
HAL Id: hal-01250654
https://hal.science/hal-01250654v1

Submitted on 5 Jan 2016 (v1), last revised 7 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic modelling of an acoustic scattering problem
involving very small obstacles: mathematical

justification
Hélène Barucq, Vanessa Mattesi, Sébastien Tordeux

To cite this version:
Hélène Barucq, Vanessa Mattesi, Sébastien Tordeux. Asymptotic modelling of an acoustic scatter-
ing problem involving very small obstacles: mathematical justification. [Research Report] RR-8829,
INRIA Bordeaux. 2015. �hal-01250654v1�

https://hal.science/hal-01250654v1
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

29
--

F
R

+
E

N
G

RESEARCH
REPORT

N° 8829
December 2015

Project-Team Magique-3D

Asymptotic modelling of
an acoustic scattering
problem involving very
small obstacles:
mathematical
justification
Hélène Barucq, Vanessa Mattesi, Sébastien Tordeux





RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour

33405 Talence Cedex

Asymptotic modelling of an acoustic

scattering problem involving very small

obstacles: mathematical justification

Hélène Barucq ∗, Vanessa Mattesi ∗, Sébastien Tordeux ∗
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Abstract: Within the context of an acoustic scattering problem involving small heterogeneities,
ones can use the matched asymptotic expansion method to build an approximate model. The key
step of this method is the matching procedure between the near-field expansion and the far-field
one. We control this step by estimating the difference between these two expansions and a so-called
matching function in the intermediate zone. These estimates are based on the valuation of the rest
of the radial expansion of the regular solution to wave equation which is, up to our knowledge, not
given in the literature. We thus provide a proof of convergence which uses Mellin transform and
the fundamental theorem on singularities for the wave equation.
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Modélisation asymptotique d’un problème de diffraction

acoustique par petits obstacles: justification mathématique

Résumé : Dans le contexte d’un problème de diffraction acoustique par de petites hétérogénéités,
on peut utiliser la méthode des développements asymptotique raccordés pour construire un
modèle approché. L’étape clé de cette méthode est l’étape de raccord entre le développement
asymptotique en champ proche et le développement asymptotique en champ lointain. Nous
contrôlons cette étape en évaluant la différence entre ces deux développements et une fonction
dite de raccord dans la zone intermédiaire. Ces évaluations sont basées sur l’estimation du reste
du développement radial de la solution régulière de l’équation des ondes qui est, à notre con-
naissance, non donnée dans la littérature. Nous fournissons ainsi une preuve de convergence qui
utilise la transformée de Mellin et le théorème fondamental des singularités pour l’équation des
ondes.

Mots-clés : Équation des ondes acoustique, méthode des développements asymptotiques
raccordés, problème de diffraction, transformée de Mellin, théorie des singularités



Asymptotic modelling of an acoustic scattering problem: mathematical justification 3

The numerical simulation of waves is used in many applications and today, the capability of
supercomputers makes it possible to consider complex and thus realistic configurations. How-
ever, some highly contrasted propagation media are still difficult to account for and there is a
need in constructing approximate models which are easier to solve. By easier we mean systems
of equations which use less computational resources while providing accurate solutions. The
case of propagation media which include very small defects is a good illustration of this kind
of problems. Regarding the phenomenon of wave propagation, very small defects correspond to
a scattering problem in which the size of the obstacle is very small as compared to the char-
acteristic wavelengths of the problem. Finite elements are generally involved in the numerical
approximation since they can be based on tetrahedral grids which are easily adaptable to the
geometry of the defects. When tackling this problem straightforwardly with finite elements, it
is mandatory to use a refined mesh in the vicinity of the obstacle. If not, the numerical waves
are not able to capture the response of the defects. But refined meshes can be very tricky to
generate and they induce extra computational costs due to a large number of degrees of freedom.
In case of materials including networks of very small defects, the computational costs of the
numerical method quickly become prohibitive accentuating the need of approximate solutions.
Moreover, in case of time dependent problems, the time discretization becomes a possible issue
since it is necessary to decrease the time step to keep stability and a too small time-step may
cause dispersion errors. Local-time stepping can be a solution as it has been shown in [13] and
[5] but in case of multiple obstacle problems, the numerical method is not obvious to implement
and does not seem fully convenient in an industrial setting. Another option consists in using
approximate systems of equations which avoid to mesh the small obstacles and for that purpose,
asymptotic models can be considered by taking the size of the obstacle as a small parameter.
This idea has been investigated by several authors [9], [17], [3], [18], [19], [8] in the context of
stationnary problems and to the best of our knowledge, the first attempt for time-dependent
problems is in [13].

The derivation of asymptotic problems for scattering problems is a tricky task since it involves
two different asymptotic developments defined as a far-field expansion and a near-field expansion.
These two expansions need to be matched at the end to form the approximate model. Two
asymptotic expansions are required just because the waves can not be represented in the same
way near and far from the obstacle. To illustrate this point, let us consider an obstacle that is a
small sphere centred at the origin with a near-zero radius ε. The scattering problem reads then
as: 




∆uε(x, t) −
1

c2
∂2
t uε(x, t) = 0, on R

3\Bε, ∀t ≥ 0,

uε(x, t) = 0, on ∂Bε,
uε(x, 0) = v0(x), ∂tuε(x, 0) = v1(x), on R

3\Bε,

(1)

where ∆ = ∂2
x + ∂2

y + ∂2
z ; Bε is the ball of radius ε centered at the origin; v0, v1 are supported

in Br⋆ := {x ∈ R3 : |x| ≤ r⋆} and r⋆ is a positive real.
Far from the obstacle, the solution is given by the far-field expansion

uε(x, t) ∼
+∞∑

i=0

ui(x, t)ε
i (2)

where x = (r, θ, ϕ) is the spatial variable in spherical coordinates and t ≥ 0 denotes the time
variable. The first term u0 is a regular solution of the wave equation defined in the whole space
(i.e. without obstacle). The set of ui with i > 0 are singular solutions which are non-defined at
the origin, recalling that the origin is the centre of the small obstacle. The terms ui are finite
sums of multipoles that are explicitly known up to their magnitudes. In the neighbourhood of
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4 Barucq & Mattesi & Tordeux

the origin, the solution u formally reads as the near-field expansion :

u(Xε, t) = Uε(X, t) ∼
+∞∑

i=0

Ui(X, t)εi, (3)

where X = (R, θ, ϕ) = x

ε is a dimensionless variable in spherical coordinates and t ≥ 0 still
denotes the time variable. The two first terms U0 and U1 of this expansion are solutions to the
Laplacian equation whereas the others Ui for all i > 1 satisfy the nested Laplace equations given
by

