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Extended Hermite Subdivision Schemes

Jean-Louis Merrien∗, Tomas Sauer†

September 1, 2016

Abstract

Subdivision schemes are efficient tools for building curves and sur-
faces. For vector subdivision schemes, it is not so straightforward to
prove more than the Hölder regularity of the limit function. On the
other hand, Hermite subdivision schemes produce function vectors that
consist of derivatives of a certain function, so that the notion of con-
vergence automatically includes regularity of the limit. In this paper,
we establish an equivalence between a spectral condition and operator
factorizations, then we study how such schemes with smooth limit func-
tions can be extended into ones with higher regularity. We conclude
by pointing out this new approach applied to cardinal splines.

keywords: Subdivision, Hermite, Convergence, Derivatives.

1 Introduction and Notations

In recent decades, subdivision schemes [1, 11] have resulted in efficient meth-
ods to generate smooth curves and surfaces, for example, for the purpose of
computer aided design.

In vector subdivision schemes [21], one starts with a sequence of vector
valued data at level 0, and iteratively applies a stationary subdivision rule
to generate a new sets of vectors on the finer and finer grids 2−n

Z. In this
process, the data fn is interpreted as an approximation of a limit function
f : R → R

p on the grid where p is a positive integer, i.e.,

fn(α) ≃ f
(
2−nα

)
, α ∈ Z.
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Under suitable conditions on the subdivision rule, this sequence of vectors
then converges to a limit curve or surface, either uniformly or in some Lp

norm. In this context, the results are vector valued functions with some
Hölder regularity related to the convergence rate of the process, but essen-
tially they are “simply” continuous or Lp functions. The smoothness of the
limit functions in the sense of differentiability implies additional conditions
for the subdivision scheme which cannot be easily verified, cf. [2, 3, 4, 21].

Hermite subdivision schemes where the components of the vector valued
function are the successive exact or approximated derivatives of the first
component, approach subdivision from a different point of view cf. [9, 10,
13, 14, 15, 16]. Besides the fact that now the subdivision operator varies
with the level of iteration, the regularity of the limit function is part of
the definition of convergence and, therefore, the verification of smoothness
properties is already included in the convergence proof.

Convergence of subdivision schemes is usually described by identifying
certain special eigenvectors of the subdivision operator which imply a factor-
ization of the subdivision operator by means of an operator that annihilates
this invariant space. In the scalar case, this annihilator is simply a differ-
ence operator, in the vector case, it is a more intricate difference based on
the rank of the subdivision scheme [21] and in Hermite subdivision it is the
Taylor operator, cf. [8, 18]. All of these operators are in a one-to-one re-
lationship with the sum rules or the spectral conditions for the subdivision
operator.

In this paper, we study these relationships for Hermite schemes. We
show that spectral condition is equivalent to factorization, once a certain
normalization property is satisfied; in a previous paper we had only proved
that spectral condition implies factorization. After that, we explore how the
regularity of the limit can be increased by an extended scheme that transfers
a given Hermite scheme to one of higher degree. After a first example, the
extension process and the factorization are studied in detail.

As an example, we propose a new approach to cardinal splines [22]. Start-
ing with transformations to a scalar subdivision scheme [20], we describe
extended Hermite schemes of different degrees. We give new eigenvalue and
eigenpolynomial properties and we prove that the maximum regularity of
the spline can be recovered by this new process.

The paper is organized as follows: in Section 2, we recall the definition
of a Hermite subdivision scheme and we define the key to transform this
scheme into a vector subdivision scheme, namely the spectral condition.
Having shown in earlier work [18] that the spectral condition implies an
important and useful factorization in terms of Taylor operators, we now
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even prove, in Corollary 2.12, a characterization of the spectral condition
in terms of factorization and a normalization property which will become
useful for studying extended schemes. In Section 3, we introduce extended
schemes and consider some of their general properties; the goal of extensions
is to exploit higher order regularity of limit functions by adding further
components and therefore further derivatives to the scheme. In Sections 4
and 5, two particular extensions are studied in more detail, one from de
Rham scheme [6, 7], one from cardinal splines. These examples demonstrate
the potential of the extension approach and thus motivate and justify this
construction.

As for notation, vectors in R
r will be labeled by lowercase boldface let-

ters: y = [yj ]j=0,...,r−1 or y =
[
y(j)

]
j=0,...,r−1

, where we use the latter nota-
tion to highlight the fact that in Hermite subdivision the components of the
vectors correspond to derivatives. Matrices in R

r×r will be written as upper-
case boldface letters, such as A = [ajk]j,k=0,...,r−1. The space of polynomials
in one variable of degree at most n will be written as Pn. Vector sequences
will be considered as functions from Z to R

r and the vector space of all
such functions will be denoted by ℓ(Z,Rr) or ℓr(Z). For y(·) ∈ ℓ(Z,Rr),
the forward difference is defined as ∆y(α) := y(α + 1) − y(α), α ∈ Z, and
iterated to ∆i+1y := ∆

(
∆iy

)
= ∆iy(·+ 1)−∆iy(·), i ≥ 0.

By A ∈ ℓr×r (Z), we denote a sequence of matrices, that is, for α ∈ Z

the sequence element A(α) = [ajk(α)]j,k=0,...,r−1 is an r × r matrix. Any
such sequence will be called a mask provided that it is finitely supported,
that is, there exists N ∈ N such that

suppA := {α ∈ Z : A(α) 6= 0} ⊆ [−N,N ] .

To any mask A, we associate the stationary vector subdivision operator
SA : ℓr (Z) → ℓr (Z), defined as

SAc(α) :=
∑

β∈Z

A (α− 2β) c(β), α ∈ Z, c ∈ ℓr (Z) , (1)

and also its symbol which is the Laurent polynomial

A
∗(z) :=

∑

α∈Z

A(α)zα, z ∈ C \ {0}. (2)

We also recall the shift relation

(
SAc

)
(·+ 2) = SAc(·+ 1). (3)
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The stationary subdivision scheme associated with the subdivision operator
SA is given by the repeated application of the operator, starting with any
initial sequence c0 ∈ ℓr∞(Z), which stands for the space of all uniformly
bounded r–vector valued biinfinite sequences,

cn+1 := SAcn , n ≥ 0. (4)

If we let the masks vary with the iteration level n, which is sometimes called
non–stationary subdivision scheme, we get a level dependent scheme of the
form

cn+1(α) :=
∑

β∈Z

An (α− 2β) cn(β), α ∈ Z, c ∈ ℓr (Z) , (5)

where An is a matrix valued biinfinite sequence for n ∈ N.

2 Hermite subdivision schemes

A special type of a level dependent vector subdivision scheme called Hermite
subdivision scheme HA of degree d is given by the following construction:
Starting with f0 ∈ ℓd+1(Z), for n ∈ N, we define fn+1 ∈ ℓd+1(Z) by

Dn+1 fn+1(α) = SADnfn(α) =
∑

β∈Z

A (α− 2β) Dn fn(β), α ∈ Z,

(6)
where

D :=




1
1
2

. . .
1
2d




is the diagonal matrix with diagonal entries 2−j , respectively, j = 0, . . . , d,
that represents the influence of scaling on the successive derivatives.

