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Subdivision schemes are efficient tools for building curves and surfaces. For vector subdivision schemes, it is not so straightforward to prove more than the Hölder regularity of the limit function. On the other hand, Hermite subdivision schemes produce function vectors that consist of derivatives of a certain function, so that the notion of convergence automatically includes regularity of the limit. In this paper, we establish an equivalence between a spectral condition and operator factorizations, then we study how such schemes with smooth limit functions can be extended into ones with higher regularity. We conclude by pointing out this new approach applied to cardinal splines.

Introduction and Notations

In recent decades, subdivision schemes [START_REF] Cavaretta | Stationary Subdivision[END_REF][START_REF] Dyn | Subdivision schemes in geometric modelling[END_REF] have resulted in efficient methods to generate smooth curves and surfaces, for example, for the purpose of computer aided design.

In vector subdivision schemes [START_REF] Micchelli | On vector subdivision[END_REF], one starts with a sequence of vector valued data at level 0, and iteratively applies a stationary subdivision rule to generate a new sets of vectors on the finer and finer grids 2 -n Z. In this process, the data f n is interpreted as an approximation of a limit function f : R → R p on the grid where p is a positive integer, i.e.,

f n (α) ≃ f 2 -n α , α ∈ Z. 1 
Under suitable conditions on the subdivision rule, this sequence of vectors then converges to a limit curve or surface, either uniformly or in some L p norm. In this context, the results are vector valued functions with some Hölder regularity related to the convergence rate of the process, but essentially they are "simply" continuous or L p functions. The smoothness of the limit functions in the sense of differentiability implies additional conditions for the subdivision scheme which cannot be easily verified, cf. [START_REF] Chen | Construction of smooth refinable vectors by cascade algorithms[END_REF][START_REF] Conti | Concerning Order of Convergence for Subdivision[END_REF][START_REF] Charina | Regularity of Multivariate Vector Subdivision Schemes[END_REF][START_REF] Micchelli | On vector subdivision[END_REF].

Hermite subdivision schemes where the components of the vector valued function are the successive exact or approximated derivatives of the first component, approach subdivision from a different point of view cf. [START_REF] Dyn | Analysis of Hermite-type subdivision schemes[END_REF][START_REF] Dyn | Analysis of Hermite-interpolatory subdivision schemes[END_REF][START_REF] Guglielmi | Convergence analysis of C 2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas[END_REF][START_REF] Han | Vector cascade algorithms and refinable functions in sobolev spaces[END_REF][START_REF] Han | Noninterpolatory Hermite subdivision schemes[END_REF][START_REF] Merrien | A family of Hermite interpolants by bisection algorithms[END_REF]. Besides the fact that now the subdivision operator varies with the level of iteration, the regularity of the limit function is part of the definition of convergence and, therefore, the verification of smoothness properties is already included in the convergence proof.

Convergence of subdivision schemes is usually described by identifying certain special eigenvectors of the subdivision operator which imply a factorization of the subdivision operator by means of an operator that annihilates this invariant space. In the scalar case, this annihilator is simply a difference operator, in the vector case, it is a more intricate difference based on the rank of the subdivision scheme [START_REF] Micchelli | On vector subdivision[END_REF] and in Hermite subdivision it is the Taylor operator, cf. [START_REF] Dubuc | Hermite subdivision schemes and Taylor polynomials[END_REF][START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF]. All of these operators are in a one-to-one relationship with the sum rules or the spectral conditions for the subdivision operator.

In this paper, we study these relationships for Hermite schemes. We show that spectral condition is equivalent to factorization, once a certain normalization property is satisfied; in a previous paper we had only proved that spectral condition implies factorization. After that, we explore how the regularity of the limit can be increased by an extended scheme that transfers a given Hermite scheme to one of higher degree. After a first example, the extension process and the factorization are studied in detail.

As an example, we propose a new approach to cardinal splines [START_REF] Schoenberg | Cardinal spline interpolation[END_REF]. Starting with transformations to a scalar subdivision scheme [START_REF] Micchelli | Mathematical Aspects of Geometric Modelling[END_REF], we describe extended Hermite schemes of different degrees. We give new eigenvalue and eigenpolynomial properties and we prove that the maximum regularity of the spline can be recovered by this new process.

The paper is organized as follows: in Section 2, we recall the definition of a Hermite subdivision scheme and we define the key to transform this scheme into a vector subdivision scheme, namely the spectral condition. Having shown in earlier work [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF] that the spectral condition implies an important and useful factorization in terms of Taylor operators, we now even prove, in Corollary 2.12, a characterization of the spectral condition in terms of factorization and a normalization property which will become useful for studying extended schemes. In Section 3, we introduce extended schemes and consider some of their general properties; the goal of extensions is to exploit higher order regularity of limit functions by adding further components and therefore further derivatives to the scheme. In Sections 4 and 5, two particular extensions are studied in more detail, one from de Rham scheme [START_REF] Conti | Dual Hermite subdivision schemes of de Rham-type[END_REF][START_REF] Dubuc | de Rham Transform of a Hermite Subdivision Scheme, Approximation Theory[END_REF], one from cardinal splines. These examples demonstrate the potential of the extension approach and thus motivate and justify this construction.

As for notation, vectors in R r will be labeled by lowercase boldface letters: y = [y j ] j=0,...,r-1 or y = y (j) j=0,...,r-1 , where we use the latter notation to highlight the fact that in Hermite subdivision the components of the vectors correspond to derivatives. Matrices in R r×r will be written as uppercase boldface letters, such as A = [a jk ] j,k=0,...,r-1 . The space of polynomials in one variable of degree at most n will be written as P n . Vector sequences will be considered as functions from Z to R r and the vector space of all such functions will be denoted by ℓ(Z, R r ) or ℓ r (Z). For y(•) ∈ ℓ(Z, R r ), the forward difference is defined as ∆y(α) := y(α + 1)y(α), α ∈ Z, and iterated to ∆ i+1 y :

= ∆ ∆ i y = ∆ i y(• + 1) -∆ i y(•), i ≥ 0.
By A ∈ ℓ r×r (Z), we denote a sequence of matrices, that is, for α ∈ Z the sequence element A(α) = [a jk (α)] j,k=0,...,r-1 is an r × r matrix. Any such sequence will be called a mask provided that it is finitely supported, that is, there exists N ∈ N such that

supp A := {α ∈ Z : A(α) = 0} ⊆ [-N, N ] .
To any mask A, we associate the stationary vector subdivision operator S A : ℓ r (Z) → ℓ r (Z), defined as

S A c(α) := β∈Z A (α -2β) c(β), α ∈ Z, c ∈ ℓ r (Z) , (1) 
and also its symbol which is the Laurent polynomial

A * (z) := α∈Z A(α)z α , z ∈ C \ {0}. (2) 
We also recall the shift relation

S A c (• + 2) = S A c(• + 1). (3) 
The stationary subdivision scheme associated with the subdivision operator S A is given by the repeated application of the operator, starting with any initial sequence c 0 ∈ ℓ r ∞ (Z), which stands for the space of all uniformly bounded r-vector valued biinfinite sequences,

c n+1 := S A c n , n ≥ 0. ( 4 
)
If we let the masks vary with the iteration level n, which is sometimes called non-stationary subdivision scheme, we get a level dependent scheme of the form

c n+1 (α) := β∈Z A n (α -2β) c n (β), α ∈ Z, c ∈ ℓ r (Z) , (5) 
where A n is a matrix valued biinfinite sequence for n ∈ N.