∆Ui+2(X, t) = −∂2
t

c2
Ui(X, t). (4)

The terms Ui are finite sums of growing functions (satisfying lim
R→+∞

max
|X|=R

|Ui(X, t)| = +∞). Then

the connection between these two developments is made thanks to a matching procedure which
requires the determination of the behaviour of ui close to the origin and of Ui close to infinity.
In practice, for all i, we develop ui in the vicinity of the origin as

ui(r, θ, ϕ, t) ∼
+∞∑

p=−∞
ui,p(θ, ϕ, t)r

p, (5)

and Ui is expanded in the neighbourhood of infinity as

Ui(R, θ, ϕ, t) ∼
+∞∑

p=−∞
Ui,p(θ, ϕ, t)R

p, (6)

with R = r
ε . Identifying uε and Uε in the transition zone and using the expansions (2), (3), (5)

and (6) we obtain the following matching relation




ui,p(θ, ϕ, t) = Ui+p,p(θ, ϕ, t) ∀i ∈ Z, p ∈ Z,

Ui,p(θ, ϕ, t) = ui−p,p(θ, ϕ, t) ∀i ∈ Z, p ∈ Z.
(7)

This step is very often made formally, see for instance [6]. However, if ones would like to
obtain error estimates validating the approximate model, it is necessary to justify these formal
computations.
Practically speaking, it is mandatory to obtain a spatial expansion of the regular solution in the
vicinity of the origin which reads

u(x, t) =

N∑

p=−∞
rpup(θ, ϕ, t) + r

N (x, t), (8)

where t ≥ 0 denotes the time variable, (r, θ, ϕ) are the spherical coordinates of x ∈ R3 and





max
t≤T

|rN (x, t)| = O
r→0

(rN+1),

max
t≤T

|∂rrN (x, t)| = O
r→0

(rN ).
(9)

This has been supposed to hold true in [13].
Then the scattering problem (1) is replaced by the second order far-field expansion

uε,2(x, t) := u0(x, t) + εu1(x, t) + ε2u2(x, t), (10)

Inria



Asymptotic modelling of an acoustic scattering problem: mathematical justification 5

(a) D.G. method (b) M.A.E. method

Figure 1: Comparison at time t = 1.3s

D.G. Method M.A.E. Method
CPU Time 18 400s 6 100s

Degrees of freedom 2 500 000 1 800 000

Mesh Locally refined Uniform

Table 1: Some informations about the numerical simulations

with u0 the regular solution to wave equation and





u1(x, t) = −u0(0, t− r/c)

r
,

u2(x, t) = −∂tu0(0, t− r/c)

rc
.

(11)

Its solution is computed without considering the obstacle anymore. To illustrate the efficiency of
this approach, we have performed two numerical experiments. The first one uses a Discontinuous
Galerkin approximation coupled with a leap-frog scheme and it requires meshing the obstacle.
The computational domain is the unit ball and we set an absorbing boundary condition on its
exterior boundary. The second one computes the solution given by the Matched Asymptotic Ex-
pansion (MAE.) set on the whole unit ball without the obstacle. Table 1 explicit some numerical
features on the mesh and the CPU time while Figure 1 provides a snapshot of both the solutions
which are very similar. These two experiments illustrate the good performance of MAE and it
is worth noting that we provide an example where solving MAE with a numerical method is in
fact unnecessary because the first iterate u0 can be obtained analytically. The given CPU time
for MAE can thus be even more smaller each time analytic u0 can be computed. and it is the
case for regular-shaped obstacles like spheres or ellipsoids.
The purpose of this paper is thus to prove that the solution to the scattering problem admits the
expansion (8) and after truncation, the rest rN satisfies (9). Our main task consists in proving
max
t≤T

|rN (x, t)| = O
r→0

(rN+1), and the second estimation (9) directly follows. In [13], the expansion

RR n° 8829



6 Barucq & Mattesi & Tordeux

series of the wave equation solution have been simplified by using suitable bases. In particular, it
is possible to get the same expansion both for regular and singular solutions to the wave equation
(see pages 74 and 75 in [13]). It is thus sufficient to prove (9) for regular solutions1. We thus
consider the following problem : find a C∞ function u : R3 × R+ → R solution to the wave
equation 




∆u(x, t) =
1

c2
∂2
t u(x, t),

u(x, 0) = v0(x) and ∂tu(x, 0) = v1(x),
(12)

with ∆ = ∂2
x + ∂2

y + ∂2
z ; v0, v1 supported in Br⋆ := {x ∈ R3 : |x| ≤ r⋆} and r⋆ is a positive real.

In this paper, we propose a proof of :

Theorem 1. The regular solution to the wave equation can be represented by the series expansion:

u(x, t) =

N∑

p=0

rp up(θ, ϕ, t) + r
N (x, t), (13)

where u
N satisfies

max
t≤T

|rN (x, t)| = O
r→0

(rN+1). (14)

This paper is planned as follows. In a first part, we remind some properties of the solution u
to the wave equation (12) in the free space, focusing in particular on its regular expansion series
and its asymptotic development in the vicinity of the origin. Then, we start rephrasing Theorem
1 into Theorem 2 to get a simplest proof. Then, in a second part, we obtain the equation that
is satisfied by the projectors involved in the expansion of the solution. Next we transform this
equation by using the formalism of Kondratiev spaces[10]) thanks to the Mellin transform (see
[1]). Then, in a third part, we show that the problem provides an example of application to the
fundamental theorem of singularities which can be found for example in [1]. This theorem allows
us to get an estimate of rN on the unit sphere which can be extended to the whole space R3 but
the resulting estimate is not optimal. Fortunately, it is possible to use properties of the Mellin
transform to adjust the order of approximation and we end up with the expected estimate (14)
in the last part.