Remark 2.1 It is important to observe that (6) can also be written as

fn+1(α) = SAnfn(α) =
∑

β∈Z

D−(n+1)A (α− 2β) Dn fn(β), (7)

which involves the level dependent masks An := {D−(n+1)A(α)Dn}α∈Z,
n ∈ N.
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Remark 2.2 We notice that if ϕ ∈ Cd(R) and ϕn(x) := ϕ(x/2n), then



ϕn(x)
ϕ′
n(x)
...

ϕ
(d)
n (x)


 = Dn




ϕ(x/2n)
ϕ′(x/2n)

...

ϕ(d)(x/2n)


 .

For the iterated application of a Hermite subdivision scheme, the first compo-

nent f
(0)
n (β) can be interpreted as the approximation of ϕ(β/2n), while the

next one, f
(1)
n (β), describes the approximation of the derivative ϕ′(β/2n),

and so on, up to the last one, f
(d)
n (β) which is an approximation of ϕ(d)(β/2n).

Finally, HA will be called interpolatory if at each step we have fn+1(2·) =
fn(·), which is equivalent to A(2β) = D δβ,0 for β ∈ Z.

2.1 Spectral condition

To any function ϕ ∈ Cd(R), we associate the vector sequence vϕ ∈ ℓd+1 (Z)
of the samples of the function and its derivatives up to order d on Z, defined
by

vϕ(α) :=




ϕ(α)
ϕ′(α)

...

ϕ(d)(α)


 , α ∈ Z. (8)

HA reproduces a function ϕ ∈ Cd(R) if for the initial value f0 = vϕ we ob-
tain fn(·) = vϕ(·/2

n) for any n ∈ N. At this point, it is already worthwhile
to recall that a Cd-convergent interpolatory scheme of degree d reproduces
any polynomial of Pd, see [10]; the will be given later in Definition 2.13.

A fundamental property of Hermite subdivision schemes is the spectral
condition, introduced in [8], which requires the existence of particular poly-
nomial eigenvalues of the stationary subdivision operator SA that affect the
behavior of the Hermite scheme in a crucial way.

Definition 2.3 A mask A or its associated subdivision operator SA satis-
fies the spectral condition of order ℓ if for j = 0, . . . , ℓ, there exist polyno-
mials pj of exact degree j such that

SAvpj =
1

2j
vpj . (9)

If (9) holds true, we will always assume that pj is normalized such that
pj(x) =

1
j!x

j + qj(x) with qj ∈ Pj−1 for j > 0 and q0 = 0.
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Remark 2.4 Though the spectral condition is a property of the stationary
subdivision scheme, SA, it is still linked with the derivatives of polynomials.
Moreover, it was proved in [8] that the spectral condition is also equivalent
to the sum rule introduced by Bin Han and his collaborators in [14, 15].

The following result is easily obtained by using linearity to ensure the re-
production of any basis of polynomials and especially the pj(x) := xj/j! for
j = 0, . . . , ℓ.

Proposition 2.5 If HA reproduces a basis of Pℓ then SA satisfies the spec-

tral condition of order ℓ for the polynomials pj(x) :=
xj

j!
, j = 0, . . . , ℓ.

Definition 2.6 The Taylor operator Td and the complete Taylor operator
T̃d of degree d, mapping ℓ(d+1)(Z) to itself are defined as

Td :=




∆ −1 . . . − 1
(d−1)! − 1

d!

∆
. . .

...
...

. . . −1
...

∆ −1
1



, T̃d :=




∆ −1 . . . − 1
(d−1)! − 1

d!

∆
. . .

...
...

. . . −1
...

∆ −1
∆



.

where the constants in the matrices are to be understood as multiples of the
identity.

Proposition 2.7 For any p ∈ Pd, we have Tdvp = [0, . . . , 0, p(d)]T ∈ R
d+1

and T̃dvp = 0 ∈ R
d+1.

Proof: If p ∈ Pd, then its d + 1-th derivative is 0. Thus for j =
0, . . . , d− 1, the Taylor expansion of p(j)(α+ 1) at point α is p(j)(α+ 1) =∑d−j

i=0
1
i!p

(j+i)(α), which gives that the j-th row of Tdvp(α) or T̃dvp is 0.

The last row of Tdvp(α) or T̃dvp(α)) is p
(d)(α) or p(d)(α+ 1)− p(d)(α) = 0,

respectively. �
The following factorization result has been proved, among others, in [18]. In
particular, the explicit construction of the “factor masks” B and B̃ and its
algebraic background have been pointed out there. Here, we slightly extend
the result by adding a normalization property that will eventually enable us
to also give a converse statement.
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Theorem 2.8 If the mask A ∈ ℓ(d+1)×(d+1) (Z) satisfies the spectral condi-
tion of order at least d, then there exist two finitely supported masks B and
B̃ in ℓ(d+1)×(d+1)(Z) such that

TdSA = 2−dSBTd, and T̃dSA = 2−dS
B̃
T̃d. (10)

Moreover,
SBed = ed := [0, . . . , 0, 1]T ∈ R

d+1. (11)

Proof: The only thing to be proved is the normalization, i.e. SBed =
ed. Let pd ∈ Pd be the normalized polynomial such that 1

2d
vpd = SAvpd .

In Proposition 2.7, we have seen that Tdvpd = [0, . . . , 0, 1]T = ed. The
normalization follows from ed = Tdvpd = 2dTdSAvpd = SBTdvpd = SBed. �

Next, we will give a converse to Theorem 2.8, stated and proved in The-
orem 2.11, that shows that the incomplete Taylor factorization does in fact
characterize the spectral condition of order d as long as the additional nor-
malization condition (11) from Theorem 2.8 is satisfied. A few preliminary
results are required.

Proposition 2.9 A sequence v ∈ ℓd+1(Z) satisfies T̃dv = 0 if and only if
v = vp for some p ∈ Pd.

Proof: Since the direction “⇐” is given in Proposition 2.7, we only need
to prove “⇒” for which we use an idea from [8, Lemma 4]. Let v ∈ ℓd+1(Z)
such that T̃dv = 0. For a given α ∈ Z, we define

p(x) =
d∑

k=0

vk(α)

k!
(x− α)k

and the corresponding sampling vector vp. Since for k = 0, . . . , d, p(k)(α) =
vk(α), we notice that vp(α)− v(α) = 0.

The hypothesis gives T̃dv = 0 and, by Proposition 2.7, also T̃dvp = 0.

Thus, for u = v − vp we obtain that T̃du = 0 or

uk(·+ 1) =
d∑

j=k

uk(·)

(j − k)!
, k = 0, . . . , d.

Then an inductive reasoning, starting from u(α) = 0, yields that u(β) = 0

or v(β) = vp(β) for any integer β ≥ α.
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If we choose α′ instead of α and corresponding polynomial q instead of p,
we obtain for any β ≥ max(α, α′) that v(β) = vp(β) = vq(β), hence p(β) =
q(β) for any sufficiently large β and therefore, for all β ∈ Z. Consequently,
p = q and especially v(α′) = vp(α

′) = vq(α
′). Now we fix α = 0. Then

v(β) = vp(β) for any β ≥ 0. If β < 0, we fix α′ = β and we have seen that
v(α′) = vp(α

′). Hence, we can conclude that v = vp. �

Lemma 2.10 Let pℓ := (·)ℓ/ℓ!, 0 ≤ ℓ ≤ d. Then

∆βvpℓ := vpℓ(·+ β)− vpℓ =
ℓ−1∑

k=0

βℓ−k

(ℓ− k)!
vpk . (12)

Proof: For j ≤ ℓ we have

(x+ β)j

j!
−
xj

j!
=

1

j!

j−1∑

k=0

(
j

k

)
βj−kxk =

j−1∑

k=0

βj−k

(j − k)!

xk

k!
=: q∗j (x),

hence, with q∗j = 0, j = ℓ+ 1, . . . , d,

vpℓ(·+ β)− vpℓ =



q∗0
...
q∗d


 .