Hermite subdivision schemes

A special type of a level dependent vector subdivision scheme called Hermite subdivision scheme H A of degree d is given by the following construction: Starting with f 0 ∈ ℓ d+1 (Z), for n ∈ N, we define f n+1 ∈ ℓ d+1 (Z) by

D n+1 f n+1 (α) = S A D n f n (α) = β∈Z A (α -2β) D n f n (β), α ∈ Z, (6) where 
D :=      1 1 2 . . . 1 2 d     
is the diagonal matrix with diagonal entries 2 -j , respectively, j = 0, . . . , d, that represents the influence of scaling on the successive derivatives.

Remark 2.1 It is important to observe that (6) can also be written as

f n+1 (α) = S An f n (α) = β∈Z D -(n+1) A (α -2β) D n f n (β), (7) 
which involves the level dependent masks

A n := {D -(n+1) A(α)D n } α∈Z , n ∈ N. Remark 2.2 We notice that if ϕ ∈ C d (R) and ϕ n (x) := ϕ(x/2 n ), then      ϕ n (x) ϕ ′ n (x) . . . ϕ (d) n (x)      = D n      ϕ(x/2 n ) ϕ ′ (x/2 n ) . . . ϕ (d) (x/2 n )      .
For the iterated application of a Hermite subdivision scheme, the first component f (0) n (β) can be interpreted as the approximation of ϕ(β/2 n ), while the next one, f

n (β), describes the approximation of the derivative ϕ ′ (β/2 n ), and so on, up to the last one, f

(d) n (β) which is an approximation of ϕ (d) (β/2 n ).
Finally, H A will be called interpolatory if at each step we have

f n+1 (2•) = f n (•), which is equivalent to A(2β) = D δ β,0 for β ∈ Z.

Spectral condition

To any function ϕ ∈ C d (R), we associate the vector sequence v ϕ ∈ ℓ d+1 (Z) of the samples of the function and its derivatives up to order d on Z, defined by

v ϕ (α) :=      ϕ(α) ϕ ′ (α)
. . .

ϕ (d) (α)      , α ∈ Z. (8) 
H A reproduces a function ϕ ∈ C d (R) if for the initial value f 0 = v ϕ we obtain f n (•) = v ϕ (•/2 n ) for any n ∈ N. At this point, it is already worthwhile to recall that a C d -convergent interpolatory scheme of degree d reproduces any polynomial of P d , see [START_REF] Dyn | Analysis of Hermite-interpolatory subdivision schemes[END_REF]; the will be given later in Definition 2.13. A fundamental property of Hermite subdivision schemes is the spectral condition, introduced in [START_REF] Dubuc | Hermite subdivision schemes and Taylor polynomials[END_REF], which requires the existence of particular polynomial eigenvalues of the stationary subdivision operator S A that affect the behavior of the Hermite scheme in a crucial way. Definition 2.3 A mask A or its associated subdivision operator S A satisfies the spectral condition of order ℓ if for j = 0, . . . , ℓ, there exist polynomials p j of exact degree j such that

S A v p j = 1 2 j v p j . (9) 
If (9) holds true, we will always assume that p j is normalized such that p j (x) = 1 j! x j + q j (x) with q j ∈ P j-1 for j > 0 and q 0 = 0.

Remark 2.4 Though the spectral condition is a property of the stationary subdivision scheme, S A , it is still linked with the derivatives of polynomials. Moreover, it was proved in [START_REF] Dubuc | Hermite subdivision schemes and Taylor polynomials[END_REF] that the spectral condition is also equivalent to the sum rule introduced by Bin Han and his collaborators in [START_REF] Han | Vector cascade algorithms and refinable functions in sobolev spaces[END_REF][START_REF] Han | Noninterpolatory Hermite subdivision schemes[END_REF].

The following result is easily obtained by using linearity to ensure the reproduction of any basis of polynomials and especially the p j (x) := x j /j! for j = 0, . . . , ℓ.

Proposition 2.5 If H A reproduces a basis of P ℓ then S A satisfies the spectral condition of order ℓ for the polynomials p j (x) := x j j! , j = 0, . . . , ℓ.

Definition 2.6

The Taylor operator T d and the complete Taylor operator T d of degree d, mapping ℓ (d+1) (Z) to itself are defined as

T d :=         ∆ -1 . . . -1 (d-1)! -1 d! ∆ . . . . . . . . . . . . -1 . . . ∆ -1 1         , T d :=         ∆ -1 . . . -1 (d-1)! -1 d! ∆ . . . . . . . . . . . . -1 . . . ∆ -1 ∆         .
where the constants in the matrices are to be understood as multiples of the identity.

Proposition 2.7 For any p ∈ P d , we have T d v p = [0, . . . , 0, p (d) ] T ∈ R d+1 and T d v p = 0 ∈ R d+1 .

Proof:

If p ∈ P d , then its d + 1-th derivative is 0. Thus for j = 0, . . . , d -1, the Taylor expansion of p (j) (α + 1) at point α is p (j) (α + 1) = d-j i=0 1

i! p (j+i) (α), which gives that the j-th row of

T d v p (α) or T d v p is 0. The last row of T d v p (α) or T d v p (α)) is p (d) (α) or p (d) (α + 1) -p (d) (α) = 0, respectively.
The following factorization result has been proved, among others, in [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF]. In particular, the explicit construction of the "factor masks" B and B and its algebraic background have been pointed out there. Here, we slightly extend the result by adding a normalization property that will eventually enable us to also give a converse statement.