1 Already known properties of the wave equation

In this part, we prepare the proof of Theorem 1 by establishing some preliminary results. More
particularly, we clarify the support and the L2(R3) estimate of both the solution u and its time
derivative. We then give the expansion of the solution as an explicit series and give an equivalent
way of writing u.

1.1 Support and energy conservation

Property 1. The regular solution to the wave equation (12) has its support in Br⋆+ct. Moreover,
for any t ≥ 0, the function x 7→ u(x, t) belongs to L2(R3) and satisfies





∫

R3

|u(x, t)|2dx ≤ (r⋆ + ct)2

c2π2

( ∫

R3

∣∣v1(x)
∣∣2 + c2

∫

R3

∣∣∇v0(x)
∣∣2
)
, ∀t ≥ 0,

∫

R3

∣∣∣∂tu(x, t)
∣∣∣
2

dx ≤
∫

R3

∣∣v1(x)
∣∣2 + c2

∫

R3

∣∣∇v0(x)
∣∣2, ∀t ≥ 0.

(15)

1note that regular solutions do not involve negative values of p into (8)

Inria



Asymptotic modelling of an acoustic scattering problem: mathematical justification 7

Remark 1. These estimates show that the solution u and its time derivatives are in L2(R3).
Moreover, we note that ‖∂tu(x, t)‖L2(R3) is bounded independently of the time which partly illus-
trates the energy conservation.

Proof. The solution to the wave equation is a function of C∞. It tests the following energy
identity

∫

R3

∣∣∂tu(x, t)
∣∣2 + c2

∫

R3

∣∣∇u(x, t)
∣∣2dx =

∫

R3

∣∣v1(x)
∣∣2 + c2

∫

R3

∣∣∇v0(x)
∣∣2, ∀t ≥ 0. (16)

That the support of u is in Br⋆+ct is because of (16), together with the supports of v0 and v1
which are in Br⋆ and the propagation velocity c. Using the Poincaré inequality inside the ball
with radius r, that is

‖v‖2L2(R3) ≤ r2

π2
‖∇v‖2L2(R3), (17)

we get
∫

Br⋆+ct

|u(x, t)|2dx ≤ (r⋆ + ct)2

π2

∫

Br⋆+ct

∣∣∇u(x, t)
∣∣2dx. (18)

The energy identity (16) combined with (18) lead to the expected result, which completes the
proof.

Remark 2. The time derivatives of higher order can also be estimated by using the same tech-
nique than previously. For any integer p ∈ N, we have





∆
(
∂2p
t u

)
(x, t) =

1

c2
∂2
t

(
∂2p
t u

)
(x, t),

(
∂2p
t u

)
(x, 0) = c2p∆pv0(x) and ∂t

(
∂2p
t u

)
(x, 0) = c2p∆pv1(x).

(19)

It follows from (15) that

∫

R3

∣∣∣∂2p+1
t u(x, t)

∣∣∣
2

dx ≤ c4p
(∫

R3

∣∣∆pv1(x)
∣∣2 + c2

∫

R3

∣∣∇∆pv0(x)
∣∣2
)
, ∀t ≥ 0. (20)

Similarly, for any p ≥ 1





∆
(
∂2p−1
t u

)
(x, t) =

1

c2
∂2
t

(
∂2p−1
t u

)
(x, t),

(
∂2p−1
t u

)
(x, 0) = c2p−2∆p−1v1(x) et ∂t

(
∂2p−1
t u

)
(x, 0) = c2p∆pv0(x).

(21)

From Eq.(15) we deduce that for any p ≥ 1

∫

R3

∣∣∣∂2p
t u(x, t)

∣∣∣dx ≤ c4p
(∫

R3

∣∣∆pv0(x)
∣∣2dx+

1

c2

∫

R3

∣∣∇∆p−1v1(x)
∣∣2dx

)
. (22)

We can thus bound the L2(R3) norm of its all order time derivatives with a constant inde-
pendent of the time, just as was previously observed for the first-order time derivative.

RR n° 8829



8 Barucq & Mattesi & Tordeux

1.2 The solution as a series expansion

In what follows, we remind results that have been established at chapter 1 of [13] and that we
will be used to prove Theorem 1. The regular solution u reads for every t > 0 as the following
series which converges into L2(R3):

u(x, t) =

+∞∑

n=0

n∑

m=−n

um,n(r, t)× Zm,n(θ, ϕ). (23)

The coefficients um,n are defined as the projections of u onto the basis of L2(S) composed of
Zm,n

um,n(r, t) =

∫

S

u(r, θ, ϕ, t)Zm,n(θ, ϕ) sin θdθdϕ, (24)

where S denotes the unit sphere. The functions Zm,n are given by

Zm,n(θ, ϕ) =
1√
2π

P
|m|
n (cos θ) exp(imϕ). (25)

To define Zm,n, we use the normalized Legendre function Pm
n with integer order m and degree

n. Let m ∈ [0, n] be an integer and let x ∈ [−1, 1] be a real. We have

Pm
n (x) =

Pm
n (x)

‖Pm
n (x)‖L2([−1,1])

=

√
(n+

1

2
)
(n−m)!

(n+m)!
× (1− x2)

m
2 dmx Pn(x), (26)

where Pm
n denotes the Legendre polynomial with order m and degree n (see p 37 in [15]) and Pn

is the Legendre polynomial with degree n and given by

Pn(x) =
1

2nn!
dnx

[
(x2 − 1)n

]
. (27)

More details on Legendre polynomials are available on p 35 in [15] or p 47 in [8] or p 353 in [7].
The series (23) can be understood as a series whose terms are orthogonal in pairs

� of the time t ≥ 0 with values on L2(R3),

� of the time t ≥ 0 and of the radial space variable r > 0 with values on L2(S), with S the
unit sphere which can be parametrized by the angular space variables (θ, ϕ).

