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Abstract—The dynamic and distributed nature of telecom-
munication networks makes complex the design of model-based
approaches for network fault diagnosis. Most model-based ap-
proaches assume the prior existence of the model which is reduced
to a static image of the network. Such models become rapidly
obsolete when the network changes. We propose in this paper
a 3-layered self-reconfigurable generic model of fault diagnosis
in telecommunication networks. The Layer 1 of the model is an
undirected graph which models the network topology. Network
behavior, also called fault propagation, is modeled in Layer
2 using a set of directed acyclic graphs interconnected via
the Layer 1. We handle uncertainties of fault propagation by
quantifying strengths of dependencies between Layer 2 nodes
with conditional probability distributions estimated from network
generated data. Layer 3 is the junction tree representation of
the loopy obtained Layer 2 Bayesian networks. The junction
tree is the diagnosis computational layer since exact inference
algorithms fail on loopy bayesian networks. This generic model
embeds intelligent self-reconfiguration capabilities in order to
track some changes in network topology and network behavior.
These self-reconfiguration capabilities are highlighted through
some example scenarios that we describe. We apply this 3-layered
generic model to carry out active self-diagnosis of the GPON-
FTTH access network. We present and analyze some experimental
diagnosis results carried out by running a Python implementation
of the generic model.

Keywords—Self-diagnosis; Self-reconfiguration; fault propaga-
tion; Bayesian network; Probabilistic Inference; GPON; FTTH.

I. INTRODUCTION

Reliability, robustness, availability, accessibility are the
most important requirements that telecommunication networks
should guarantee. As the design of network architectures, net-
work management also became a central issue for telecommu-
nication operators, which have triggered significant researches
about autonomic networking. The main goal of autonomic net-
working is to automate as much as possible numerous tedious
operations of network management like fault management.

Fault diagnosis is a central aspect of network fault manage-
ment [27]. Traditionally, fault diagnosis has been performed
manually by an expert or a group of experts experienced
in managing communication networks [28]. However, the
development of telecommunication networks has increased the
size and complexity of their architectures. Fault diagnosis
has become too complex for humans, who can keep track of
only few hypotheses in their reasonings. Humans need a long
training to fully master their network segment [6]. Automating

fault diagnosis is critical in large scale telecommunication
networks. A network fault or failure is a root cause of one or
multiple network anomalies observed in the form of alarms or
parameters outside of the standard. Alarms or symptoms are
external manifestations of failures [8]. A telecommunication
network is naturally a distributed system, a fault occurred
spreads, triggering other faults and alarms which in turn trigger
further faults and alarms. The consequence of both fault and
alarm propagation is that a single root cause may result in
a complex and distributed pattern of subsequent failures and
their corresponding alarms [6]. This is especially true when
multiple faults propagate simultaneously.

Fault diagnosis also called alarm correlation or root cause
diagnosis [8], [13], [29], isolates the most probable set of
faults based on their external manifestations. It is a process of
searching intelligible explanations to observed alarms. Fault
diagnosis is a complex process due to the non-deterministic
nature of fault propagation phenomenon. A single fault may
generate multiples alarms and a single alarm may be triggered
by several faults.

The fault diagnosis problem was addressed in the past
two decades and numerous techniques have been proposed.
Expert systems [20], [25] encode specialized reasonings on
specific diagnosis tasks in computer applications. Model-based
approaches [4] develop reasonings based on an explicit repre-
sentation of the network. The techniques based on machine
learning algorithms like artificial neural networks [22], [1],
probabilistic networks [28], [21] and case-based reasoning [14]
infer diagnosis based on past experiences.

A brief description and discussion of related work on fault
diagnosis as well as our objectives is presented in section 2.
We describe and formalize in section 3, our contribution: a
generic three layered self-reconfigurable probabilistic model
for telecommunication networks fault diagnosis. In section 4,
we focus on self-reconfiguration capabilities of the generic
model by showing how this model can be turn into an
intelligent autonomous system for self-diagnosis purposes. In
section 5, we present an application of the generic model to
fault diagnosis of the FTTH (Fiber To The Home) access
networks based on GPON (Gigabit capable Passive Optical
Network). In section 6, some experimental diagnosis results
are presented and analysed with respect to the GPON-FTTH
network. We conclude and present future works in section 7.
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Fig. 1: The 3-Layered Generic Model.

