig.1 cannot be changed because of hardware limitations. If80

the input signal changes the MC sampler does not adapt, which results in sub-
optimal sampling of the signal, as will be show later. This motivated us to look
for an �exible system which conforms with the spectrum of the input signal. In
the next section, we explain the functionality of our new sampling scheme with
and show that it is more �exible compared to the MC sampler in Fig.1.85
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Figure 1: Multi-Coset (MC) sampler implemented as a multi-channel system.

3. System Model

With the exponential growth in the means of communications, modifying
radio devices easily and cost-e�ectively has become business critical. Software-
de�ned radio (SDR) technology brings the �exibility, cost e�ciency and power
to drive communications forward, with wide-reaching bene�ts realized by service90

providers and product developers through to end users [? ]. One of the main
objectives of SDR is to propose new technologies to design radio terminals and
wireless infrastructure able to support hardware-independent, multi-service op-
erations and which are remotely recon�gurable. Furthermore, Cognitive radio

Figure 2: Dynamic Single Branch Non-Uniform Sampler

continues to gain popularity as it adapts intelligently to the radio environment,95

there by dynamically managing the spectrum [? ]. As a result, the spectrum
changes continuously and rarely remains constant. Keeping the aspects of Soft-
ware radio and Cognitive radio in mind, we present in this paper a new sampler,
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that not only adapts to the changes of the input signal but is also remotely re-
con�gurable and is, therefore, not constrained by the in�exibility of hardwired100

circuitry. Our proposed non-uniform sampler is shown in Fig. 2. We call it the
Dynamic Single Branch Non-Uniform Sampler (DSB-NUS) or simply the DSB
sampler [? ]. DSB sampler is based on the principle of MC sampling except
that instead of p input branches in case of MC sampling, the DSB sampler
has only one. Furthermore, our DSB sampler has an adaptation loop which105

allows to measure the spectral support of the input signal periodically, and
adapt the sampling rate according to the spectrum of the input signal. The
regular MC sampling lacks this adaptive and feedback mechanism and is rather
a static, hardwired system. The DSB sampler operates in blind mode, with-
out any knowledge of the input signal's spectral support F and the number of110

bands N , and e�ciently reduces the number of samples while ensuring optimal
reconstruction with minimum error.

The DSB-NUS operates in two phases:

1. Adaptation phase: When the switch is in position 1, the sampler adapts
the sampling parameters according to the spectral support of the input115

signal x(t) through a feedback loop.
2. Reconstruction Phase: When the switch is in position 2, the DSB-NUS

sampler performs Multi-Coset reconstruction.

As this will be shown shortly, the average sampling rate of our system depends
on the signal sparsity in the frequency domain. Next we present the operation120

of each block of the DSB sampler.

3.1. Non-Uniform Sampler block (NUS)

In this paper, we design the NUS of the DSB sampler as a recon�gurable
Additive Pseudo-Random Sampler (APRS) [? ] in conjunction with MC sam-
pling. Thus, unlike the regular MC sampler with several branches, the input
of the DSB-NUS is composed of a single branch non-uniform sampler. The N
sampling instants of the mono-branch DSB sampler are de�ned as:

tm = tm−1 + αm = t0 +

m∑
i=1

αi (3)

where 1 ≤ m ≤ N , E[tm] = mT and var[tm] = mσ2 ∀ N ≥ 1. Note that {αm}
is a set of i.i.d random variables with probability density p1(τ), mean T and
with variance σ2. Although, the input components of the DSB sampler have125

changed compared to the regular MC sampler but the signal at the output of the
NUS remains the same as in the case of MC sampling [? ]. As a result, for each
L uniformly spaced samples in case of Nyquist sampling, we get p non-uniform
samples (see Fig.3).

Let T = {τi}p−1i=0 be the set of the durations between p adjacent samples,
where τi−1 = ci− ci−1 for 1 ≤ i ≤ p− 1 and τp−1 = (L+ c0)− cp−1 (see Fig. 3).
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Figure 3: L uniformly spaced Nyquist samples and corresponding p DSB samples.

