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I. INTRODUCTION

Adaptive rejection of unknown and time-varying multiple narrow band disturbance is an important challenge with applications in AVC (Active Vibration Control) and ANC (Active Noise Control).

In [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF] the results of an international benchmark on adaptive regulation of an AVC problem were presented. There were a number of contributions [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF], [START_REF] Aranovskiy | Adaptive compensation of disturbance formed as sums of sinusoidal signals with application to an active vibration control testbench[END_REF], [START_REF] Chen | Adaptive model inversion for time-varying vibration rejection on an active suspension benchmark[END_REF], [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF], [START_REF] Wu | Youla parametrized adaptive regulation against sinusoidal exogenous inputs applied to a benchmark problem[END_REF], [START_REF] Karimi | H-inf gain-scheduled controller design for rejection of time-varying narrow-band disturbances applied to a benchmark problem[END_REF] and [START_REF] De Callafon | Adaptive regulation via weigthted robust estimation and automatic controller tuning[END_REF] which have been evaluated experimentally.

It was found that all the participants use directly or indirectly the Internal Model Principle (IMP - [START_REF] Francis | The internal model principle of control theory[END_REF]) along with some variant of the Youla-Kučera parametrization [START_REF] Anderson | From Youla-Kucera to identification, adaptive and nonlinear control[END_REF], using either an infinite impulse response (IIR) filter or a finite impulse response (FIR) filter.

Among the best results considering performance, robustness and complexity stand the ones obtained by [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF], [START_REF] Chen | Adaptive model inversion for time-varying vibration rejection on an active suspension benchmark[END_REF] and [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF]. [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF] uses an IIR Q-filter to introduce a Band Stop Filter (BSF) in the adaptive scheme. The BSF is calculated at each sampling time on the basis of the estimated disturbance frequency, which is identified in real time. Although this approach shows good results and a good robustness, the drawback was the complexity since it is an indirect adaptive control scheme which requires the solution of a Bezout type equation which is computational demanding. In [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF], one uses an adaptive YK-FIR filter. The great advantage is the easy construction of the adaptive algorithms which will require a very low computational load. Unfortunately it requires a careful design of the central controller (problem dependent). A first idea for improving the approach given in [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] was to consider as objective a direct adaptation of an appropriate IIR Q-filter. A first attempt was unsuccessful since for the parametrization considered the number of parameters to be estimated was too large. Therefore the use of an appropriate parametrization of the YK-IIR filter was posed.

In [START_REF] Chen | Adaptive model inversion for time-varying vibration rejection on an active suspension benchmark[END_REF], also a kind of YK-IIR filter is used which is directly computed from the estimation of the disturbance model represented with the help of polynomials with mirror coefficients. The specificity of the approach resides also on the use of an approximate inverse of the plant transfer function for the disturbance observer (input error observer) while in [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF], [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] an equation error disturbance observer is used.

The objective of the paper is to develop a direct adaptive regulation scheme for multiple unknown and time-varying disturbances using an equation-error observer and YK-IIR filters. This has been done mainly by revisiting the approach in [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] and incorporating the parametrization considered in [START_REF] Chen | Adaptive model inversion for time-varying vibration rejection on an active suspension benchmark[END_REF]. By doing so it was possible to construct an direct adaptive control scheme whose performance will not depend on the design of the central controller. A significant contribution with respect to the previous work presented in [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] is that using an YK IIR structure, a single central controller can be used for all the levels of the benchmark. Furthermore the design of the central controller is much easier in term of selection of the imposed closed loop poles.

The paper is organized as follows, Section II presents briefly the active vibration control system used for the realtime experiments, the problem statement, the plant and the controller representation and the description of the disturbance. In Section III the linear case (known disturbances) is discussed in details showing the interest of the parametrization considered for the IIR Q-filter. The parameter adaptation algorithm, based on a Youla-Kučera parametrization is presented in Section IV. This section includes the main contribution of the article showing two adaptive algorithms for the estimation of the numerator and denominator parameters, respectively. This section includes stability and convergence proof. According to the benchmark specifications from [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF], in Section V the simulation and real-time results from such adaptive scheme are shown. Some concluding remarks are presented in Section VI.

II. PLANT DESCRIPTION AND PROBLEM STATEMENT

A. System structure

A photo of the active vibration control experimental set up used in this study is presented in fig. 1 along with the basic actions performed by the system. A detailed description can be found in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]. Here some features are recalled for sake of completeness. The system consists of a passive damper, an inertial actuator, a mechanical structure, a transducer for the residual force, a controller, a power amplifier and a shaker. The system input, u(t) is the position of the mobile part (magnet) of the inertial actuator, the output y(t) is the residual force measured by a force sensor. The transfer function (H = q -d1 C D ), between the disturbance force (δ (t)) and the residual force (y(t)) is called primary path. In our case (for testing purposes), the primary force is generated by a shaker driven by a signal delivered by the computer (u p (t)). The plant transfer function (G = q -d B A ) between the input of the inertial actuator (u(t)) and the residual force is called secondary path. The parametric model of the secondary path has a significant order, n A = 18 and n B = 21. It can be straightforwardly obtained by system identification techniques. The sampling frequency is F s = 800 Hz.

B. Problem statement

In the mentioned benchmark [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF], the frequency range of operation is between 50 and 95 Hz. In this frequency range, 1 to 3 narrow band disturbances are introduced to the system. This defines the 3 Levels of difficulty for the benchmark (L1, L2, L3). The frequency of these narrow band disturbances can be either constant or time varying. See [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF] for more details of benchmark specifications and measurement procedures. The objective is to strongly attenuate these disturbances. Outside the operation zone, the are robustness constraints in terms of modulus margin and noise amplification. Basically the modulus of the sensitivity functions should be kept at very low values. Specifications for the "waterbed" effect are also considered by imposing a maximum allowed amplification.

C. Plant and controller description

Consider the adaptive regulation scheme depicted in fig. 2 where the IIR YK-parametrized controller is shown. We consider subsequently the linear case with known disturbances in order to clarify the plant and controller structure (the adaptive loop is dropped out).