On the other hand, for r ≤ ℓ− j − 1,

dr

dxr
q∗j (x) =

j−1∑

k=r

βj−kxk−r

(k − r)!(j − k)!
=

j−1−r∑

k=0

βj−k−r

(j − k − r)!

xk

k!
= q∗j+r(x),

and setting qβ,ℓ := q∗ℓ yields

qβ,ℓ =
ℓ−1∑

k=0

βℓ−k

(ℓ− k)!

(·)k

k!
=

ℓ−1∑

k=0

βℓ−k

(ℓ− k)!
pk

and proves the claim. �

Theorem 2.11 Let A ∈ ℓ(d+1)×(d+1)(Z). If

1. SAvp = vq, deg q ≤ deg p, for any p ∈ Pd−1,

2. There exists a finitely supported B ∈ ℓ(d+1)×(d+1)(Z) such that (10)
holds true, i.e., TdSA = 2−dSBTd,
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3. SBed = ed,

then A satisfies the spectral condition of order d.

Proof: Since

Tdvpd = ed = SBed = SBTdvpd = 2dTdSAvpd ,

i.e., Td
(
SAvpd − 2−dvpd

)
= 0, which yields that SAvpd = 2−dvpd + v′ with

0 = Tdv
′ =

[
T̃d−1 ∗
0 1

]
v′.

Hence, v′d = 0 and T̃d−1v
′
0:d−1 = 0, so that Proposition 2.9 implies that there

exists q̃d−1 ∈ Pd−1 such that

SAvpd = 2−dvpd + vq̃d−1
. (13)

Since SA is a stationary subdivision operator with scaling factor 2, we have
SAc(·+ 2) = SA (c(·+ 1)), hence, by Lemma 2.10,

∆2SAvpd = SA (vpd(·+ 1)− vpd) = SA∆vpd = SAvpd−1
+

d−2∑

j=0

1

(d− j)!
SAvpj

On the other hand, Lemma 2.10 also yields that there exists q ∈ Pd−2 such
that

∆2

(
2−dvpd−1

+ vq̃d−1

)
= 2−d

d−1∑

j=0

2d−k

(d− j)!
vpj + vq

= 2−d+1vpd−1
+ 2−d

d−2∑

j=0

2d−k

(d− j)!
vpj + vq.

Substituting these two identities into (13), we thus obtain that

SAvpd−1
= 2−d+1vpd−1

+ 2−d
d−2∑

j=0

2d−k − 1

(d− j)!
vpj + vq,

hence,
SAvpd−1

= 2−d+1vpd−1
+ vq̃d−2

, q̃d−2 ∈ Pd−2, (14)
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which is (13) with d replaced by d− 1. Since the argument was only based
on the stationarity of SA, we can repeat this process and find that

SAvpj = 2−jvpj + vq̃j−1
, qj ∈ Pj−1, j = 0, . . . , d. (15)

Since Pj is spanned by p0, . . . , pj , (15) means that there exists an upper
triangular matrix U with diagonal 1, . . . , 2−d+1, 2−d such that

SA [vp0 , . . . ,vpd ] = [vp0 , . . . ,vpd ]U = [vp0 , . . . ,vpd ]




1 ∗ . . . ∗

2−1 . . .
...

. . . ∗
2−d



.

(16)
Using the upper triangular matrix S with diagonal elements 1 which factor-
izes U into

L = SDS−1, D =




1
2−1

. . .

2−d


 ,

we now define [
vp̂0 , . . . ,vp̂d

]
:= [vp0 , . . . ,vpd ]S

and obtain by a straightforward computation that

SA
[
vp̂0 , . . . ,vp̂d

]
= SA [vp0 , . . . ,vpd ]S = [vp0 , . . . ,vpd ]LS

= [vp0 , . . . ,vpd ]SD =
[
vp̂0 , . . . ,vp̂d

]
D,

hence SA satisfies the spectral condition of order d since S being upper
triangular guarantees that any p̂j is of degree exactly j. �

Corollary 2.12 For a mask A ∈ ℓ(d+1)×(d+1) (Z) the following statements
are equivalent:

1. A satisfies the spectral condition of order d.

2. There exist masks Bk, k = 0, . . . , d such that

[
Tk

I

]
SA = 2−kSBk

[
Tk

I

]
, SBk

ek = ek.
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3. There exists B such that

TdSA = 2−dSBTd, SBed = ed.

Proof: “1) ⇒ 2)” has been the iterative step in [18] and the normalization
is deduced as in Theorem 2.8, “2) ⇒ 3)” is trivial and “3) ⇒ 1)” is the
statement of Theorem 2.11. �

2.2 Convergence

Definition 2.13 Let A ∈ ℓ (d+1)×(d+1) (Z) be a mask and HA the associ-
ated Hermite subdivision scheme on ℓd+1(Z) as defined in (6). The scheme
is called convergent if for any data f0 ∈ ℓd+1 (Z) and the corresponding
sequence of refinements fn, there exists a vector function Φ = [φi]i=0,...,d ∈
C
(
R,Rd+1

)
such that for any compact K ⊂ R there exists a sequence εn

with limit 0 which satisfies

max
i=0,...,d

max
α∈Z∩2nK

∣∣∣f (i)n (α)− φi
(
2−nα

)∣∣∣ ≤ εn. (17)

The scheme HA is said to be Cℓ–convergent if moreover φ0 ∈ Cℓ (R,R) and

diφ0
dxi

= φi, i = 0, . . . ,min{ℓ, d}.

We recall the following result on convergence proved in [18].

Theorem 2.14 Let A ∈ ℓd+1(Z) be a mask which satisfies the spectral con-
dition of order at least d. Suppose that for any data f0 ∈ ℓd+1 (Z) and
associated refinement sequence fn of the Hermite scheme HA,

1. the sequence fn(0) converges to a limit y ∈ R
d+1,

2. (at least) one of the following two properties holds true:

(a) the associated Taylor subdivision scheme SB is C0–convergent
and for any initial data g0 = Tdf0, the limit function Ψ = Ψg ∈
C
(
R,Rd+1

)
satisfies

Ψ =

[
0

ψd

]
, ψd ∈ C (R,R) . (18)
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(b) the associated complete Taylor subdivision scheme S
B̃

is con-
tractive, that is, it is C0–convergent and for any initial data
g0 = T̃df0, the limit function Ψ = Ψg ∈ C

(
R,Rd+1

)
satisfies

Ψ = 0.

Then HA is Cd–convergent.

We conclude the section with an important corollary whose proof follows
the lines of the proof of [18, Corollary 5].

Corollary 2.15 Let A ∈ ℓd+1(Z) be a given mask which satisfies the spec-
tral condition of order at least d. Suppose that the associated Taylor sub-
division scheme SB is Ck–convergent with the conditions of Theorem 2.14,
then HA is Cd+k-convergent.

