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INTRODUCTION

Variational methods provide interesting existence results on homoclinic
orbits to hyperbolic fixed points of Hamiltonian systems under global
conditions. The early result of Bolotin [3] about Lagrangian flows has
been extended to Hamiltonian systems in Cn in [6], the hypothesis has
been weakened in [10] and [15], and finally extended for autonomous
systems in [13]. A natural generalization is the existence of homoclinic
orbits to hyperbolic periodic motions of autonomous Hamiltonian systems.
Very interesting results have been obtained by Bolotin in [4] and other
papers for Lagrangian systems on compact Riemannian manifolds, but
there are no global results available for systems in Cn where the lack of
topology makes Bolotin’s methods inefficient. This paper is a first attempt
in that direction.

A periodic motion of an autonomous Hamiltonian system always has at
least two Floquet multipliers equal to 1. As a consequence it cannot be
hyperbolic in the whole phase space, but only with respect to its energy
shell, and it is not isolated, but included in a 1-parameter family of periodic
motions, with one motion on each energy shell. The union of the orbits of
the family is an invariant two dimensional manifold which we call the
center manifold. It is normally hyperbolic in phase space and for that
reason it is an easier problem to look for orbits homoclinic to that mani-
fold than to look for orbits homoclinic to a prescribed periodic motion. An
orbit homoclinic to the center manifold is homoclinic to one of the periodic
motions by energy conservation.

We study a model class of systems in Cn where the center manifold is a
plane with harmonic oscillations on it. This situation is, however, quite
general, as is explained in [2]. We prove that the periodic orbits having a



homoclinic orbit are dense in the center manifold outside of a compact set.
We obtain the homoclinics as accumulation points of sequences of periodic
orbits. These periodic orbits are subharmonics of perturbed systems.
Convergence of subharmonics has already been used to find homoclinics to
hyperbolic fixed points; see [15].

One of the main features of homoclinic orbits is that they induce chaotic
behavior. Indeed, it is well known that a Bernoulli shift with positive
entropy exists in periodically time-dependant systems containing a trans-
verse homoclinic to a hyperbolic fixed point. This structure also exists in
autonomous systems containing a hyperbolic orbit with a transversal
homoclinic. It should be noted, however, that the orbit structure associated
with a transversal homoclinic orbit to a hyperbolic fixed point of an auto-
nomous system is not as well understood. It is chaotic in certain instances,
see [7] or [5], but it can also be integrable. This is one of the reasons why
we believe it is important to find some global existence results on
homoclinic orbits to periodic orbits. We obtain classes of autonomous
systems in Cn with this structure at many energy levels. We can study, for
example, couplings between stable and unstable systems and obtain large
chaotic regions at high energy.

1. RESULTS AND EXAMPLES

In the following, C will always be a positive constant, possibly different
from one line to the other. The Lp norm of f will be noted ||f||p. We will
often use technical results from [15] without proof. Let us define

J2=5
0
−1

1
0
6 , J2n=r

J2 0 · · · 0
0 J2 0
x z x

0 0 · · · J2

s ,
and the associated symplectic form W2n on R2n :

W2n(X, Y)=OJ2nX, YP.

We will omit the subscript 2n. There is a splitting

(R2n, W)=(R2, W) À (R2n−2, W),

where the subspaces R2 and R2n−2 are W-orthogonal and symplectic.
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1.1. Main Result

We consider the Hamiltonian system

Ẋ=JNH(X)

associated to the autonomous Hamiltonian

H(X)=H(x, z)=1
2 w |x|

2+12 OAz, zP+W(x, z),

X=(x, z) ¥ R2×R2n−2,
(1)

where the pulsation w is a positive number,

[HA] A is a (2n−2)×(2n−2) real symmetric matrix such that

s(JA) 5 iR=”,

andW is a C2 function satisfying:
[HW1] there is a a > 2 and a continuous function C: R2Q R+ such

that W(x, z) [ C(x) |z|a and NzW(x, z) [ C(x) |z|a−1 in a neighborhood of
R2×{0} … R2×R2n−2,

[HW2] there is a m ¥ (2, a] such that

mW(X) [ ONW(X), XP,

[HW3] there is a B > 0 such that

B |z|a [W(x, z).

We will introduce in the proof auxiliary systems satisfying
[HW4] there exists a compact set outside of which

W(x, z)=a |z|a.

We obtain the useful inequalities

W(x, z) [ C |z|a, |NzW(x, z)| [ C |z|a−1 (2)

from [HW1] and [HW4]. The hypotheses [HA] and [HW1]–[HW3] are
satisfied, for example, by the Hamiltonian

H(x1, x2, z1, z2)=x
2
1+x

2
2+z

2
1−z

2
2+(1+x

2
1)(z

2
1+z

2
2)
2.