The structure of the identified linear time-invariant discretetime model of the plant -the secondary path -used for controller design is:

G(z -1 ) = z -d B(z -1 ) A(z -1 ) = z -d-1 B * (z -1 ) A(z -1 ) , ( 1 
)
with d is equal to the plant integer time delay (number of sampling periods),

A(z -1 ) = 1 + a 1 z -1 + • • • + a n A z -n A ;
(2)

B(z -1 ) = b 1 z -1 + • • • + b n B z -n B = z -1 B * (z -1 ) ; ( 3 
)
B * (z -1 ) = b 1 + • • • + b n B z -n B +1 , (4) 
where A(z -1 ), B(z -1 ), B * (z -1 ) are polynomials in the complex variable z -1 and n A , n B and n B -1 represent their orders 1 . Details on system identification of the models considered in this paper can be found in [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF], [START_REF] Landau | A methodology for the design of feedback active vibration control systems[END_REF], [START_REF] Landau | Adaptive suppression of multiple time-varying unknown vibrations using an inertial actuator[END_REF]. The controller used in this paper corresponds to an IIR Youla-Kučera RS polynomial digital controller ( [START_REF] Landau | Adaptive control[END_REF], [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF] -see also figure 2). The controller is divided in a fixed (constant) part which will assign part of the closed loop poles and an IIR-YK filter, which will compensate the effect of the disturbance by introducing the internal model of the disturbance in the controller (polynomial B Q (z -1 )) and a polynomial A Q (z -1 ) which will introduce new poles to the closed loop and will have a strong influence upon the "waterbed" effect on the shape of the sensitivity functions. When the disturbances are of unknown frequency, the parameters of the IIR-YK filter will be adapted (the estimated values will be denoted by ÂQ and BQ ).

In this scheme, the central controller is described through R 0 (z -1 ) and S 0 (z -1 ), which are polynomials in z -1 having the orders n R 0 and n S 0 , respectively, with the following expressions:

R 0 = r 0 0 + r 0 1 z -1 + . . . + r 0 n R 0 z -n R 0 = R ′ 0 (z -1 ) • H R 0 (z -1 ) ; (5) S 0 = 1 + s 0 1 z -1 + . . . + s 0 n S 0 z -n S 0 = S ′ 0 (z -1 ) • H S 0 (z -1 ) , (6) 
where H R 0 and H S 0 are pre-specified parts of the controller (used for example to incorporate the internal model of a disturbance or to open the loop at certain frequencies). R 0 (z -1 ) and S 0 (z -1 ) are minimal degree solutions of

P 0 (z -1 ) = A(z -1 )S 0 (z -1 ) + z -d B(z -1 )R 0 (z -1 ), (7) 
where P 0 (z -1 ) defines the nominal closed loop poles related to the central controller.

Under this parametrization the controller polynomials are defined as follows 2

R = A Q R 0 + H S 0 H R 0 AB Q (8) S = A Q S 0 -H S 0 H R 0 z -d BB Q (9)
where the optimal Q-filter has the following structure:

Q(z -1 ) = B Q (z -1 ) A Q (z -1 ) = b Q 0 + b Q 1 z -1 + • • • + b Q n B Q z -n B Q 1 + a Q 1 z 1 + • • • + a Q n A Q z -n A Q . ( 10 
)
The output of the plant y(t) and the input u(t) may be written as:

y(t) = q -d B(q -1 ) A(q -1 ) • u(t) + p(t) ; (11) 
u(t) = - R(q -1 ) S(q -1 ) • y(t) , (12) 
where q -1 is the delay (shift) operator (x(t) = q -1 x(t + 1)) and p(t) is the resulting additive disturbance on the output of the system. We define the following sensitivity functions:

• Output sensitivity function (the transfer function between the disturbance p(t) and the output of the system y(t)):

S yp (z -1 ) = A(z -1 )S(z -1 ) P(z -1 ) ;

• Input sensitivity function (the transfer function between the disturbance p(t) and the input of the system u(t)):

S up (z -1 ) = - A(z -1 )R(z -1 ) P(z -1 ) , (14) 
where

P = AS + z -d BR = A Q P 0 = A Q AS 0 + z -d BR 0 ( 15 
)
defines the poles of the closed loop (roots of P(z -1 )).

Using equations [START_REF] Landau | Adaptive control[END_REF] and [START_REF] Landau | Adaptive suppression of multiple time-varying unknown vibrations using an inertial actuator[END_REF], one can write the output of the system as:

y(t) = A(q -1 )S(q -1 ) P(q -1 ) • p(t) = S yp (q -1 ) • p(t) . ( 16 
)
2 The arguments (z -1 ) and (q -1 ) will be omitted in some of the following equations to make them more compact.

D. Disturbance description

A deterministic disturbance p(t) can be represented as the output of a filter excited by a Dirac pulse as

p(t) = N p (q -1 ) D p (q -1 ) • δ (t) , (17) 
where δ (t) is a Dirac pulse and N p (z -1 ), D p (z -1 ) are coprime polynomials in z -1 , of degrees n N p and n D p , respectively. In the case of persistent (stationary) disturbances the roots of D p (z -1 ) are on the unit circle (which will be the case for this work). The energy of the disturbance is essentially represented by D p (z -1 ). The contribution of the terms of N p (z -1 ) is weak compared to the effect of D p (z -1 ) (particularly in steady state), so one can neglect the effect of N p (z -1 ).

The disturbances considered in the benchmark can in fact be represented by a sum of sinusoidal disturbances.

p(t) = n ∑ i=1 C i sin (ω i t + β i ) , (18) 
where {C i , ω i , β i } = 0 and n is the number of narrow band disturbances. In this case, D p (z -1 ) in ( 17) has the expression:

D p (z -1 ) = n ∏ i=1 1 -2 cos(ω i )z -1 + z -2 , ( 19 
)
where ω i = 2π f i T s , f i is in Hz and T s = 1/F s is the sampling time. Under this mirror structure, no matter the values of ω i , the roots of D p remains on the unit circle.