Theorem 2.8 If the mask A ∈ ℓ (d+1)×(d+1) (Z) satisfies the spectral condition of order at least d, then there exist two finitely supported masks B and B in ℓ (d+1)×(d+1) (Z) such that

T d S A = 2 -d S B T d , and 
T d S A = 2 -d S B T d . (10) 
Moreover,

S B e d = e d := [0, . . . , 0, 1] T ∈ R d+1 . ( 11 
)
Proof: The only thing to be proved is the normalization, i.e. S B e d = e d . Let p d ∈ P d be the normalized polynomial such that

1 2 d v p d = S A v p d . In Proposition 2.7, we have seen that T d v p d = [0, . . . , 0, 1] T = e d . The normalization follows from e d = T d v p d = 2 d T d S A v p d = S B T d v p d = S B e d .
Next, we will give a converse to Theorem 2.8, stated and proved in Theorem 2.11, that shows that the incomplete Taylor factorization does in fact characterize the spectral condition of order d as long as the additional normalization condition (11) from Theorem 2.8 is satisfied. A few preliminary results are required.

Proposition 2.9 A sequence v ∈ ℓ d+1 (Z) satisfies T d v = 0 if and only if v = v p for some p ∈ P d .
Proof: Since the direction "⇐" is given in Proposition 2.7, we only need to prove "⇒" for which we use an idea from [8, Lemma 4]. Let v ∈ ℓ d+1 (Z) such that T d v = 0. For a given α ∈ Z, we define

p(x) = d k=0 v k (α) k! (x -α) k
and the corresponding sampling vector v p . Since for k = 0, . . . , d, p

(k) (α) = v k (α), we notice that v p (α) -v(α) = 0.
The hypothesis gives T d v = 0 and, by Proposition 2.7, also

T d v p = 0. Thus, for u = v -v p we obtain that T d u = 0 or u k (• + 1) = d j=k u k (•) (j -k)! , k = 0, . . . , d.
Then an inductive reasoning, starting from u(α) = 0, yields that u(β) = 0 or v(β) = v p (β) for any integer β ≥ α.

If we choose α ′ instead of α and corresponding polynomial q instead of p, we obtain for any β ≥ max(α, α ′ ) that v(β) = v p (β) = v q (β), hence p(β) = q(β) for any sufficiently large β and therefore, for all β ∈ Z. Consequently, p = q and especially v(α

′ ) = v p (α ′ ) = v q (α ′ ). Now we fix α = 0. Then v(β) = v p (β) for any β ≥ 0. If β < 0, we fix α ′ = β and we have seen that v(α ′ ) = v p (α ′ ). Hence, we can conclude that v = v p . Lemma 2.10 Let p ℓ := (•) ℓ /ℓ!, 0 ≤ ℓ ≤ d. Then ∆ β v p ℓ := v p ℓ (• + β) -v p ℓ = ℓ-1 k=0 β ℓ-k (ℓ -k)! v p k . ( 12 
)
Proof: For j ≤ ℓ we have

(x + β) j j! - x j j! = 1 j! j-1 k=0 j k β j-k x k = j-1 k=0 β j-k (j -k)! x k k! =: q * j (x), hence, with q * j = 0, j = ℓ + 1, . . . , d, v p ℓ (• + β) -v p ℓ =    q * 0 . . . q * d    .
On the other hand, for r ≤ ℓ -j -1,

d r dx r q * j (x) = j-1 k=r β j-k x k-r (k -r)!(j -k)! = j-1-r k=0 β j-k-r (j -k -r)! x k k! = q * j+r (x),
and setting q β,ℓ := q * ℓ yields

q β,ℓ = ℓ-1 k=0 β ℓ-k (ℓ -k)! (•) k k! = ℓ-1 k=0 β ℓ-k (ℓ -k)! p k
and proves the claim.

Theorem 2.11 Let A ∈ ℓ (d+1)×(d+1) (Z). If 1. S A v p = v q , deg q ≤ deg p, for any p ∈ P d-1 ,
2. There exists a finitely supported B ∈ ℓ (d+1)×(d+1) (Z) such that (10) holds true, i.e.,

T d S A = 2 -d S B T d , 3. S B e d = e d ,
then A satisfies the spectral condition of order d.

Proof: Since

T d v p d = e d = S B e d = S B T d v p d = 2 d T d S A v p d , i.e., T d S A v p d -2 -d v p d = 0, which yields that S A v p d = 2 -d v p d + v ′ with 0 = T d v ′ = T d-1 * 0 1 v ′ .
Hence, v ′ d = 0 and T d-1 v ′ 0:d-1 = 0, so that Proposition 2.9 implies that there exists q d-1 ∈ P d-1 such that

S A v p d = 2 -d v p d + v q d-1 . ( 13 
)
Since S A is a stationary subdivision operator with scaling factor 2, we have

S A c(• + 2) = S A (c(• + 1)), hence, by Lemma 2.10, ∆ 2 S A v p d = S A (v p d (• + 1) -v p d ) = S A ∆v p d = S A v p d-1 + d-2 j=0 1 (d -j)! S A v p j
On the other hand, Lemma 2.10 also yields that there exists q ∈ P d-2 such that

∆ 2 2 -d v p d-1 + v q d-1 = 2 -d d-1 j=0 2 d-k (d -j)! v p j + v q = 2 -d+1 v p d-1 + 2 -d d-2 j=0 2 d-k (d -j)! v p j + v q .
Substituting these two identities into (13), we thus obtain that

S A v p d-1 = 2 -d+1 v p d-1 + 2 -d d-2 j=0 2 d-k -1 (d -j)! v p j + v q , hence, S A v p d-1 = 2 -d+1 v p d-1 + v q d-2 , q d-2 ∈ P d-2 , (14) 
which is [START_REF] Guglielmi | Convergence analysis of C 2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas[END_REF] with d replaced by d -1. Since the argument was only based on the stationarity of S A , we can repeat this process and find that

S A v p j = 2 -j v p j + v q j-1 , q j ∈ P j-1 , j = 0, . . . , d. (15) 
Since P j is spanned by p 0 , . . . , p j , [START_REF] Han | Noninterpolatory Hermite subdivision schemes[END_REF] means that there exists an upper triangular matrix U with diagonal 1, . . . , 2 -d+1 , 2 -d such that

S A [v p 0 , . . . , v p d ] = [v p 0 , . . . , v p d ] U = [v p 0 , . . . , v p d ]       1 * . . . * 2 -1 . . . . . . . . . * 2 -d       .
(16) Using the upper triangular matrix S with diagonal elements 1 which factorizes U into

L = SDS -1 , D =      1 2 -1 . . . 2 -d      , we now define v p 0 , . . . , v p d := [v p 0 , . . . , v p d ] S
and obtain by a straightforward computation that

S A v p 0 , . . . , v p d = S A [v p 0 , . . . , v p d ] S = [v p 0 , . . . , v p d ] LS = [v p 0 , . . . , v p d ] SD = v p 0 , . . . , v p d D,
hence S A satisfies the spectral condition of order d since S being upper triangular guarantees that any p j is of degree exactly j.

