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Abstract

The direct numerical simulation of the acoustic wave scattering created by very
small obstacles is very expensive, especially in three dimensions and even more so
in time domain. The use of asymptotic models is very efficient and the purpose
of this work is to provide a rigorous justification of a new asymptotic model for
low-cost numerical simulations. This model is based on asymptotic near-field and
far-field developments that are then matched by a key procedure that we describe
and demonstrate. We show that it is enough to focus on the regular part of the
wave field to rigorously establish the complete asymptotic expansion. For that
purpose, we provide an error estimate which is set in the whole space, including
the transition region separating the near-field from the far-field area. The proof of
convergence is established through Kondratiev’s seminal work on the Laplace equa-
tion and involves the Mellin transform. Numerical experiments including multiple
scattering illustrate the efficiency of the resulting numerical method by delivering
some comparisons with solutions computed with a finite element software.

1 General introduction

Mechanical wave simulations are of great interest in many applications due to their ca-
pability of transporting information in the medium they propagate into. In particular,
they are capable of detecting very small heterogeneities that we can visualize using the
recording of the scattered fields generated whenever the wave field encounters obstacles
[28, 29, 30, 8]. This phenomenon of multiple diffraction can be reproduced numerically
and for precise calculations, the finite element method is very efficient. Indeed, finite
element methods are able to capture the characteristics of the obstacles including their
shape by the use of tetrahedral meshes. However, if the obstacles are very small, their
use can lead to very high computational costs, especially because it is necessary to mesh
very finely in the neighborhood of the obstacles. This is a considerable drawback which
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motivates a clear interest in the development of numerical methods which avoid the use
of refined meshes. It should also be noted that in addition to high direct computational
costs, the design of unstructured meshes can also be difficult and very time consuming
and also contributes to high implementation costs.

Most of the time, the use of explicit time schemes is preferred to integrate wave
equations. This choice is dictated by the need of avoiding inversion of the mass matrix
at each time iteration, in order to limit computational costs as well as memory usage.
In this case, the explicit schemes are not fully suitable for direct numerical simulation.
Indeed, they are stable only by respecting the Courant-Friedrichs-Lévy condition which
shows a linear dependency of the time step with the space step. Globally applying
this condition to a direct numerical simulation based on a locally refined grid leads to
increased computational costs since the time step will be adapted to the smallest cell.
This is particularly disabling when the domain has only a few small obstacles. And
even if the domain contains a lot of them, it should not be forgotten that explicit time
schemes can generate numerical pollution mainly due to dispersion effects caused by
the application of a global time step which is only adapted to the smallest cells. This
has motivated the development of time-explicit schemes using local time steps that can
be locally adapted to space steps (see e.g. [16, 39].) Local time stepping methods are
particularly interesting when the number of small cells is high. When this is not the case,
it may be more efficient to use locally implicit schemes (see e.g. [35]). These schemes
result from coupling an unconditionally stable implicit scheme applied in the areas of
the mesh composed of small cells with an explicit scheme elsewhere. One can also take
another side and decide to work on the mathematical model itself in order to keep an
explicit scheme for time integration. The work to be done on the equations then consists
in erasing, as it was, the small obstacles so that they do not have to be taken into account
by the mesh. The latter will no longer contain small cells and we will thus be able to
integrate the equations with a larger time step. To build such a mathematical model,
asymptotic methods turn out to be very efficient besides having a rigorous framework
for establishing convergence results which ensure that the solution calculated by solving
the asymptotic model converges towards the solution of the initial problem. Asymptotic
methods have been applied several times to stationary problems (see [23], [14], [41], [44],
[21], [26]) and to the best of our knowledge, [32, 33] represents the first attempt in the
time domain.

The construction of a reduced model for representing scattering problems relies on
a key procedure which consists in matching the asymptotic expansions of the near and
far field in order to get a full representation of the scattered field. We describe that
procedure in the following section. This work includes two new contributions in addition
to being carried out in the time domain and in three-dimensional space. On the one
hand, we extend the computational method proposed in [32, 33] to the case of several
small obstacles. On the other hand, we develop a mathematical analysis which justifies
the asymptotic model proposed in [32, 33] for the case of a single small obstacle.

The paper is organized as follows. We begin with describing the matching procedure
for the construction of the asymptotic model. This requires defining the near-field and
far-field approximations which are then matched to give a representation of the diffracted
field throughout the space, disregarding the obstacle which should no longer be taken into
account in the computational method. Then we extend the asymptotic model proposed
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to the case of scattering by multiple small obstacles. We illustrate the interest of our ap-
proach by carrying out several numerical experiments which consist in solving the problem
of multiple scattering by using either the asymptotic model or the complete model. The
latter is solved with a discontinuous finite element method. All the calculations we have
performed show that the numerical solution obtained from the asymptotic model achieves
a level of precision comparable to that obtained with the finite element method when we
consider small obstacles. In addition, as expected, the computational costs are clearly
to the advantage of the asymptotic method, which moreover does not require any mesh
and thus avoiding a step that can be difficult and often time-consuming. For example,
in the case of 216 obstacles, the calculations on the reduced model take 2.56 seconds
while the direct simulation lasts 12 hours for a computation carried out in parallel on
576 processors. We finish our study by developing a mathematical analysis to rigorously
justify the proposed reduced model. The analysis consists in establishing a convergence
result which uses the Mellin transform (see [6]) in the formalism of Kondratiev spaces
[24].

2 Description of the matching of asymptotic expan-

sions

To simplify the introduction of the matching method, we limit ourselves to the case of a
single obstacle defined as the small sphere Bε with a near-zero radius ε. We will generalize
the method to the case of several obstacles by the end of the paper. The corresponding
scattering problem posed in Ω = R3\Bε reads as:

∆uε(x, t)−
1

c2
∂2
t uε(x, t) = 0, on Ω, ∀t ≥ 0,

uε(x, t) = 0, on ∂Ω,

uε(x, 0) = v0(x), ∂tuε(x, 0) = v1(x), on Ω,

(1)

where x = (x, y, z) is the spatial variable defined in R3, t ≥ 0 denotes the time variable
and ∆ = ∂2

x + ∂2
y + ∂2

z is the Laplace operator in the cartesian coordinate system.

Hypothesis 1. The initial data v0, v1 : R3 −→ R are of class C∞ and their support is
included in Br? \{0} with Br? := {x ∈ R3 : |x| ≤ r?}, r? being a non negative real number
with ε << r?.

2.1 Asymptotic parameterization

The construction of the approximation of the diffracted field involves a certain number of
physical parameters which will intervene in the characterization of the wave field. First
of all, we introduce the parameter ε which defines the radius of the obstacle. It is small
in the sense that it is very small in front of the mean wavelength lm of the wave field. The
latter is defined as the distance between two maximum values of the Fourier transform
of the signal. The Fourier transform is most of the time centered around a characteristic
angular frequency ωm which defines a characteristic wavelength lm = c

ωm
where c denotes
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the propagation velocity of the wave. By small obstacle, we then mean that ε is very
small in front of lm.

Now that the asymptotic parameters are defined, we move on the parameterization of
the exterior domain surrounding the scatterer. For any x in the exterior of Bε, we set:

x = εsl1−sm X, s ∈ (0, 1), |X| ≥ 1 (2)

Then we have:

• if s = 0, x = lmX; x is located in the so-called far field region where the propagation
phenomenon is preponderant while the obstacle has little impact on the scattered
field. The scatterer acts like a source-point so that the scattered field can be
represented by an asymptotic expansion set in R3.