More examples are given below.
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A system satisfying [HA] and [HW1] has a two dimensional invariant
space R2×{0} which is foliated by periodic orbits Or with equation

Or(t)=(eJwt(r, 0), 0)

all having the same period T0=2p/w. The orbit Or has energy H=wr2/2
and is hyperbolic with respect to its energy shell. It has n−1 dimensional
stable and unstable manifolds which in the 2n−1 dimensional energy shell
may intersect along a homoclinic orbit. In this paper we study this
phenomenon and prove:

Theorem 1. Let us consider the Hamiltonian system (1) satisfying [HA]
and [HW1]–[HW3]. Let

R={r > 0 such that Or has a homoclinic orbit}.

There is a positive numberM depending only on A, B and a such that

5=M
p
,.2 …Ra ,

where Ra is the closure of R.

Remarks.

1. There is an estimate for M, see (21) in the proof, which is enough
to obtain that for fixed A and a

lim
BQ.

M=0.

2. It would be useful to obtain a more explicit estimate for M. We
focus on a similar question in [1]. The setting is different and allows a
better understanding of the constants. On the other hand, we obtain here
infinitely many orbits while only one is obtained in [1].

3. We do not know whether Ra=R. Since the origin does not have
any homoclinic orbits in general, it is not surprising that we cannot find
easily homoclinics close to the origin, but they may well exist.

4. The result cannot be improved to [C,.) …R without an
additional assumption; see the example below.

1.2. Coupling Stable and Unstable Systems

Let us consider the unstable system in R2 associated to the Hamiltonian

G(z)=1
2 OAz, zP+R(z),
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where the matrix A satisfies [HA] and the nonlinearity R is superquadratic:

R(z)=o(|z|2) near 0,

R(z) \ C |z|a with a > 2,

ONR(z), zP \ mR(z), with m > 2.

The origin is a hyperbolic fixed point and has a homoclinic orbit. It is well
known from Melnikov theory that a generic time-dependent perturbation
creates transversal homoclinic orbits, which implies a chaotic behavior with
positive topological entropy. A new way to introduce a chaotic behavior is
to couple the system with a harmonic oscillator. Consider the system in R4

associated to the Hamiltonian

H(x, z)=|x|2+12 OAz, zP+(1+F(x)) G(z),

with a positive function F such that ONF(x), xP \ 0. We can apply
Theorem 1 to that system. This provides homoclinics to many of the
periodic motions z=0 at high energy. By a small perturbation, these
homoclinics can be made transversal and then induce chaotic behavior in
fast regions of phase space, that is in regions that contain no rest point.

1.3. Hypersurfaces of R2n

We now interpret our result in terms of hypersurfaces of R2n. Let S be a
compact star-shaped (with respect to the origin) hypersurface of R2n and let
US be the bounded connected component of R2n−S, where the notation
SŒQ S means that SŒ … ŪS. It is well known that a hypersurface carries a
canonical direction field D(x) satisfying

JNH(x) ¥ D(x) -x ¥ S

for any function H having S as a regular level hypersurface. Let us fix a
matrix A satisfying [HA]; for any B > 0 and a > 2, we define the compact
hypersurface

S(B, a)={(x, z) such that |x|2+12 OAz, zP+B |z|
a=1}.

Let S be a star-shaped hypersurface of R2n such that there exist 0 < B [ D
and a with

S(D, a)Q SQ S(B, a).
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It is not hard to see that S=S 5 {z=0} is an invariant circle of the
canonical direction field. We can define the function

R(x, z)=1−|x|2− 12 OAz, zP \ B |z|a

on S. Since S is star-shaped there is an a-homogeneous function W:
R2nQ R extending R. The surface S is then the regular level H=1 of the
Hamiltonian

H(x, z)=|x|2+12 OAz, zP+W(x, z),

and [HW2] holds. For any (x, z) ¥ R2n−0, there is a t > 0 such that
(x/t, z/t) ¥ S. We check [HW3] writing

W(x, z)=taW(x/t, z/t)=taR(x/t, z/t) \ taB |z/t|a \ B |z|a.

[HW1] is also easily seen to hold. We can apply Theorem 1 (with
Remark 1) to obtain:

Theorem 1Œ. If B\ B0 there is a sequence ln Q 1 such that the hypersurface

Sn={H=ln}

carries an orbit homoclinic to the periodic hyperbolic trajectory Sn 5 {z=0},
where B0 is a constant depending only on A and a.

Some comments may be useful. The main limitation of this result is that
we do not obtain the existence of an orbit homoclinic to the prescribed
closed invariant curve on the prescribed energy shell. It would be very
interesting to find hypotheses implying such a conclusion. Our hypotheses
are not sufficient; see the example below. We can see our result in the
following way: We give a constructive method to perturb smoothly the
prescribed energy shell in order to create a homoclinic orbit (the hypersur-
faces Sn are clearly converging in the C. topology to the hypersurface S).
For comparison, let us mention that, using local perturbation techniques of
Hayashi, Xia has proved in a much more general setting that a homoclinic
orbit can be created by a C1 small perturbation of the hypersurface [9, 16].
As usual with these kinds of results, improving from the existence of a
C1-small perturbation to the existence of a C.-small perturbation is very
hard and requires strong additional hypotheses, such as the ones we
assume.
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1.4. Example. Let F: R2Q R be a smooth function satisfying

z22−z
2
1+C |z|

4 [ F(z1, z2) [ z
2
2−z

2
1+D |z|

4
-z,

F(z)=|z|4 outside of a compact set,

the zero level of F having the shape shown in Fig. 1.