3 Extended schemes

With a Hermite scheme of degree d, we can get derivatives up to degree d
and at most Cd–convergence. Sometimes, the last component of the limit

function, namely φ
(d)
0 , turns out to be more regular than C0. To explore this

extra regularity, we propose to extend the scheme to one of higher degree. As
examples, we explicitly study the de Rham transform and Cardinal splines
that provide such regularity.

3.1 A first extension

From a given Hermite scheme with mask A, we first build a new scheme
A+, called extended scheme, by only adding a single row in an intuitive
way. Its definition is based on the approximation of a derivative by a slope.
Precisely for a function ϕ ∈ Cd+1(R) and α ∈ Z, we use the fact that

ϕ(d+1)

(
2α

2n+1

)
= ϕ(d+1)

( α
2n

)
≃ 2n−1

(
ϕ(d)

(
α+ 1

2n

)
− ϕ(d)

(
α− 1

2n

))
,

ϕ(d+1)

(
2α+ 1

2n+1

)
≃ 2n

(
ϕ(d)

(
α+ 1

2n

)
− ϕ(d)

( α
2n

))
.

Starting from any f0, the previous approximations suggest the construction

for the additional components f
(d+1)
n+1 as

f
(d+1)
n+1 (2α) = 2n−1

(
f (d)n (α+ 1)− f (d)n (α− 1)

)
,

f
(d+1)
n+1 (2α+ 1) = 2n

(
f (d)n (α+ 1)− f (d)n (α)

)
.
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The new mask is then defined in the usual way, with just d replaced by d+1
so that A+(α) ∈ R

(d+2)×(d+2) has the entries

A+(−2) =

[
A(−2) 0

0 2−d−2 0

]
, A+(−1) =

[
A(−1) 0

0 2−d−1 0

]

A+(1) =

[
A(1) 0

0 − 2−d−1 0

]
, A+(2) =

[
A(2) 0

0 − 2−d−2 0

]

A+(α) =

[
A(α) 0

0 0

]
for α /∈ {−2,−1, 1, 2}.

(19)

Proposition 3.1 Suppose that the scheme with mask A of degree d satis-
fies the spectral condition of order d+1 with the polynomials p0, p1, . . . , pd+1.
Then the extension with mask A+(α) defined by (19) also satisfies the spec-
tral condition of order d+1 with the same polynomials, thus there exist B+

and B̃+ such that Td+1SA+
= 2−d−1SB+

Td+1 and T̃d+1SA+
= 2−d−1S

B̃+
T̃d+1.

Proof: Since A satisfies the spectral condition of order d + 1, we obtain
for any i ∈ {0, . . . , d+ 1} and any real numbers x, y and u that

p
(d)
i (x+ u)− p

(d)
i (x) = up

(d+1)
i (y) =

{
0 for i = 0, . . . , d,
u for i = d+ 1,

since pi ∈ Pi and pd+1(x) = xd+1/d! + . . .

If we define vi(x) = [pi(x), . . . , p
(d)
i (x), p

(d+1)
i (x)]T for i = 0, . . . , d + 1

then

SA+
vi(2α)

=
∑

β∈Z

A+(2α− 2β)vi(β) =
∑

β∈Z



A(2α− 2β)



pi(β)
...

p
(d)
i (β)




ad+1,d(2α− 2β)p
(d)
i (β)




=




1

2i



pi(2α)

...

p
(d)
i (2α)




1/2d+2
(
p
(d)
i (α+ 1)− p

(d)
i (α− 1)

)



=




1

2i



pi(2α)

...

p
(d)
i (2α)




1/2d+1p
(d+1)
i (2α)




=
1

2i
vi(2α).

13



Similarly, SA+
vi(2α+1) =

1

2i
vi(2α+1) and therefore the spectral condition

of order d+1 is satisfied by the extended scheme A+. Consequently, we can
compute the masks B+ and B̃+ such that Td+1SA+

= 2−d−1SB+
Td+1 and

T̃d+1SA+
= 2−d−1S˜̄B+

T̃d+1. �

Examples of such extensions are given in the next section.

3.2 Factorization of extensions

We now suppose that A ∈ ℓ(d+1)×(d+1)(Z) is a mask which satisfies the
spectral condition of order d′ > d and want to consider the general question
of how to extend this mask in such a way that the extended scheme A′ ∈
ℓ(d

′+1)×(d′+1)(Z) satisfies a spectral condition of increased degree d′. We
begin with a simple observation concerning the Taylor operators, namely,

T
∗
d′(z) =

[
T̃

∗

d(z) −W

0 T ∗
d̄
(z)

]
, T̃

∗

d′(z) =

[
T̃

∗

d(z) −W

0 T̃
∗

d̄(z)

]
, (20)

where d̄ := d′ − d− 1 and

W =




1
(d+1)! . . . 1

(d+d̄+1)!
...

. . .
...

1 . . . 1
(d̄+1)!


 ∈ R

(d+1)×(d̄+1).

From (20) one can verify by straightforward computation that

T ∗
d′(z)

−1 =

[
T̃ ∗

d(z)
−1 T̃ ∗

d(z)
−1W T ∗

d̄
(z)−1

0 T ∗
d̄
(z)−1

]
,

T̃ ∗
d′(z)

−1 =

[
T̃ ∗

d(z)
−1 T̃ ∗

d(z)
−1W T̃ ∗

d̄
(z)−1

0 T̃ ∗
d̄
(z)−1

]
,

(21)

respectively. Since detT ∗
d(z) = (z−1 − 1)d and det T̃

∗

d(z) = (z−1 − 1)d+1,
the matrices in (21) are well–defined for z 6= 1. Now we extend A to the
matrix mask A′ by extending the symbol into the block lower triangular

A
′∗(z) :=

[
A∗(z) 0
U∗(z) V∗(z)

]
, U ∈ ℓ(d̄+1)×(d+1)(Z), V ∈ ℓ(d̄+1)×(d̄+1)(Z),

(22)
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and compute

T
∗
d′(z)A

′∗(z) =

[
T̃

∗

d(z)A
∗(z)−WU∗(z) −WV∗(z)

T ∗
d̄
(z)U∗(z) T ∗

d̄
(z)V∗(z)

]

=

[
B̃

∗
(z)T̃

∗

d(z
2)−WU∗(z) −WV∗(z)

T ∗
d̄
(z)U∗(z) T d̄(z)

∗V∗(z)

]
.

Choosing U∗(z) := Ũ
∗
(z)T ∗

d(z
2) and V∗(z) := Ũ

∗
(z)W + Ṽ

∗
(z), we get the

simplified expression

T
∗
d′(z)A

′∗(z)T ∗
d′(z

2)−1

=


 B̃

∗
(z)−W Ũ

∗
(z)

(
B̃

∗
(z)W −W Ũ

∗
(z)W −W V∗(z)

)
T ∗

d̄
(z2)−1

T ∗
d̄
(z) Ũ

∗
(z) T ∗

d̄
(z)

(
Ũ

∗
(z)W + V∗(z)

)
T ∗

d̄
(z2)−1




=

[
B̃

∗
(z)−W Ũ

∗
(z)

(
B̃

∗
(z)W −W Ṽ

∗
(z)

)
T ∗

d̄
(z2)−1

T ∗
d̄
(z) Ũ

∗
(z) T ∗

d̄
(z) Ṽ

∗
(z)T ∗

d̄
(z2)−1

]
.