The set C = {ci}p−1i=0 contains p distinct integers from {0, 1, ..., L−1}. By taking
t0 = c0T , (3) can be written as

tm = c0T + T

m∑
i=1

τi−1 1 ≤ m ≤ p. (4)

The set of sampling instants {tn}n∈Z is non-uniform and periodic with period130

L like the regular MC sampler. But unlike the regular MC sampler, the DSB
sampler uses a non uniform sampler witch samples only some portions of the
received signal. It can be possible to switch o� the ADC on a prede�ned in-
stances to reduce the power consumption. Most of the existing non uniform
digitizer use a uniform clock as a reference clock, and have some circuitry which135

transforms the uniform clock to a non uniform one [? ? ].
Following the approach of the MC sampling presented in Fig. 1, we express

the non-uniform samples x(tn) at the output of the NUS in terms of periodic
sequences xi[m] = x(tmp+i), where 0 ≤ i ≤ p−1. The Fourier transform, Xi(f),
of the sampled sequence xi[n] is related to the Fourier transform X(f) of the
unknown signal x(t) by the following equation [? ] :

Xi(f) =
1

LT
exp(j2πfciT )

L
2 −1∑

n=−L
2

X(f +
n

LT
)exp(j2π

ci
L
n) (5)

where 0 ≤ i ≤ p− 1, and f ∈ B0 = [0, 1
LT ]. Note that x(t) ∈M(B).

The expression in (5) can be written in a matrix form

y(f) = ACs(f), (6)

where f ∈ B0 and y(f) is a vector of size p× 1 whose ith element is given by

yi(f) = Xi(f)exp(−j2πfciT ). (7)
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AC is a matrix of size p× L whose (i, l)th element is given by [? ]

[AC ]il =
1

LT
exp(j2π

ci
L

(l − L

2
)), (8)

where 0 ≤ l ≤ L − 1. Note that s(f) in (6) represents the unknown vector of
size L× 1 whose lth element is given by

sl(f) = X(f +
l − L

2

LT
). (9)

(9) indicates that, if the spectrum X(f) is divided into L cells indexed from −L2
to L

2 − 1, then each cell corresponds to a line in the vector s(f), for f ∈ B0.

3.2. Non-Uniform Spectrum Sensing Block (NUSSB)140

The reconstruction of x(t) requires to solve (6). Using the fact that x(t) is
sparse in the frequency domain and that there is no energy in certain cells, the
number of unknowns in (6) can be reduced. The set K consists of the spectral
indexes of the cells that contain signal which are called the active cells. But in
order to �nd K di�erent methods have been proposed in literature [? ? ? ]. But
the limitation of the methods proposed is that they require complete knowledge
of the matrix AC , the number of bands N and the maximum bandwidth. Since
we assume that we do not have any information regarding the spectrum of the
signal x(t), therefore, the matrix AC , along with other parameters, cannot be
known. In order to overcome this hurdle, we treat this scenario as a missing data
problem. In [? ] we have proposed to use the Lomb-Scargle's method [? ] to
estimate the power spectral density (PSD) of the non-uniformly sampled signal,
in spectrum sensing. In this paper, rather than Lomb-Scargle periodogram, we
propose to use the well know Non-Uniform Fourier Transform through Bartlett's
method [? ]. The PSD obtained for Ns = KpM samples x(tn) taken at times
tn, n = 0, ..., Ns − 1, is de�ned by (10) :

P̂Bart(ω) =
1

Ns

K−1∑
i=0

∣∣∣∣∣
pM−1∑
m=0

x(tm + iMLT )exp(−jωtm)

∣∣∣∣∣
2

(10)

where ω=2πf with f∈ [0, 1
2T ], M > 0, K > 0 and 0 < p ≤ L.