II. RELATED WORKS

Early self-diagnosis approaches were called expert systems
[20], [25]. An expert diagnosis system attempts to infer the
cause of a problem from symptoms recognized in sensor data
[6]. It is a problem-solving software that embodies specialized
reasonings on narrow diagnosis tasks usually performed by a
trained skilled human called expert. The specialized reasonings
can be formalized with rules, list of facts, logic predicates,
etc. The inference engines are commonly based on forward-
backward [15] chaining algorithms. However, expert systems
mainly suffer of brittleness. The system fails when it faces a
novel problem that comes out of its expertise.

Model-based diagnosis approaches [5], [10], [9], [11],
[12], [23] develop reasonings based on formal and explicit
representation of network structure and network behavior.
Network structure describes the network architecture. Network
behavior describes the process of alarm propagation and alarm
correlation [7]. Network structure and network behavior are
then modeled [4]. The obtained model is the support of
reasoning algorithms which must be designed. The model-
based approach is easy to deploy and is appropriate for a large-
scale network if information on network resources is available
[16]. It has the ability to deal with novel problems although
its performances degrade in this case.

Model-based approach seems natural when relationships
between objects are graph-like and easy to obtain [27]. The
model can be designed in a modular or incremental fashion
facilitating updates as new knowledge about the network
is acquired. However, it is quite difficult to build a model
close enough to the structural and functional reality of the
network while maintaining a high level of abstraction to make

the model independent of the various engineering techniques
implemented in telecommunication networks. In addition, the
model built is reduced to a static image of the network and
becomes rapidly obsolete when the network changes.

In order to deal with the difficulty to obtain and self-
maintain an accurate model of fault propagation in large
scale telecommunication networks, we propose in this paper
a generic 3-layered self-reconfigurable probabilistic model
for self-diagnosis of telecommunication networks. The model
integrates two fields: a decision field and an artificial learning
field. The decision field is based on Bayesian probabilistic
reasoning [21] in order to deal with uncertainties of fault
propagation process. The artificial learning [3] field brings self-
reconfiguration capabilities to the generic model in order to
deal with the dynamic nature of telecommunication networks.
The generic model has capabilities to compute diagnosis deci-
sions and to automatically learn changes in network topology
and network behaviour.

III. A LAYERED SELF-RECONFIGURABLE
PROBABILISTIC MODEL

We focus in this section on the description and the formal-
ism of the 3-layered generic model which can be applied to
any distributed system for self-diagnosis purposes.

A. Description of the generic model

As in any distributed system, in telecommunication net-
works, faults typically propagate between related system com-
ponents. There is also some cases where a fault can propagate
only inside a system component without affecting the state
of neighbor system components. We call this, local fault
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Fig. 2: A simple example of the 3-Layered Generic Model.

propagation. Obviously, distributed fault propagation is more
recurrent in communication systems than their local counter-
part. But keep in mind that a fault can also spread locally to a
network component. A local fault propagation model is made
of local dependencies which are relationships between faults
(root causes), intermediate faults, counters, scalar parameters
and alarms which can be observed on a network component.

The generic model that we propose clearly considers lo-
cal and distributed fault propagation by separating network
topology modeling and fault propagation modeling. Note that
this separation brings important properties to the generic
model: modularity and extensibility which facilitates self-
reconfiguration. The generic model has three layers. Layer 1
models the network topology. Layer 2 models fault propaga-
tion. Layer 3 is a simplification of layer 1 and layer 2.