Thus, Corollary 2.12 yields the following conclusion which describes the al-
gebraic condition on the extension that guarantees that the extended scheme
satisfies the spectral condition of order d′.

Proposition 3.2 The mask A′ defined by the extension (22) satisfies the
spectral condition of order d′, i.e., Td′SA′ = SB′Td′ and SB′ed′ = ed′ , if and
only if

1. Ṽ satisfies the spectral condition of order d̄− 1,

2.
(
B̃

∗
(z)W −W Ṽ

∗
(z)

)
T ∗

d̄
(z)−1ed̄ = 0.

Since Td̄ed̄ = ed̄, hence also T−1
d̄

ed̄ = ed̄, the second condition in Proposi-

tion 3.2 is equivalent to B̃
∗
(z)Wed̄ = W Ṽ

∗
(z)ed̄ or

vd̄(z) = W−1
B̃

∗
(z)




1
d′!
...
1

(d′−d)!


 , (23)

where vd̄ denotes the last column of Ṽ
∗
.
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4 The Example of de Rham schemes

4.1 Construction and first properties

The construction of the de Rham transform was proposed in [7] and some
of the properties used here can be found in [6]. In the de Rham scheme, a
subdivision scheme is applied twice and then one only keeps the values at
indices which are equal to 1 and 3 modulo 4, thus defining another binary
subdivision scheme derived from the original one. With de Rham scheme,
one loses the interpolating property but can gain higher order of regularity.
The challenge is to prove this higher regularity of the limit function.

For a Hermite subdivision schemeHA of degree d, with mask {A(α)}α∈Z,
let us define a new (dual) Hermite subdivision scheme by taking de Rham
transform of A. From the initial state of the scheme f̄0 = f0 : Z → R

d+1,
we define the sequence f̄n for n > 0 by

Dn+1g(β) =
∑

γ∈Z

A(β − 2γ)Dnf̄n(γ), β ∈ Z

Dn+2h(α) =
∑

β∈Z

A(α− 2β)Dn+1g(β), α ∈ Z

f̄n+1(α) = h(2α+ 1), α ∈ Z.

Then it is easy to prove that Dn+1f̄n+1(α) =
∑

γ∈Z Ā(α − 2γ)Dnf̄n(γ)
where

Ā(α) = D−1
∑

β∈Z

A(2α+ 1− 2β)A(β), α ∈ Z. (24)

Definition 4.1 Let SA be a subdivision scheme. De Rham transform S
A

of SA is the subdivision scheme whose mask A is defined by (24).

Remark 4.2 Note that if the support of SA is [σ, σ′], then the support of
its de Rham transform S

A
is contained in [(3σ − 1)/2, (3σ′ − 1)/2].

The following Theorem and Corollary are proved in [6].

Theorem 4.3 Let SA be a Hermite subdivision scheme which satisfies the
spectral condition of order ℓ, then de Rham transform S

A
satisfies the spec-

tral condition
∑

β∈Z Ā(α − 2β)v̄pj (β) = v̄pj (α)/2
j for an appropriate se-

quence of polynomials p̄j of degree j, j = 0, . . . , ℓ .

16



Corollary 4.4 Let there be a Hermite scheme of degree d with mask A

which reproduces a basis of Pℓ , then its de Rham transform with mask A

satisfies the corresponding spectral condition with the sequence of polynomi-
als p̄k(x) = (x− 1/2)k/k!, k = 0, . . . , ℓ, ℓ ≤ d.

Remark 4.5 From [10], we know that a convergent Hermite interpolatory
scheme of degree d reproduces any polynomial of degree at most d.

4.2 An extension of a Hermite subdivision scheme of degree

1

We start with the interpolatory Hermite subdivision scheme of degree d = 1
proposed in [16], depending on two parameters λ, µ. The non zero matrices
of its mask are A(−1), A(0), A(1), given as

1

4

[
2 4λ

2(1− µ) µ

]
,

1

2

[
2 0
0 1

]
,

1

4

[
2 −4λ

−2(1− µ) µ

]
. (25)

For any values of the parameters λ and µ, the scheme reproduces polynomials
of degree 1. Moreover it reproduces P2 if and only if λ = −1/8 and P3 if
also µ = −0.5.

Applying de Rham transform, we end up with the dual approximat-
ing Hermite subdivision scheme Ā. The non zero entries of the mask,
Ā(−2), Ā(−1), Ā(0), Ā(1), are computed as (see also [18])

1

8

[
2 + 4λ(1− µ) 4λ+ 2λµ
4− 2µ− 2µ2 µ2 + 8λ(1− µ)

]
,

1

8

[
6− 4λ(1− µ) 8λ− 2λµ
4− 2µ− 2µ2 µ2 − 8λ(1− µ) + 2µ

]
,

1

8

[
6− 4λ(1− µ) −8λ+ 2λµ
−4 + 2µ+ 2µ2 µ2 − 8λ(1− µ) + 2µ

]
,

1

8

[
2 + 4λ(1− µ) −4λ− 2λµ
−4 + 2µ+ 2µ2 µ2 + 8λ(1− µ)

]
,

(26)

respectively. Since HĀ satisfies the spectral condition of order ℓ = 1, we can
construct masks B and B̃ supported on [−1, 1] such that

[
z−1 − 1 −1

0 1

]
Ā

∗
(z) =

1

2
B

∗(z)

[
z−2 − 1 −1

0 1

]
(27)

and [
z−1 − 1 −1

0 z−1 − 1

]
Ā

∗
(z) =

1

2
B̃

∗
(z)

[
z−2 − 1 −1

0 z−2 − 1

]
. (28)

From the above, we see that the mask B̃ is the difference mask of B, that is

B̃
∗
(z) =

[
1 0
0 z−1 − 1

]
B

∗(z)
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The non-zero entries of mask B̃ are

B̃(−1) =
1

4

[
2 + 4λ(1− µ) 2λ(1 + µ)
4− 2µ− 2λ2 µ2 + 8λ(1− µ)

]

B̃(0) =
1

4

[
2µ+ 2µ2 − 8λ(1− µ) −4λ(1− µ)− µ2

0 2µ− 16λ(1− µ)

]
,

B̃(1) =
1

4

[
−2 + 4λ(1− µ) + 2µ+ 2µ2 −6λµ− µ2 − 2µ+ 2

−4 + 2µ+ 2µ2 4− 2µ− µ2 + 8λ(1− µ)

]
.