Once the PSD is estimated, the threshold value, η, is selected dynamically as
a function of PSDmax i.e. η = bPSDmax−βc, where β is a �xed value and b∗c is
the �oor function. With reference to η, the number of bands N and the spectral
support F are computed. The block diagram of our non-uniform spectrum145

sensing model is presented in (Fig. 4). Once the support F and N are found,
the set of spectral indexes K = {kr}q−1r=0, where kr ∈ {−L2 ,−

L
2 − 1, . . . , L2 − 1},

can be calculated using (11) as follows

baiLT c ≤ κi ≤ bbiLT c (11)
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Figure 4: Non-uniform spectrum sensing model

Figure 5: Support detection using threshold in non-uniform spectrum sensing block.

where 1 ≤ i ≤ N and b∗c is the �oor function. Once all the κi are calculated
for each band, the set of spectral indexes is given by :

K =
⋃N

i=1
κi. (12)

The process is illustrated in Fig.5 for a signal with N = 5.
The set K, thus, is sent to the optimal average sampling rate search and the150

multi-coset reconstruction blocks, as shown in (Fig.2).
The performance of our Non-Uniform Spectrum Sensing Block is evaluated

by computing the probabilities of the signal occupancy in terms of the number
of bands N and the active cells set K as follows:

1. The good detecting probability

Pd(N) = Pr
(
N̂ = N

)
(13)

Pd(K) = Pr
(
K̂ = K

)
(14)

2. and the false alarm probability

Pfa(N) = Pr
(
N̂ > N

)
(15)

Pfa(K) = Pr
(
|K̂| > |K|

∣∣∣K ⊂ K̂) (16)

where |K| represents the cardinality of K. K̂ and N̂ represent, respectively, the155

estimate of K and N given by the NUSSB.
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In our proposed NUSSB, the threshold, η, is the only information assumed
to be available on the input signal. It should be noted that these technique can
be used only if the power di�erence between each band is small.

As will be shown later in the paper through simulations, the results obtained160

using Bartlett's method for spectral support detection are quite accurate.

3.3. Multi-Coset Reconstruction Block

After having found the set K, the vector s(f) is reduced in dimension to
z(f), a vector of size q × 1 with rth element given by (17) :

zr(f) = X(f +
kr
LT

). (17)

The matrix AC becomes AC(K), a matrix of size p× q

[AC(K)]ir =
1

LT
exp(j2π

ci
L
kr) (18)

where 0 ≤ i ≤ p− 1 and 0 ≤ r ≤ q − 1. As a result (6) is reduced to

y(f) = AC(K)z(f) (19)

As our non uniform sampler (see.3.1) is recon�gurable, we always take p = q.
So, the matrix AC(K) is a full column rank matrix, the unique solution of (6)
is given by (20)

z(f) = A−1C y(f), (20)

where A−1C is the inverse of AC(K) and f ∈ [0, 1
LT ]. Since x(t) ∈ M(B), its

spectrum is Hermitian, the vector z(f) dimension can be reduce to z+(f). Then
(20) become (21)

z+(f) = A+
C y(f) (21)

where z+(f) is a vector of size q
2 × 1 with rth element given by (22)

z+r (f) = X(f +
kr
LT

) (22)

where 1 ≤ r ≤ q
2 and A+

C , a matrix of size q
2 × q whose (i, l)th element is given

by [
A+
C
]
il

= 2
[
A−1C

]
il

(23)

where 0 ≤ i ≤ q
2 − 1 and 0 ≤ l ≤ q − 1.

Once z+(f) is found, the inverse Fourier transform achieves the time domain
representation of each cell, X(f + kr

LT ) Fourier transform of xr(t) = xRr (t) +
jxIr (t). The reconstructed signal in time domain is written as :

x̂(t) = 2

q
2−1∑
r=0

xRr cos(2π
kr
LT

t)− xIr sin(2π
kr
LT

t) (24)

The Multi-Coset reconstruction process is illustrated in (Fig.6) for pM non
uniform samples x(tn), taken at times {tn}pM−1n=0 , for LM , corresponding, Nyquist165

samples (see.2.2), with M > 0. The total number of real operations after each
stage is given in the 5 (TABLE.1).
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Figure 6: Multi-Coset Reconstruction block