III. INTERNAL MODEL PRINCIPLE WITH YK IIR

PARAMETRIZATION Consider the case when the frequencies of the disturbance are known, i.e. D p (z -1 ) is known and a given central controller R 0 (z -1 ) and S 0 (z -1 ) is already computed 3 . The objective of this section is to find the way to compute an optimal Y K-IIR filter for rejecting the effect of a narrow-band disturbance described by (17).

Consider the eq. ( 16). In order to asymptotically reject the effect of p(t) over y(t), the polynomial S(z -1 ) should incorporate the denominator D p (z -1 ) ( Internal Model Principle - [START_REF] Francis | The internal model principle of control theory[END_REF]), as is shown next:

S(z -1 ) = S ′ (z -1 ) • H S (z -1 ) = S ′ (z -1 ) • H S 0 (z -1 ) • D p (z -1 ) . ( 20 
)
Looking at the eq. ( 9), is possible to define a diophantine equation allowing to compute the optimal Q-IIR filter which introduces the model of the disturbance into the controller. The diophantine equation is

S ′ D p + H R 0 z -d BB Q = A Q S ′ 0 , (21) 
where the common term H S 0 (z -1 ) has been eliminated. Here

D p (z -1 ), H R 0 (z -1 ), d, B(z -1
) and S ′ 0 (z -1 ) are known, and B Q (z -1 ) and S ′ (z -1 ) are unknown but only B Q (z -1 ) is needed.

In order to eq. ( 21) be solvable, A Q (z -1 ) should be defined. Suppose temporarily that A Q (z -1 ) is known, and for stability reasons it is an asymptotically stable (a.s.) polynomial since this polynomial will define additional poles for the closed-loop (see eq. ( 15)). Then, eq. ( 21) has a unique and minimal degree solution for S ′ (z -1 ) and

B Q (z -1 ) with n A Q + n S ′ 0 -1 ≤ n D p + n H R 0 + n B + d -1, n S ′ = n B + d + n H R 0 -1 and n B Q = n D p -1.
Remark: As for the FIR case (when A Q (z -1 ) = 1, see [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF]), the order of the numerator B Q (z -1 ) depends on the order of the disturbance model D p (z -1 ). In the IIR case, A Q (z -1 ) introduces one addtional degree of freedom for the controller. In eq. ( 21) the polynomial A Q (z -1 ) was assumed known and a.s. In next section the structure and values of such polynomial is discussed.

A. Structure of A Q (z -1 )
As shown in [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF], the proximity of the low-damped complex zeros to the disturbance frequency increase the difficulty to compute a stable controller, when a Q-FIR filter is used (with A Q (z -1 ) = 1). Therefore, one of the features expected from the denominator A Q (z -1 ) is to increase the robustness, even in the proximity of such plant zeros.

In eq. ( 21), the computed numerator B Q (z -1 ) introduces zeros in the polynomial S(z -1 ), through the YK-parametrization. This allows the rejection of the narrow-band disturbance. But at the same time, due to the proximity of the low-damped complex zeros the modulus margin (∆M -see [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF]) -a major robust indicator -is drastically decreased. Hence, the denominator A Q (z -1 ) could be used to improve this situation.

Consider the case when a BSF structure is introduced in the controller instead of the model of the disturbance. According to [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF], the BSF structure can be written as

N BSF (z -1 ) D BSF (z -1 ) = 1 + β 1 z -1 + β 2 z -2 1 + γ 1 z -1 + γ 2 z -2 , (22) 
resulting from the discretization of a continuous-time BSF filter. This filter introduce a finite attenuation defined by the ratio between the numerator and denominator damping (the damping of the zeros and the poles of the BSF). Then, the following changes are introduced in eq. ( 15)

A Q (z -1 ) = D BSF (z -1
) is used and in eq. ( 20), H S (z -1 ) = H S 0 (z -1 )•N BSF (z -1 ) instead of using the polynomial D p (z -1 ). This leads to a new diophantine equation

S ′ N BSF + H R 0 z -d BB Q = D BSF S ′ 0 . ( 23 
)
The disadvantage of this approach is that requires the computation of a BSF under the basis of the disturbance frequency, which has to be estimated. Once the computation of the BSF is done, it is necessary to solve at each sampling a time consuming Bezout equation to incorporate the BSF in the controller. In [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF] the dimension of the Bezout equation have been reduce by using a YK-parametrization. With a similar objective, instead of a BSF approach, in [START_REF] Chen | Adaptive model inversion for time-varying vibration rejection on an active suspension benchmark[END_REF] a particular notch type structure is directly used for the YK-IIR filter. This is achieved by choosing

A Q (z -1 ) = D p (ρz -1 ) = 1 + ραz -1 + ρ 2 z -2 , ( 24 
)
where α = -2 cos(2π f T s ) and using a constant ρ, 0 < ρ < 1. By the assumption that D p (z -1 ) has its roots over the unit circle (see eq. ( 19)), the change of each z -1 by ρz -1 makes that the roots of A Q (z -1 ) are located in the same radial line but inside of the unit circle, and therefore it is asymptotically stable. In this approach the constant ρ is defined as a function w.r.t. the desired attenuation. This is also a parameter for tuning the robustness, since it has influence over the waterbed effect in S yp (z -1 )(i.e. the choice of ρ allows a compromise between disturbance attenuation and robustness).

In fig. 3 the magnitude of the frequency response of the output sensitivity function with a single central controller but for different structures of the YK filter used for disturbance compensation is shown. The first case corresponds to the use of an YK-FIR filter for implementing the model of the disturbance and it is depicted using a dotted line. The amplifications outside of the frequency of the disturbance are important and could lead to insufficient robustness. The second case, represented with a dashed line, correspondes to the use of a BSF filter approach for computing the optimal B Q (z -1 ) and A Q (z -1 ). The BSF was computed using the disturbance frequency, a desired attenuation of -60 dB and a denominator damping of 0.09. The third case, represented with a solid line corresponds to ρ-notch type filter structure with A Q given in (24). A constant ρ = 0.97 was used for this case (the numerator corresponds to the YK-FIR case considered earlier).