The layer 1 models the network topology and distributed
fault propagation between related network components. Layer
1 is an undirected graph whose nodes represent network com-
ponents and edges represent bidirectional links between them
(see Figure 1). Any node of this layer is a Directed Acyclic
Graph (DAG) which embeds distributed dependencies between
a network component and its neighbors. These distributed
dependencies model fault propagation between the related
network components. The layer 1 of the generic model is an
undirected graph of DAGs, i.e, a layer 1 node is seen as a
subset of layer 2 nodes linked via distributed dependencies.
In Figure 1, layer 1 represents the topology of a network of
n components E1, E2, ..., En. The network component E1 is

linked to one neighbor E2. The network components E1 and
E2 are each DAGs containing distributed dependencies that
carry fault propagation between them. For example, in Figure
2, each of the components E1 and E3 embeds distributed de-
pendencies with its neighboor E2. The component E2 embeds
distributed dependencies with its neighboors E1 and E3. In
Figure 1, the roles of layer 1 agents cL1A, rL1A, layer 2
agents cL2A, rL2A and layer 3 agents cL3A, rL3A will be
discussed later in the paper.

The layer 2 is a set of DAGs. Each DAG models local
fault propagation inside a network component, i.e. a layer
1 node. In Figure 1, a layer 2 DAG Bi models local fault
propagation on network component Ei. The DAGs of layer 2
are interconnected via layer 1 nodes. In order to deal with un-
certainties of fault propagation phenomenon, each DAG can be
transformed into a Bayesian network by quantifying strength
of dependencies with Conditional Probability Distributions
(CPD). A CPD quantifies the degree of influence that a subset
of nodes of a DAG has on their common successor node. In
Figure 1, Layer 2 contains n belief networks interconnected via
Layer 1. The belief network Bi models local fault propagation
inside the network component Ei. We call Layer 2 node a
variable of any belief network.

Note that the union of DAGs of layer 2 and DAG of
each layer 1 node gives one large DAG which models fault
propagation in the entire network. But the separation be-
tween network topology modeling and network behavior (fault
propagation) modeling breaks down this large DAG in many
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interconnected parts. So the design of layer 1 and layer
2 implements this separation and brings us the modularity
and extensibility properties necessary to provide easy self-
reconfiguration capabilities to the generic model.

The distributed nature of a telecommunication network
introduces mutual dependencies between related network com-
ponents. This means that distributed undirected loops are un-
avoidable between some layer 2 nodes. In addition, undirected
loops may also appear in local fault propagation inside a
network component. Note that, carrying out a message passing
inference algorithm like the sum-product algorithm [21] at
layer 2 will fail due to local and distributed undirected loops.
In order to deal with local and distributed undirected loops
between layer 2 nodes, we have built a third layer upon layer
2. The layer 3 is the junction tree representation [15], [16],
[26] of layer 1 and layer 2.

Note that layer 1 and layer 2 are useful for learning
field of the generic model since they provide modularity and
extensibility properties useful for easy self-reconfiguration.
Layer 3 is useful for decision field of the generic model
since inference can be easily done in this layer regardless of
network topology complexity at layer 1 and network behavior
complexity at layer 2.

B. Formalism of the generic model

We formalize in this subsection the three layers of the
generic model. We first define a local dependency and a
distributed dependency. Let Bi and Bj 6=i be two distinct layer
2 Directed Acyclic Graphs (DAGs). A local dependency on
Bi is a tuple (u, v) such that u and v belong to the set of
nodes of Bi. A distributed dependency between Bi and Bj 6=i

is a tuple (u, v) such that u belongs to the set of nodes of
Bi and v belongs to the set of nodes of Bj . For example,
in Figure 2, (B,D) is a local dependency which is part
of the local fault propagation model on network component
E1. (G,D) is a distributed dependency between the related
network components E1 and E2.

Layer 1 denoted by L1Graph is an undirected graph of
DAGs, L1Graph = (L1Nodes, L1Edges). L1Nodes is the
set of n layer 1 nodes or network components considered,
L1Nodes = {L1N1, L1N2, ..., L1Nn}. L1Edges is the set of
bidirectional links between layer 1 nodes.