• if s = 1, x = εX; x is located in the so-called near-field region where the obstacle has
strong impact on the scattered field while the propagation phenomenon is negligible.
A quasi-static behavior of the scattered field is actually expected from its asymptotic
expansion.

• if 0 < s < 1, x is in the so-called matching area where both the propagation and
the obstacle effects have to be taken into account. Hence this is here where the far
field expansion has to match the near-field one to ensure that the final asymptotic
representation provides a reliable representation of the scattered field. For this, it
is crucial to see that if x is of order εs`1−s

m then x/ε is of order εs−1`1−s
m . The first

one tends to zero as ε tends to zero whereas the second tends towards infinity.

Remark 1. It is worth noting that it is ε which acts as the small parameter. Hence in
the following, the scattered field will be given as a series involving powers of ε.

2.2 The far-field approximation

In the far-field region, we seek a solution uε to Problem (1) in the following form:

uε(x, t) ∼
+∞∑
i=0

ui(x, t)ε
i, (3)

where each term ui : R3,∗ × R+ −→ R is a space-time function defined in the domain
R3 \ {0}. Following the methodology described in [9], we have:
• The first term u0 is C∞ and is defined as a solution to the wave equation set in the
whole space (i.e. without obstacle){

∆u0(x, t)− 1

c2
∂2
t u0(x, t) = 0, on R3, ∀t ≥ 0,

u0(x, 0) = v0(x), ∂tu0(x, 0) = v1(x), on R3.
(4)

The function u0 actually represents the regular part of the wave field and is given thanks
to the theory of separation of variables as

u0(x, t) =
+∞∑
n=0

n∑
m=−n

um,n(r, t)Zm,n(θ, ϕ). (5)
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The functions Zm,n are the spherical angular harmonics and are given by

Zm,n(θ, ϕ) =
1√
2π
P
|m|
n (cos θ) exp(imϕ). (6)

where Pm
n are the normalized Legendre function (‖Pm

n ‖L2([−1,1]) = 1) of degree n ∈ N and
of order m ∈ [0, n]. It is defined for x ∈ [−1, 1] by

Pm
n (x) =

√
(n+

1

2
)
(n−m)!

(n+m)!
× (1− x2)

m
2 dmx Pn(x), (7)

where Pn is the Legendre polynomial of degree n given by

Pn(x) =
1

2nn!
dnx
[
(x2 − 1)n

]
. (8)

More details on Legendre polynomials are available for instance in ([38], see page 35), in
([21], see page 47) or in ([19], see page 353). The radial function um,n has the following
expression

um,n(r, t) = Rm,n(Λ0,m,nr, t) (9)

where Λ0,m,n : R −→ R is the amplitude of the regular mode Rm,n which takes the form

Rm,n(Λ, r, t) =
n∑
`=0

q`n
Λ(n−`)(t− r/c)− (−1)n−`Λ(n−`)(t+ r/c)

4π r`+1 cn−`
. (10)
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• For i > 0, the far-field terms ui are singular solutions to the wave equation which are
undefined at the origin and satisfy{

∆ui(x, t)−
1

c2
∂2
t ui(x, t) = 0, ∀x ∈ R3,∗, ∀t ≥ 0,

ui(x, 0) = 0, ∂tui(x, 0) = 0, ∀x ∈ R3,∗.
(11)

We adopt the notation R3,∗ to refer to the space R3 free of origin. Each term ui is
represented as

ui(x, t) =
+∞∑
n=0

n∑
m=−n

Mm,n(Λi,m,n; r, t) Zm,n(θ, ϕ), (12)

which is a finite sum of multipoles Mm,n(Λ; ·) : R+,∗×R −→ R, where R+,∗ refers to non
negative real numbers, defined as functions of their magnitude Λi,m,n : R −→ R

Mm,n(Λi,m,n; r, t) =

(
n∑
`=0

q`n
Λ

(n−`)
i,m,n (t− r/c)
4π r`+1 cn−`

)
, (13)

We have Λi,m,n(t− r/c) = 0 for t− r/c ≤ 0 and q`n = (n+`)!
`!(n−`)!

1
2`

, see [32, 33].

2.3 The near-field approximation

Here we use the dimensionless variable X = x
ε

which satisfies R := |X| ≥ 1 and we seek
for Uε(X, t) which satisfies

Uε(X, t) = uε(x, t). (14)

and

Uε(X, t) ∼
+∞∑
i=0

Ui(X, t)ε
i (15)

Given that ∆x = 1
ε2

∆X , if we have ∆xuε − ∂2t
c2
uε = 0 we also have 1

ε2
∆Uε(X, t) =

∂2t
c2
Uε(X, t). Using (15), we formally get

1

ε2
∆U0 +

1

ε
∆U1 +

+∞∑
i=0

εi
(

∆Ui+2(X, t)
)

=
+∞∑
i=0

εi
(∂2

t

c2
Ui(X, t)

)
. (16)

Then, by identifying each term multiplied by εi with i ≥ −2, we get that the two first
terms U0 and U1 in (16) solve the Laplace equation

∆U0(X, t) = ∆U1(X, t) = 0 for R ≥ 1 (17)

whereas Ui, for i ≥ 2, satisfies the nested Laplace equations given by

∆Ui(X, t) =
∂2
t

c2
Ui−2(X, t) for R ≥ 1. (18)

Moreover all the terms of this expansion including those for i = 0 and i = 1, solve the
Dirichlet boundary condition

Ui(X, t) = 0 for R = 1. (19)
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2.4 The matching procedure

To make the asymptotic representation of the scattered field self-content, we have to
realize the matching between both developments previously introduced. For that purpose,
we go back to the relation that links the variables x and X. Given that x = εX, we have
that x tends to be close to 0 while X tends to infinity. This leads us to consider an
expansion of each ui in the vicinity of the origin as well as a development of Ui in a
neighborhood of infinity. For this, we use the spherical coordinate system and write
down:

ui(r, θ, ϕ, t) ∼
+∞∑
p=−∞

ui,p(θ, ϕ, t) r
p, (20)

for ui and

Ui(R, θ, ϕ, t) ∼
+∞∑
p=−∞

Ui,p(θ, ϕ, t) R
p, with R =

r

ε
. (21)

for Ui. Identifying uε and Uε in the matching zone and using the different expansions (3),
(15), (20) and (21), we obtain the following matching relation

ui,p(θ, ϕ, t) = Ui+p,p(θ, ϕ, t) ∀i ∈ Z, p ∈ Z, (22)

or equivalently
Ui,p(θ, ϕ, t) = ui−p,p(θ, ϕ, t) ∀i ∈ Z, p ∈ Z, (23)

In the following, we adopt the convention

ui ≡ 0 and Ui ≡ 0 for i < 0 (24)

which implies in particular that for i ≥ 0

ui,p(θ, ϕ, t) = 0 for p < −i and Ui,p(θ, ϕ, t) = 0 for p > i. (25)

Expansions (20) and (21) read then
ui(r, θ, ϕ, t) ∼

+∞∑
p=−i

ui,p(θ, ϕ, t) r
p,

Ui(R, θ, ϕ, t) ∼
i∑

p=−∞

Ui,p(θ, ϕ, t) R
p, with R =

r

ε
.