As we can see, the impact of the denominator of the YKfilter (BSF and ρ-notch cases) is very important by strongly reducing the waterbed effect. Also we can remark that a ρnotch type structure can achieve almost the same result as a BSF structure. Looking at the design parameters, the BSF approach of [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF] requires the desired attenuation, the central frequency of the filter ( f ) and the damping of the denominator followed by the solution of a Bezout type equation. The ρnotch type structure requires only α and a given constant ρ for directly implementing the YK-IIR filter. For that reason this type of structure has been chosen for the denominator A Q (z -1 ) in order to develop a direct adaptive scheme. IV. PARAMETER ADAPTATION ALGORITHM Consider eqs. ( 16) and [START_REF] Karimi | H-inf gain-scheduled controller design for rejection of time-varying narrow-band disturbances applied to a benchmark problem[END_REF]. From fig. 2, the signal w(t + 1) is defined as follows

w(t + 1) = A(q -1 )y(t + 1) -B * (q -1 )u(t -d) = A(q -1 )p(t + 1), (25) 
then, the output of the closed-loop system can be express as follows

y(t) = ÂQ S 0 -H S 0 H R 0 q -d B BQ ÂQ P 0 w(t). ( 26 
)
Following the principles given in [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF] and [START_REF] Landau | Adaptive suppression of multiple time-varying unknown vibrations using an inertial actuator[END_REF] as was indicated in the Introduction, it is possible to develop a direct adaptive algorithm for a Youla-Kučera parametrization using a IIR-filter. An adaptation algorithm can be associated. Stability of the error can be assured by Positive Real conditions, but unfortunately the number of estimated parameters exceeds the double of sinusoidal signals and therefore, the Frequency Richness Condition for Parameter Convergence does not holds ( [START_REF] Landau | Adaptive control[END_REF]). Meaning that we can not assure that the parameters converge to their optimal values. A different parametrization has to be chosen in order to overcome this problem. The solution will be provided by the use of the ρ type YK-IIR filters

This parametrization suggests that one has to estimate first the parameters of D p (z -1 ). The algorithm from [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF] have proved to be a very efficient solution for the estimation of B Q (z -1 ) (FIR case) using an equation error disturbance observer.

Once D p (z -1 ) is estimated one has two options: either use the approach of [START_REF] Chen | A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives[END_REF] (computing the polynomial ÂQ (z -1 ) from the knowledge of D p (z -1 ) and ρ) and compute BQ (z -1 ) by solving a Bezout equation or try do directly estimates the parameters of BQ (z -1 ). It is the second option which will be considered.

A. Estimation of D p (q -1 ) Assume that the signal p(t) contains n narrow-band components. p(t) will then satisfy

n ∏ i=1 1 -2 cos(ω i )z -1 + z -2 p(t) = 0, (27) 
where ω i (i = 1, . . . , n) is the frequency of the i th narrow-band component in p(t). Eq (27) can be equivalently written:

D p (z -1 )p(t + 1) = 0. ( 28 
)
The disturbance model can be expressed:

p(t + 1) = - n-1 ∑ i=1 α i [p(t + 1 -i) + p(t + 1 -2n + i)]-• • • • • • -α n p(t + 1 -n) -p(t + 1 -2n). ( 29 
)
Introduce the parameter vector to be estimated:

θ D p = [α 1 , α 2 , . . . , α n ] T . ( 30 
)
Introduce also the regressor vector at the time t:

φ D p (t) = φ 1,D p (t), φ 2,D p (t), φ n,D p (t) T , (31) 
where

φ j,D p (t) = -p(t + 1 -j) -p(t + 1 -2n + j) , j = 1, . . . , n -1 (32) φ n,D p (t) = -p(t + 1 -n).
(33)

Eq. ( 29) can then be simply represented by

p(t + 1) = θ T D p φ D p (t) -p(t + 1 -2n). ( 34 
)
Define the a priori prediction of p(t + 1):

p0 (t + 1) = θ T D p (t)φ D p (t) -p(t + 1 -2n), (35) 
where θD p (t) is the predicted parameter vector at time t. The a priori prediction error is given by

e 0 (t + 1) = p(t + 1) -p0 (t + 1) = -θ T D p (t)φ D p (t), (36) 
where θD p (t) = θD p (t) -θ D p is the parameter estimation error. Define the following a posteriori signals:

• the a posteriori prediction of p(t + 1):

p(t + 1) = θ T D p (t + 1)φ D p (t) -p(t + 1 -2n), (37) 
• the a posteriori prediction error:

e(t + 1) = p(t + 1) -p(t + 1) = -θ T D p (t + 1)φ D p (t).
(38) Equation 38 has the standard form of an a posteriori adaptation error which allows to associate the standard parameter adaptation algorithm (PAA) introduced in [START_REF] Landau | Adaptive control[END_REF] θD

p (t + 1) = θD p (t) + F 2 (t)φ D p (t)e 0 (t + 1) 1 + φ D p (t) T F 2 (t)φ D p (t) (39) 
e 0 (t + 1) = p(t + 1) -p0 (t + 1) (40)

p0 (t + 1) = θ T D p (t)φ D p (t) + p(t + 1 -2n) (41) F 2 (t + 1) -1 = λ 1 (t)F 2 (t) -1 -λ 2 (t)φ D p (t)φ D p (t) T (42) 0 < λ 1 (t) ≤ 1; 0 ≤ λ 2 (t) < 2; F 2 (0) > 0 B. Stability of D p (z -1 ) estimation 1)
Error convergence: Taking in account the structure of the equation (38) and the results of [START_REF] Landau | Adaptive control[END_REF], chapter 3 one can immediately conclude that lim t→∞ e(t) = 0.