Corollary 2.12 For a mask A ∈ ℓ (d+1)×(d+1) (Z) the following statements are equivalent:

1. A satisfies the spectral condition of order d.

2. There exist masks B k , k = 0, . . . , d such that

T k I S A = 2 -k S B k T k I , S B k e k = e k .
3. There exists B such that

T d S A = 2 -d S B T d , S B e d = e d .
Proof: "1) ⇒ 2)" has been the iterative step in [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF] and the normalization is deduced as in Theorem 2.8, "2) ⇒ 3)" is trivial and "3) ⇒ 1)" is the statement of Theorem 2.11.

Convergence

Definition 2.13 Let A ∈ ℓ (d+1)×(d+1) (Z) be a mask and H A the associated Hermite subdivision scheme on ℓ d+1 (Z) as defined in (6). The scheme is called convergent if for any data f 0 ∈ ℓ d+1 (Z) and the corresponding sequence of refinements f n , there exists a vector function Φ = [φ i ] i=0,...,d ∈ C R, R d+1 such that for any compact K ⊂ R there exists a sequence ε n with limit 0 which satisfies

max i=0,...,d max α∈Z∩2 n K f (i) n (α) -φ i 2 -n α ≤ ε n . (17) 
The scheme H A is said to be C ℓ -convergent if moreover φ 0 ∈ C ℓ (R, R) and

d i φ 0 dx i = φ i , i = 0, . . . , min{ℓ, d}.
We recall the following result on convergence proved in [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF].

Theorem 2.14 Let A ∈ ℓ d+1 (Z) be a mask which satisfies the spectral condition of order at least d. Suppose that for any data f 0 ∈ ℓ d+1 (Z) and associated refinement sequence f n of the Hermite scheme H A , 1. the sequence f n (0) converges to a limit y ∈ R d+1 , 2. (at least) one of the following two properties holds true:

(a) the associated Taylor subdivision scheme S B is C 0 -convergent and for any initial data g 0 = T d f 0 , the limit function

Ψ = Ψ g ∈ C R, R d+1 satisfies Ψ = 0 ψ d , ψ d ∈ C (R, R) . ( 18 
)
(b) the associated complete Taylor subdivision scheme S B is contractive, that is, it is C 0 -convergent and for any initial data g 0 = T d f 0 , the limit function

Ψ = Ψ g ∈ C R, R d+1 satisfies Ψ = 0. Then H A is C d -convergent.
We conclude the section with an important corollary whose proof follows the lines of the proof of [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF]Corollary 5].

Corollary 2.15 Let A ∈ ℓ d+1 (Z) be a given mask which satisfies the spectral condition of order at least d. Suppose that the associated Taylor subdivision scheme S B is C k -convergent with the conditions of Theorem 2.14, then H A is C d+k -convergent.

Extended schemes

With a Hermite scheme of degree d, we can get derivatives up to degree d and at most C d -convergence. Sometimes, the last component of the limit function, namely φ (d) 0 , turns out to be more regular than C 0 . To explore this extra regularity, we propose to extend the scheme to one of higher degree. As examples, we explicitly study the de Rham transform and Cardinal splines that provide such regularity.

A first extension

From a given Hermite scheme with mask A, we first build a new scheme A + , called extended scheme, by only adding a single row in an intuitive way. Its definition is based on the approximation of a derivative by a slope. Precisely for a function ϕ ∈ C d+1 (R) and α ∈ Z, we use the fact that

ϕ (d+1) 2α 2 n+1 = ϕ (d+1) α 2 n ≃ 2 n-1 ϕ (d) α + 1 2 n -ϕ (d) α -1 2 n , ϕ (d+1) 2α + 1 2 n+1 ≃ 2 n ϕ (d) α + 1 2 n -ϕ (d) α 2 n .
Starting from any f 0 , the previous approximations suggest the construction for the additional components f

(d+1) n+1 as f (d+1) n+1 (2α) = 2 n-1 f (d) n (α + 1) -f (d) n (α -1) , f (d+1) 
n+1 (2α + 1) = 2 n f (d) n (α + 1) -f (d) n (α) .
The new mask is then defined in the usual way, with just d replaced by d + 1 so that A + (α) ∈ R (d+2)×(d+2) has the entries

A + (-2) = A(-2) 0 0 2 -d-2 0 , A + (-1) = A(-1) 0 0 2 -d-1 0 A + (1) = A(1) 0 0 -2 -d-1 0 , A + (2) = A(2) 0 0 -2 -d-2 0 A + (α) = A(α) 0 0 0 for α / ∈ {-2, -1, 1, 2}. ( 19 
)
Proposition 3.1 Suppose that the scheme with mask A of degree d satisfies the spectral condition of order d+1 with the polynomials p 0 , p 1 , . . . , p d+1 . Then the extension with mask A + (α) defined by (19) also satisfies the spectral condition of order d + 1 with the same polynomials, thus there exist B + and B + such that

T d+1 S A + = 2 -d-1 S B + T d+1 and T d+1 S A + = 2 -d-1 S B + T d+1 .
Proof: Since A satisfies the spectral condition of order d + 1, we obtain for any i ∈ {0, . . . , d + 1} and any real numbers x, y and u that p 

(d) i (x + u) -p (d) i (x) = up (d+1) i (y) 
i (x), p (d+1) i (x)] T for i = 0, . . . , d + 1 then

S A + v i (2α) = β∈Z A + (2α -2β)v i (β) = β∈Z       A(2α -2β)    p i (β) . . . p (d) i (β)    a d+1,d (2α -2β)p (d) i (β)       =       1 2 i    p i (2α) . . . p (d) i (2α)    1/2 d+2 p (d) i (α + 1) -p (d) i (α -1)       =       1 2 i    p i (2α) . . . p (d) i (2α)    1/2 d+1 p (d+1) i (2α)       = 1 2 i v i (2α). Similarly, S A + v i (2α+1) = 1 2 i v i (2α+1
) and therefore the spectral condition of order d + 1 is satisfied by the extended scheme A + . Consequently, we can compute the masks B + and B + such that T d+1 S A + = 2 -d-1 S B + T d+1 and T d+1 S A + = 2 -d-1 S B+ T d+1 . Examples of such extensions are given in the next section.