Consider the function

Fl(z)=
1
l2
F(lz),

the HamiltonianHl: R4Q R

Hl(x, z)=|x|2+Fl(z),

and the surface

Sl={Hl(x, z)=1}.

The vector field associated to Hl has a product structure whose trajectories
satisfy ż=JNFl(z). The origin is a hyperbolic rest point for this equation,
but its stable and unstable manifolds are heteroclinic orbits connecting this
fixed point to the two other ones and not homoclinic orbits. It follows that
Sl 5 {z=0} has no homoclinic orbit for the vector field and thus no
homoclinic for the canonical direction field. Yet we now prove that for l
large enough it satisfies all hypotheses of Theorem 1Œ with a=4. We first
note that

Fl=
1
2 OAz, zP+O(|z|

4),

where

A=5−2
0
0
2
6
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satisfies [HA]. To prove that Sl is star-shaped for l large enough we
observe that

ONHl(x, z), (x, z)P=2 |x|2+ONFl(z), zP=ONFl(z), zP−2Fl(z)+2

on Sl since |x|2+Fl(z)=1. This gives

ONHl(x, z), (x, z)P=
1
l2

ONF(lz), lzP−
2
l2
F(lz)+2

=
1
l2
(ONF(y), yP−2F(y)+2l2).

This is positive when l is large enough, because ONF(y), yP−2F(y) has a
lower bound, the surface is thus star-shaped in this case.

It remains to estimate

Wl(x, z)=Fl(z)−z
2
2+z

2
1

on Sl. From

C |z|4 [W(x, z) [ D |z|4

we get

l2C |z|4 [Wl(x, z) [ l2D |z|4

and thus the condition

D |z|4 \Wl(x, z) \ B0 |z|4S S(D, 4)Q Sl Q S(B0, 4)

is satisfied for l large. L

2. CONVERGENCE OF PERIODIC ORBITS

We prove Theorem 1 in the sequel of this paper. We obtain the
homoclinic orbits as limits of sequences of periodic orbits of H. It is useful
to define the action of a T-periodic C1 loop:

IT(X)=F
T

0

1
2 OJX(t), Ẋ(t)P−H(X(t)) dt.

We have the following existence result, which will be proved in Section 3.
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Theorem 2. There is a constant M depending only on A, B, and a such
that for any

R0 \`M/p, H0=
1
2 wR

2
0

and any e > 0 there is a N(e) > 0 and a sequence Xk of Tk-periodic orbits
satisfying

Tk Q., (3)

0 [ ITk (Xk) [N(e), (4)

|H(Xk)−H0 | [ e, (5)

zk – 0. (6)

That N has to depend on e in this lemma is what makes it impossible to
obtain a homoclinic orbit on a given energy surface: we cannot control at
the same time the closeness and the action. We now prove that Theorem 2
implies Theorem 1; that is, we study the convergence of the sequence
Xk=(xk, zk) obtained by Theorem 2.

Lemma 1. The sequences ||zk ||a and ||Xk ||C1 are bounded.

Proof. Since the function H is proper, it follows from (5) that ||Xk ||. is
bounded, as well as ||Xk ||C1 since Xk satisfies the equation

Ẋk=JNH(Xk).

To prove the first part of the lemma, let us write (4) and use [HW2] and
[HW3]:

N \ I(Xk)=F
Tk

0

1
2 ONH(Xk), XkP−H(Xk) dt

=F
Tk

0

1
2 ONW(Xk), XkP−W(Xk) dt

\ F
Tk

0

1m
2
−12W(Xk) dt

\ B 1m
2
−12 ||zk ||aa. L

We are now in a position to use Ascoli’s theorem to obtain a limit. Yet
we first have to ensure nontriviality of the limit. It will result from
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Lemma 2. There is a d > 0 such that any periodic orbit of H staying in

Vd={|z| [ d} 5 {H [H0+1}

must satisfy z — 0.

Proof. This lemma is a consequence of the fact that z=0 is a normally
hyperbolic manifold for H. To be more precise, let Fs and Fu be the stable
and unstable spaces of JA, R2n−2=Fs À Fu by [HA]. We denote the
projections by

Ps: R2n−2Q Fs and Pu: R2n−2Q Fu.

There are Euclidean structures | · |s on Fs and | · |u on Fu and a l > 0 such
that OJAz, zPs [ −l |z|

2
s when z ¥ Fs and OJAz, zPu \ l |z|

2
u when z ¥ Fu.