(43) and lim

t→∞ θ T D p (t + 1)φ D p (t). = 0. ( 44 
)
2) Parameter Convergence: From equation (44) one gets:

θ T D p (t)φ D p (t -1) = n-1 ∑ i=1 (p(t -i) + p(t -2n + i)) αi (t) + p(t -n) αn (t) = n-1 ∑ i=1 z -i + z -2n+i αi (t) + z -n αn (t) p(t) → 0 as t → ∞ (45) 
where 

{ αi } n 1 = { αi (t) -α i } n 1 .
ε(t + 1) Φ 1 (t) H ′ (z -1 ) ε(t + 1)
Eq. (51) φ 1 (t)

1 A Q -λ 2 2 - ÂQ ε(t + 1) Eq. (51) φ 1 (t) ÂQ A Q -λ 2 2 - ε(t + 1) Eq. (51) φ f 1 (t) ÂQ A Q -λ 2 2 - ε(t + 1) Eq. (51) φ f 1 (t) ÃQ (t) A Q -λ 2 2
Local Convergence Based on the assumption that p(t) has n independent frequency components, the Frequency Richness Condition for Parameter Convergence holds. Therefore, the only solution to the above equation is lim t→∞ αi (t) = 0, i.e., the parameters converge to their true values.

Therefore, when t → ∞, Dp (z -1 ) = D p (z -1 ). Since A Q (z -1 ) = D p (ρz -1 ), then ÂQ (z -1 ) = Dp (ρz -1 ), which could be interpreted also as

lim t→∞ ÂQ (z -1 ) = A Q (z -1 ) (46) C. Estimation of B Q (z -1 )
Using eq. ( 26), the a posteriori error is defined as

ε(t + 1) = v 1 (t + 1) + • • • • • • B Q -BQ (t + 1) w f (t + 1) • • • -A * Q -Â * Q (t + 1) û f Q (t) -A * Q ε(t) (47) 
where

w f (t + 1) = H S 0 H R 0 q -d B P 0 w(t + 1) (48) û f Q (t) = H S 0 H R 0 q -d B P 0 ûQ (t) (49) v 1 (t + 1) = S ′ H S 0 AN p A Q P 0 δ (t + 1) (50) 
(see also figure 2). The signal v 1 (t + 1) tends asymptotically towards zero (an asymptotically stable system excited by a Dirac pulse).

The equation for the a posteriori error takes the form

ε(t + 1) = 1 A Q θ T 1 -θ T 1 (t + 1) φ 1 (t + 1) + • • • • • • + v f 1 (t + 1) + v 2 (t + 1), (51) 
where

v f 1 (t + 1) = 1 A Q v 1 (t + 1) → 0, since A Q is a.s. ( 52 
) v 2 (t + 1) = 1 A Q A * Q -Â * Q (t + 1) -û f Q (t) → 0, (53) 
θ 1 = b Q 0 , • • • , b Q 2n-1 T (54) θ1 (t + 1) = bQ 0 (t + 1), • • • , bQ 2n-1 (t + 1) T (55) φ 1 (t + 1) = w f (t + 1), • • • , w f (t + 2 -2n) T (56) ( 57 
)
where n is the number of narrow-band disturbances. The convergence towards zero for the signal v 2 (t + 1) is assured by the result of Eq. ( 46). Since v f 1 (t + 1) and v 2 (t + 1) tend towards zero, (51) has the standard form of an adaptation error equation [START_REF] Landau | Adaptive control[END_REF], and the following PAA is proposed:

θ1 (t + 1) = θ1 (t) + F 1 (t)Φ 1 (t)ν(t + 1) (58) ν(t + 1) = ε 0 (t + 1) 1 + Φ T 1 (t)F 1 (t)Φ 1 (t) (59) ν 0 (t + 1) = w 1 (t + 1) -θ T 1 (t)Φ 1 (t) (60) w 1 (t + 1) = S 0 P 0 w(t + 1) (61) F 1 (t + 1) -1 = λ 1 (t)F 1 (t) -1 -λ 2 (t)Φ 1 (t)Φ T 1 (t) (62) 0 < λ 1 (t) ≤1; 0 ≤ λ 2 (t) < 2; F 1 (0) > 0 ( 63 
)
There are several possible choices for the regressor vector Φ 1 (t) (see Table I). -1 ) estimation 1) Error convergence: In all the cases the equation for the a posteriori adaptation error takes the form

D. Stability of B Q (z

ν(t + 1) = H(q -1 )[θ 1 -θ1 (t + 1)]Φ 1 (t) (64) 
which allows to use straightforwardly for stability analysis the results of [START_REF] Landau | Adaptive control[END_REF], chapter 3. For each choice a different positive real condition has to be satisfied for assuring asymptotic stability. The various options and the stability conditions are summarized in Table I and discussed subsequently.

• When Φ 1 (t) = φ 1 (t). The adaptation error v(t + 1) is chosen as the prediction error ε(t + 1) and the regressor vector Φ 1 (t) = φ 1 (t). Therefore, the stability condition is hold when the transfer function

H ′ = 1 A Q -λ 2
2 is strictly positive real (S.P.R.).

• When v(t + 1) = ÂQ ε(t + 1). Here the adaptation error is considered as the product of the prediction error ε(t + 1) filtered by the estimated ÂQ . This leads to the regressor vector Φ 1 (t) = φ 1 (t) and the stability condition is modified to

H ′ = ÂQ A Q -λ 2
2 should be S.P.R. This obtained when Eq. ( 51) is multiplied by ÂQ .

• When Φ 1 (t) = φ f 1 (t). Instead of filtering the adaptation error, the observations can be filtered to relax the stability condition 4 . By multiplying Eq. ( 51) by ÂQ ÂQ we have that

v(t + 1) = ε(t + 1), the stability condition is H ′ = ÂQ A Q -λ 2 2
should be S.P.R. and the regressor vector

Φ 1 (t) = φ f 1 (t), where φ f 1 (t) = 1 ÂQ φ 1 (t).
Here ÂQ is a fixed estimation.