Each layer 1 node L1Ni is a DAG defined as follows:
L1Ni = (L1Vi, L1Ei). L1Vi is the subset of layer 2 nodes
embedded in layer 1 node L1Ni. Each layer 2 node belonging
to L1Vi is part to at least one distributed dependency. L1Ei

is the set of distributed dependencies between L1Ni and its
ki ≥ 1 layer 1 neigboor nodes. L1Vi is defined as follows:

L1Vi = Ni

⋃(
∪ki
j=1N

i
j

)
(1)

where, Ni ⊂ L2Vi, N
i
j ⊂ L2Vj , j ∈ {1, ..., n} \ {i} such that

∀u ∈ Ni,∃v ∈ N i
j |u ∈ pa(v) ∨ v ∈ pa(u). We suppose that

layer 1 node L1Ni has ki neighboors. L2Vi is the subset of
layer 2 nodes belonging to layer 2 DAG L2Ni above layer 1
node L1Ni (see Figure 1). The layer 2 DAG L2Ni models local
fault propagation on layer 1 node L1Ni. For example, in Figure
2, L1N2 = (L1V2, L1E2) such that L1V2 = N2

⋃
N2

1 ∪ N2
3 ,

where the subset N2 = {G, I, J}, N2
1 = {D} and N2

3 =

{M,O}. L1E2 is the set of distributed dependencies between
the component L1N2 and its neighboors L1N1 and L1N3.
L1E2 = {(G,D), (G,M), (D, I), (O, I), (D,J), (O, J)}

Layer 2 is a set of n DAGs. Each DAG L2Ni =
(L2Vi, L2Ei) models local fault propagation on network com-
ponent L1Ni. L2Ei is the set of local dependencies between
layer 2 nodes belonging to L2Vi.

Layer 3 is the junction tree representation of the large
bayesian network G obtained by combining layer 1 and layer 2
as follows: G =

⋃n
i=1 [L2Ni ∪ L1Ni]. Layer 3 is constructed

in three steps. The moralization [17] of G and the triangulation
[17] of the obtained moralized graph lead to a chordal graph or
clique graph. The moralization consist to disorient edges of the
graph G and adding a disoriented edge between each couple
of parents of each node of G. The triangulation consist to add
an edge to every cycle of the moralized graph whose length
exceeds 3. The maximal weight spanning tree of the obtained
clique graph is guaranteed to be a junction tree. The weight is
the size of the intersection between adjacent cliques, i.e, the
number of layer 2 nodes shared by adjacent cliques. We call
layer 3 node, a clique Ci of the junction tree. As every junction
tree, layer 3 satisfies the running intersection property which
ensures that, the intersection Ci∩Cj is a subset of every clique
and separator on the path between two cliques Ci and Cj . For
example, in Figure 2, G = CGDBC ∩ CGKML: G belongs
to the clique CGMO and the separators SGO and SGM which
form the path between the cliques CGDBC and CGKML.

C. Diagnosis computations of the generic model

The layer 3 is an equivalent of layer 1 and layer 2. This
means that layer 3 is sufficient to compute diagnosis decisions
using for example the well known HUGIN exact inference
algorithm [15] on a junction tree. In Figure 1, layer 3 nodes
Ci, Cj , Sij are respectively the cliques Ci and Cj of the
junction tree and their common separator Sij . A layer 3 node
is a compound variable of some layer 2 nodes. For example, in
Figure 2, layer 3 node ABC is a compound variable of Layer
2 nodes A, B, and C. Layer 3 is initialized by associating a
potential to each layer 3 node. At initialization, a clique Ci has
the potential φCi and a separator Sij has the potential φSij as
follows:

φCi
=

∏
X∈Layer2,X∈Ci,pa(X)⊂Ci∨pa(X)=∅

P (X|pa(X)) (2)

And
φSij

= 1 (3)

We note pa(X), the parent set of layer 2 node X . The potential
φCi of a layer 3 node Ci represents the joint conditional
probability of layer 2 nodes that compose it (see equation 2).
For example, in Figure 2: φCABC

= P (B|A).P (C|A).P (A),
φCGDBC

= P (D|B,C,G).P (G) and φSBC
= 1.