From [HW1], we obtain a d > 0 such that

OPsJNHl(x, z), Ps(z)Ps [ −
l

2
|Ps(z)|2

and

OPuJNHl(x, z), Pu(z)Pu \
l

2
|Pu(z)|2

when |z| [ d and H [H0+1. It follows that if X(t)=(x(t), zs(t)+zu(t)) is
a solution of the Hamiltonian equation lying in Vd, |zu |u is increasing or 0,
and |zs |s is decreasing or 0; thus the solution cannot be periodic unless
z — 0. L

Since the equation is autonomous, we can change the time origin of Xk
to obtain

zk(0) \ d/2.

For any fixed y, the sequence Xk |[−y, y] has a uniform limit (up to taking a
subsequence) and by diagonal extraction we can find a subsequence of Xk
converging pointwise and uniformly on any compact set to a limit X.
satisfying

Ẋ.=JNH(X.).

We also see using Fatou’s lemma that ||z. ||a is finite and since ż. is
bounded,

z.(t)Q 0 as tQ ±.,

z.(0) \ d/2.
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The energy H.=H(X.) satisfies

H. ¥ [H0− e, H0+e]

because of (5), and the equation

1
2 w |x. |

2−H.=−
1
2 OAz., z.P−W(x., z.)

implies that x.(t) must go to

r==2H.
w

when z.(t) goes to 0. Thus the trajectory X. is homoclinic to {z=0} 5
{H=H.}. This proves Theorem 1, since e > 0 can be chosen as small as
needed. L

3. EXISTENCE OF PERIODIC ORBITS

We prove Theorem 2 in this section using variational methods. Let us fix
a radius R0 and the associated energy H0=wR

2
0/2. The functional I does

not satisfy Palais–Smale (PS) condition because the oscillations on the
center manifold form a noncompact family of critical points of zero action.
Moreover, we have to find a way to specify around which energy surface
we are working. For these reasons, it will be useful to introduce a pertur-
bation that will turn the PS condition on and that will confine critical
points around the fixed energy surface.

Before we perturb the system, let us notice that since we are looking for
phenomena taking place around a fixed energy surface, it is harmless to
change the Hamiltonian at infinity. We use this remark following a well-
known trick, see [12], for example. Let K > 0 be a large number, let
q ¥ C.(R, R) be a smooth increasing function such that q(x)=0 for
x [K, q(x)=1 if x \K+1, and qŒ [ 2. We introduce the function

W̃(X)=(1−q(|X|)) W(X)+q(|X|) a |z|a,

where

a= max
K [ |X| [K+1

W(X)
|z|a

.

It is not hard to check that this function satisfies [HW1]–[HW3], with the
same constants. If K is large enough the hamiltonian has not been changed
for H(X) [H0+1 and it is the same to prove Theorems 2 for W̃ or for W.

HOMOCLINIC ORBITS 437



In the following we will work with W̃ instead of W, but for simplicity we
will still call it W ; that is, we will suppose that [HW4] holds. We are now
in a position to introduce the perturbed hamiltonian we are going to study.

Let us take a function

S: R2n Q R

(x, z)W (H(x, z)−H0)4 when H(x, z) [H0+1,

(x, z)W C(|x|3+|z|a) outside of a compact set.

Moreover, we assume that

H \H0+1S S \ 1

and that there is a smooth and convex function f such that

S(x, 0)=f(|x|2).

It is not hard to see that the above class of functions is not empty. Note
that there exists a constant C such that for all (x, z) ¥ R2×R2n−2,

S(x, z) [ C(H(x, z)−H0)4. (7)

We consider the hamiltonian

Hl(x, z)=H(x, z)+lS(x, z),

where l will always be chosen small enough so that the equation Hl=
E+l(E−H0)4 has only one solution E(Hl) \ minH. The shell Hl=hl of
Hl is the shell H=E(hl) of H when hl [H0+1; thus, the local structure of
the flow has not been changed by the perturbation in this region, where
there holds

NHl=(1+4l(H−H0)3) NH. (8)

Although H and Hl have the same periodic solutions in the region under
interest, we will look for T-period trajectories of Hl that are more easily
found as critical points of

Il(x, z)=F
T

0
O− 12 JẊ, XP−Hl(X) dt

on a suitable function space. We will prove the following proposition that
leads to Theorem 2.
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Proposition 1. There exists a constantM depending only on A, B, and a
such that if

pR20 \M

the following holds: For any D > 0 and any

T ¥
2p
w

N 5 [1,.)

there exists l(T) in the interval (0, D/T) and a T-periodic trajectory (xT, zT)
of Hl(T) such that

0 < Il(T)(xT, zT) [M, (9)

F
T

0
S(xT, zT) dt [

TM
D
+1, (10)

zT – 0. (11)

Before we prove this proposition, let us see that it implies Theorem 2. Set

hT=Hl(T)(XT).