• When ÂQ = ÂQ (t). If filtering through a current estimation ÂQ (t) then the condition is similar to the previous case except that is only valid locally [START_REF] Landau | Adaptive control[END_REF]. 2) Parameter convergence: Noting that lim t→∞ v(t + 1) = 0, and since both v f 1 (t + 1) and v 2 (t + 1) tends asymptotically towards zero, we need to show that

θ T 1 -θ T 1 (t + 1) φ 1 (t + 1) → 0 as t → ∞ (65)
will implies:

θ1 (t + 1) = θ 1 as t → ∞ (66)
Proof. Equation ( 65) can be written in form

lim t→∞ v(t + 1) = lim t→∞   n Dp -1 ∑ i=0 b Q i -bQ i (t + 1) q -i   w f (t) = 0 (67) with n B Q = n D p -1. Since asymptotically bQ i , i = 0, 1, • • • , n D p -1 will be a constant, Eq. (67) can hold either if b Q i -bQ i = 0, i = 0, 1, • • • , n D p -1 or if w f (t) is a solution of the difference equa- tion ∑ n Dp -1 i=0 b Q i -bQ i (t + 1) q -i w f (t) = 0.
In the presence of the external disturbance, w f (t) which is a filtered version of the disturbance (see Eqs. ( 25) and ( 48)) will be characterized by a difference equation of order n D p and it cannot be a solution of a difference equation of order n D p -1. Thererfore, lim t→∞ ν(t + 1) = 0 implies also the parametric convergence in the presence of the disturbance.

V. APPLICATION TO THE EJC BENCHMARK

A standard design method such as Pole Placement with sensitivity function shaping [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF] is used to calculate the central controller.

• For P 0 (z -1 ): All the stable poles of the system are preserved. Also 6 real poles for robustness reasons are added.

• For H R 0 (z -1 ): Four band stop filters (BSF) are considered to shape S up (z -1 ) outside the operation zone. The loop is open at 0F s and 0.5F s . • No pre-specified parts where considered for H S 0 (z -1 ). A value of ρ = 0.97 has been used for all the levels and all the test. This value provides a good compromise between performance and robustness. The value is not very critical.

A. Simulation results

Table II summarizes the simulation results for the Simple

Step Test. The objectives are shown in the column named Level, according to [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF].

For Level 1, both global attenuation (GA) and disturbance attenuation (DA) specifications were achieved for all the frequencies. For the maximum amplification (MA) the challenge was fulfilled in general (only at 75 Hz the amplification was 7 dB). The transient behavior can be analyzed from the truncated two-norm (N 2 T), the maximum value (MV) and through the transient duration (TD) which is a main indicator (for the definition see [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]). The control scheme achieves for all the frequencies 100% of the transient duration.

The Level 2 results shows that the control scheme proposed achieves both global and disturbance attenuation for all the cases. For the maximum amplification, the limit is exceeded only for the case 50-70 Hz (7.2 dB).

Finally the Level 3 shows that in the most difficult situation the global attenuation specification can be achieved by this approach along with a very good disturbance attenuation. The maximum amplification results are very promising since for all the cases the limit was respected (9 dB). The transient duration objective is fulfilled except for the last case 65-80-95 Hz (70.8 %).

Table III presents the simulation results for the Step Frequency Changes Test for the three levels. The Chirp Test is not presented here due to space constraints but can be find on the web page: http://www.gipsa-lab.grenoble-inp.fr/ ∼ ioandore.landau/ benchmark adaptive regulation/files/YKIIR results.pdf. The transient behavior is evaluated using both measurements N 2 T and MV. According to the test protocol, each three seconds the disturbance frequency will change in a specific profile (but unknown for the designer). At each change (step) the truncated two-norm (N 2 T) and the maximum value (MV) are measured. Larger values, correspond to less good transient behavior. As expected, if the number of narrow band disturbances increases, the transient behavior will be less good. This is reflected in both columns. Notice that for MV the increase is around 30% ∼ 50%, but for N 2 T is around 100% between the various levels.

B. Real-time results

Table IV summarizes the real-time results for the Simple

Step Test. As for the simulations, the objectives were settled as in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF].

For Level 1, regarding GA only in two cases (80 and 85 Hz) the results are below the objective. For DA, the last case (95 Hz) shows the only result that do not achieves the objective. With respect to MA, the results shows that even this kind of approach presents amplifications over the desired limit; the case where the objective was more close to be fulfill is at 85 Hz (6.3 dB of MA). Transient duration requirement is fulfilled for all the cases.

Level 2 results shows that the control scheme proposed in this paper achieves both GA and DA specifications for all the cases. Is in the maximum amplification where the difficulties arises. The settled limit of 7 dB is not respected, and only at 60-80 and 65-85 Hz the results are close to the desired value. Finally the Level 3 shows that in the most difficult situation GA specification is achieved for all the cases. However, at this level the DA is not fulfilled for 50-65-80 Hz. One possible explanation is the presence of low damped complex poles and zeros near 50 Hz. For Level 3 the MA specification is achieved for the 50 % of the cases and slightly exceeds the specification for the other 50 %.

Table V presents the real-time results for the Step Frequency Changes Test for the three levels. As for the simulation results, if the number of narrow band disturbances increases, the transient behavior measured in terms of N 2 T and MV will be less good. This can be seen for both measurements. The increase for the N 2 T is 50% between various levels. For MV, the increase from L1 to L2 is 44% and passing for L2 to L3 the increase is 67.8%.

C. Global Evaluation Comparison

The results which have been presented has to be evaluated comparatively with the the most relevant schemes presented for the EJC benchmark [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]. This comparison will be done on a global basis using the procedure presented in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]. The results presented above will be compared with those of [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF], [START_REF] Chen | Adaptive model inversion for time-varying vibration rejection on an active suspension benchmark[END_REF] and [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF].