(29)
For some values of the parameters, the Hermite schemeHĀ has C1–convergence.
Our aim is to show that the subdivision scheme associated with Ā can even
be C2 for an appropriate choice of parameters. To that end, we build Ā+

and show that this is C2 by proving that B̃+ is contractive.
For our case, we fix λ = −1/8 so that A reproduces any polynomial of

P2. Using Corollary 4.4, de Rham scheme Ā satisfies the spectral condition
of order ℓ = 2 with the polynomials p̄0(x) = 1, p̄1(x) = x− 1/2 and p̄2(x) =

1/2(x− 1/2)2 and so does Ā+ from (19). The computation of ˜̄B+ gives

˜̄B+(−1) =
1

8




6 + 2µ −2− µ 0
16− 8µ− 8µ2 −4 + 4µ+ 4µ2 0

0 4 0


 ,

˜̄B+(0) =
1

4



2 + 2µ+ 4µ2 −µ− 2µ2 0

0 2 0
0 2 0




˜̄B+(1) =
1

8



−10 + 10µ+ 8µ2 4− 5µ− 4µ2 1
−16 + 8µ+ 8µ2 4− 4µ− 4µ2 4

0 −4 4


 ,

˜̄B+(2) =
1

4



0 −1 1
0 −2 2
0 −2 2




(30)

Now, following [1], to prove the contractivity of the scheme with mask ˜̄B+,
we build the two matrices

U0 =



˜̄B+(2)

˜̄B+(0) 0

0 ˜̄B+(1)
˜̄B+(−1)

0 ˜̄B+(2)
˜̄B+(0)


 , U1 =



˜̄B+(1)

˜̄B+(−1) 0
˜̄B+(2)

˜̄B+(0) 0

0 ˜̄B+(1)
˜̄B+(−1)


 ,

and compute, for a given positive integer p, all the matrices

Mu =

p∏

k=1

U
uk

0 U
1−uk

1 , uk ∈ {0, 1}, u := [uk]k=1,...,p,
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Figure 1: Interpolating and Extended de Rham Schemes

and finally the value ρp = maxu ‖Mu‖
1/p
1 . If ρp < 1 then the scheme S ˜̄B+

is

contractive and the Hermite scheme H˜̄A+

is C2. See Figures 1 and 2 where

the C2–convergence is obtained for µ ∈ [−0.8, 0.37]. .

4.3 An extension of a Hermite subdivision scheme of degree

2

In this second case, we start with the interpolatory Hermite subdivision
scheme of degree d = 2 proposed in [16]. This is a 2 point subdivision
scheme depending on several parameters. The non zero matrices of its mask
are A(−1), A(0), A(1), given as

D



α1 α2 α3

β1 β2 β3
γ1 γ2 γ3


 , D, D



α1 −α2 α3

−β1 β2 −β3
γ1 −γ2 γ3


 , D :=



1 0 0
0 1

2 0
0 0 1

4


 .

(31)
To guarantee reproduction of degree 3 polynomials, among the free param-
eters, the following constraints are assumed (see [13]):

α1 = 1
2 , γ1 = 0, β2 =

1−β1

2 , γ3 =
1−γ2
2 ,

α3 = −1−8α2

16 , β3 =
2β1−3
24 .

(32)
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Figure 2: C2–convergence when MaxNorm < 1.

Since the mask under consideration depends only on α2, β1, γ2, we rename
the free parameters for the sake of brevity as α, β, γ, respectively, and denote
by R the range of variation for them generating a C2 scheme given in [13].
Therefore, the mask we consider reads as




1
2 α −1−8α

16
β
2

1−β
4

2β−3
48

0 γ
4

1−γ
8


 ,



1 0 0
0 1

2 0
0 0 1

4


 ,




1
2 −α −1−8α

16

−β
2

1−β
4 −2β−3

48

0 −γ
4

1−γ
8


 , (α, β, γ) ∈ R

(33)
We apply de Rham transform for the dual approximating Hermite subdivi-
sion scheme Ā. The non zero entries of the mask are given by

Ā(−2) =




1+2αβ
4

α(3−β)
4 − (1+8α)γ

64
α(2β−3)

48 − (1+8α)(5−γ)
128

(3−β)β
4 αβ + (1−β)2

8 + γ(2β−3)
96 −β(1+8α)

16 + (3−2β−γ)(2β−3)
192

βγ
2

(3−2β−γ)γ
8

(2β−3)γ
48 + (1−γ)2

16




Ā(−1) =




3−2αβ
4

α(3+β)
4 − (1+8α)γ

64 −α(2β−3)
48 − (1+8α)(7−γ)

128
(3−β)β

4 −αβ + (1−β)(3−β)
8 − (2β−3)γ

96
β(1+8α)

16 + (3−2β+γ)(2β−3)
192

−βγ
2

(3+2β−γ)γ
8 − (2β−3)γ

48 + (1−γ)(3−γ)
16




Ā(0) =




3−2αβ
4 −α(3+β)

4 + γ(1+8α)
64 −α(2β−3)

48 − (1+8α)(7−γ)
128

(β−3)β
4 −αβ + (1−β)(3−β)

8 − (2β−3)γ
96 −β(1+8α)

16 + (2β−3−γ)(2β−3)
192

−βγ
2

(γ−3−2β)γ
8 − (2β−3)γ

48 + (1−γ)(3−γ)
16




Ā(1) =




1+2αβ
4

α(β−3)
4 + (1+8α)γ

64 +α(2β−3)
48 − (1+8α)(5−γ)

128
(β−3)β

4 αβ + (1−β)2

8 + γ(2β−3)
96

(1+8α)β
16 − (2β−3)(3−2β−γ)

192
βγ
2

γ(2β+γ−3)
8

(2β−3)γ
48 + (1−γ)2

16



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Now, the parameters for the interpolating scheme A have been chosen in
such a way that it reproduces polynomials in P3. Again, using Corollary
4.4, de Rham scheme Ā satisfies the spectral condition of order 3 with
the polynomials p̄0(x) = 1, p̄1(x) = x − 1/2, p̄2(x) = 1/2(x − 1/2)2 and
p̄3(x) = 1/6(x− 1/2)3 and so does the extended scheme Ā+.

We recall that

T̃
∗

3(z) =




z−1 − 1 −1 −1
2

−1
6

0 z−1 − 1 −1 −1
2

0 0 z−1 − 1 −1
0 0 0 z−1 − 1


 ,

and the computation of ˜̄B+ satisfying T̃3SA = 2−3S˜̄B+

T̃3 gives

˜̄B(−1) = 8




1+2αβ
4

144α−3γ−48αβ−24αγ
192 −−16αβ−24αγ+15−3γ+144α

384 0
β(−β+3)

4
96αβ+12−24β+12β2+2βγ−3γ

96 − 96αβ+9+4β2+2βγ−3γ
192 0

βγ
2

γ(3−2β−γ)
8 −−2βγ−3−3γ2+9γ

48 0
0 0 1

16 0


 ,

˜̄B(0) = 8




−4αβ−βγ+β2
−3β+2

4
−24β2+48β−24−96αβ+12γ2

−30γ+20βγ
192 . . .

−βγ
2 +−24β+24−192αβ−30γ+20βγ+12γ2

96 . . .

−βγ 4γβ
8 . . .

0 0 . . .

. . . 8β2+30γ−4−4βγ+160αβ−12γ2

384 0

. . . −12γ2+24β+192αβ−4βγ+30γ−18
192 0

. . . 3−4βγ
48 0

. . . 1
16 0


 ,

˜̄B(1) = 8




2αβ+1+β2
−3β+βγ

4
144αβ+96β−24β2

−20βγ+24αγ−39γ−24+12γ2
−144α

192 . . .
β(β−3+2γ)

4
−39γ+12+12γ2+96αβ+48β−12β2

−22βγ
96 . . .

βγ
2

γ(−3−2β+γ)
8 . . .

0 0 . . .

. . . − 24αγ+48β+176αβ−8β2
−4βγ−7−144α−39γ+12γ2

384
1

384

. . . −−39γ+24β−6βγ+12γ2+15+96αβ−4β2

192
1
64

. . . −−9γ+3γ2
−2βγ+3

48
1
16

. . . − 1
16

1
16




˜̄B(2) = 8



0 0 − 1

96
1
96

0 0 − 1
32

1
32

0 0 − 1
16

1
16


 .