Factorization of extensions

We now suppose that A ∈ ℓ (d+1)×(d+1) (Z) is a mask which satisfies the spectral condition of order d ′ > d and want to consider the general question of how to extend this mask in such a way that the extended scheme A ′ ∈ ℓ (d ′ +1)×(d ′ +1) (Z) satisfies a spectral condition of increased degree d ′ . We begin with a simple observation concerning the Taylor operators, namely,

T * d ′ (z) = T * d (z) -W 0 T * d(z) , T * d ′ (z) = T * d (z) -W 0 T * d(z) , (20) 
where d := d ′ -d -1 and

W =     1 (d+1)! . . . 1 (d+ d+1)! . . . . . . . . . 1 . . . 1 ( d+1)!     ∈ R (d+1)×( d+1) .
From [START_REF] Micchelli | Mathematical Aspects of Geometric Modelling[END_REF] one can verify by straightforward computation that

T * d ′ (z) -1 = T * d (z) -1 T * d (z) -1 W T * d(z) -1 0 T * d(z) -1 , T * d ′ (z) -1 = T * d (z) -1 T * d (z) -1 W T * d(z) -1 0 T * d(z) -1 , (21) 
respectively. Since det T * d (z) = (z -1 -1) d and det T * d (z) = (z -1 -1) d+1 , the matrices in ( 21) are well-defined for z = 1. Now we extend A to the matrix mask A ′ by extending the symbol into the block lower triangular

A ′ * (z) := A * (z) 0 U * (z) V * (z) , U ∈ ℓ ( d+1)×(d+1) (Z), V ∈ ℓ ( d+1)×( d+1) (Z), (22) 
and compute

T * d ′ (z)A ′ * (z) = T * d (z)A * (z) -W U * (z) -W V * (z) T * d(z) U * (z) T * d(z) V * (z) = B * (z) T * d (z 2 ) -W U * (z) -W V * (z) T * d(z) U * (z) T d(z) * V * (z) . Choosing U * (z) := U * (z) T * d (z 2 ) and V * (z) := U * (z)W + V * (z)
, we get the simplified expression

T * d ′ (z) A ′ * (z) T * d ′ (z 2 ) -1 =   B * (z) -W U * (z) B * (z) W -W U * (z) W -W V * (z) T * d(z 2 ) -1 T * d(z) U * (z) T * d(z) U * (z)W + V * (z) T * d(z 2 ) -1   = B * (z) -W U * (z) B * (z) W -W V * (z) T * d(z 2 ) -1 T * d(z) U * (z) T * d(z) V * (z) T * d(z 2 ) -1
.

Thus, Corollary 2.12 yields the following conclusion which describes the algebraic condition on the extension that guarantees that the extended scheme satisfies the spectral condition of order d ′ . 

* (z) W e d = W V * (z)e d or v d(z) = W -1 B * (z)    1 d ′ ! . . . 1 (d ′ -d)!    , (23) 
where v d denotes the last column of V * .

4 The Example of de Rham schemes

Construction and first properties

The construction of the de Rham transform was proposed in [START_REF] Dubuc | de Rham Transform of a Hermite Subdivision Scheme, Approximation Theory[END_REF] and some of the properties used here can be found in [START_REF] Conti | Dual Hermite subdivision schemes of de Rham-type[END_REF]. In the de Rham scheme, a subdivision scheme is applied twice and then one only keeps the values at indices which are equal to 1 and 3 modulo 4, thus defining another binary subdivision scheme derived from the original one. With de Rham scheme, one loses the interpolating property but can gain higher order of regularity.

The challenge is to prove this higher regularity of the limit function. For a Hermite subdivision scheme H A of degree d, with mask {A(α)} α∈Z , let us define a new (dual) Hermite subdivision scheme by taking de Rham transform of A. From the initial state of the scheme f 0 = f 0 : Z → R d+1 , we define the sequence f n for n > 0 by

D n+1 g(β) = γ∈Z A(β -2γ)D n f n (γ), β ∈ Z D n+2 h(α) = β∈Z A(α -2β)D n+1 g(β), α ∈ Z f n+1 (α) = h(2α + 1), α ∈ Z.
Then it is easy to prove that

D n+1 f n+1 (α) = γ∈Z Ā(α -2γ)D n f n (γ)
where

Ā(α) = D -1 β∈Z A(2α + 1 -2β)A(β), α ∈ Z. ( 24 
)
Definition 4.1 Let S A be a subdivision scheme. De Rham transform S A of S A is the subdivision scheme whose mask A is defined by (24).

Remark 4.2 Note that if the support of S

A is [σ, σ ′ ], then the support of its de Rham transform S A is contained in [(3σ -1)/2, (3σ ′ -1)/2].
The following Theorem and Corollary are proved in [START_REF] Conti | Dual Hermite subdivision schemes of de Rham-type[END_REF].

Theorem 4.3 Let S A be a Hermite subdivision scheme which satisfies the spectral condition of order ℓ, then de Rham transform S A satisfies the spectral condition β∈Z Ā(α -2β)v p j (β) = vp j (α)/2 j for an appropriate sequence of polynomials pj of degree j, j = 0, . . . , ℓ .

Corollary 4.4 Let there be a Hermite scheme of degree d with mask A which reproduces a basis of P ℓ , then its de Rham transform with mask A satisfies the corresponding spectral condition with the sequence of polynomials pk (x) = (x -1/2) k /k!, k = 0, . . . , ℓ, ℓ ≤ d. Remark 4.5 From [START_REF] Dyn | Analysis of Hermite-interpolatory subdivision schemes[END_REF], we know that a convergent Hermite interpolatory scheme of degree d reproduces any polynomial of degree at most d.

An extension of a Hermite subdivision scheme of degree 1

We start with the interpolatory Hermite subdivision scheme of degree d = 1 proposed in [START_REF] Merrien | A family of Hermite interpolants by bisection algorithms[END_REF], depending on two parameters λ, µ. The non zero matrices of its mask are A(-1), A(0), A(1), given as

1 4 2 4λ 2(1 -µ) µ , 1 2 
2 0 0 1 , 1 4 
2 -4λ -2(1 -µ) µ . ( 25 
)
For any values of the parameters λ and µ, the scheme reproduces polynomials of degree 1. Moreover it reproduces P 2 if and only if λ = -1/8 and P 3 if also µ = -0.5. Applying de Rham transform, we end up with the dual approximating Hermite subdivision scheme Ā. The non zero entries of the mask, Ā(-2), Ā(-1), Ā(0), Ā(1), are computed as (see also [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF])