Property 2. The functions Zm,n satisfy

1. ‖Zm,n‖L2(S) = 1,

2. Zm,n(0, ϕ) = 0, if m 6= 0, ∀ϕ ∈ [0, 2π],

3. Z0,n(0, ϕ) =

√
n+ 1/2

2π
, for m = 0, ∀ϕ ∈ [0, 2π].

Proof. 1. By construction, the basis functions of S define an orthonormal basis of S. Indeed,
by définition (see (25)), we have

‖Zm,n‖2L2(S) =
1

2π

∫ 2π

0

| exp(imϕ)|2dϕ
∫ π

0

|P |m|
n (cos θ)|2 sin θdθ. (28)

Inria



Asymptotic modelling of an acoustic scattering problem: mathematical justification 9

Let us note that the corresponding Legendre polynomials are orthogonal and satisfy for
any m ∈ [0, n] ∫ 1

−1

Pm
n (x)2dx =

(n+m)!

(n+ 1/2)(n−m)!
. (29)

We refer to as p 37 in [15]. By applying the change of variable x = cos θ, we thus find the
normalized Legendre polynomials which satisfy

∫ π

0

P
|m|
n (cos θ)2 sin θdθ = 1. (30)

This ends the proof.

2. By definition (see (26)), Pm
n (1) = 0, ∀m 6= 0.

3. By definition (see (25) and (26)), we have

Z0,n(0, 0) =
P 0
n(1)√
2π

=

√
n+ 1/2

2π
, (31)

because Pn(1) = 1. Indeed, following [15], page 35, we have

(x2 − 1)P ′
n(x) = nxPn(x)− nPn−1(x), (32)

and by using this recurrence relation for x = 1, we get Pn(1) = Pn−1(1). It is then sufficient
to see that P0(1) = 1 for concluding.

In [11], it is established that the basis functions of S are linked to the Laplace-Beltrami operator.
The relation reads as follows.

Property 3. The functions Zm,n satisfy

∆ΓZm,n(θ, ϕ) = −n(n+ 1)Zm,n(θ, ϕ), (33)

where ∆Γ denotes the Laplace-Beltrami operator which reads in spherical coordinates as follows:

∆Γ =
1

sin θ
∂θ

[
sin θ∂θ

]
+

1

sin2 θ
∂2
ϕ. (34)

We thus end up with an explicit expansion of the solution u and each term of the expansion
is well-defined, thanks to the mathematical properties we have provided.

1.3 Relation between two series expansions of the solution

We remind that we aim at proving Theorem 1 which says that the following radial expansion
holds:

u(x, t) =
N∑

p=0

up(θ, ϕ, t)r
p + r

N (x, t). (35)

For that purpose, we found convenient to have a connection with the expansion of the regular
solution at a given time t as a convergent series in L2(R3) which reads as:

u(x, t) =

+∞∑

n=0

n∑

m=−n

um,n(r, t)Zm,n(θ, ϕ). (36)

RR n° 8829



10 Barucq & Mattesi & Tordeux

Let N be a positive integer. The series (36) can be split as follows:

u(x, t) = SN (x, t) + u
N (x, t), (37)

where SN is obtained from the truncation of the series sum at order N :

SN (x, t) =

N∑

n=0

n∑

m=−n

um,n(r, t)Zm,n(θ, ϕ), (38)

and u
N denotes the rest

u
N (x, t) =

+∞∑

n=N+1

n∑

m=−n

um,n(r, t)Zm,n(θ, ϕ). (39)

According to Theorem 1.3 p 57 in [13], we know that the coefficients um,n admit a Taylor series
which satisfies : um,n,p(t) = 0 for any p < n. Moreover, we have

um,n(r, t) =

P∑

p=0

um,n,p(t)r
p + O

r→0
(rP+1), ∀P > 0, (40)

and in particular
um,n(r, t) = O

r→0
(rn). (41)

Then, by observing that the number of terms in the truncated sum is finite, we can deduce from
(40) the Taylor expansion of SN at order N

SN (x, t) =

N∑

p=0

SN
p (θ, ϕ, t)rp + s

N (x, t), (42)

where s
N (x, t) is the Taylor series rest which satisfies

s
N (x, t) = O

r→0
(rN+1). (43)

Moreover, the coefficients SN
p involved in the radial expansion SN are given by

SN
p (θ, ϕ, t) =

N∑

n=0

n∑

m=−n

um,n,p(t)Zm,n(θ, ϕ). (44)

Since um,n,p(t) = 0 for any p < n, we have that SN
p does not depend on N and it is then denoted

by up and defined by

up(θ, ϕ, t) =

p∑

n=0

n∑

m=−n

um,n,p(t)Zm,n(θ, ϕ). (45)

We have thus broken u down into

u(x, t) =
N∑

p=0

up(θ, ϕ, t)r
p + u

N (x, t) + s
N (x, t). (46)

This result indicates then that Theorem 1 to be proved is equivalent to:

Inria



Asymptotic modelling of an acoustic scattering problem: mathematical justification 11

Theorem 2. The regular solution to the wave equation admits the following representation:

u(x, t) =

N∑

n=0

n∑

m=−n

um,n(r, t)× Zm,n(θ, ϕ) + u
N (x, t), (47)

where u
N is the rest testing

max
t≤T

|uN (x, t)| = O
r→0

(rN+1). (48)

Remark 3. The coefficients up in Theorem 1 are given by formula (45).

We now move on proving Theorem 2.

2 Separation of variables and Mellin transform

To prepare the proof of Theorem 2, we first define the equation which each um,n tests. Then, we
remind some definitions and properties of the Mellin transform. This section will end up with
the recall of the fundamental theorem of the singularities theory proved for example in [1].