If D has been chosen large enough, (10) implies that S must take a value
below one when T is large enough; thus XT is contained in H [H0+1 and
has a fixed energy ET=H(XT). We apply (10) once again and get

|ET−H0 | [ 12
M
D
2
1
4

and

0 [ hT−ET=l(ET−H0)4 [ 2
M
T

when T is large enough. Let us now define the curve

X̃T(t)=XT((1+4l(ET−H0)3)−1 t),

it comes directly from (8) that X̃T is a trajectory of H, the period of which

T̃=(1+4l(ET−H0)3) T

satisfies

T̃ \ T+4l(ET−H0)3 T \ T−8M
3
4D

1
4
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We can estimate its action

I(X̃T)=Il(T)(XT)+ThT−T̃ET=Il(T)(XT)+T(hT−ET)+(T−T̃) ET

and obtain

I(X̃T) [ 3M+8M
3
4 D

1
4(H0+1). (12)

In addition, we have I(X̃T) \ 0 since X̃T is a trajectory of H. The sequence
X̃T satisfies all the conclusions of Theorem 2 which is finally proved. We
remark that D appears in this estimate, so we must fix it before passing to
the limit, and that is why we cannot reach the surface H=H0 itself.

We now have to prove Proposition 1. Let us fix a period T=
y2p/w, y ¥N, and define the following functionals on smooth T-periodic
arcs:

e(x(t))=F
T

0
− 12 OJẋ(t)+wx(t), x(t)P dt, (13)

h(z(t))=F
T

0
− 12 OJż(t)+Az(t), z(t)P dt, (14)

b(x(t), z(t))=F
T

0
W(x(t), z(t)) dt, (15)

p(x(t))=F
T

0
S(x(t), z(t)) dt. (16)

We are going to obtain T-periodic orbits of Hl as critical points of

Il(x(t), z(t))=e(x(t))+h(z(t))−b(x(t), z(t))− lp(x(t), z(t)).

The proof of Proposition 1 goes along the following line. We first take a
good function space on which the above functional can be studied. We see
that this functional has a universal linking structure. This allows us to
define a critical level cT(l) which is a nonincreasing function of l. It will
appear from the construction that 0 < cT(l) [M for a constant M inde-
pendent of l and T ; this is (9). Since l is allowed to take values in the
interval (0, D/T), there must be an l such that c −T(l) exists and |c −T(l)| [
MT/D. Using Struwe’s monotony method (see [14, II.9]), it can be
deduced that there is a critical point X at level cT(l) with

p(x(t))=: “
“l
Hl(X) : [ 1+MT/D ;
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this is (10). To obtain (11) we just have to check that no T-periodic
solution of Hl on R2×{0} has its action in (0, M] if pR20 \M. Let us start
with this program.

3.1. The Analytical Setting
We use Fourier series

x(t)=C
k ¥ Z

eJkwt/yxk, xk ¥ R2.

to compute e :

e 1 C
k ¥ Z

eJkwt/yxk 2=C
k ¥ Z

p(k− y) |xk |2.

We define the inner product

Ox, yPe=2pOxy, yyP+C
k ¥ Z

2p |k−y| Oxk, ykP,

its associated norm ||x||2e=Ox, xPe, and the space

Ee={x ¥ L2(0, T; R2) such that ||x||e <.}.

It is classical that e can be extended to Ee as a continuous quadratic form,
and there is an orthogonal splitting

Ee=E
+
e À E0e À E−e ,

with

E+e={x such that xk=0 for k [ y},

E0e={x such that xk=0 for k ] y},

E−e={x such that xk=0 for k \ y}.

Define the associated projections P±e , P0e . We then obtain the nice expres-
sion

e(x)=1
2 ||P

+
e (x)||

2− 12 ||P
−
e (x)||

2,

and we can sum up some important properties:

Lemma 3. The space Ee is the standard H
1/2
T space and the norm ||x||e is

equivalent to the standard ||x||H1/2 though nonuniformly with respect to y ; thus
for any p > 1 the embedding

jpe : Ee Q L
p
T(R

2)
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is compact. Moreover, for any x ¥ Ee there holds

||x||2e \
w

y
||x||22. (17)

The proof is well known; see [11] for a clear exposition. The last
inequality follows directly from expressions in Fourier series. L

The quadratic form h can also be extended as

h(z)=1
2 ||P

+
h (z)||

2
h −

1
2 ||P

−
h (z)||

2
h

on a Hilbert space Eh, where P±h are the projections on E±h associated with
the orthogonal splitting Eh=E

+
h À E−h .

Lemma 4. The space Eh is the standard H
1/2
T (R

2n−2) and the norm ||z||h is
uniformly equivalent to the standard ||z||H1/2, that is there are constants C and
CŒ independent of T such that

C ||z||H1/2 [ ||z||h [ CŒ ||z||H1/2.