3.4. Complexity and power e�ciency

From (TABLE.1), the total number of real operations (addition and multi-
plication) to get a uniform Nyquist sample is given by (25) :

Ntotal =
11p

2L
log2(M) +

37p

16
log2(ML) +

9p2

2L
+

6p

L
+
p2

4
+
p

2
(25)

Since we have de�ned our NUS (see. 3.1) as an ADC which can be switch o�
at prede�ned instances and have some circuitry which transforms the uniform
clock to a non uniform one. Assuming insigni�cant the power consumption to
transforms the uniform clock. We de�ne Edsb as the energy consumed by our
DSB system to get a Nyquist sample by (26)

Edsb = τEus +NtotalPcpu (26)

where τ = (p/L) is the compression ratio, Eus represents the energy consumed
by the ADC for a Nyquist sample and Pcpu is the power e�ciency of the chosen
processor, measured in Joule per Operations (J/OP). The proposed system is
e�cient only if Edsb < Eus, then the processor power e�ciency must be chosen
as (27)

Pcpu < (1− τ)
Eus
Ntotal

(27)

For example, if p = 10, L = 128, M = 512 then τ ≈ 0.078, we select a
14-bits 100 MSPS digitally calibrated pipeline ADC which consumes 250 mW170

per 100 MSPS [? ] then, Eus = 2, 5 nJ and Ntotal ≈ 408 operations. So from
(27) , we deduce Pcpu < 2.305 nJ/OP. Furthermore, to maintain a real-time
processing, the execution time of the Ntotal operations must be less than the
sampling period. Then the chosen processor in this example must be performs
more than 40.8 Giga operations per second. It is shown in [? ] a processor which175
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Multiplication Addition
Radix-2 Butter�y FFT M-point

(M, taken as a power of 2)
2pM log2(M) 7

2pM log2(M)

Multiplication by exp(−j2π l
MLci)

when l={0,1,..., M-1}, i={0,1,...,p-1}
4pM 3pM

Multiplication by Matrix A+
C 2p2M 5

2p
2M − pM

Radix-4 Butter�y IFFT ML-point
(ML, taken as a power of 4)

3
4pMLlog2(ML) 25

16pMLlog2(ML)

Multiplication by
2cos(2π krL t) when t={0,1,..., ML-1},

kr={k0,k1,..., k q
2−1}

1
2pML 0

Multiplication by
-2sin(2π krL t) when t={0,1,..., ML-1},

kr={k0,k1,..., k q
2−1}

1
2pML 0

Sum 0 1
4p

2ML - 1
2pML

Table 1: Number of real operation in Multi-Coset Reconstruction block

processes at 50 Giga operations per second with a power e�ciency around 57, 8
fJ/OP. Then our system could be more power e�ciency than regular ADC when
the bands locations are unknown with a very sparse signal.

3.5. Optimal Average Sampling Rate Search Block (OASRSB)

The ideal sampling pattern is obtained when the condition number of AC(K)
is as small as possible, [? ? ]. The condition number of a matrix U is de�ned
as cond(U) = ‖U‖

∥∥U−1∥∥ where ‖∗‖ is a norm operation. The choice of C can
be seen as the solution to the following minimization problem

Copt = arg min
C:|C|=p

cond(AC(K)) (28)

One way of solving (28) is to use greedy search algorithms. Authors in [? ]
proposed to use the Sequential Forward Selection (SFS) to �nd the set C. The
SFS algorithm used in [? ] lacks the capability to remove elements from set
C that become obsolete after the addition of other elements. For a given set
L = 0, 1, ..., L− 1, the SFS looks for a subset C = {ci}pi=1 which minimizes
the function cond(AC(K)). L, T and K known, SFS algorithm searches for an
optimal sampling pattern C which in turn minimizes the reconstruction error.
Finally, C is used to compute the elements of the set T . Thus, for a given L, the
non-uniform sampler operates at an optimal average rate which depends only
on the number of active bands. As a result, the average sampling rate f of our
proposed sampler is given by :

f =
p

LT
=
|K|
LT

(29)