(26)

Now we move on to the explicit writing of the first terms of (26). In the vicinity of the
origin, the far-field term u0 is a regular solution to the wave equation (4) and we have

u0(x, t) = u0(0, t) + ∇u0(0, t) · x + O
r→0

(r2). (27)

By identifying the different terms, we get that

u0,0(θ, ϕ, t) = u0(0, t) and u0,1(θ, ϕ, t) = ∇u0(0, t) · x
r
.
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The matching conditions (23) and (25) then imply that

U0,0(θ, ϕ, t) = u0,0(θ, ϕ, t) = u0(0, t) and U0,p(θ, ϕ, t) = 0 for p > 0.

In particular,
U0(X, t) = u0(0, t) + O

r→0
(r). (28)

Regarding U0, it is a solution to the Laplace equation (17) which admits the following
modal expansion [36]

U0(R, θ, ϕ) =
+∞∑
n=0

(
AnR

n +BnR
−n−1

)
Zm,n(θ, ϕ). (29)

Taking (28) into account and given that Z0,0 = 1√
4π

, we deduce that A0 =
√

4πu0(0, t)

and An = 0 for n ≥ 1. It follows from (19), that Bn = −An. We then get

U0(X, t) = u0(0, t)
(

1− 1

R

)
, (30)

and the matching condition (23) implies that

U0,−1(θ, ϕ, t) = −u0(0, t) and U0,−2(θ, ϕ, t) = 0.

Thanks to (22), we have u1,−1(θ, ϕ, t) = U0,−1(θ, ϕ, t) = −u0(0, t). It follows from (25)
that u1,p(θ, ϕ, t) = 0 for p < −1. This implies that

u1(x, t) = −u0(0, t)

r
+ O

r→0
(1). (31)

Next, we compare (31) with the term u1 in (12). It is worth noting that the term
Mm,n(Λ1,m,n, t) in (12) is computed in the vicinity of x = 0 according to the representation
formula:

Mm,n(Λ1,m,n; x, t) =
qnn Λ1,m,n(t)

4π rn+1
Zm,n(θ, ϕ) + O

r→0
(

1

rn
). (32)

Then, remarking that Λ1,m,n ≡ 0, barring (m,n) = (0, 0), we get

u1(x, t) = M0,0(Λ1,0,0; x, t) =
Λ1,0,0(t− r

c
)

(4π)
3
2

1

r
=

Λ1,0,0(t)

(4π)
3
2︸ ︷︷ ︸

u1,−1(θ,ϕ,t)

1

r
−

Λ′1,0,0(t)

(4π)
3
2 c︸ ︷︷ ︸

u1,0(θ,ϕ,t)

+ O
r→0

(r). (33)

It follows that Λ1,0,0(t) = −(4π)3/2 u0(0, t) and consequently we obtain

u1(x, t) = −
u0(0, t− r

c
)

r
and u1,0(θ, ϕ, t) =

∂tu0(0, t)

c
. (34)

Similarly, we get the first order near-field term

U1(X, t) =
∂tu0(0, t)

c

(
1− 1

R

)
+∇u0(0, t) ·

(
X− X

R3

)
. (35)
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while the second order far-field term is given by

u2(x, t) = −
∂tu0(0, t− r

c
)

rc
. (36)

We then end up with the second order far-field expansion:
uε,2(x, t) := u0(x, t) + εu1(x, t) + ε2u2(x, t)

= u0(x, t)− εu0(0,t− r
c
)

r
− ε2 ∂tu0(0,t− r

c
)

rc
,

(37)

where u0 is the regular solution to the wave equation in the whole space (4) (i.e. without
obstacle).

Moreover, we have

u0(0, t− r − ε
c

) = u0(0, t− r

c
) +

ε

c
∂tu0(0, t− r

c
) + O

ε→0
(ε2). (38)

This last expression can be injected in (37) to get a second order approximation of the
wave field:

Theorem 1. A second order far-field approximation of the exact solution is given by

umod
ε,2 (x, t) := u0(x, t)− ε

u0(0, t− r−ε
c

)

r
, (39)

Remark 2. This formal result can be made rigorous by an error analysis, [42]. Given
that (uε = uε,2 +O(ε3)) and uε,2 = umod

ε,2 +O(ε3), we obtain that for all x 6= 0, there exist
Cx > 0 and εx > 0 such that for all ε ∈]0, εx[.∣∣∣uε(x, t) − umod

ε,2 (x, t)
∣∣∣ ≤ C ε3. (40)

It is worth noting that (37) and (39) do not involve the obstacle, which explains why
using such representation of the scattered field will not require considering the obstacle
as a geometrical object. By this way, there will be no need to reproduce the surface of
the scatterer by a set of points, the latter being modeled as a point source.

3 Application to multiple scattering

We consider the scattering problem (1) created by N spheres of radius ε and center

xn ∈ R3, 1 ≤ n ≤ N . The propagation domain is denoted by Ω = R3 \
( N⋃
n=1

Bε(xn)
)

.

The total field uε is decomposed as the sum of an incident field u0 defined by (4) and a
finite superposition of scattered fields un:

uε(x, t) = u0(x, t) +
N∑
n=1

un(x, t) (41)
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There are different ways for computing an approximation of the solution of this problem.
The field un can be approximated by a mono-polar source of amplitude Λn in the following
way:

un(x, t) =
Λn(t− r

c
)

4π|x− xn|
with Λn(t) = −4πε uinc,n(xn, t+

ε

c
) (42)

where uinc,n is the field illuminating the obstacle Bε(xn). Then, the approximate solution
depends on the definition of uinc,n. Here, we address the following possibilities:

• Adopting the first order Born approximation, the interactions between obstacles
are neglected. In that case,

uinc,n(x, t) = u0(x, t). (43)

This leads to an explicit formula of un from:

Λn(t) = −4πε u0(xn, t+
ε

c
) (44)

• The Foldy-Lax model, written classically for harmonic waves [18, 31, 12, 13, 10],
includes the interactions between obstacles. Here for a given obstacle Bε(xn), the
incident field is the sum of the incident wave u0 and the fields scattered by all the
other obstacles:

uinc,n(x, t) = u0(x, t) +
N∑

m=1, m 6=n

um(x, t) (45)

with the corresponding amplitude computed according to the definition (42)

Λn(t) = −4πε

(
u0(xn, t+

ε

c
) +

N∑
m=1, m 6=n

Λm(t− dn,m−ε
c

)

4πdn,m

)
with dn,m = |xn−xm|.

(46)
Numerically, the unknown functions t 7→ Λn(t) will be approximated on a regular
grid in time: tk = kδt with k ∈ N. In the following, we denote by (Λn)k the
numerical approximation of Λn(tk). It is worth noting that the numerical solution
of system (45) requires some evaluations at time tk − dn,m−ε

c
for all n 6= m. These

are discrete times which may not be on the time grid. An interpolation technique
is then used to evaluate the right hand side with respect to the values on the grid.