As a consequence, the embeddings

jph : Eh Q L
p
T(R

2n−2)

are compact for any p > 1; moreover for p \ 2 there are constants Cp and Pp
independent of T such that

||z||p [ Cp ||z||h (18)

and

||P±h z||p [ Pp ||z||p. (19)

Proof. This is Proposition 1.1 of [15]. L

We can now define the total function space

ET=Ee×Eh, ||(x, z)||2=||x||2e+||z||
2
h ,

which is nothing but H1/2T (R
2n) with an equivalent inner product (not

uniformly in T). We have seen that e and h are continuous, and thus C.,
quadratic forms. Let us now study the nonquadratic parts. It is well known
that

p̃ : L3(R2)×La(R2n−2) Q R

(x(t), z(t))W F
T

0
S(x(t), z(t)) dt
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is C1, and

p=p̃ p jT

is also, where

jT(x, z)=(j
3
e(x), j

a
h(z)) ¥ L

3×La.

In the same line,

b̃ : L3(R2)×La(R2n−2) Q R

(x(t), z(t))W F
T

0
W(x(t), z(t)) dt

is C1 thanks to (2), and

b=b̃ p jT

is also.

Lemma 5. The functional Il is well defined and C1 on ET. It can be
written

Il(x, z)=
1
2 ||P

+
e (x)||

2− 12 ||P
−
e (x)||

2+12 ||P
+
h (z)||

2

− 12 ||P
−
h (z)||

2−(b̃+lp̃) p jT(x, z),

and its gradient is

NIl(x, z)=P
+
e (x)−P

−
e (x)+P

+
h (z)−P

−
h (z)+j

g
T(N(b̃+lp̃) p jT(x, z)),

=L(x, z)+K(x, z),

where K is continuous and maps bounded sets into relatively compact ones.
The solutions of

NIl(X)=0

are precisely the C1T-periodic trajectories of the system Hl.

The proof is classical, see [11]. L

There remains to study the behavior of Palais–Smale sequences. The
unperturbed functional I0 does not satisfy the PS condition, but

Lemma 6. The functional Il satisfies the PS condition for any l > 0.
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Proof. The proof follows the line of [12, Chap. 6]. We go into it since
many details are different. Let Xm be a bounded PS sequence.

NIl(Xm)=L(Xm)+K(Xm)Q 0

implies that L(Xm)=(P
+
e (xm)−P

−
e (xm), P

+
h (zm)−P

−
h (zm)) has a convergent

subsequence, but then P0e(Xm)=Xm−P
+
e (Xm)−P

−
e (Xm)−P

+
h (Xm)−P

−
h (Xm)

is bounded and thus has a convergent subsequence since E0e is finite
dimensional. Thus any bounded PS sequence has a convergent sub-
sequence. There remains to prove that all PS sequences are bounded. It will
be useful to estimate

Il(X)−
1
2 ONIl(X), XP=F

T

0

1
2 ONWl(X), XP−Wl(X) dt,

whereWl=W+lS=A |z|a+D |x|3 at infinity. Thus

Il(X)−
1
2
ONIl(X), XP \ F

T

0
A 1a
2
−12 |z|a+D

2
|x|3−C dt

\ C(||z||aa+||x||
3
3−1).

Applying the above to a PS sequence Xm gives

||zm ||
a
a+||xm ||

3
3 [ C(1+em ||Xm ||), (20)

with em Q 0. Next

|ONIl(Xm), z
+
mP|=:2 ||z+m ||2e −F

T

0
ONWl(Xm), z

+
mP dt : [ em ||z+m ||e

gives

2 ||z+m ||
2
e [ :F

T

0
ONzWl(Xm), z

+
mP dt :+em ||z+m ||e

[ C F
T

0
(1+|zm |a−1) |z

+
m | dt+em ||z

+
m ||e

[ C ||1+|zm |a−1|| a
a−1
||z+m ||a+em ||z

+
m ||e

[ C(1+||zm ||
a−1
a ) ||z

+
m ||a+em ||z

+
m ||e

[ C(1+||zm ||
a
a) ||z

+
m ||e.

Combining this with (20) yields

||z+m ||e [ C(1+em ||Xm ||).

444 PATRICK BERNARD



The same can be written for z−m and x±m and there just remains to deal with
x0m, which is done noticing that (20) gives

||x0m ||e=
w

y
||x0m ||2 [

w

y
||xm ||2 [ C ||xm ||3 [ C(1+em ||Xm ||).

Altogether

||Xm ||2=||x
0
m ||
2+||x+m ||

2+||x−m ||
2+||z+m ||

2+||z−m ||
2 [ C(1+em ||Xm ||)2

implies that ||Xm || is bounded. L

We are now ready to apply classical variational methods to Il.

3.2. The Topology

The topological argument is inspired from the one in [15]. Yet the
center of our linking is not the origin as usual, but the distinguished
orbit OR0 (t). It is not hard to check that OR0 (t) is a critical point of our
variational problem. As usual (see [8]), we introduce a group C of
homeomorphisms of ET:

Definition 1. A homeomorphism c : ET Q ET belongs to C iff it can be
written in the form

c(x, z)=ea
+
e (x)P+e (x)+e

a−e (x)P−e (x)+P
0
e(x)

+ea
+
h (z)P+h (x)+e

a−h (z)P−h (z)+k(x, z),

where a±e, h: ET Q R are continuous and map bounded sets into bounded
sets, and k: ET Q ET is continuous and maps bounded sets into relatively
compact ones. In addition there exists a r > 0 such that the support of a±e, h
and k is contained in

{(x, z) ¥ ET such that e(x)+h(x) > 0 and ||(x, z)|| [ r}.