We use the method of the previous subsection to prove that de Rham
scheme is C3 see Figures 3 and 4.
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Figure 3: Interpolating and Extended de Rham Schemes
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Figure 4: The C3–convergence is obtained for β ∈ [0.82, 2.05]
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5 Cardinal spline functions and Hermite schemes

In this section, we rewrite the well known cardinal splines (cf. [22]) in terms
of a scalar subdivision scheme (or vector scheme of dimension 1 or Hermite
scheme of degree 0). Then we extend this first subdivision scheme into
Hermite schemes of different degrees.

5.1 Construction

Our presentation is based on a construction detailed by Micchelli in [20].
Let

ϕ0(x) = χ[0,1] =

{
1 if x ∈ [0, 1],
0 if x /∈ [0, 1].

For r = 1, 2, . . ., we build ϕr by means of autoconvolution as ϕr = ϕ0 ∗ϕr−1

or ϕr(x) =
∫ x
x−1 ϕr−1(t)dt.

By recursion, it is easily seen that σr := supp(ϕr) = [0, r + 1], that
ϕr is a Cr−1 piecewise polynomial of degree r and that the translates of
the functions ϕr(· − α), α ∈ Z, form a nonnegative partition of unity, i.e.∑

α∈Z ϕr(x− α) = 1 and ϕr(x− α) ≥ 0. Moreover,

ϕr(x) =
1

2r

∑

α∈Z

(
r + 1
α

)
ϕr(2x−α),

(
i
j

)
=

{
i!

j!(i−j)! if 0 ≤ j ≤ i,

0 otherwise.

Considering v(x) =
∑

α∈Z f
(0)
0 (α)ϕr(x − α), which is a finite sum for any

x ∈ R, we deduce for n ∈ N0 that v(x) =
∑

α∈Z f
(0)
n (α)ϕr (2

n x− α) where

f
(0)
n+1(α) =

1

2r

∑

β∈Z

(
r + 1
α− 2β

)
f (0)n (β) =:

∑

β∈Z

ar(α− 2β)f (0)n (β), α ∈ Z,

(34)
that is,

ar(α) =
1

2r

(
r + 1

α

)
, α ∈ Z. (35)

Moreover, the well–known derivative formula for cardinal B–spline yields

div

dxi
(x) =

∑

α∈Z

2ni∆if (0)n (α− i)ϕr−i (2
nx− α) , i = 0, . . . , r − 1. (36)

We have a particular case when i = r−1. Since the function ϕ1 is piecewise

linear with ϕ1(α) = δ1α, we obtain
dr−1v

dxr−1
(β/2n) = 2ni∆if

(0)
n (β − r + 1).
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5.2 Spectral properties of Sar

We look for the eigenpolynomials of the scheme, namely the polynomials p
such that Sarp = λp. The following lemma was already given in [1] in the
multidimensional case.

Lemma 5.1 Let Sa be a scalar subdivision operator. If p and q := Sap are
both polynomials, then

q(x) =
1

2

∑

β∈Z

a(β)p

(
x− β

2

)
, x ∈ R. (37)

We also recall the following simple fact that can be proved by standard
subdivision techniques.

Lemma 5.2 For any polynomial p ∈ Pr also Sarp ∈ Pr.

Proof: Since ∆r+1Sar = 2−r∆r+1, we have for any p ∈ Pr that ∆
r+1Sarp =

2−r∆r+1p = 0 which is equivalent to Sarp ∈ Pr. �

Proposition 5.3 For a given integer r > 0, let ℓr(x) =
1

r!

r∏

j=1

(x+ j), then

Sarℓ
(i)
r =

1

2r−i
ℓ(i)r , i = 0, . . . , r. (38)

Proof: Case i = 0: Let

qr(α) := Sarℓr(α) =
∑

β∈Z

ar(α− 2β)ℓr(β) (39)

By Lemma 5.2, ℓr and qr are two polynomials of degree at most r. Thus
it is sufficient to verify the identity ℓr = 2rqr at r + 1 points, namely α =
0,−1, . . . ,−r.

To begin, we notice that ar(α − 2β) = 0 as soon as α − 2β < 0 or
α − 2β > r + 1. For α ∈ {−1,−2, . . . ,−r}, this gives ar(α − 2β) = 0 as
soon as β ≥ 0 or β < −r. On the other hand, for β ∈ [−r, 0) ∩ Z, we
have ℓr(β) = 0 so that all the terms in the sum qr from (39) are vanishing
and therefore, ℓr(α) = 2rqr(α) = 0, −r ≤ α < 0. Finally, for α = 0, an
analogous support argument shows that almost all terms of the sum are
vanishing except one, yielding qr(0) = ar(0)ℓr(0) = 2−rℓr(0).
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To sum up, 2−rℓr(α) = qr(α) for α = 0,−1, . . . ,−r which concludes the
case.

Case i > 0: Since
1

2r
ℓr = Sarℓr, we deduce by Lemma 5.1 that

1

2r
ℓr(x) =

1

2

∑

β∈Z

ar(β)ℓr

(
x− β

2

)
, x ∈ R.

Differentiating i times, this gives

1

2r
ℓ(i)r (x) =

1

2

1

2i

∑

β∈Z

ar(β)ℓ
(i)
r

(
x− β

2

)
, x ∈ R. (40)

Since Sarℓ
(i)
r is a polynomial, Lemma 5.1 and (40) yield

Sarℓ
(i)
r (α) =

1

2

∑

β∈Z

ar(β)ℓ
(i)
r

(
α− β

2

)
=

1

2r−i
ℓ(i)r (α), α ∈ Z,

which completes the proof of (38). �

5.3 Extension to Hermite subdivision schemes

We define Hermite subdivision schemes of degree d ≤ r with mask {A(α)}
and support [0, r+d+1] which are extensions of Sar by applying differences
to the mask ar, yielding

A(α) =




ar(α) 0 . . . 0
∆ar(α− 1) 0 . . . 0
∆2ar(α− 2) 0 . . . 0

...
∆dar(α− d) 0 . . . 0



, A

∗(z) =
(1 + z)r+1

2r




1 0 . . . 0
(1− z) 0 . . . 0
(1− z)2 0 . . . 0

...
(1− z)d 0 . . . 0



.

We begin with f0 ∈ ℓd+1 (Z) and fn ∈ ℓd+1 (Z) defined by (6) and notice
that
2−(n+1)f

(1)
n+1(α) =

∑
β∈Z∆ar(α− 1− 2β)f

(0)
n (β) = ∆f

(0)
n+1(α− 1) so that for

n ≥ 1,
f (1)n (α) = 2n∆f (0)n (α− 1). (41)

Similarly for i = 2, . . . , d:

f (i)n (α) = 2in∆if (0)n (α− i). (42)
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Now with (34) and (36), for n > 0,

div

dxi
(x) =

∑

α∈Z

f (i)n (α)ϕr−i(2
nx− α), i = 0, . . . , d.

Generally, this Hermite scheme does not satisfy spectral condition, see
[19] for an example with r = 3 and d = 2 but it is possible to get a modified
scheme.