2.1 Equation satisfied by um,n

The expansion (23) can be understood as a spectral decomposition of the trace of u onto the
sphere with radius r. The coefficients um,n are then the spectral coefficients (θ, ϕ) 7→ u(r, θ, ϕ)
for given r and t

um,n(r, t) =

∫ π

0

∫ 2π

0

u(r, θ, ϕ, t)Zm,n(θ, ϕ) sin θdθdϕ. (49)

The partial differential equation

∆ u(x, t) =
1

c2
∂2
t u(x, t), with ∆ =

1

r2
∂r

[
r2∂r

]
+

1

r2
∆Γ, (50)

can be diagonalized by using the spectral coefficients um,n. According to (33) together with the
fact that the functions Zm,n are orthogonal in L2(S), the coefficients um,n satisfy for any r > 0
and t ≥ 0

1

r2
∂r
(
r2∂rum,n(r, t)

)
− n(n+ 1)

r2
um,n(r, t) =

1

c2
∂2
t um,n(r, t). (51)

Each um,n is a function of C∞ with support in {(r, t) : t ≥ 0 et 0 < r < r⋆ + ct}. We now
rewrite (51) as

u{2}
m,n(r, t) + u{1}

m,n(r, t)− n(n+ 1)um,n(r, t) = r2
1

c2
∂2
t um,n(r, t), (52)

with the differential operator ·{ℓ} defined by

v{ℓ}(r) =
(
r
d

dr

)ℓ

v(r). (53)

On the other hand, since for a given time t, the function x 7→ u(x, t) belongs to C∞ with a
compact support, the following energy is bounded:

ET
ℓ = max

t≤T

∫

R3

|∂ℓ
tu(r, θ, ϕ, t)|2dx. (54)
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Following the Parseval equality related to the spectral decomposition, we have that
∫ π

0

∫ 2π

0

|v(θ, ϕ)|2 sin θdθdϕ =
∑

m,n

|vm,n|2, ∀v ∈ L2(S), (55)

with vm,n =

∫

S

v(θ, ϕ) sin θdθdϕ. These terms can be displayed with the spectral coefficients:

ET
ℓ = max

t≤T

∫ +∞

0

∑

m,n

|∂ℓ
tum,n(r, t)|2. (56)

2.2 Using the Mellin variables

Mellin transform is one of the tools for the theory of singularities which allows to give the
behavior of a function in the neighborhood of a given point. As the Fourier transform, it changes
the differential (53) into an operator of multiplication. One of the original features of this work
is to provide an approach which does not require functions in Hilbert spaces (as it is done in
[10]) and which applies to time-dependent problems. In this section, we transport the problem
into Kondratiev spaces which are weighted spaces suitable for the analysis and this is done by
using the Mellin transform.
We begin with some notations and some properties of the Mellin transform. For more details,
we refer to as the research report [1] in which proofs can be found and [16].

2.2.1 Weighted spaces

In what follows, β is a real and p is an integer. The Kondratiev spaces (see for instance [10], [2]
and [14]) are defined by





K0
β =

{
v : R+ → R : r−β−1/2v ∈ L2(R+)

}
,

Kp
β =

{
v : R+ → R : v{ℓ} ∈ K0

β ∀ℓ ≤ p
}
,

(57)

where ·{ℓ} denotes the differential operator defined at (53). These spaces are equipped with the
Hilbertian norms 




‖v‖K0
β
=

(∫ +∞

0

r−2β
∣∣v(r)

∣∣2 dr
r

)1/2

,

‖v‖Kp
β

=
( p∑

ℓ=0

∥∥v{ℓ}
∥∥2
K0

β

) 1
2

.

(58)

Proposition 1. The space L2(R3) can be characterized as a weighted space:

L2(R3) = {u : R3 → R | um,n ∈ K0
−3/2, ∀n ≥ 0,m ∈ [−n, n]

and
∑

m,n

‖um,n‖2K0
−3/2

< +∞}. (59)

Proof. Let v be in L2(R3), we know from (55) that
∫

R3

|v(x)|2dx =

∫

R

∫ π

0

∫ 2π

0

|v(r, θ, ϕ)|2r2dr sin θdθdϕ, (60)

=

∫

R

∑

m,n

|vm,n(r, θ, ϕ)|2r2dr. (61)
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By switching sum and integral terms (following Fubini theorem), it holds that

∫

R3

|v(x)|2dx =
∑

m,n

∫

R

|vm,n(r, θ, ϕ)|2r2dr. (62)

We then have to observe that
∫

R

∣∣v(r, θ, ϕ)
∣∣2r2 dr =

∫

R

∣∣∣r−(− 3
2
) v(r, θ, ϕ)

∣∣∣
2 dr

r
, (63)

to conclude.

2.2.2 Mellin transform: definition and properties

Here we recall the definition of the Mellin transform with some properties. We denote by λ ∈ C

the Mellin variable, where β ∈ R is its real part, ξ ∈ R its imaginary part, that is:

λ = β + iξ. (64)

Let D(]0,+∞[) be the space of functions with compact support in ]0,+∞[

D(]0,+∞[) =
{
v : ]0,+∞[−→ R : ∃(r−, r+) ∈ R

2
+ with 0 < r− < r+,

v(r) = 0 outside [r−, r+]
}
. (65)

Definition 1. For any v ∈ D(]0,+∞[), the Mellin transform is defined for any λ ∈ C by

(Mv)(λ) =
1√
2π

∫ +∞

0

r−λv(r)
dr

r
. (66)

Remark 4. Since D(]0,+∞[) is dense into Kp
β, the Mellin transform can be extended on Kp

β.

Proposition 2. When v ∈ Kp
β, the Mellin transform Mv is defined on a line of the complex

plane as follows:

Cβ :=
{
λ ∈ C : Re(λ) = β

}
. (67)

Remark 5. On the other hand, the Mellin transform is an isomorphism from Kp
β onto K̂p

β which
is defined by:

K̂p
β = {ω : Cβ → C : λ 7→ ω{ℓ}(λ) ∈ L2(Cβ), ∀ℓ ≤ p}, (68)

where L2(Cβ) denotes the space of square integrable functions on Cβ.