The functionals e and h are defined in (13) and (14) above.

It is not hard to see that C is a group; see [11, 5.3] for related material.
Let us now introduce the sphere

S+={(x, z) ¥ E+e+E
+
h such that ||(x, z)||=1}.

We shall link S̃+=OR0+S
+ with an affine subspace of ET of the form

OR0+E
−
e+E

0
e+E

−
h+RzT, with zT ¥ E

+
h . We follow Tanaka [15] for the
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choice of zT, and take zT=P
+
h (f), where f ¥ C.0 ((0, 1), R

2n−2) is extended
by 0 to [0, T] and satisfies

F
1

0
OJḟ+Af, fP dt < 0.

Lemma 7. There are positive constants Cp and C
−

p independent of T \ 1
such that for all p > 1

C0 [ ||zT || [ C
−

0.

Cp [ ||zT ||p [ C
−

p.

This is Lemma 1.4 of [15]. L

Let

V=E−e+E
0
e+E

−
h+RzT.

The spaces V and S+ link with respect to C:

Lemma 8 (Intersection property). For c ¥ C, we have

c(S+) 5 V ]”.

Proof. This is classical; see for example [8, Proposition 1]. L

It is therefore natural to define:

Definition 2.

cT(l)=sup
c ¥ C

(inf
S+
Il p c).

Before we prove that cT(l) is a critical value, it is of interest for us to
estimate it.

Proposition 2. There is a constant M that depends only on A, B and a
such that for all l > 0

0 < cT(l) [M.

Proof. For all g > 0 there exists c ¥ C such that c(S+)=OR0+gS
+. On

the other hand, the intersection property above implies that cT(l) [ supV Il.
For these reasons, Proposition 2 follows from Lemmas 9 and 10. L
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Lemma 9. Let us fix all parameters. There are g > 0 and d > 0 such that

Il(OR0+x
+, z+) > d

whenever (x+, z+) ¥ E+e ×E
+
h satisfy ||(x

+, z+)||=g.

Proof. Since H is clearly Lipschitz continuous on compact sets, there
exists a constant C such that, for all t and all sufficiently small (x, z) ¥
R2×R2n−2,

|H(OR0 (t)+x, z)−H0 | [ C(|x|+|z|).

On the other hand, recalling that [HW4] is now assumed,

|H(OR0 (t)+x, z)−H0 | [ C(|x|
2+|z|a)

holds at infinity, so that, for all x and z,

|H(OR0 (t)+x, z)−H0 | [ C(|x|+|z|+|x|
2+|z|a).

Combining this with estimate (7) gives

S(OR0 (t)+x, z) [ C(H(OR0 (t)+x, z)−H0)
4

[ C(|x|+|x|2+|z|+|z|a)4

[ C(|x|4+|x|8+|z|4+|z|4a).

Noticing that OR0 ¥ E
0
e this yields, for small g,

Il(OR0+x
+, z+)=1

2 ||x
+||2+12 ||z

+||2−b(OR0+x
+, z+)− lp(X)

\ 1
2 ||x

+||2+12 ||z
+||2

−C ||z+||aa−C ||z
+||44−C ||z

+||4a4a−C ||x
+||44−C ||x

+||88

\ 1
2 ||x

+||2+12 ||z
+||2

−C ||z+||aa−C ||z
+||44−C ||z

+||4a4a−C ||x
+||42−C ||x

+||82

\ 1
2 g
2−C(ga+g4a+g4+g8).

We have used (17) and (18) for the last inequality. L

Lemma 10. There is a constant M that depends only on A, B and a such
that for all l > 0

Il |V [M.
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Proof. Let X=(x−+x0, z−+rzT) ¥ V. From [HW3] we get

Il(X)=−
1
2 ||x

−||2− 12 ||z
−||2+12 ||rzT ||

2−b(X)−lp(X)

[ 1
2 ||zT ||

2 r2−B ||z−+rzT ||
a
a.

Using (19) gives:

||rzT ||
a
a=||P

+
h (z

−+rzT)||
a
a [ P

a
a ||z

−+rzT ||
a
a.

Combining these equations yields

Il(X) [
1
2 ||zT ||

2 r2−BP−aa ||zT ||
a
a r
a,

and we obtain the lemma setting

M= sup
T ¥ [1,.)

sup
r ¥ R+

( 12 ||zT ||
2 r2−BP−aa ||zT ||

a
a r
a) (21)

which is finite according to Lemma 7. In addition, we see that

lim
BQ.