(Λn)k = −4πε

(
u0(xn, tk +

ε

c
) +

N∑
m=1, m 6=n

Λ̃m(tk − dn,m−ε
c

)

4πdn,m

)
. (47)

In the above expression, Λ̃m is an interpolation of Λm given by
Λ̃m(t) = 0 for t < 0

Λ̃m(t) = (Λm)k
tk+1 − t
δt

+ (Λm)k+1
t− tk
δt

with tk ≤ t < tk+1.
(48)
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(a) Born t = 2 (b) Born t = 4

(c) Foldy t = 2 (d) Foldy t = 4

(e) direct numerical simulation t = 2 (f) direct numerical simulation t = 4

Figure 2: Comparison between Born, Foldy-Lax and direct numerical simulation
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(a) Born t = 3 (b) Born t = 4

(c) Foldy t = 3 (d) Foldy t = 4

(e) direct numerical simulation t = 3 (f) direct numerical simulation t = 4

Figure 3: Comparison between Born, Foldy-Lax and direct numerical simulation
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(a) Foldy t = 2 (b) direct numerical simulation t = 2

(c) Foldy t = 3 (d) direct numerical simulation t = 3

(e) Foldy t = 4 (f) direct numerical simulation t = 4

Figure 4: Comparison between Born, Foldy-Lax and direct numerical simulation
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In the following numerical study, we will compare results obtained with

• The Born approximation

• The Foldy Lax model

• A Direct Numerical Simulation performed with the numerical Library Hou10ni [7].
This software package is able to simulate time-dependent acoustic wave propagation
in 3D. The space discretization is based upon the Interior Penalty Discontinuous
Galerkin method [20, 2, 15, 4, 5] and the time integration is carried out with a
Leap Frog scheme. There is a need in truncating the computational domain and
for this, we use a first order absorbing boundary condition which is set on the
exterior boundary. The code integrates the p-adaptivity option, which allows to
use different orders of approximation ranging from p = 1 to p = 6. In this way, the
computational costs of the direct simulation method are minimized by adopting a
refined mesh in the vicinity of obstacles and larger cells elsewhere.

In each numerical experiment, we consider an incident wave which is analytically defined
by

u0(x, t) =
Λ0(t− |x|

c
)

4π|x|
(49)

with
Λ0(t) = (t− t0)e−α

2
0(t−t0)2 (50)

The wave speed c is equal to 1. The real numbers α0 = 5 is a characteristic frequency
whereas t0 = 1.2 π

α0
is a characteristic time. Most of the energy of the signal corresponds

to the wave length :

λ ∈ [λm,+∞[ with λm = ct0 ' 0.75. (51)

First numerical experiment: the case of five spheres. We consider two con-
figurations with five spherical obstacles with radius ε = 0.1 and ε = 0.01 centered in

x1 =

−.5.5
0

 , x2 =

0
.5
0

 , x3 =

.5.5
0

 , x4 =

.50
0

 , x5 =

 .5
−.5
0

 . (52)

In terms of ratio of characteristic length, the ratio ε/λm is equal to 0.13 in the first
configuration and to 0.013 in the second configuration.

For the first configuration, the direct numerical simulation has involved 88, 073 ele-
ments distributed as follows 108 P2-elements, 298 P3-elements, 105 P4-elements, 3, 640
P5-elements and 82, 969 P6-elements. This corresponds to 7, 183, 951 degrees of freedom.
The time step is approximately 1.6 · 10−4. About 25, 000 time steps are required to reach
the final time t = 4. The duration of the experiment is 10 minutes on 576 processors (16
nodes of 36 cores).

The second configuration involves 89, 751 elements, distributed as follows ; 718 P 1-
elements, 360 P 2-elements, 221 P 3-elements, 954 P 4-elements, 3,579 P 5-elements and
83,919 P 6-elements. This corresponds to 7, 293, 902 degrees of freedom. The time step is
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8.3 · 10−6 (about 480, 000 iterations). The numerical experiments last three hours on 576
processors (16 nodes of 36 cores).

It is worth noting here that reducing the diameters of the sphere by a factor 10 only
slightly increased the number of elements, since we only need to small elements close from
the obstacle. However, this divided the time step by a factor 20.

The results are depicted for the first configuration in Fig. 2. We notice that the
numerical solution of the Foldy-Lax model is much closer to the direct numerical solution
than the solution of the Born approximation. This is particularly true in the center of the
computational domain where a diffusion phenomenon can be observed. This is related to
multiscattering which is not correctly taken into account by the Born model.

For the second configuration, the results are depicted in Fig. 3. In this case, the radius
of the obstacles and consequently the ratio ε/λm are smaller. Both approximations give
excellent qualitative results.
Second numerical experiment: the case of 216 spherical obstacles evenly dis-
tributed . We consider here the case of a network of 6 by 6 by 6 spheres with radius
ε = .01 whose centers xi,j,k lie on a regular grid of space step h = .5. More precisely, we
for 0 ≤ i, j, k ≤ 5,

xi,j,k =
[
ih− 3.5h, jh− 3.5h, kh− 3.5h

]T
with h = .5. (53)

It is worth noting that we are in the ideal case where the obstacles are clearly small
in regards with the wavelength. We thus expect the asymptotic model will deliver very
good results when compare with the finite element method. The direct numerical sim-
ulation involves 209,344 elements, with 32, 748 P 1-elements, 14, 994 P 2-elements, 9,779
P 3-elements, 9, 630 P 4-elements, 10, 911 P 5-elements and 131, 282 P 6-elements. This
corresponds to 12,452,266 degrees of freedom. The time step is 4.62 10−6. The numer-
ical experiment lasts 12 hours on 576 processors (16 nodes of 36 cores) to compute the
solution at time t = 5.

This case is only affordable with direct numerical simulation performed on a super-
computer. On a laptop it would have taken almost two years. Since the simulation is
performed in time-domain the memory issue is less crucial.

A clear difference can be observed close to the boundary of the computational do-
main. This is due to the approximate outgoing wave condition which does not filter the
reflections completely, so we can see a spurious wave which pollutes the finite element
calculation.

The Foldy-Lax model took 2.56 seconds to solve the problem on a personal computer
(1.8 Ghz simple core with 4 Gb of RAM). These preliminary results are presented in Fig.
4. We can observe the solution at times t = 2 and t = 3. Only 36 spheres are visible
since we are representing the solution on the plane z = 0.25.

It is worth mentioning that thanks to Foldy-Lax model, we have been able to perform
simulations of acoustic wave diffraction by dense arrays of small obstacles up to 10,000
in number. These simulations could not be carried out with the finite element code.
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4 Mathematical analysis

4.1 Statement of the result

In section 2, we have formally written a matched asymptotic expansion uε providing a
representation of the scattered field in presence of a small obstacle. In the following, we
justify this development by proving that the Taylor expansion of ui in (20) converges.

For i > 0, the terms ui are singular functions and according to (12) and (13), they are
represented by a finite sum (see [32, 33] for details). As far as convergence is concerned,
we will thus focus on the regular term u0 ∈ C∞(R3 × R), solution to the wave equation
(4), given by (5) along with (9) and (10).

The computation of the Taylor expansion of u0 can be achieved by decomposing (5)
in two terms

u0(r, θ, ϕ, t) = sN(x, t) + uN(x, t) (54)

with a finite sum of functions

sN(x, t) =
N∑
n=0

n∑
m=−n

um,n(r, t) Zm,n(θ, ϕ) (55)

and a modal series whose convergence deserves a particular attention

uN(x, t) =
+∞∑

n=N+1

n∑
m=−n

um,n(r, t) Zm,n(θ, ϕ). (56)

We then have

Lemma 1. The Taylor expansion of uN and sN with respect to r at order N is given by

sN(x, t) =
N∑
p=0

u
(p)
0 (θ, ϕ, t) rp + O

r→0
(rN+1) (57)

max
t≤T
|uN(x, t)| = O

r→0
(rN+1). (58)

with

u
(p)
0 (θ, ϕ, t) =

p∑
n=0

n∑
m=−n

Λ
(p+n+1)
0,m,n (t)

2π cp+n+1
Qn−p+1
n (−1) Zm,n(θ, ϕ).. (59)

with

Qk
n(X) =

inf (n,2n−k)∑
`=0

qn−`n

Xn−`−k

(2n− `− k)!
. (60)

It has been proved that Qk
n(−1) = 0 for any odd positive integer number k, see [32].