Four comparisons are presented and enlisted here:

• Benchmark Satisfaction Index (BSI) for steady state performance, known also as Tuning capabilities. This criterion use the results from the Simple Step Test in order 4 the comparison of the BSI for the steady state performance is presented for the four approaches mentioned. As shown, the adaptive scheme proposed in this article (named YK-IIR) achieves the highest performance in real-time for the first level (BSI1-RT), a very good performance for the second level (BSI2-RT) and the second best (only behind [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF]) for the third level (BSI3-RT).

The difference between the simulation results and real-time results are illustrated by the Normalized Performance Loss comparison shown in fig. 5. Among all the results given in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF], the four approaches compared here show the lowest values for this criterion (less than 20%). However, the adaptive scheme proposed in this paper achieves the lower loss for first level (NPL 1 ). The approach of [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] shows the best result for the second level (NPL 2 ). For the third level both approaches, [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] and YK-IIR, give the best results (this is the most difficult level). 5 In fact the difference between the task execution time in closed loop and in open loop is considered in the criterion.

Benchmark Satisfaction Index 0,00 The average global criterion for transient evaluation criterion (named JT RAV k k = 1, • • • , 3) is presented in fig. 6. While the approach presented in this paper does not always has the best performance compared to the other three approaches, it is clearly on the average the best.

Finally, in terms of complexity the YK-IIR has a significant increases ∆TET compared to the one obtained in [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] (which is the lowest). However this value is still significantly smaller than the ∆TET of of [START_REF] Airimitoaie | Indirect adaptive regulation strategy for the rejection of time varying narrowband disturbances applied to a benchmark problem[END_REF].

The new scheme has also been tested using the "modified protocol " (a different disturbance scenario) defined in the benchmark website (http://www.gipsa-lab.grenoble-inp.fr/ ∼ ioandore.landau/ benchmark adaptive regulation/index.html). It was found that the adaptive scheme proposed here shows excellent results under this modified protocol. The results are available at: http://www.gipsa-lab.grenoble-inp.fr/ ∼ ioandore.landau/ benchmark adaptive regulation/files/YKIIR results.pdf

VI. CONCLUDING REMARKS

The results on this paper suggest that with an adaptive IIR Youla-Kučera Filter it is possible to achieve similar and Average Global Criterion [1] YK-IIR [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] for Transient Performance 1,00 10,00 100,00 [START_REF] Chen | Adaptive model inversion for time-varying vibration rejection on an active suspension benchmark[END_REF] [1] YK-IIR [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] sec TET 300,00 3,00 30,00 even better results that with an FIR Youla-Kučera Filter for the strong attenuation of multiple unknown and time-varying disturbances. The advantages of using this approach is one hand the drastic simplification of the design of the central controller and on the other hand the possibility of using a single central controller independently of the number of narrow band disturbances to be attenuated. To solve the problem it was necessary to overcome the problem of over parametrization when using adaptive IIR Youla-Kučera Filters by using mirror type polynomials for describing the disturbance models.
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 1 Fig. 1. Active vibration control using an inertial actuator (photo).
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 2 Fig. 2. Direct adaptive scheme using an IIR YK-parametrization of the controller. Dashed box: fixed part, Point-dash box: adaptive part.
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 3 Fig. 3. Zoom at the frequency response of the output sensitivity function for different YK-filters. FIR case: dotted line, BSF case: dashed line and ρ-notch case: solid line.
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 5 Fig. 5. Normalized Performance Loss comparison for four approaches.

Fig. 6 .

 6 Fig. 6. Average global criterion for the transient performance comparison for four approaches.
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 7 Fig. 7. Average task execution time comparison for four approaches.

TABLE I COMPARISON

 I OF ALGORITHMS FOR THE ADAPTATION OF THE DENOMINATOR PARAMETERS B Q (z -1 )

	Adaptation	Prediction	Regressor	Positive	Observations
	error	error	vector	Real Cond.	
	v(t + 1)				

TABLE III SIMULATION

 III RESULTS FOR THE YK-IIR ALGORITHM -STEP CHANGES IN FREQUENCY.

		Sequence 1	Sequence 2	Sequence 3
		N 2 T	MV	N 2 T	MV	N 2 T	MV
		×10 -3	×10 -3	×10 -3	×10 -3	×10 -3	×10 -3
	Level 1	19.5 17.8 24.6 39.5	23.1 22.8 26.0 33.5	19.4 24.3 18.6 20.1	24.2 27.8 25.5 24.5	41.6 61.3 22.2 21.1	23.9 28.9 25.6 24.4
	Level 2	44.0 40.6 54.0 60.8	34.4 32.7 37.9 41.7	68.1 86.1 56.9 50.0	35.4 37.9 37.0 34.9	----	----
	Level 3	128.7 164.5 105.5 152.6	68.4 66.8 61.0 69.0	170.3 233.1 123.7 131.7	59.1 59.3 63.7 68.4	----	----

TABLE II SIMULATION

 II RESULTS FOR YK-IIR ALGORITHM -SIMPLE STEP TEST.