1 8 2 + 4λ(1 -µ) 4λ + 2λµ 4 -2µ -2µ 2 µ 2 + 8λ(1 -µ) , 1 8 
6 -4λ(1 -µ) 8λ -2λµ 4 -2µ -2µ 2 µ 2 -8λ(1 -µ) + 2µ , 1 8 
6 -4λ(1 -µ) -8λ + 2λµ -4 + 2µ + 2µ 2 µ 2 -8λ(1 -µ) + 2µ , 1 8 
2 + 4λ(1 -µ) -4λ -2λµ -4 + 2µ + 2µ 2 µ 2 + 8λ(1 -µ) , (26) 
respectively. Since H Ā satisfies the spectral condition of order ℓ = 1, we can construct masks B and B supported on [-1, 1] such that

z -1 -1 -1 0 1 Ā * (z) = 1 2 B * (z) z -2 -1 -1 0 1 (27) and z -1 -1 -1 0 z -1 -1 Ā * (z) = 1 2 B * (z) z -2 -1 -1 0 z -2 -1 . ( 28 
)
From the above, we see that the mask B is the difference mask of B, that is

B * (z) = 1 0 0 z -1 -1 B * (z)
The non-zero entries of mask B are

B(-1) = 1 4 2 + 4λ(1 -µ) 2λ(1 + µ) 4 -2µ -2λ 2 µ 2 + 8λ(1 -µ) B(0) = 1 4 2µ + 2µ 2 -8λ(1 -µ) -4λ(1 -µ) -µ 2 0 2µ -16λ(1 -µ) , B(1) = 1 4 -2 + 4λ(1 -µ) + 2µ + 2µ 2 -6λµ -µ 2 -2µ + 2 -4 + 2µ + 2µ 2 4 -2µ -µ 2 + 8λ(1 -µ) .
(29) For some values of the parameters, the Hermite scheme H Ā has C 1 -convergence. Our aim is to show that the subdivision scheme associated with Ā can even be C 2 for an appropriate choice of parameters. To that end, we build Ā+ and show that this is C 2 by proving that B + is contractive.

For our case, we fix λ = -1/8 so that A reproduces any polynomial of P 2 . Using Corollary 4.4, de Rham scheme Ā satisfies the spectral condition of order ℓ = 2 with the polynomials p0 (x) = 1, p1 (x) = x -1/2 and p2 (x) = 1/2(x -1/2) 2 and so does Ā+ from [START_REF] Merrien | A Generalized Taylor Factorization for Hermite Subdivisions Schemes[END_REF]. The computation of B+ gives

B+ (-1) = 1 8   6 + 2µ -2 -µ 0 16 -8µ -8µ 2 -4 + 4µ + 4µ 2 0 0 4 0   , B+ (0) = 1 4  
 2 + 2µ + 4µ 2 -µ -2µ 2 0 0 2 0 0 2 0   B+ (1) = 1 8   -10 + 10µ + 8µ 2 4 -5µ -4µ 2 1 -16 + 8µ + 8µ 2 4 -4µ -4µ 2 4 0 -4 4   , B+ (2) = 1 4   0 -1 1 0 -2 2 0 -2 2   (30) 
Now, following [START_REF] Cavaretta | Stationary Subdivision[END_REF], to prove the contractivity of the scheme with mask B+ , we build the two matrices

U 0 =    B+ (2) B+ (0) 0 0 B+ (1) B+ (-1) 0 B+ (2) B+ (0)    , U 1 =    B+ (1) B+ (-1) 0 B+ (2) B+ (0) 0 0 B+ (1) B+ (-1)    ,
and compute, for a given positive integer p, all the matrices 

M u = p k=1 U u k 0 U 1-u k 1 , u k ∈ {0, 1}, u := [u k ] k=1,...,p , -3 -2 -1 0 1 2 3 0 0.5 1 Function: f Interpolating Scheme, λ = -0.125 µ = -0.5 -3 -2 -1 0 1 2 3 -2 0 2 First Derivative: p -3 -2 -1 0 1 2 3 -10 0 10 ∆ p / h -3 -2 -1 0 1 2 3 -1 0 1 Extended de Rham Scheme, λ = -0.125 µ = -0.5 Function: f -3 -2 -1 0 1 2 3 -2 0 2 First Derivative: p -3 -2 -1 0 1 2 3 -5 0 5 2nd derivative: s

An extension of a Hermite subdivision scheme of degree 2

In this second case, we start with the interpolatory Hermite subdivision scheme of degree d = 2 proposed in [START_REF] Merrien | A family of Hermite interpolants by bisection algorithms[END_REF]. This is a 2 point subdivision scheme depending on several parameters. The non zero matrices of its mask are A(-1), A(0), A(1), given as

D   α 1 α 2 α 3 β 1 β 2 β 3 γ 1 γ 2 γ 3   , D, D   α 1 -α 2 α 3 -β 1 β 2 -β 3 γ 1 -γ 2 γ 3   , D :=   1 0 0 0 1 2 0 0 0 1 4   .
(31) To guarantee reproduction of degree 3 polynomials, among the free parameters, the following constraints are assumed (see [START_REF] Guglielmi | Convergence analysis of C 2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas[END_REF]): Since the mask under consideration depends only on α 2 , β 1 , γ 2 , we rename the free parameters for the sake of brevity as α, β, γ, respectively, and denote by R the range of variation for them generating a C 2 scheme given in [START_REF] Guglielmi | Convergence analysis of C 2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas[END_REF].

α 1 = 1 2 , γ 1 = 0, β 2 = 1-β 1 2 , γ 3 = 1-γ 2 2 , α 3 = -1-8α 2 16 , β 3 = 2β 1 -3 24 . (32) 
Therefore, the mask we consider reads as

  1 2 α -1-8α 16 β 2 1-β 4 2β-3 48 0 γ 4 1-γ 8   ,   1 0 0 0 1 2 0 0 0 1 4   ,   1 2 -α -1-8α 16 -β 2 1-β 4 -2β-3 48 0 -γ 4 1-γ 8   , (α, β, γ) ∈ R 
(33) We apply de Rham transform for the dual approximating Hermite subdivision scheme Ā. The non zero entries of the mask are given by