It follows the following Theorem

Theorem 2. The Taylor expansion of the regular solution u0 is given by

u0(x, t) =
N∑
p=0

rpu
(p)
0 (θ, ϕ, t) + rN0 (x, t) (61)
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with u
(p)
0 given by (59) and the rest rN

max
t≤T
|rN0 (x, t)| = O

r→0
(rN+1). (62)

The proof of (57) of lemma 1 is simply related to an explicit computation. Details
can be found in [32]. The rest of this section is devoted to the proof of (58) of lemma 1.

4.2 Prerequisite for the mathematical analysis

The key tool for this work is

• the Mellin transform which is part of singularity theory studies, see Section 4.2.1;

• energy estimates for the wave equation, see Section 4.2.2;

• the theory of modal expansion of regular solution to wave equation, see Section 4.2.3.

4.2.1 Mellin transform: definition and properties

In this sub-section, we summarize the classic Mellin transformation results, whose proofs
have been gathered in [6] (easily accessible online). The reader may also refer to [38].
In what follows, β is a real and p is a positive integer. The Kondratiev spaces (see for
instance [24], [11] and [34]) are defined by

K0
β =

{
v : R+ → R such that r−β−1/2v(r) ∈ L2(R+)

}
,

Kp
β =

{
v : R+ → R such that v{`} ∈ K0

β ∀` ≤ p
}
,

(63)

where the notation ·{`} stands for the differential operator

v{`}(r) =
(
r
d

dr

)`
v(r). (64)

These spaces are equipped with the Hilbertian norms
‖v‖K0

β
=

(∫ +∞

0

r−2β
∣∣v(r)

∣∣2dr
r

)1/2

,

‖v‖Kp
β

=
( p∑
`=0

∥∥v{`}∥∥2

K0
β

) 1
2
.

(65)

We denote by λ ∈ C complex number

λ = β + iξ, β ∈ R and ξ ∈ R. (66)

which will serve as the Mellin variable. Let D(]0,+∞[) be the space of functions with
compact support included in ]0,+∞[.

Definition 1. For any v ∈ D(]0,+∞[), the Mellin transform is defined for any λ ∈ C
by

Mv(λ) =
1√
2π

∫ +∞

0

r−λv(r)
dr

r
. (67)
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Using the density of D(]0,+∞[) in Kp
β, the Mellin transform can be extended to Kp

β.
Moreover, the Mellin transform λ 7→ Mv(λ) is defined for any v ∈ Kp

β and for any λ ∈ Cβ

where Cβ denotes the line in the complex plane

Cβ :=
{
λ ∈ C : Re(λ) = β

}
. (68)

On the other hand, the Mellin transform is an isomorphism from Kp
β onto K̂p

β, where K̂p
β

stands for
K̂p
β = {ω : Cβ → C : λ 7→ λ`ω`(λ) ∈ L2(Cβ), ∀` ≤ p}, (69)

In the above definition, L2(Cβ) denotes the space of functions on Cβ equipped with the
norm

‖v‖2
L2(Cβ) =

∫ +∞

−∞
|v(β + iξ)|2dξ (70)

Property 1. Let p be a positive integer. For any v ∈ Kp
β, we have v{p} ∈ K0

β and for
a.e. λ ∈ Cβ

Mv{p}(λ) = λpMv(λ). (71)

Property 2. Let vq : R+ −→ C be defined by vq(r) = rqv(r), with q ∈ R. If v ∈ K0
β,

then
vq ∈ K0

β+q, (72)

and for any λ ∈ Cq+β

Mvq(λ) = Mv(λ− q). (73)

Proposition 1. Let p be a positive integer. For any v ∈ Kp
β0

, such that v(r) = 0 for
every r > ρ? > 0, the function v belongs to Kp

β for any β ≤ β0. The Mellin function is
analytical in the half-plane

C]−∞,β0[ := {λ ∈ C : Re(λ) < β0} (74)

and satisfies for Re(λ) = β < β0

|λpMv(λ)| ≤ ρβ0−β?√
2(β0 − β)

‖v‖Kp
β0
. (75)

Proposition 2. Let p be a positive integer, β1 and β2 be two real numbers such that
β1 < β2. Let Kp

[β1,β2] := Kp
β1
∩Kp

β2
. Then for any β ∈ [β1, β2], we have Kp

β ⊂ Kp
[β1,β2].

To prove Theorem 2 and thereby estimate the rest uN , we are going to apply the
following theorem coming from singularity theory, that is:

Theorem 3. Let β0 < β1 < β2 be three real numbers. Let v ∈ K0
β1

and C[β1,β2] be the
strip of the complex plane defined by

C[β1,β2] = {λ ∈ C : Re(λ) ∈ [β1, β2]}. (76)

. We assume that

i) the Mellin transformMv : Cβ1 → C admits an analytical continuation v̂ in C]β0,β2[;
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ii) there exists α > 0 such that for any λ = β + iξ ∈ C]β0,β2[ and |ξ| > 1

|ξ2 v̂(λ)| ≤ α; (77)

then for any β ∈]β0, β2[, v ∈ K1
β, and satisfies

|v(r)| ≤ rβ√
2π

∫ +∞

−∞

∣∣∣v̂(β + iξ)
∣∣∣dξ. (78)

4.2.2 Energy estimates

In this paragraph, we recall some elementary properties of the wave equation such as
energy conservation or the principle of finite velocity propagation. Let us consider the
solution u0 ∈ C∞(R3×R+) to the Cauchy problem (4) defined from a pair of initial data
(v0, v1) satisfying Hypothesis 1. The wave field u0 propagates with finite speed and its
energy is preserved (see Chapter 2, Section 6 of [40]), that is

E(u0, t) = E(u0, 0) with E(u0, t) =

∫
R3

∣∣∂tu0(x, t)
∣∣2 + c2

∣∣∇u0(x, t)
∣∣2dx, ∀t ≥ 0.

(79)
From (79), we deduce that:

Property 3. For any pair of Cauchy data (v0, v1) satisfying Hypothesis 1, we have for
all t ≥ 0
∫
R3

∣∣∣∂2p+1
t u0(x, t)

∣∣∣2dx ≤ c4p
(∫

R3

∣∣∆pv1(x)
∣∣2 + c2

∫
R3

∣∣∇∆pv0(x)
∣∣2), ∀p ≥ 0,∫

R3

∣∣∣∂2p
t u0(x, t)

∣∣∣dx ≤ c4p
(∫

R3

∣∣∆pv0(x)
∣∣2dx +

1

c2

∫
R3

∣∣∇∆p−1v1(x)
∣∣2dx), ∀p ≥ 1.

(80)

Proof. Since the initial data are in C∞, any time derivative w = ∂pt u0 satisfies the wave
equation (4). For p ≥ 1, we can thus apply (79) to w∫

R3

∣∣∂tw(x, t)
∣∣2dx ≤ E(w, t) = E(w, 0) ∀t ≥ 0. (81)

Property 4. For any pair of Cauchy data (v0, v1) satisfying Hypothesis 1, the support of
u(·, t) is enclosed in Br?+ct and∫

R3

|u0(x, t)|2dx ≤ (r? + ct)2

c2π2

(∫
R3

∣∣v1(x)
∣∣2 + c2

∫
R3

∣∣∇v0(x)
∣∣2), ∀t ≥ 0. (82)

Proof. From the finite speed propagation principle, we have that u0(x, t) = 0 except
if |x| ≤ r ≤ ct+ r?. The Poincaré inequality implies that

‖u0(·, t)‖2
L2(Br?+ct)

≤ (r? + ct)2

π2
‖∇u0(·, t)‖2

L2(Br?+ct)
. (83)

Thus, the previous inequality extends to R3:∫
R3

|u0(x, t)|2dx ≤ (r? + ct)2

π2

∫
R3

∣∣∇u0(x, t)
∣∣2dx. (84)

To complete the proof of Property 4, all that remains is to combine (79) with (84).
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4.2.3 Spectral decomposition

In what follows, we recall some classical results about separation of variables for writing
regular solutions of the wave equation (see for example [17], [22] and [37]).