Proposition 5.4 For given integers r > 0 and d ≤ r, there exists an upper
triangular matrix Rr,d ∈ R

(d+1)×(d+1) with 1 on the diagonal and 0 on the
first row except the first term such that the spectral condition is satisfied for
scheme SĀ with mask Ā(α) := R−1

r,dA(α)Rr,d with the polynomials pr−i :=

ℓ
(i)
r and corresponding eigenvalue 1/2r−i, i = r − d, . . . , r.

Proof: Since Sarpj = 2−jpj and v
(0)
pj = pj , we deduce that

∑

β∈Z

A(α−2β)Rr,dvpj (β) =




∑
β ar(α− 2β)v

(0)
pj (β)∑

β ∆ar(α− 1− 2β)v
(0)
pj (β)

...∑
β ∆

dar(α− d− 2β)v
(0)
pj (β)



=

1

2j




pj(α)
∆pj(α− 1)

...
∆ppj(α− d)




Then

SĀvpj =
1

2j
vpj ⇔

∑

β∈Z

A(α− 2β)Rr,dvpj (β) =
1

2j
Rr,dvpj

⇔




pj(α)
∆pj(α− 1)

...
∆ppj(α− d)


 = Rr,d




pj(α)
p′j(α)

...

p
(d)
j (α)


 .

To obtain the components rik of Rr,d, we remark that for any polynomial
p ∈ Pd, by the computation of Taylor expansions at point α, ∆ip(α − i) =
p(i)(α) +

∑d
k=i+1 rikp

(k)(α). �

Lemma 5.5 For any p ∈ Pd and i ≤ d, we have

∆ip(α− i) = p(i)(α) +
d∑

k=i+1

p(k)(α)
i∑

j=1

(−1)i

i!

(
i

j

)
(−1)j . (43)
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Proof: We fix α and set

p̃ = p−
i−1∑

j=0

p(j)(α)

j!
(· − α)j

so that p − p̃ ∈ Pi−1 and p̃(k)(α) = 0, k = 0, . . . , i − 1 as well as p̃(k)(α) =
p(k)(α), k = i, . . . , d. Then, by a Taylor expansion,

∆ip(α− i) = ∆ip̃(α− i) =
i∑

j=0

(
i

j

)
(−1)j

d∑

k=0

p̃(k)(α)

k!
(−j)k

=
i∑

j=0

(
i

j

)
(−1)j

d∑

k=i

p̃(k)(α)

k!
(−j)k

=

d∑

k=i

(−1)k

k!
p(k)(α)

i∑

j=0

(
i

j

)
(−1)jjk =:

d∑

k=i

rik p
(k)(α),

where the coefficients rjk are independent of p. If we specifically set p =
ℓr =

1
r!x

r + · · · and note that

∆ℓr =
1

r!

r∏

j=2

(·+ j) ((x+ r + 1)− (x+ 1)) = ℓr−1(·+ 1),

it follows that

ℓr−i =
d∑

k=1

rik ℓ
(k)
r

and a comparison of coefficients with respect to xr−i yields rii = 1 and thus
(43). �
A nice byproduct of Lemma 5.5 is the combinatorial identity

k∑

j=1

(
k

j

)
(−1)jjk = (−1)kk!.

In the following subsubsections, we give examples of modified schemes that
satisfy spectral conditions and are also extensions of the initial subdivision
scheme.
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5.4 Cardinal Spline with r = 4, d = 2

From the Hermite scheme with mask A whose coefficients in the first column
are given according to the following table:

α 0 1 2 3 4 5 6 7

16a00(α) 1 5 10 10 5 1 0 0
16a10(α) 1 4 5 0 -5 -4 -1 0
16a20(α) 1 3 1 -5 -5 1 3 1

and R4,2 =



1 0 0
0 1 −1

2
0 0 1


,

we define the Hermite scheme with mask Ā(α) = R−1
4,2A(α)R4,2.

With p0(x) = 1, p1(x) = x+ 5
2 , p2(x) =

1
2x

2+ 5
2x+

35
12 and we obtain that

SAR4,2bj = 2−jR4,2bj or SĀbj = 2−jbj where bj =



pj
p′j
p′′j


, for j = 0, 1, 2

5.5 Cardinal spline with r = 4, d = 3

Now, we build another extension, beginning with mask A+(α) ∈ R
4×4 with

α 0 1 2 3 4 5 6 7 8

16a00(α) 1 5 10 10 5 1 0 0 0
16a10(α) 1 4 5 0 -5 -4 -1 0 0
16a20(α) 1 3 1 -5 -5 1 3 1 0
16a30(α) 1 2 -2 -6 0 6 2 -2 -1

and

R4,3 = R+ =




1 0 0 0
0 1 −1

2
1
6

0 0 1 −1
0 0 0 1


.

Then Ā+(α) = R−1
+ A+(α)R+.

With p0(x) = 1, p1(x) = x + 5
2 , p2(x) =

1
2x

2 + 5
2x + 35

12 , p3(x) =
1
6x

3 +
5
4x

2 + 35
12x + 25

12 , we obtain that SA+
R+bj = 2−jR+bj or SĀ+

bj = 2−jbj

where bj =




pj
p′j
p′′j
p
(3)
j


, for j = 0, 1, 2, 3
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For Ā+, some straightforward computations yield the symbol represen-
tation,

Ā
∗
+(z) =

(1 + z)5

96




6 0 0 0
(z − 1)(11− 7z + 2z2) 0 0 0

6(z − 1)2(z − 2) 0 0 0
6(z − 1)3 0 0 0




and we obtain that B̃+ defined by T̃ 3Ā+ = 2−3B̃+T̃ 3 has coefficients

B̃+(0) = 0 and

B̃+(7) =
1
72




−36 36 −18 6
−66 66 −33 11
−72 72 −36 12
−36 36 −18 6


 = B̃+(8), B̃+(5) =

1
72




108 −72 0 24
198 −132 0 44
216 −144 0 48
108 −72 0 24


 = B̃+(6),

B̃+(3) =
1
72




−108 36 18 6
−198 66 33 11
−216 72 36 12
−108 36 18 6


 = B̃+(4), B̃+(1) =

1

72




36 0 0 0
66 0 0 0
72 0 0 0
36 0 0 0


 = B̃+(2).

We use the same tools as in the previous section, building the two ma-
trices in R

32×32:

U0 :=




B̃+(1) B̃+(−1) 0 . . . 0

B̃+(2) B̃+(0) 0 . . . 0
...

...
...

B̃+(7) B̃+(5) B̃+(3) . . . 0

B̃+(8) B̃+(6) B̃+(4) . . . 0



,

U1 :=




B̃+(2) 0 0 . . . 0

B̃+(3) B̃+(1) 0
...

...
...

B̃+(8) B̃+(6) B̃+(4) . . . 0

0 B̃+(7) B̃+(5) . . . 0




Again for a positive integer p, if Mu := Πp
k=1U

uk

0 U
1−uk

1 , for all uk ∈ {0, 1}

and u =: [uk]k=1,...,p, if ρp := maxu∈{0,1}p ‖Mu‖
1/p
1 , then a numerical com-

putation gives ρ8 = 0.9173. Therefore, the operator S
B̃+

is contractive,

proving that the Hermite scheme SĀ+
is C3. Now, since R4,3 is triangular

with 1 on its diagonal, it is easy to deduce that for r = 4 and d = 3, the
scheme SA and Sa4 are C3 which recovers a well known property of cardinal
splines.
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