Property 4 (see [1]). For any v ∈ Kp
β, we have v{p} ∈ K0

β and for a.e. λ ∈ Cβ

(Mv{p})(λ) = λp
(
Mv

)
(λ). (69)

Property 5 (see [1]). Let vq : R+ −→ C be defined by vq(r) = rqv(r), with q ∈ R. If v ∈ K0
β,

then
vq ∈ K0

β+q, (70)

and for any λ ∈ Cq+β

(Mvq)(λ) = (Mv)(λ − q). (71)

RR n° 8829



14 Barucq & Mattesi & Tordeux

Proposition 3 (see [1]). For any v ∈ Kp
β0
, such that v(r) = 0 for every r > ρ⋆ > 0, the

function v belongs to Kp
β for any β ≤ β0. The Mellin function is analytical in the half-plane

C]−∞,β0[ := {λ ∈ C : Re(λ) < β0} and for Re(λ) = β < β0 we have

|λp(Mv)(λ)| ≤ ρβ0−β
⋆√

2(β0 − β)
‖v‖Kp

β0

. (72)

Definition 2. Let β1, β2 be two real numbers, we introduce C[β1,β2] as a strip of the complex
plane defined by

C[β1,β2] = {λ ∈ C : Re(λ) ∈ [β1, β2]}. (73)

Proposition 4 (see [1]). Let p be an positive integer, β1 and β2 be two real numbers such that
β1 < β2. If v ∈ Kp

[β1,β2]
:= Kp

β1
∩Kp

β2
, then for any β ∈ [β1, β2], the function v belongs to Kp

β.

2.2.3 The fundamental theorem

To prove Theorem 2 and thereby giving an estimation of the rest uN , we are going to apply the
fundamental theorem of the singularities theory, that is:

Theorem 3. Let β0 < β1 < β2 be three real numbers. If v ∈ K0
β1

satisfies

i) the Mellin transform Mv : Cβ1
→ C admits an analytical continuation v̂ in C]β0,β2[;

ii) there exists α > 0 such that for any λ = β + iξ ∈ C]β0,β2[ and |ξ| > 1

|ξ2 v̂(λ)| ≤ α; (74)

then for any β ∈]β0, β2[, the function v ∈ K1
β, and we get the following estimation

|v(r)| ≤ rβ√
2π

∫ +∞

−∞

∣∣∣v̂(β + iξ)
∣∣∣dξ. (75)

We are going to work with this Theorem and check these two hypotheses. For that purpose,
we consider the wave equation onto the Kondratiev space via the Mellin transform. Next, we
will construct a meromorphic extension which is analytical in a half-plane of the complex plane.
All this will validate the first assumption and we will prove next that the extension satisfies the
second hypothesis. At last, we will complete the proof of theorem 2 by estimating the rest uN .

3 Behavior of um,n in the neighborhood of the origin for

n ≥ 3 and −n ≤ m ≤ n

Herein we aim at proving that

Proposition 5. For n ∈ N, −n ≤ m ≤ n and N ∈ N such that N ≥ 2 is even, n ≥ 3 and
N < n, we have

n(n+ 1) |um,n(r, t)| ≤
√

π(r⋆ + ct)

2
rN

‖∂N+2
t um,n‖K0

−3/2

cN+2
. (76)
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For any given t, the function x 7→ ∂ℓ
tu(x, t) belongs to L2(R3), for every integer ℓ ≥ 0. The

featuring of L2(R3), given by proposition 1, allows us to conclude that the spectral coefficients
r 7→ ∂ℓ

tum,n(r, t) are functions of K0
−3/2. Since r 7→ um,n(r, t) is compactly supported in [0, ρ⋆],

we deduce that
∂ℓ
tum,n ∈ K0

β , ∀ℓ ∈ N, ∀β ≤ −3/2. (77)

We can thus apply the Mellin transform to equation (52) and we use properties 4 and 5 to get
that for any t ≥ 0 and for any λ ∈ C]−∞,− 3

2
[

αn(λ) (Mum,n)(λ, t) = ∂̂2
t (Mum,n)(λ − 2, t), (78)

with ∂̂t =
∂t
c

and for any n ∈ N and λ ∈ C, we have that

αn(λ) = λ2 + λ− n(n+ 1). (79)

We continue our work by proving that λ 7→ (Mum,n)(λ, t) admits a meromorphic continuation
λ 7→ ûm,n(λ, t) in the complex plane. For any Re(λ) < −3/2, the meromorphic continuation
ûm,n(λ, t) necessarily coincides with (Mum,n)(λ, t)

ûm,n(λ, t) = (Mum,n)(λ, t), ∀λ = β + iξ ∈ C with β < −3/2. (80)

For any β ≥ −3/2, we construct the meromorphic continuation by means of formula (78)

ûm,n(λ, t) =
∂̂2p
t ûm,n(λp, t)
p−1∏

k=0

αn(λk)

, with λk = λ− 2k and ∂̂t = ∂t/c, (81)

where p = p(λ) = E(74 + β
2 ) denotes the integer such that β − 2p ∈ [− 7

2 ;− 3
2 [. The formula (81)

makes it possible to define ûm,n(·, t) as a meromorphic function of C. On the other hand, this
formula is also valid for any p ∈ N.

The zeroes of αn being located in λ = n and λ = −n − 1, we can deduce from the formula
(81) that λ 7→ ∂ℓ

t ûm,n(λ, t), ∀ℓ ∈ N, is an analytical function in C\{n+ 2k}, for all k ∈ N.