M=0. L

3.3. The Critical Point

We will now prove that there exists l(T) ¥ ]0, D/T[ and a critical point
XT of Il(T) at level cT(l(T)) such that p(xT) [ 1+TM/D. Let us first
choose l(T).

Lemma 11. There exists l(T) ¥ (0, D/T) such that lW cT(l) is differen-
tiable in l(T) and

|c −T(l(T))| [ TM/D.

Proof. From its definition, cT(l) is a nonincreasing function of l. It is
thus differentiable almost everywhere in ]0, D/T[ and there holds

F
D/T

0
c −T(l) dl \ −M. L

We are now going to suppose that there is no critical point at level
cT(l(T)) satisfying p(xT) [ 1−c

−

T(l(T)) and prove that this leads to a con-
tradiction. Let ln Q l(T) be a decreasing sequence, In=Iln , cn=cT(ln),
cŒ=|c −T(l(T))|, and c=cT(l(T)). Using the supposition above and the fact
that PS is satisfied for Il(T) we can prove the following lemma by a
deformation argument:
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Lemma 12. There is an e in the interval (0, c/2) such that for any K
there is an homeomorphism cK ¥ C satisfying

Il(T)(ck(X)) \ Il(T)(X)

for all X ¥ ET and such that

Il(T)(cK(X)) \ c+e

for all X satisfying the following three inequalities

p(X) [ cŒ+1/2,

Il(T)(X) \ c− e,

||X|| [K.

From the definition of cn, we can choose cn ¥ C such that

inf
S+
In p cn \ cn−(ln−l)/10.

For n large enough there holds

Il(T) p cn |S+ \ In p cn |S+ \ cn−(ln−l)/10

\ c−(cŒ+1/10)(ln−l)−(ln−l)/10

\ c−(cŒ+1/5)(ln−l).

Let us set Kn=supS+ ||cn ||, and let jn=cKn be the homeomorphism given
by the lemma.

Take X ¥ S+:

Either Il(T)(cn(X)) [ c+(ln−l)/5, and since

(ln−l) p(cn(X))=Il(T)(cn(X))−In(cn(X))

[ c+(ln−l)/5−(c+(cŒ+1/5)(ln−l))

[ (cŒ+1/2)(ln−l),

we can apply the lemma for n large enough and get

Il(T)(jn p cn(X)) \ c+e;

or

Il(T)(jn p cn(X)) \ Il(T)(cn(X)) \ c+(ln−l)/5.
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In both cases we have, for n large enough,

Il(T)(jn p cn(X)) \ c+(ln−l)/5,

which means that there exists c=jn p cn ¥ C such that

inf
S+
Il(T) p c > c.

This is in contradiction with the definition of c. We have proved the
existence of a critical point satisfying (9) and (10). There remains to
prove (11).

3.4. Nontriviality

In this section, we prove conclusion (11). We point out that this is the
only part in the proof of Proposition 1 where the condition pR20 \M is
used. In fact, the critical point constructed always exists, but it may be
contained in the plane z=0. That it is not the case under our hypotheses is
a key ingredient for the nontriviality of the homoclinic obtained after
convergence. We first observe that

NzHl(x, 0)=0S NzIl(x, 0)=0,

which means that the plane z=0 is left invariant by the flow and that the
subspace Ee×{0} is transversally critical. As a consequence, the critical
points of Il that are on the form (x(t), 0) are precisely the critical points of
Il |Ee ×{0} and they are the T-periodic orbits of the flow contained in z=0.

Lemma 13. Let (x, 0) be a critical point. Then the set {x(t), t ¥ R} is a
circle S(r), where r satisfies

lfŒ(r2) ¥
p

T
Z,

and we have

Il(T)(x, 0)=T(r2lfŒ(r2)− lf(r2)) ¨ (0, pR
2
0].

Proof. The plane z=0 is invariant, and the equation on it is

ẋ=J(w+2lfŒ(|x|2)) x,

the solutions of which

Xr(t)=reJ(w+2lfŒ(r
2)) t
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have period

T(r)=: 2p
w+2lfŒ(r2)

: .

These solutions are critical points only if T ¥NT(r). This implies

lfŒ(r2)+
w

2
¥
p

T
Z.

Hence the lemma since w=2p/T. The computation of the action is
straightforward; that is, it cannot take values in the forbidden interval
when r is critical is a consequence of the convexity of f : the function

xW g(x)=xfŒ(x)−f(x)

is increasing and thus g(x) [ 0 when x [ R20 since f(R20)=fŒ(R
2
0)=0. On

the other hand, the function

xW (x−R20) fŒ(x)−f(x)

is increasing for x \ R20, which implies that

g(x) > R20fŒ(x)

when x > R20. Either r > R0 and we must have

I=Tlg(r2) > TlR20fŒ(r
2) \ pR20

or r [ R0 and I [ 0. L

Proposition 1 follows from the fact that cT(l(T)) is in the hole if
pR20 \M and thus can not be one of the bad critical points. L
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