The diagnosis decisions computed at layer 3 are based on
evidences propagation on a junction tree. Assume Ci, Cj to be
neighbooring layer 3 nodes with their common separator Sij

(see Figure 1). The potential φCi
is updated when some layer

2 nodes belonging to clique Ci are observed. This evidence
propagates from clique Ci to clique Cj towards their separator
Sij as follows: updating the potential of the separator Sij by
the marginalization of equation 4, and updating the potential
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of the clique Cj by the product of equation 5. The notation
Ci \ Sij reprensents the layer 2 nodes of the clique Ci which
does not belong to the separator Sij .

φ∗Sij
=
∑

Ci\Sij

φ∗Ci
(4)

φ∗Cj
= φCj

φ∗Sij

φSij

(5)

We say that the clique Cj absorbs evidences from Ci [15] or
that the clique Ci brings evidences to Cj . Note that, update
operations of clique potentials and separator potentials are
done in two recursive stages. The first stage called collect
is initiated by collecting evidences from observed nodes to
the root nodes. The second stage is initiated by distributing
evidences from the root nodes to leave nodes. Collection of
evidences to a clique Ci is done by collecting evidences to
all the children of Ci followed by absorption of evidences
from each child. Similarly, distribution of evidences from a
clique amounts to bring evidences to each child followed by
distribution of evidences from the child.

Note that, the update operations of potentials of layer 3
nodes are made by an agent called computing Layer 3 Agent
cL3A. The cL3A updates the potential of each layer 3 node
when it receives some evidences (observed layer 2 nodes) from
its counterpart of layer 2 called cL2A. When cL2A receives
updated layer 3 node potentials, it computes the marginals
(beliefs) of layer 2 nodes. These two agents may communicate
using a simple mechanism like shared memory through an
interface between layer 2 and layer 3 that we call L2-L3
Interface (see Figure 3).

Fig. 3: Communication between layer 2 and layer 3 for beliefs
updating of layer 2 nodes.

The marginal P (X|e) of a layer 2 node X consistent with
evidences e, is computed from the updated potential φ∗Ci

of any
layer 3 node Ci such that X ∈ Ci: P (X|e) =

∑
Ci\X φ∗Ci

.
Note that, after updating the potential of all layer 3 nodes,
the intersection property ensures coherence between updated
potentials, i.e, the marginal of a layer 2 node X is the same
regardless of the clique Ci on which the marginalization
operation is made. The most probable state of the layer 2 node
X that is consistent with evidences, is one that has the highest
probability.

Note that, there is an alternative approach to find the
diagnosis without performing summation operations on up-
dated potentials. With this approach, the diagnosis r∗, is

computed from the most probable explanation w∗, of evidences
as follows: w∗ =

⋃
C∈Layer3 w

∗
C such that φC(w

∗
C) =

maxwC
φC(wC), where wC is a configuration of layer 2 nodes

belonging to layer 3 node C and w∗C maximizes the potential
φC of C. The diagnosis r∗ is the most probable configuration
of layer 2 root nodes defined by r∗ = w∗ \ i∗, where i∗ is
the most probable configuration of non root layer 2 nodes
consistent with evidences.

IV. SELF-RECONFIGURATION CAPABILITIES OF THE
GENERIC MODEL

In this subsection, we illustrate the potential of the generic
model to self-reconfigure in order to track changes in network
topology and network behavior (how faults propagate). Each
of the three layers of the generic model has a reconfiguration
agent which communicates by shared memory with its coun-
terpart of the adjacent layers.

Fig. 4: Self-reconfiguration process initiated at layer 2.

Fig. 5: Self-Reconfiguration process initiated at layer 1.