11



4. Numerical Results180

For simulations, we consider a multi band signal with a variable number of
bands N ∈ {1, 2, ..., 6}, each with a bandwidth B=20MHz, we assume that the
N bands have the same power. The wide band of interest is in the range of
[0, 500] MHz i.e. fnyq = 1GHz. 16 QAM modulation symbols are used that are
corrupted by the additive white Gaussian noise. To evaluate the performance of185

our Dynamic Non-uniform Sampler, we start by presenting in Sub-Section 4.1,
the performance of our Non-Uniform Spectrum Sensing block versus to α = p/L
( the compression ratio), β (the threshold) and the SNR. In the Sub-Section 4.2,
we illustrate the performance of the proposed DSB sampler by comparing it to
regular MC scheme and the drawback of poor detection of the spectral support190

on its average frequency.

4.1. Performance of Bartlett Method

In this sub-section we will evaluate the performance of our NUSSB in terms
of good detection of the number of bands N and the set of actives bands K
(see.(3.2)). For simulation, we take L = 128,M = 16 and K = 32 as parameters195

in equation (10), and use SFS algorithm to choose the sampling instances.
In order to compute Pd and Pfa, we start by choosing an appropriate β.

In Fig.7, we have performed 1000 iterations at SNR=10dB and for di�erent
values of α and β. It can be seen here that whatever β, Pd(K) increases with
increasing α until reach a maximum at some β values.These values are reached200

around β = −6,−5.5 and −5 dB respectively for α = 0.7, 0.6 and 0.5. In the rest
of the simulation, we take β = −6,−5.5 and −5 dB respectively for α = 0.7, 0.6
and 0.5. In Fig.8, we plot the Pfa(N) and Pfa(K) as a function of varying SNR.

Figure 7: Pd(K) plotted against varying β at SNR = 10 dB

At low SNR i.e. -2 dB, the values for Pfa(N) and Pfa(K) are quite high,
especially for α ≥ 0.5. But as the SNR increases, the Pfa(N) and Pfa(K) drop205

quickly, practically becoming zero at SNR=6dB for α=0.7. As expected, Pfa(N)

and Pfa(K) also depend on the number of non-uniform samples available to
NUSSB for detection.
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Figure 8: Pfa(N) and Pfa(K) plotted against varying SNR for α = 0.5 to α = 0.7.

As the average sampling rate for the DSB sampler is favg = (p/L)fnyq, it
can be suspected that a false estimation of N , K by NUSSB will directly e�ect210

the favg of the DSB sampler. This can happen because at a high Pfa, the
NUSSB shows that the estimated spectral support F of the signal is larger than
the actual support, as a result, the DSB sampler is forced to sample at a higher,
unoptimized sampling rate. This will be illustrated in the next sub-section.

4.2. Flexibility and adaptivity of DSB215

To start, we assume that the traditional MC sampler is designed not only
to have an optimal reconstruction for the signals but also a perfect knowledge
of (N,K) of the incoming signal while on the other hand, our proposed DSB
sampler operates in blind mode and therefore has no information regarding
the F and N of any kind of signals. In the following, we use the subscripts
mc and dsb to di�erentiate between simulation parameters for MC and DSB
samplers, respectively. It should be noted that pmc allows to set the number
of branches [? ] or number of uniform sampler placed in parallel [? ? ] on
the MC sampler. For sampling process, we select L = 128 and let the samplers
select their respective parameter pmc/pdsb depending on the signal's sparsity.
We design the MC sampler so as to have an optimal reconstruction for wide
band signals x(t) with frequencies carriers fi ∈ {15, 170, 250, 330, 410, 490},
each band of bandwidth B = 20MHz, the set of spectral indexes representing
the set of actives cells K is given by (11) and (12), and the sampling pattern C
is computed using SFS algorithm [? ]. Finally we have pmc = 50. We measure
the performance of MC sampler and DSB sampler in terms of the Root Mean
Square Error (RMSE) of the reconstructed time domain signal x̂(t). It is de�ned
by (30) :