Lemma 1. For any λ = β + iξ ∈ C such that −n− 1 ≤ β ≤ n and |ξ| ≥ 1, we have that

|ξ2| |ûm,n(λ, t)| ≤ |∂̂2n
t ûm,n(λn, t)| ∀β ≤ n and |ξ| ≥ 1. (82)

Proof. By definition (see (81)), since n ≥ p, ûm,n satisfies

ûm,n(λ, t) =
∂̂2n
t ûm,n(λn, t)
n−1∏

k=0

αn(λk)

=
∂̂2n
t ûm,n(λn, t)

αn(λ)

n−1∏

k=1

αn(λk)

, with λk := λ− 2k. (83)

Let βk be the real part of λk where λk = βk + iξ. For any βk ∈ [−n− 1, n], we have that

|αn(λk)| ≥ |Re(αn(λk))| = n2 + n− β2
k − βk + ξ2 ≥ ξ2 ≥ 1, (84)

RR n° 8829



16 Barucq & Mattesi & Tordeux

because n2 + n− β2
k − βk ≥ 0. For any βk /∈ [−n− 1, n], we have that

|αn(λk)| ≥ |Im(αn(λk))| = |(2βk + 1)ξ| ≥ |ξ| ≥ 1. (85)

It follows therefrom that |αn(λk)| ≥ 1 for any βk ∈ R. On the other hand, since β ∈ [−n− 1, n],
we obtain that

|αn(λ)| = n2 + n− β2 − β + |ξ|2 ≥ |ξ|2. (86)

We then deduce (82).

Lemma 2. For any λ ∈ C]−2,n[ such that |ξ| ≥ 1

|ξ|2 |ûm,n(λ, t)| ≤ γn(t)‖∂̂2n
t u(·, t)‖L2(R3), (87)

where γn is a continuous function of R+ −→ R+.

Proof. Since λ ∈ C]−2,n[, λn = λ − 2n ∈ C]−2n−2,−n[. Then applying Proposition 3 with
β0 = −3/2, it holds that

|∂̂2n
t ûm,n(λn, t)| ≤ γn(t)‖∂̂2n

t um,n(·, t)‖K0
−3/2

, (88)

with γn(t) = max
(

ρn−3/2
⋆√
2n−3

,
ρ2n+1/2
⋆√
4n+1

)
and ρ⋆ = r⋆+ct. Since ‖∂̂2n

t um,n(·, t)‖K0
−3/2

≤ ‖∂̂2n
t u(·, t)‖L2(R3),

(82) implies the estimate (87).

Proposition 6. For any n ≥ 3 and β ∈]−∞, n[ the function um,n(·, t) is an element of K1
β and

ûm,n(λ, t) = (Mum,n)(λ, t), ∀λ ∈ C such that β < n. (89)

Proof. The function λ 7→ ûm,n(λ, t) is analytical for any −2 < Re(λ) < n and it satisfies (87)
for any |ξ| > 1. Theorem 3 implies that um,n(·, t) ∈ K1

β for any β ∈] − 2, n[. Let us note that

um,n(·, t) ∈ K0
β for any β ∈]−∞,−3/2].

Lemma 3. Let N ≥ 2 be an even integer such that N < n. If λ = N + iξ, we have

n(n+ 1)(1 + ξ2)
∣∣∣ûm,n(λ, t)

∣∣∣ ≤
∣∣∣∂̂N+2

t ûm,n(−2 + iξ, t)
∣∣∣. (90)

Proof. According to (81) for p = N
2 + 1, we have

ûm,n(λ, t) =
∂̂N+2
t ûm,n(−2 + iξ, t)

αn(λ)
(N/2−1∏

k=1

αn(λk)
)
αn(iξ)

, with λk = N − 2k + iξ. (91)

For any ξ ∈ R, we have

|αn(iξ)| ≥ |Re(αn(iξ))| = n2 + n+ ξ2 ≥ n2 + n. (92)

Since 1 ≤ k ≤ N/2− 1, it follows that βk ∈ [0, N ]. As a consequence, we get

|αn(λk)| ≥ |Re(αn(λk))| = n2 + n− β2
k − βk + ξ2 ≥ n2 + n−N2 −N + ξ2 ≥ 1, (93)

because n > N . Likewise, since β = N , we have

|αn(λ)| ≥ |Re(αn(N + iξ))| = n2 + n−N2 −N + ξ2 ≥ 1 + ξ2. (94)

The expected result follows then (92), (93) and (94).
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Lemma 4. Let N ≥ 2 be an even integer such that N < n. If λ = N + iξ, we have

n(n+ 1)
(
1 + ξ2

) ∣∣∣ûm,n(λ, t)
∣∣∣ ≤ √

ρ⋆ ‖∂̂N+2
t um,n(·, t)‖K0

−3/2
. (95)

Proof. By applying Proposition 3 with β0 = −3/2, we get

∣∣∣∂̂N+2
t ûm,n(−2 + iξ, t)

∣∣∣ ≤ √
ρ⋆‖∂̂N+2

t um,n(·, t)‖K0
−3/2

, with ρ⋆ = r⋆ + ct. (96)

The conclusion follows (90).

To get estimate (76), it remains to evaluate the following integral

∫ +∞

−∞

∣∣∣ûm,n(N + iξ)
∣∣∣dξ ≤

√
ρ⋆

n(n+ 1)

(∫ +∞

−∞

dξ

1 + ξ2︸ ︷︷ ︸
π

)∥∥∥∂̂N+2
t um,n(·, t)

∥∥∥
K0

−3/2

,

and then to apply (75) of Theorem 3.

4 Proof of Theorem 2

This section concludes the proof by finally estimating the rest uN . First, we give an estimate of
the maximum value of uN by the Laplace-Beltrami operator. Then, we estimate the Laplace-
Beltrami operator on the sphere. Finally, we apply an order upgrading to get the estimate of
theorem 2.

4.1 Preliminary results

Let S be the unit sphere. We must remember that any function in H2(S) is bounded. The goal
of this section is to prove a more accurate result for functions having a zero mean.