The reconfiguration Layer 2 Agent rL2A is an artificial
learning [3] system which implements knowledge discovery
and data mining algorithms from a tremendous amount of
network generated data. This agent must have the ability to
discover new local and distributed dependencies, new states of
layer 2 nodes to consider, new network statistical knowledges
which require a new estimation of conditional probabilities
of some layer 2 nodes. When the rL2A discovers some new
important knowledge about network behavior, it reconfigures
the layer 2 of the model and sends a reconfiguration command
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(reconf cmd) to the reconfiguration Layer 3 Agent rL3A and
to the reconfiguration Layer 1 Agent rL1A (see Figure 4). The
message reconf done is an acknowledgement of the command
reconf cmd.

Note that rL2A will send a reconfiguration command to
rL1A only if the new knowledge learned concerns distributed
dependencies. Indeed, local dependencies are unknown at layer
1. Note also that it is the type of the new knowledge learned at
layer 2 that will permit rL3A, after receiving a reconfiguration
command from rL2A, to know if it should reconfigure or
rebuild the layer 3. For example, if the conditional probability
distribution of a layer 2 node changes, the rL3A needs only to
raise an event notifying the computing Layer 3 Agent cL3A,
to recompute the initial potential of all layer 3 nodes which
this layer 2 node belongs to. If new local and/or distributed
dependencies are learned, the rL3A must rebuild the layer 3.

Fig. 6: State machine of the layer 1 reconfiguration agent.

Fig. 7: State machine of the layer 2 reconfiguration agent.

The function of the reconfiguration Layer 1 Agent rL1A
is to track network topology changes like adding or removal
of a network component. The rL1A can be an automatic
network topology discovery system [2], [24] or a system with
an administration interface. This interface allows experts to
remove a network component from the model or to specify and
add a new network component to the model. The specification
of a new network component includes: the name of this
component, its neighbor components which already exist in the
model, its local dependencies (local fault propagation model)
and the distributed dependencies with each neighbor.

Note that any change in network topology requires the
reconfiguration of the three layers of the model. The Figure
5 illustrates this reconfiguration process initiated by the layer
1 reconfiguration agent. The dynamic behaviour of the rL1A

is modelled by a 3-states machine (see Figure 6). Initially, the
model is at equilibrium, i.e, there is no running reconfiguration
process. So the rL1A is in Data mining state, i.e, it waits
for specification of a new network component by a network
expert, it searchs for new knowledges about network topology
from data collected by carried out active measures on network.
When, the rL1A discovers new knowledges about network
topology, e.g, distributed dependencies, it does not reconfigure
the layer 1 immediately. It sends a reconf cmd to the rL2A
and transits to the Blocked state. In Blocked state, the rL1A
waits for the completion of upper layers reconfiguration before
entering in Layer 1 Reconf state. The rL1A transits from
Blocked state to Layer 1 Reconf state when it receives a reconf
cmd from rL2A. In the case where the rL2A discovers new
distributed dependencies, the rL1A transits from Data mining
to the Layer 1 Reconf state when it receives a reconf cmd
from rL2A, and returns to the Data mining state when it
completes the layer 1 reconfiguration. The completion of the
layer 1 reconfiguration yields a new equlibrium state of the
model.

Layer 1 reconfiguration adds or removes new layer 1
node (network component) to/from the model. For adding a
node for example, the new layer 1 node embeds distributed
dependencies with its layer 1 neighboor nodes which already
exist in the model. The rL1A sends a reconf cmd to rL2A
(see Figure 5), waits for the rL2A completes the layer 2
reconfiguration and adds the distributed dependencies to the
neighboor nodes of the new layer 1 node. To reconfigure the
layer 2, the rL2A builds a layer 2 Bayesian network which
models local fault propagation on the new network component.
The rL2A notifies the computing Layer 2 Agent cL2A to
recompute the conditional probability distribution of each
layer 2 nodes having new distributed dependencies learned
or specified at layer 1. Remark that only the reconfiguration
agent of layer 2 takes a reconfiguration decision based on
knowledges learned from network generated data. The other
reconfiguration agents (rL1A and rL3A) wait for a reconf
cmd from rL2A before starting a reconfiguration process.
Therefore, the rL2A is the coordinator of our multi-agent
based self-reconfigurable model.