RMSE =
‖x̂(t)− x(t)‖2
‖x(t)‖2

(30)

In Fig.9, we have plotted the RMSE as a function of condition number of
AC(K)) of signal x(t) without noise. The sampling pattern C is chosen randomly
and by using the SFS algorithm (see. 3.5). It can be seen that SFS Algorithm
make the reconstruction more e�cient than a randomly choice of the set C.
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Figure 9: RMSE as function of Condition number of AC(K) (no noise)

In the rest of the simulation the RMSE is calculated using (30) and is av-220

eraged over 1000 iterations. It should be noted that the parameters of the MC
sampler remain unchanged due to the hardware rigidity regardless of the input
signal characteristics. Since the spectral support is unknown to the DSB sam-
pler, it always starts from the adaptation phase to �nd F and N , and then goes
ahead to operate in reconstruction phase until needed to recheck the spectrum225

of the input signal. The sampler can be programmed to periodically check the
spectral changes. For simplicity we assume here that the instants of changes in
spectrum are known. So, the sampler swhiches to the adaptation phase each
time there is a change in the spectrum of the input signal to detect the new
support.230

Fig.10, shows that the performance of our proposed blind DSB sampler
completely matches with the non-blind MC sampler in terms of RMSE. The

Figure 10: Comparison between our proposed blind DSB sampler with non-blind DSB sampler
in terms of RMSE.

results obtained are very promising. We can conclude from Fig.10 that the
Bartlett method used for support detection makes our proposed sampler same
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as the non-blind one as. However, it is noted that such convincing results are235

obtained with a very sparse multiband signal.
In order to show the �exibility and adaptivity of the proposed DSB sampler,

we consider that the spectrum of the signal x(t) changes with time. In other
word the number of bands N varies from 1 to 7. All the results provided in
Figs.11-12-13, are for the scenario where the number of bands N changes from240

6 → 4 → 2 → 1 → 3 → 5 → 7 → 6. For simplicity we assume that the change
in N occurs after every 2 time instants i.e. at time instants 1 and 2, N = 6, for
time instants 3 and 4, N = 4 and N and so on. The evolution of N with time
is indicated at the top of each of the Figs.11-12-13.

Figure 11: Variation in fmc and fdsb as N changes over time at an SNR = 50dB.

At the start when the time instant is equal to 1, the samplers start with245

N = 6. Based on the signal spectrum characteristics, both MC and DSB sam-
plers start sampling at fmc=fdsb = fdsb with α = 0.7 ' 390.62MHz with
pmc = pdsb = pdsb with α=0.7 = 50, (see Figs.11-12). Note that fmc, fdsb and
fdsb with α=0.7 represent the average sampling frequencies for non blind MC,
non blind DSB samplers and blind DSB with α = 0.7 respectively. When N250

changes from 6→4 at time instant 3, our DSB sampler adapts accordingly by
recalculating the signal support using Bartlett method in the adaptation phase.
The updated signal support is then fed to the non-uniform sampler block. As
shown in Fig.11, at N = 4 the new updated average sampling frequency for
our DSB sampler reduces to fdsb ' 260.31MHz with pdsb ' 34. Since the MC255

sampler lacks from an adaptive feedback mechanism, it continues to sample at
fmc ' 390.62MHz with pmc = 50 depicted in Fig. 12. Fig.11, shows that as
N decreases to 2, the fdsb is further reduced to 130.47MHz which is 13 % of
fnyq = 1GHz with pdsb ' 9 shown in Fig. 12. On the other hand, MC sam-
pler continues to operate at fmc ' 390.62MHz with pmc = 50 even for N = 2260

what, clearly depicts a sub-optimal performance compared to the proposed DSB
sampler. This shows that our system adapts itself dynamically and reduces fdsb
which results in reduced number of incoming samples pdsb that are to be treated
later. At the opposite, when N increases from 2 → 3, the proposed DSB sam-
pler adapts accordingly by re-evaluating the new support through the Bartlett265
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Figure 12: Variation in pmc and pdsb as N changes over time at an SNR = 50dB

method, as explained earlier, and adjusts pdsb and fdsb, as shown in Figs.11-12.
In Fig.13, we have plotted the variation in RMSE, for the two samplers,

corresponding to Figs.11-12, as N changes over time. If we closely analyze
Fig.13, we observe that RMSEmc is slightly better compared to RMSEdsb
when N decreases from 6 → 4 → 2.