Any regular solution u of the acoustic wave equation can be decomposed into

u0(x, t) =
+∞∑
n=0

n∑
m=−n

um,n(r, t)× Zm,n(θ, ϕ). (85)

This writing is valid for any value of t and the series converges in L2(R3). The terms
um,n are the spectral coefficients of u0 in the orthogonal basis Zm,n of L2(S) previously
introduced in (6); we have:

um,n(r, t) =

∫
S
u0(r, θ, ϕ, t)Zm,n(θ, ϕ) sin θdθdϕ, (86)

where S denotes the unit sphere parameterized with the angular space variables (θ, ϕ).
It is then important to list the properties of the functions Zm,n. We have:

Property 5. The functions Zm,n satisfy

(i) ‖Zm,n‖L2(S) = 1,

(ii) Zm,n(0, ϕ) = 0, if m 6= 0, ∀ϕ ∈ [0, 2π],

(iii) Z0,n(0, ϕ) =

√
n+ 1/2

2π
, for m = 0, ∀ϕ ∈ [0, 2π].

(iv)

∫
S
Zm,n(θ, ϕ) sin θ dθ dϕ = 0 for n 6= 0.

Proof. By construction, the set of functions Zm,n forms an orthonormal basis of L2(S).
Indeed according to (6), we have

‖Zm,n‖2
L2(S) =

1

2π

∫ 2π

0

| exp(imϕ)|2dϕ
∫ π

0

∣∣∣P |m|n (cos θ)
∣∣∣2 sin θdθ. (87)

The corresponding Legendre polynomials are orthogonal and satisfy for any m ∈ [0, n]
(see e.g. [38] page 37) ∫ 1

−1

∣∣∣Pm
n (x)

∣∣∣2dx = 1. (88)

By applying the change of variable x = cos θ, we get the normalized Legendre polynomials
which satisfy ∫ π

0

∣∣∣P |m|n (cos θ)
∣∣∣2 sin θdθ = 1. (89)

This ends the proof of (i).
Still by definition (see (7)), Pm

n (1) = 0, ∀m 6= 0. We thus have (ii) according to (6).
By definition (see (6) and (7)), we have

Z0,n(0, 0) =
P 0
n(1)√
2π

=

√
n+ 1/2

2π
, (90)
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because Pn(1) = 1. Indeed, following [38] (see page 35), we have

(x2 − 1)P ′n(x) = nxPn(x)− nPn−1(x), (91)

and by using the recurrence relation (91) for x = 1, we obtain Pn(1) = Pn−1(1). It is
then sufficient to see that P0(1) = 1 for getting (iii).

By orthogonality, we have for all n > 0∫
S
Zm,n(θ, ϕ) Z0,0(θ, ϕ) sin(θ)dθdϕ = 0. (92)

We then remark that Z0,0(θ, ϕ) = 1√
4π

which gives (iv) from (92). This completes the proof

of Property 5. In [27], the basis functions Zm,n of L2(S) are defined as eigenfunctions of
the Laplace-Beltrami operator which reads in spherical coordinates as

∆Γ =
1

sin θ
∂θ

[
sin θ∂θ

]
+

1

sin2 θ
∂2
ϕ. (93)

We actually have

Property 6. The functions Zm,n satisfy

∆ΓZm,n(θ, ϕ) = −n(n+ 1)Zm,n(θ, ϕ), (94)

The partial differential equation

∆u0(x, t) =
1

c2
∂2
t u0(x, t), with ∆ =

1

r2
∂r

[
r2∂r

]
+

1

r2
∆Γ, (95)

can be diagonalized by using the spectral coefficients um,n. According to (94) together
with the fact that the functions Zm,n are orthogonal in L2(S), the coefficients um,n satisfy
for any r > 0 and t ≥ 0

1

r2
∂r
(
r2∂rum,n(r, t)

)
− n(n+ 1)

r2
um,n(r, t) =

1

c2
∂2
t um,n(r, t). (96)

Each um,n is a C∞-function with support in {(r, t) : t ≥ 0 et 0 < r < r? + ct}. We now
rewrite (96) as

u{2}m,n(r, t) + u{1}m,n(r, t)− n(n+ 1)um,n(r, t) =
r2

c2
∂2
t um,n(r, t). (97)

with ·{`} defined by (64) On the other hand, since for any given time t, the function
x 7→ u(x, t) belongs to C∞ and has a compact support, the following energy

ET
` = max

t≤T

∫
R3

|∂`tu(r, θ, ϕ, t)|2dx. (98)

is bounded. Thanks to the Parseval equality related to the spectral decomposition, we
then have for all v ∈ L2(S)∫ π

0

∫ 2π

0

|v(θ, ϕ)|2 sin θdθdϕ =
∑
m,n

|vm,n|2, (99)
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with vm,n =

∫
S
v(θ, ϕ)Zm,n(θ, ϕ) sin θdθdϕ. These terms can be displayed with the spec-

tral coefficients

ET
` = max

t≤T

∫ +∞

0

∑
m,n

∣∣∂`tum,n(r, t)
∣∣2r2dr. (100)

We then have

Proposition 3. The space L2(R3) can be characterized as

L2(R3) =
{
v : R3 → R | vm,n ∈ K0

−3/2, ∀n ≥ 0,m ∈ [−n, n]

and
∑
m,n

‖vm,n‖2
K0
−3/2

< +∞
}
. (101)

Proof. Let v be in L2(R3). From (99), we know that∫
R3

|v(x)|2dx =

∫ +∞

0

∫ π

0

∫ 2π

0

|v(r, θ, ϕ)|2r2dr sin θdθdϕ, (102)

=

∫ +∞

0

∑
m,n

|vm,n(r, θ, ϕ)|2r2dr. (103)

By switching sum and integral terms (following Fubini theorem), it holds that∫
R3

|v(x)|2dx =
∑
m,n

∫ +∞

0

|vm,n(r, θ, ϕ)|2r2dr. (104)

Then, considering that∫ +∞

0

∣∣vm,n(r, θ, ϕ)
∣∣2r2 dr =

∫ +∞

0

∣∣∣r−(− 3
2

) vm,n(r, θ, ϕ)
∣∣∣2 dr

r
, (105)

the proof of Proposition 3 is complete.

4.3 Convergence Proof

We remind that uN is given by the modal expansion (56). It is represented by a series to
which we want to give meaning. We begin by studying the terms of this series precisely
and then we deal with the convergence of this series in the classical sense and not only
in L2(R3). We follow a two-step approach:

• The first step will consist in estimating precisely the spectral coefficients um,n for
every n ∈ N and −n ≤ m ≤ n.