Ā(-2) =    1+2αβ 4 α(3-β) 4 -(1+8α)γ 64 α(2β-3) 48 -(1+8α)(5-γ) 128 (3-β)β 4 αβ + (1-β) 2 8 + γ(2β-3) 96 -β(1+8α) 16 
+ (3-2β-γ)(2β-3) 192 βγ 2 (3-2β-γ)γ 8 (2β-3)γ 48 + (1-γ) 2 16    Ā(-1) =    3-2αβ 4 α(3+β) 4 -(1+8α)γ 64 -α(2β-3) 48 -(1+8α)(7-γ) 128 (3-β)β 4 -αβ + (1-β)(3-β) 8 -(2β-3)γ 96 β(1+8α) 16 
+ (3-2β+γ)(2β-3) 192 -βγ 2 (3+2β-γ)γ 8 -(2β-3)γ 48 + (1-γ)(3-γ) 16    Ā(0) =    3-2αβ 4 -α(3+β) 4 + γ(1+8α) 64 -α(2β-3) 48 -(1+8α)(7-γ) 128 (β-3)β 4 -αβ + (1-β)(3-β) 8 -(2β-3)γ 96 -β(1+8α) 16 
+ (2β-3-γ)(2β-3) 192 -βγ 2 (γ-3-2β)γ 8 -(2β-3)γ 48 + (1-γ)(3-γ) 16    Ā(1) =    1+2αβ 4 α(β-3) 4 
+ (1+8α)γ 64 + α(2β-3) 48 -(1+8α)(5-γ) 128 (β-3)β 4 αβ + (1-β) 2 8 + γ(2β-3) 96 (1+8α)β 16 -(2β-3)(3-2β-γ) 192 βγ 2 γ(2β+γ-3) 8 (2β-3)γ 48 + (1-γ) 2 16    20 
Now, the parameters for the interpolating scheme A have been chosen in such a way that it reproduces polynomials in P 3 . Again, using Corollary 4.4, de Rham scheme Ā satisfies the spectral condition of order 3 with the polynomials p0 (x) = 1, p1 (x) = x -1/2, p2 (x) = 1/2(x -1/2) 2 and p3 (x) = 1/6(x -1/2) 3 and so does the extended scheme Ā+ .

We recall that

T * 3 (z) =     z -1 -1 -1 -1 2 -1 6 0 z -1 -1 -1 -1 2 0 0 z -1 -1 -1 0 0 0 z -1 -1     ,
and the computation of B+ satisfying

T 3 S A = 2 -3 S B+ T 3 gives B(-1) = 8      1+2αβ 4 144α-3γ-48αβ-24αγ 192 
--16αβ-24αγ+15-3γ+144α 384 0 β(-β+3) 4 
96αβ+12-24β+12β 2 +2βγ-3γ 96

-96αβ+9+4β 2 +2βγ-3γ 192 0 βγ 2 γ(3-2β-γ) 8 
--2βγ-3-3γ 2 +9γ 48 0 0 0 We use the method of the previous subsection to prove that de Rham scheme is C 3 see Figures 3 and4 

1 16 0      , B(0) = 8      -4αβ-βγ+β 2 -3β+2 4 
-24β 2 +48β-24-96αβ+12γ 2 -30γ+20βγ 192 . . . -βγ 2 + -24β+24-192αβ-

Cardinal spline functions and Hermite schemes

In this section, we rewrite the well known cardinal splines (cf. [START_REF] Schoenberg | Cardinal spline interpolation[END_REF]) in terms of a scalar subdivision scheme (or vector scheme of dimension 1 or Hermite scheme of degree 0). Then we extend this first subdivision scheme into Hermite schemes of different degrees.

Construction

Our presentation is based on a construction detailed by Micchelli in [START_REF] Micchelli | Mathematical Aspects of Geometric Modelling[END_REF]. Let

ϕ 0 (x) = χ [0,1] = 1 if x ∈ [0, 1], 0 if x / ∈ [0, 1].
For r = 1, 2, . . ., we build ϕ r by means of autoconvolution as ϕ r = ϕ 0 * ϕ r-1 or ϕ r (x) =

x x-1 ϕ r-1 (t)dt. By recursion, it is easily seen that σ r := supp(ϕ r ) = [0, r + 1], that ϕ r is a C r-1 piecewise polynomial of degree r and that the translates of the functions ϕ r (• -α), α ∈ Z, form a nonnegative partition of unity, i.e.

α∈Z ϕ r (x -α) = 1 and ϕ r (x -α) ≥ 0. Moreover, ϕ r (x) = 1 2 r α∈Z r + 1 α ϕ r (2x-α), i j = i! j!(i-j)! if 0 ≤ j ≤ i, 0 otherwise. Considering v(x) = α∈Z f (0) 0 (α)ϕ r (x -α), which is a finite sum for any x ∈ R, we deduce for n ∈ N 0 that v(x) = α∈Z f (0) n (α)ϕ r (2 n x -α) where f (0) n+1 (α) = 1 2 r β∈Z r + 1 α -2β f (0) n (β) =: β∈Z a r (α -2β)f (0) n (β), α ∈ Z, (34) that is, a r (α) = 1 2 r r + 1 α , α ∈ Z. (35) 
Moreover, the well-known derivative formula for cardinal B-spline yields

d i v dx i (x) = α∈Z 2 ni ∆ i f (0) n (α -i) ϕ r-i (2 n x -α) , i = 0, . . . , r -1. ( 36 
)
We have a particular case when i = r -1. Since the function ϕ 1 is piecewise

linear with ϕ 1 (α) = δ 1α , we obtain d r-1 v dx r-1 (β/2 n ) = 2 ni ∆ i f (0) n (β -r + 1).
To sum up, 2 -r ℓ r (α) = q r (α) for α = 0, -1, . . . , -r which concludes the case. Case i > 0: Since 1 2 r ℓ r = S ar ℓ r , we deduce by Lemma 5.1 that

1 2 r ℓ r (x) = 1 2 β∈Z a r (β)ℓ r x -β 2 , x ∈ R.
Differentiating i times, this gives

1 2 r ℓ (i) r (x) = 1 2 1 2 i β∈Z a r (β)ℓ (i) r x -β 2 , x ∈ R. ( 40 
) Since S ar ℓ (i)
r is a polynomial, Lemma 5.1 and (40) yield

S ar ℓ (i) r (α) = 1 2 β∈Z a r (β)ℓ (i) r α -β 2 = 1 2 r-i ℓ (i) r (α), α ∈ Z,
which completes the proof of (38).

Extension to Hermite subdivision schemes

We define Hermite subdivision schemes of degree d ≤ r with mask {A(α)} and support [0, r + d + 1] which are extensions of S ar by applying differences to the mask a r , yielding

A(α) =        a r (α) 0 . . . 0 ∆a r (α -1) 0 . . . 0 ∆ 2 a r (α -2) 0 . . . 0 . . . ∆ d a r (α -d) 0 . . . 0        , A * (z) = (1 + z) r+1 2 r        1 0 . . . 0 (1 -z) 0 . . . 0 (1 -z) 2 0 . . . 0 . . . (1 -z) d 0 . . . 0        .
We begin with f 0 ∈ ℓ d+1 (Z) and f n ∈ ℓ d+1 (Z) defined by ( 6) and notice that 2 -(n+1) f

(1)

n+1 (α) = β∈Z ∆a r (α -1 -2β)f (0) n (β) = ∆f (0) n+1 (α -1) so that for n ≥ 1, f (1) n (α) = 2 n ∆f (0) n (α -1). (41) 
Similarly for i = 2, . . . , d:

f (i) n (α) = 2 in ∆ i f (0) n (α -i). (42) 
Now with (34) and (36), for n > 0,

d i v dx i (x) = α∈Z f (i) n (α)ϕ r-i (2 n x -α), i = 0, . . . , d.
Generally, this Hermite scheme does not satisfy spectral condition, see [START_REF] Merrien | A Generalized Taylor Factorization for Hermite Subdivisions Schemes[END_REF] for an example with r = 3 and d = 2 but it is possible to get a modified scheme.