	Level	Case (Hz) GA (dB)	DA (dB)	MA (dB@Hz) N 2 T ×10 -3	N 2 R ×10 -3	MV ×10 -3	TD %
		50	35.8	40.5	6.2@57.8	76.4	3.6	24.1	100
		55	35.4	44.8	4.6@48.5	55.5	3.7	35.2	100
		60	35.3	45.2	4.8@51.6	45.3	3.6	34.3	100
	1	65	34.9	49.7	5.4@54.7	40.7	3.7	33.8	100
	GA≥30	70	34.8	51.9	5.2@64.1	31.0	3.8	25.4	100
	DA≥40	75	34.8	48.5	7.0@68.8	21.4	3.8	21.9	100
	MA≤6	80	35.0	46.5	5.0@71.9	15.9	3.7	22.3	100
		85	34.5	44.4	3.9@75.0	15.9	3.7	22.3	100
		90	33.3	42.7	4.1@79.7	19.1	3.8	25.9	100
		95	29.5	38.4	5.4@85.9	21.0	4.2	32.9	100
		50-70	41.2	43.5-50.3	7.2@59.4	71.7	3.7	31.3	100
	2	55-75	40.9	47.6-49.5	6.1@67.2	51.6	3.8	31.9	100
	GA≥30	60-80	41.1	44.1-45.3	6.0@71.9	33.3	3.7	35.8	100
	DA≥40	65-85	40.6	45.8-44.2	5.9@75.0	28.9	3.8	38.2	100
	MA≤7	70-90	39.6	50.6-40.7	5.5@78.1	41.1	4.0	41.7	100
		75-95	37.9	50.0-43.0	6.0@87.5	50.4	4.2	45.8	100
	3	50-65-80	44.5	42.2-42.3-45.3	8.2@54.7	167.7	3.8	60.0	100
	GA≥30	55-70-85	43.7	45.5-45.4-43.4	6.6@64.1	138.6	4.0	71.4	100
	DA≥40	60-75-90	43.0	45.4-47.2-40.7	6.2@82.8	127.5	4.1	54.1	100
	MA≤9	65-80-95	42.5	45.7-42.3-43.4	6.4@89.1	125.8	4.0	61.4	70.80

TABLE IV REAL

 IV -TIME RESULTS FOR THE YK-IIR ALGORIHTM -SIMPLE STEP TEST.

	Level	Case (Hz) GA (dB)	DA (dB)	MA (dB@Hz) N 2 T ×10 -3	N 2 R ×10 -3	MV ×10 -3	TD %
		50	34.5	40.3	9.3@62.5	111.3	6.8	30.7	92.2
		55	33.1	45.4	8.2@50.0	47.6	5.8	29.4	100
		60	33.3	45.6	6.8@125.0	27.5	5.1	20.9	100
	1	65	31.8	45.4	9.1@56.3	15.2	5.2	19.6	100
	GA≥30	70	29.9	45.6	8.1@131.3	13.6	5.6	20.8	100
	DA≥40	75	30.3	47.9	8.6@70.3	19.8	5.0	18.4	100
	MA≤6	80	29.5	48.6	7.7@6.3	13.4	5.3	20.9	100
		85	29.5	43.6	6.3@117.2	21.3	5.2	23.3	100
		90	29.1	43.7	7.5@117.2	18.1	5.0	23.4	100
		95	27.1	39.0	6.8@375.0	20.9	4.8	28.1	100
		50-70	38.2	40.9 -43.9	10.3@64.1	99.3	6.8	30.9	100
	2	55-75	35.9	46.1 -47.2	11.9@60.9	52.9	6.9	30.5	100
	GA≥30	60-80	37.8	45.6 -45.9	7.9@70.3	38.0	5.1	34.2	100
	DA≥40	65-85	35.2	42.9 -42.9	7.9@212.5	28.9	6.2	35.7	100
	MA≤7	70-90	36.1	43.7 -44.9	10.0@115.6	42.8	5.2	39.3	100
		75-95	35.0	44.9 -40.0	9.9@128.1	51.3	5.4	44.2	100
	3	50-65-80	40.1	38.3 -39.7 -43.7	8.9@125.0	151.5	7.2	50.2	100
	GA≥30	55-70-85	40.1	45.2 -45.1 -42.7	7.8@78.1	103.0	6.0	57.6	100
	DA≥40	60-75-90	38.7	45.2 -42.2 -43.3	10.8@78.1	105.3	6.4	79.7	100
	MA≤9	65-80-95	38.8	43.9 -41.7 -40.5	10.2@85.9	119.2	5.8	63.6	80.9

TABLE V REAL

 V -TIME RESULTS FOR THE YK-IIR ALGORITHM -STEP CHANGES IN FREQUENCY. Level in Table II) assigning a percentage. Here a 100% means a complete fulfillment of the specifications. • Normalized Performance Loss. This criterion is used to measure the difference in performance between simulations and real-time results. For this criterion, lower values indicates better robustness with respect to plant model and noise uncertainties. • Average Global Criterion for Transient Performance. This criterion use an average found from the results of both Step Changes in Frequency Test and Chirp Test. Lower values of the criterion corresponds to a better transient behavior.

		Sequence 1	Sequence 2	Sequence 3
		N 2 T	MV	N 2 T	MV	N 2 T	MV
		×10 -3	×10 -3	×10 -3	×10 -3	×10 -3	×10 -3
	Level 1	23.3 22.2 50.5 48.0	23.2 25.7 23.2 36.8	18.2 21.3 20.3 19.8	23.2 23.4 24.4 22.0	33.4 57.7 21.1 19.3	18.5 26.8 24.4 20.1
	Level 2	47.6 48.7 65.0 70.5	37.9 35.7 37.9 45.5	66.6 79.2 59.3 49.5	40.6 38.1 35.4 33.2	----	----
	Level 3	102.3 145.6 168.8 125.9	66.0 68.8 63.5 65.2	167.8 237.7 146.1 143.5	59.0 60.2 67.6 66.0	----	----
	to show how "good" is the performance of a specified
	scheme, by measuring the fulfillment of the specifications
	(column • Complexity evaluation is done in terms of measurement
	of the Task Execution Time measured 5 . The value of the
	criterion is obtained from the average task execution time
	(TET) measured in the xPC-Target environment from
	MATLAB. Low values correspond to less complexity of
	the control scheme.				
	In fig.						

  Fig. 4. Benchmark Satisfaction Index comparison for four approaches.
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The complex variable z -1 will be used for characterizing the system's behavior in the frequency domain and the delay operator q -1 will be used for describing the system's behavior in the time domain.

Pole placement with sensitivity function shaping is used as computation method but any other technique can be used for the central controller. The central controller generally includes all the stable poles of the plant model, additional auxiliary real poles for robustness and a fixed part H R 0 (z -1 ) = 1z -2 for opening the loop at 0F s and 0.5F s .

Neglecting the non commutativity of the time-varying operators.