• The second step consists in processing the infinite summation and demonstrate its
convergence.
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4.3.1 Control of the terms of the series

Here we will apply the theorem 3 . After testing hypotheses (i) and (ii), we will obtain
the behavior close to r =0 of um,n which is described in the following proposition

Proposition 4. Let N be an even integer greater or equal to 2. For any integer n ≥ N ,
m ∈ N with −n ≤ m ≤ n, we have

|um,n(r, t)| ≤ 1

n(n+ 1)

√
π(r? + ct)

2
rN ‖∂N+2

T um,n‖K0
−3/2

with T = ct. (106)

• Checking (i) The function x 7→ ∂`tu(x, t) belongs to L2(R3), for every integer ` ≥ 0
and t ≥ 0. The featuring of L2(R3), given by Proposition 3, justifies that the spectral
coefficients r 7→ ∂`tum,n(r, t) are functions of K0

−3/2. Since r 7→ um,n(r, t) is compactly

supported in [0, ρ?], with ρ? = r? + ct, we deduce that

∂`tum,n ∈ K0
β, ∀` ∈ N, ∀β ≤ −3/2. (107)

We can thus apply the Mellin transform to equation (97) and we use Properties 1 and 2
to get that for any t ≥ 0 and for any λ ∈ C]−∞,− 3

2
[

αn(λ)Mum,n(λ, t) = ∂2
TMum,n(λ− 2, t), (108)

with
αn(λ) = λ2 + λ− n(n+ 1). (109)

We continue by proving that λ 7→ Mum,n(λ, t) admits a meromorphic continuation λ 7→
ûm,n(λ, t) in the complex plane. For λ = β + iξ with β < −3/2, the meromorphic
continuation ûm,n(λ, t) necessarily coincides with Mum,n(λ, t)

ûm,n(λ, t) =Mum,n(λ, t). (110)

For β ≥ −3/2, we construct the meromorphic continuation by means of formula (108)

ûm,n(λ, t) =
∂2p
T ûm,n(λp, t)
p−1∏
k=0

αn(λk)

, with λk = λ− 2k and ∂T = ∂t/c, (111)

where p denotes the integer such that β − 2p ∈ [−7
2
;−3

2
[. It is explicitly given by

p = E(7
4

+ β
2
)) with β = <(λ). The formula (111) makes it possible to define ûm,n(·, t) as

a meromorphic function of C.
The zeroes of αn being located at λ = n and λ = −n−1, we can deduce from formula

(111) that, for all integer `, λ 7→ ∂`t ûm,n(λ, t) is an analytical function in C\{n+ 2k | k ∈
N}.
• Checking (ii)

Lemma 2. For any λ = β + iξ ∈ C such that |ξ| ≥ 1

|ξ|2 |ûm,n(λ, t)| ≤ γn(t, β), (112)

where γn is a function of R+ × R −→ R+ locally bounded in .
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Proof. We remind that λ = β + iξ. We first remark that formula (111) is also valid for
p = 2

ûm,n(λ, t) =
∂2p0
T ûm,n(λ− 2p0, t)

p0−1∏
k=0

αn(λk)

(113)

Considering the imaginary part of αn, we have

if β /∈ [−1, 0] then |αn(λ)| ≥ |Im(αn(λ))| = |(2β + 1)ξ| ≥ |ξ|,

if β ∈ [−1, 0] then |αn(λ)| ≥ |Re(αn(λ))| = n2 + n︸ ︷︷ ︸
≥0

− (β2 + β)︸ ︷︷ ︸
≤0

+ ξ2 ≥ ξ2 ≥ |ξ|, (114)

For p0 ≥ 2 and |ξ| ≥ 1, it follows

ξ2 |ûm,n(λ, t)| ≤ ξp0 |ûm,n(λ, t)| ≤ |∂2p0
T ûm,n(λ− 2p0, t)| (115)

we apply Proposition 1 with β0 = −3/2, the following estimates hold

• If λ− 4 < −2 (λ < 2), ξ2 |ûm,n(λ, t)| ≤ |∂4
T ûm,n(λ− 4, t)| ≤ γ1

n(t, β)‖∂4
Tum,n(·, t)‖K0

−3/2

≤ γ1
n(t, β)‖∂4

Tu(·, t)‖L2(R3) see Prop. 3,
(116)

with γ1
n(t, β) = (r?+ct)−

3
2−β+4√

2(− 3
2
−β+4)

.

• If λ− 4 > −2 (λ > 2). Let p0 be the integer such that β − 2p0 ∈]− 4,−2]
ξ2 |ûm,n(λ, t)| ≤ ξp0 |ûm,n(λ, t)| ≤ |∂2p0

T ûm,n(λ− 2p0, t)|

≤ γ2
n(t)‖∂2p0

T um,n(·, t)‖K0
−3/2
≤ γ2

n(t)‖∂2p0
T u(·, t)‖L2(R3).

(117)

with

γ2
n(t, β) = max

β>2

(r? + ct)−
3
2
−β+2p0(β)√

2(−3
2
− β + 2p0(β))

= max
β∈[0,2]

(r? + ct)
1
2

+β√
1
2

+ β
(118)

The result follows form (116) and (117).
• Final step : Due to Proposition 1, the function λ 7→ ûm,n(λ, t) is analytical for any
Re(λ) < n and it satisfies (112) for any |ξ| > 1. Theorem 3 implies that um,n(·, t) ∈ K1

β

for any β < n.

Lemma 3. Let n and N be two integers with n > N and N even. If λ = N + iξ, we
have

n(n+ 1)
(

1 + ξ2
) ∣∣∣ûm,n(λ, t)

∣∣∣ ≤ √ρ? ‖∂N+2
T um,n(·, t)‖K0

−3/2
. (119)
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Proof. If N is even, according to (111) for p = N
2

+ 1, we have

ûm,n(λ, t) =
∂N+2
T ûm,n(−2 + iξ, t)

αn(λ)
(N/2−1∏

k=1

αn(λk)
)
αn(iξ)

, with λk = N − 2k + iξ. (120)

We remark that for any ξ ∈ R

|αn(iξ)| ≥ |Re(αn(iξ))| = n2 + n+ ξ2 ≥ n(n+ 1). (121)

Since 1 ≤ k ≤ N/2− 1, it follows that βk := Re(λk) = β − 2k ∈ [2, N − 2] ⊂ [0, N ]. As
a consequence, we get

|αn(λk)| ≥ |Re(αn(λk))| = n2 + n− β2
k − βk + ξ2 ≥ n2 + n−N2 −N + ξ2 ≥ 1, (122)

because n > N . Likewise, since β = N , we have

|αn(λ)| ≥ |Re(αn(N + iξ))| = n2 + n−N2 −N + ξ2 ≥ 1 + ξ2. (123)

It follows then from (121), (122) and (123)

n(n+ 1)(1 + ξ2)
∣∣∣ûm,n(λ, t)

∣∣∣ ≤ ∣∣∣∂N+2
T ûm,n(−2 + iξ, t)

∣∣∣. (124)

By applying Proposition 1 with β0 = −3/2, we get∣∣∣∂N+2
T ûm,n(−2 + iξ, t)

∣∣∣ ≤ √ρ?‖∂N+2
T um,n(·, t)‖K0

−3/2
, with ρ? = r? + ct. (125)

Then according to (124), Lemma 3 is proved. Finally to get estimate (106) and Propo-
sition 4, it remains to evaluate the following integral∫ +∞

−∞

∣∣∣ûm,n(N + iξ, t)
∣∣∣dξ ≤ √

ρ?

n(n+ 1)

(∫ +∞

−∞

dξ

1 + ξ2︸ ︷︷ ︸
π

)∥∥∥∂N+2
T um,n(·, t)

∥∥∥
K0
−3/2

,

and then to apply (78) in Theorem 3.