Proposition 5.4 For given integers r > 0 and d ≤ r, there exists an upper triangular matrix R r,d ∈ R (d+1)×(d+1) with 1 on the diagonal and 0 on the first row except the first term such that the spectral condition is satisfied for scheme S Ā with mask Ā(α) := R -1 r,d A(α)R r,d with the polynomials p r-i := ℓ (i) r and corresponding eigenvalue 1/2 r-i , i = r -d, . . . , r.

Proof: Since S ar p j = 2 -j p j and v (0)

p j = p j , we deduce that β∈Z A(α-2β)R r,d v p j (β) =       β a r (α -2β)v (0) p j (β) β ∆a r (α -1 -2β)v (0) p j (β) . . . β ∆ d a r (α -d -2β)v (0) p j (β)       = 1 2 j      p j (α) ∆p j (α -1)
. . . To obtain the components r ik of R r,d , we remark that for any polynomial p ∈ P d , by the computation of Taylor expansions at point α, ∆ i p(α -i) = p (i) (α) + d k=i+1 r ik p (k) (α). In the following subsubsections, we give examples of modified schemes that satisfy spectral conditions and are also extensions of the initial subdivision scheme.

For Ā+ , some straightforward computations yield the symbol representation,

Ā *

+ (z) = We use the same tools as in the previous section, building the two matrices in R 32×32 : , for all u k ∈ {0, 1} and u =: [u k ] k=1,...,p , if ρ p := max u∈{0,1} p M u 1/p 1 , then a numerical computation gives ρ 8 = 0.9173. Therefore, the operator S B + is contractive, proving that the Hermite scheme S Ā+ is C 3 . Now, since R 4,3 is triangular with 1 on its diagonal, it is easy to deduce that for r = 4 and d = 3, the scheme S A and S a 4 are C 3 which recovers a well known property of cardinal splines.

  = 0 for i = 0, . . . , d, u for i = d + 1, since p i ∈ P i and p d+1 (x) = x d+1 /d! + . . . If we define v i (x) = [p i (x), . . . , p
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 32 The mask A ′ defined by the extension (22) satisfies the spectral condition of order d ′ , i.e., T d ′ S A ′ = S B ′ T d ′ and S B ′ e d ′ = e d ′ , if and only if 1. V satisfies the spectral condition of order d -1, 2. B * (z) W -W V * (z) T * d(z) -1 e d = 0. Since T de d = e d, hence also T -1 d e d = e d, the second condition in Proposition 3.2 is equivalent to B
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∆S

  p p j (α -d) Āv p j = 1 2 j v p j ⇔ β∈Z A(α -2β)R r,d v p j (β) = 1 2 j R r,d v p j j (α) ∆p j (α -1). . . ∆ p p j (α -d)

Lemma 5 . 5

 55 For any p ∈ P d and i ≤ d, we have∆ i p(α -i) = p (i) (α) + α) jso that p -p ∈ P i-1 and p(k) (α) = 0, k = 0, . . . , i -1 as well as p(k) (α) = p (k) (α), k = i, . . . , d. Then, by a Taylor expansion,∆ i p(α -i) = ∆ i p(α -i) = j j k =: d k=i r ik p (k) (α),where the coefficients r jk are independent of p. If we specifically set p= ℓ r = 1 r! x r + • • • and note that ∆ℓ r j) ((x + r + 1) -(x + 1)) = ℓ r-1 (• + 1), it follows that ℓ r-i = d k=1 r ik ℓ (k)r and a comparison of coefficients with respect to x r-i yields r ii = 1 and thus (43).A nice byproduct of Lemma 5.5 is the combinatorial identity k j=1 k j (-1) j j k = (-1) k k!.

( 1

 1 that B + defined by T 3 Ā+ = 2 -3 B + T 3 has coefficients B + (0) = 0 and B + (7

B + ( 7 )B + ( 8 )

 78 B + (5) B + (3) . . . 0 B + (8) B + (6) B + (4) . . . B + (6) B + (4) . . . 0 0 B + (7) B + (5) . . . Again for a positive integer p, if Mu := Π p k=1 U u k 0 U 1-u k 1

Spectral properties of S ar

We look for the eigenpolynomials of the scheme, namely the polynomials p such that S ar p = λp. The following lemma was already given in [START_REF] Cavaretta | Stationary Subdivision[END_REF] in the multidimensional case. Lemma 5.1 Let S a be a scalar subdivision operator. If p and q := S a p are both polynomials, then

We also recall the following simple fact that can be proved by standard subdivision techniques.

Lemma 5.2 For any polynomial p ∈ P r also S ar p ∈ P r .

Proof: Since ∆ r+1 S ar = 2 -r ∆ r+1 , we have for any p ∈ P r that ∆ r+1 S ar p = 2 -r ∆ r+1 p = 0 which is equivalent to S ar p ∈ P r .

r , i = 0, . . . , r.

Proof: Case i = 0: Let

By Lemma 5.2, ℓ r and q r are two polynomials of degree at most r. Thus it is sufficient to verify the identity ℓ r = 2 r q r at r + 1 points, namely α = 0, -1, . . . , -r.

To begin, we notice that a r (α -2β) = 0 as soon as α -2β < 0 or α -2β > r + 1. For α ∈ {-1, -2, . . . , -r}, this gives a r (α -2β) = 0 as soon as β ≥ 0 or β < -r. On the other hand, for β ∈ [-r, 0) ∩ Z, we have ℓ r (β) = 0 so that all the terms in the sum q r from (39) are vanishing and therefore, ℓ r (α) = 2 r q r (α) = 0, -r ≤ α < 0. Finally, for α = 0, an analogous support argument shows that almost all terms of the sum are vanishing except one, yielding q r (0) = a r (0)ℓ r (0) = 2 -r ℓ r (0).

Cardinal Spline with r = 4, d = 2

From the Hermite scheme with mask A whose coefficients in the first column are given according to the following table: 

12 and we obtain that