Figure 13: Variation in RMSEmc and RMSEdsb as N changes over time at an SNR = 50dB

270

This happens because the MC sampler uses much more samples than the
proposed one. The most important variation in RMSEmc to observe is when
N changes from 5→7. Fig.12 shows that as N changes from 5→7, our DSB
sampler adjusts pdsb to 56. While for the MC sampler, pmc remains equal to
50 because of the lack of adaptability and lack of availability of 50 branches at275

the input of the MC sampler. This results in a drastic increase in RMSEmc
i.e. of the order of −5 dB as shown in Fig.13. Even if we suppose that there is
a feedback mechanism in the MC sampler to set pmc=56, it cannot adjust pmc
because of the hardware limitations, i.e. the MC sampler used in our simulation
has only p=50 branches. On the other hand, adjust pdsb=56 and the RMSEdsb280

remains low i.e. of the order of −21dB. Therefore, our DSB sampler adapts

16



quickly to avoid any loss of data. The proposed Adaptive non uniform sampler
uses a single ADC which can be switched o� at prede�ned instances and can
theoretically adapt pdsb to any value up to 128 depending on the signal.

In Fig.14, Favg−opt, represents the optimal average sampling rate of DSB285

sampler when operating in non blind mode i.e. having full information of the
spectral support. When the DSB sampler operates in blind mode, Favg = Fnyq
represents the worst case and the ideal case is when Favg = Favg−opt.

Figure 14: Average sampling estimation rate Favg of DSB sampler while operating in blind
mode plotted for di�erent α

It should be noted that the results in Figs.14-15, show the impact of false
detection (Pfa(K)), performed in the adaptation phase, on the average sampling290

rate achieved in the reconstruction phase. In Fig.14 it can be shown than
the SNR impacts the averaging sampling rate Favg of the DSB sampler. This
happens because at low SNR the false alarm probability is high. Then the
NUSSB shows the estimated spectral's estimated support K as larger than the
actual support, this make the DSB sampler to sample at a higher, un-optimized295

sampling rate. This becomes more clear Fig.15, where Favg is plotted as a
function of Pfa(K) for di�erent α. It can be seen that with the increase of
Pfa(K), Favg increases, whatever α, and approaches Fnyq at Pfa(K) = 1.

5. Conclusion

In this paper we proposed a new smart sampling system for cognitive ra-300

dio, called the Dynamic Single Branch non-uniform sampler. To ensure optimal
reconstruction with a small number of samples, the DSB adapts its parame-
ters according to the input signal's sparsity. Its operates in two phases, the
adaptation phase and the reconstruction phase. In the adaptation phase, the
proposed scheme senses the spectrum and adapts its sampling rate by comput-305

ing the proposed non-uniform spectrum sensing technique. We have shown that
the proposed sensing model works e�ciently and shows high detection and low
false alarm probabilities. The performance of the spectrum sensing model im-
proves by increasing the number of available non-uniform samples to the sensing
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Figure 15: Estimation average sampling rate Favg plotted against Pfa(K) for di�erent α

method. As the sampling instances of our Non-uniform sampler depends to the310

position of this one on the Nyquist grid, then the average sampling rate de-
pends on the number of bands contained in the signal. Furthermore, we have
shown the e�ect of false detection on it. The DSB sampler performance has
been compared to those of a traditional, non �exible Multi-Coset architecture
which contains severals parallel uniform samplers. We have shown that our315

system is signi�cantly more e�cient than the conventional MC sampler when
the spectrum of signal changes. The system can be designed with existing ADC
and falls in the category of software de�ned radio system.
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