4.3.2 End of the proof of Theorem 2

Let S be the unit sphere. We establish preliminary results dealing with the Laplace
Beltrami operator.

Lemma 4. For any v ∈ L2(S) such that ∆Γv ∈ L2(S) and∫
S
v(θ, ϕ) sin θdθdϕ = 0, (126)

we have v ∈ L∞(S) and the following estimate holds:

‖v‖L∞(S) ≤ ‖∆Γv‖L2(S). (127)
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Proof. We set ŷ ∈ S and we introduce a coordinate change that associates ẑ ∈ S to x̂ ∈ S
with 

ẑ1 = x̂ · ŷ⊥,1,
ẑ2 = x̂ · ŷ⊥,2,
ẑ3 = x̂ · ŷ,

(128)

where ŷ⊥,1 and ŷ⊥,2 are two vectors such that (ŷ, ŷ⊥,1, ŷ⊥,2) forms an orthonormal basis
of R3. The application Rŷ : S 7→ S which associates x̂ to ẑ is an isometry. Let ṽ : S 7→ S
be the function defined by

ṽ(ẑ) = v(x̂), with ẑ = Rŷ(x̂). (129)

We remark that the function ṽ satisfies∫
S
ṽds =

∫
S
vds = 0, ‖∆Γṽ‖L2(S) = ‖∆Γv‖L2(S) and ṽ(ẑtop) = v(ŷ), (130)

where ẑtop = (0, 0, 1) denotes the North pole of the sphere. Using the spectral decompo-
sition of ∆Γ, the function ṽ can be written as

ṽ =
∑
m,n

ṽm,nZm,n, (131)

with ṽm,n =

∫
S
ṽZm,nds. Following Property 5, we have Zm,n(0, 0) = 0 for any m 6= 0.

Moreover, since Z0,0 is proportional to the constant function and

∫
S
ṽ = 0ds, we obtain

ṽ0,0 = 0. It follows that

ṽ(ẑtop) =
+∞∑
n=1

ṽ0,nZ0,n(ẑtop), (132)

with Z0,n(ẑtop) =

√
(n+ 1/2)

2π
(see Property 5). We then apply Cauchy Schwarz inequal-

ity

|ṽ(ẑtop)| ≤
( +∞∑
n=1

n+ 1/2

2πn2(n+ 1)2

)1/2( +∞∑
n=1

n2(n+ 1)2|ṽ0,n|2
)1/2

. (133)

Next, we note that
+∞∑
n=1

n2(n+ 1)2|ṽ0,n|2 ≤
∑
m,n

n2(n+ 1)2|ṽm,n|2 = ‖∆Γṽ‖2
L2(S),(∑

n>0

n+ 1/2

2πn2(n+ 1)2

)1/2

≤ 1.

(134)

and we conclude that
|ṽ(ẑtop)| ≤ ‖∆Γṽ‖L2(S), (135)

which ends the proof thanks to (130).
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Lemma 5. Let N ≥ 2 be an even integer. We have

‖∆Γu
N(r, ·, t)‖L2(S) ≤

√
π(r? + ct)

2
rN ‖∂N+2

T u‖L2(R3). (136)

Proof. According to Parseval equality (99), we get

‖∆Γu
N(r, ·, t)‖2

L2(S) =
+∞∑

n=N+1

n∑
m=−n

n2(n+ 1)2|um,n(r, t)|2. (137)

From Proposition 4, we deduce that

‖∆Γu
N(r, ·, t)‖2

L2(S) ≤
π(r? + ct)

2
r2N

+∞∑
n=N+1

n∑
m=−n

‖∂N+2
T um,n‖2

K0
−3/2

. (138)

We apply Parseval theorem once again to get

+∞∑
n=N+1

n∑
m=−n

‖∂N+2
T um,n‖2

K0
−3/2
≤ ‖∂N+2

T u‖2
L2(R3). (139)

This ends the proof.

Remark 3. The norm involved in the right hand side of inequality (136) can be bounded
by a constant independent of the time thanks to Property 3.

The function uN is defined as the remainder of the series (5)

uN(x, t) =
+∞∑

n=N+1

n∑
m=−n

um,n(r, t)Zm,n(θ, ϕ). (140)

Due to Property 5 and since this series is convergent in L2(S),∫
S
uN(r, θ, ϕ, t) sin(θ)dθdϕ =

+∞∑
n=N+1

n∑
m=−n

um,n(r, t)

∫
S
Zm,n(θ, ϕ) sin(θ)dθdϕ = 0.

(141)
Then, from Lemma 4, we obtain that for every x on the sphere with radius r

|uN(x, t)| ≤
√
π(r? + ct)

2
rN ‖∂N+2

T u‖L2(R3). (142)

This estimate holds true for any r > 0 and we deduce a non-optimal estimate of uN for
any even integer N set in the following proposition.

Proposition 5. For any T > 0 and for any even integer N with N ≥ 2, we have

max
t≤T
|uN(x, t)| = O

r→0
(rN). (143)
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Proof. To get the estimate of Theorem 2, we perform an order upgrading. Let N be a
given integer and let P be an even integer such that P > N . By definition of uN (see
(56)), we have

uN(x, t) =
P∑

n=N+1

n∑
m=−n

um,n(r, t)Zm,n(θ, ϕ) + uP (x, t). (144)

where uP is defined like uN , replacing in (140) N by P . According to Proposition 5 we
know that 

max
t≤T
|

P∑
n=N+1

n∑
m=−n

um,n(r, t)Zm,n(θ, ϕ)| = O
r→0

(rN+1),

max
t≤T
|uP (x, t)| = O

r→0
(rP ) = O

r→0
(rN+1).

(145)

since Theorem 1.3 page 57 of [32] states that um,n(r, t) = O
r→0

(rn). It follows that

max
t≤T
|uN(x, t)| = O

r→0
(rN+1). (146)

This ends the proof of Theorem 2.

5 Conclusion and perspectives

We have proposed a new solution methodology for solving 3D multiple scattering problems
when the size of the obstacles is small with respect to the characteristic wavelength. This
work contains two key results. First, it validates an asymptotic representation of the
field diffracted by a small obstacle illuminated by an incident acoustic wave of very
large characteristic length in front of the radius of the obstacle. The proof is based
on Kondratiev’s theory and the extensive use of the Mellin transform. To the best of
our knowledge, this result is the first one addressing the case of time-dependent wave
problems. Second, this work shows the potential of the proposed asymptotic model
to numerically simulate the effects of a large number of small obstacles on an incident
wave. The proposed asymptotic method is confronted with an advanced direct simulation
method based on discontinuous finite elements, the time integration being performed with
a leapfrog scheme. In a rather simple case where the number of obstacles is limited to 5,
the asymptotic method is validated by comparison with the finite element method. Then
we treat the case of 216 obstacles to show that the asymptotic method continues to deliver
an accurate solution for a very short computation time while the finite element method
reaches its limits. It would also be interesting to consider the case of penetrable obstacles.
A more complicated case would be to treat the case of elastoacoustic interactions in order
to quickly detect small defects in large structures. It would also be of great interest to
compare our solution methodology with those involving high-order radiation conditions
[43, 1] and to investigate possible extensions of [3] in the time domain. Indeed, now
that we dispose of an accurate representation of the scattered field, we should be able
to construct an OSRC in the time domain. Finally, the method we have proposed can
be extended to other wave equations. Recently, it has been developed for Maxwell’s
equations in harmonic regime [25, 26]. The time-dependent case is clearly more technical
but it is quite possible, at least when considering low order asymptotic models.
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