Lemma 5. For any v ∈ L2(S) such that ∆Γv ∈ L2(S) and

∫

S

v(θ, ϕ) sin θdθdϕ = 0, (97)

we have v ∈ L∞(S) and the following estimate holds:

|v(ŷ)| ≤ ‖∆Γv‖L2(S), ∀ŷ ∈ S, (98)

that is
‖v‖L∞(S) ≤ ‖∆Γv‖L2(S). (99)

Proof. We set ŷ ∈ S and we introduce a coordinate change that associates x̂ ∈ S with ẑ ∈ S





ẑ1 = x̂ · ŷ⊥,1,
ẑ2 = x̂ · ŷ⊥,2,
ẑ3 = x̂ · ŷ,

(100)

where ŷ⊥,1 and ŷ⊥,2 are two vectors such that (ŷ, ŷ⊥,1, ŷ⊥,2) are a basis of R3. The application
Rŷ : S 7→ S which associates x̂ to ẑ is an isometry. Let ṽ : S 7→ S be the function defined by

ṽ(ẑ) = v(x̂), with ẑ = Rŷ(x̂). (101)
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We remark that the function ṽ satisfies
∫

S

ṽ =

∫

S

v = 0, ‖∆Γṽ‖L2(S) = ‖∆Γv‖L2(S) and ṽ(ẑtop) = v(ŷ), (102)

where ẑtop = (0, 0, 1) denotes the North pole of the sphere. Using the spectral decomposition of
∆Γ, the function ṽ can be written as

ṽ =
∑

m,n

ṽm,nZm,n, (103)

with ṽm,n =

∫

S

ṽZm,n. Following Property 2, we have Zm,n(0, 0) = 0 for any m 6= 0. Moreover,

since Z0,0 is proportional to the constant function and

∫

S

ṽ = 0, we obtain ṽ0,0 = 0. It follows

that

ṽ(ẑtop) =

+∞∑

n=1

ṽ0,nZ0,n(ẑtop), (104)

with Z0,n(ẑtop) =

√
(n+ 1/2)

2π
(see Property 2). We then apply Cauchy Schwarz inequality

|ṽ(ẑtop)| ≤
( +∞∑

n=1

n+ 1/2

2πn2(n+ 1)2

)1/2( +∞∑

n=1

n2(n+ 1)2|ṽ0,n|2
)1/2

. (105)

We then note that




+∞∑

n=1

n2(n+ 1)2|ṽ0,n|2 ≤
∑

m,n

n2(n+ 1)2|ṽm,n|2 = ‖∆Γṽ‖2L2(S),

(∑

n>0

n+ 1/2

2πn2(n+ 1)2

)1/2

≤ 1.

(106)

We conclude that
|ṽ(ẑtop)| ≤ ‖∆Γṽ‖L2(S), (107)

and we complete the proof thanks to (102).

4.2 Estimate of the Laplace-Beltrami operator on the sphere

Lemma 6. For any N ∈ N such that N ≥ 2 is even, we have

‖∆Γu
N (r, ·, t)‖L2(S) ≤

√
π(r⋆ + ct)

2
rN ‖∂̂N+2

t u‖L2(R3). (108)

Proof. According to Parseval equality (55), we get

‖∆Γu
N (r, ·, t)‖2L2(S) =

+∞∑

n=N+1

n∑

m=−n

n2(n+ 1)2|um,n(r, t)|2. (109)

From Proposition 5 we deduce that

‖∆Γu
N (r, ·, t)‖2L2(S) ≤

π(r⋆ + ct)

2
r2N

+∞∑

n=N+1

n∑

m=−n

‖∂̂N+2
t um,n‖2K0

−3/2
. (110)
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We apply Parseval theorem once again to get

+∞∑

n=N+1

n∑

m=−n

‖∂̂N+2
t um,n‖2K0

−3/2
≤ ‖∂̂N+2

t u‖2L2(R3). (111)

This ends the proof.

Remark 6. The norm involved in the right term of equation (108) can be bounded by a constant
independent of the time thanks to remark 2.

We end up with applying Lemma 5. Since the function u
N (r, ·, t) is zero mean on the unit

sphere, we have for every x on the sphere with radius r

u
N(x, t) ≤

√
π(r⋆ + ct)

2
rN ‖∂̂N+2

t u‖L2(R3). (112)

This estimate holding true for any r > 0, we deduce a non-optimal estimate of uN for any even
integer N set in the following proposition.

Proposition 7. For any T > 0 and for any even integer N with N ≥ 2, we have

max
t≤T

|uN (x, t)| = O
r→0

(rN ). (113)

To get the estimate of Theorem 2, we perform an order upgrading.
Let N be a given integer and let P be an even integer such that P > N . By definition of uN

(see (39)), we have

u
N (x, t) =

P∑

n=N+1

n∑

m=−n

um,n(r, t)Zm,n(θ, ϕ) + u
P (x, t). (114)

According to Proposition 7 and (41), we know that





max
t≤T

|
P∑

n=N+1

n∑

m=−n

um,n(r, t)Zm,n(θ, ϕ)| = O
r→0

(rN+1),

max
t≤T

|uP (x, t)| = O
r→0

(rP ) = O
r→0

(rN+1).

(115)

It follows that
max
t≤T

|uN (x, t)| = O
r→0

(rN+1). (116)

5 Conclusion and perspectives

We have thus illustrated how the Kondratiev theory is useful to justify the asymptotic behavior
of an acoustic wave in the neighborhood of the point. In particular, the technique highlights
the different roles played by the time and the space variables into the asymptotic expansion
representing the solution to the wave equation. The time variable indeed acts more like a
parameter than as a variable. In our opinion, this paper is new essentially because it is based
on the singularity theory in the time domain which is less developed than in the stationary case.
There are very few works dealing with singular perturbations for time-dependent problems and
the best of our knowledge, only [12] addressed this kind of issue in two dimensions by applying
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different techniques. It is then interesting to observe that even though the separation of variables
is often opposed to the Kondratiev theory, our approach clarifies that these two techniques can
be mixed together in order to simplify the proof of convergence.
As far as the possible continuations of this work, we would like to consider other models to
provide fast computing methods for the propagation of waves in different media including small
defects. We indeed believe that our approach can be extended to Maxwell equations and to
elastic wave equations, by considering in particular the theory developed in [4] which needs to
be applied in the time domain. It would be also very relevant to deal with anisotropic and
heterogeneous media but in these cases, the corresponding asymptotic expansion is absolutely
non trivial.
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