The Figure 7 specifies the dynamic behaviour of the layer
2 reconfiguration agent using a 3-states machine. Initially,
the rL2A is in Data mining state, i.e, it searchs for new
knowledges about network behaviour from tremendous amount
of data generated by the network components. When the rL2A
learns new local dependencies, new distributed dependencies,
new states of a layer 2 node to consider or new important
statistical knowledges, it transits to the Layer 2 Reconf state
in order to integrate the new knowledges learned to the
layer 2 of the generic model. The rL2A should trigger the
reconfiguration of adjacents layer by sending a reconfigura-
tion command to the reconfiguration agent of these layers.
The Blocked state implements synchronisation between two
successive reconfiguration processes, i.e, the rL2A waits for
the running reconfiguration process of the model completes
before triggering another process. Doing so, the completeness
and consistency of the model remain guaranteed after the
integration of new learned knowledges to the generic model.
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V. APPLICATION OF THE GENERIC LAYERED MODEL TO
GPON-FTTH SELF-DIAGNOSIS

We show in this section how the generic model previously
proposed can be applied to perform self-diagnosis of FTTH
(Fiber To The Home) access networks based on GPON (Gi-
gabit capable Passive Optical Network) [19], [18]. For now,
we used prior knowledges acquired from ITU-T standards
[19], [18] of the GPON-FTTH network to build a 3-layered
model of this network. We plan to transform this GPON-FTTH
network model into an autonomous system by implementing
self-reconfiguration capabilities of the generic model. The
Figure 8 depicts the architecture of the GPON-FTTH network.

Fig. 8: GPON-FTTH network architecture.

The GPON-FTTH access network has two main network
components. The Optical Line Termination (OLT) is located
on operator side. The Optical Network Termination (ONT) is
located on customer side. The OLT and ONT are connected
through an Optical Distribution Network (ODN). The ODN
is the optical infrastructure made of fibers and passive com-
ponents like splitters. A Passive Optical network (PON) is a
point-to-multipoint link inside the ODN. A PON has a tree-like
topology which connects an OLT with a maximum of 64 ONTs
(see Figure 8). Each ONT is connected to a RG (Residential
Gateway) via an Ethernet link.

Since there is no interaction between PONs in ODN, and
all PONs have the same behavior, we modeled one single
PON. This model can be replicated to any PON of a GPON-
FTTH access network. All ONTs connected to the same PON
temporally share the upstream optical channel of the PON.
The downstream channel of the PON is a secured broadcasting
channel. The composition of Figure 9 and Figure 10 forms the
application of the generic model for modeling the topology and
behavior of a PON of the GPON-FTTH access network. The
obtained model has two layer 1 nodes (OLT, ONT) and some
layer 2 nodes are vectors in order to consider the tree-like
topology of a PON.

A. Upstream modeling

The Figure 9 depicts the layer 1 OLT node and its layer
2 local dependencies. Distributed dependencies embedded in
layer 1 OLT node are also depicted. We have three types of
layer 2 nodes in Figure 9: faults or root causes, intermediate
faults and alarms. The root causes are highlighted in Figure 9.

The transport optical fiber of the PON denoted by
FiberT (OK,AT,BR) can take three states. The state OK
means that there is no transmissions anomaly on this fiber. The
states AT and BR mean respectively that fiber experiences high
attenuation or that fiber is broken. The temperature of OLT
denoted by T c

OLT , is a continous variable that we discretize.
The power supply of OLT denoted by AltOLT which can be
faulty or not.

The node FaultyONT denotes an ONT which transmits
upstream signal outside of its granted time slot, which may
conflict with data sent by other ONTs on the PON and cause
data disruption for a random set of ONTs, making the PON
unusable. A FaultyONT can cause a Drift of Windows DOW .
OLT raises a DOW [i] alarm when an ONT [i] transmits signal
beyond the slot time allocated to it. See ITU-T G984.3 [19],
[18] for more details.

The Software Version SWV [i] alarm means that there is
an incompatibility between the Image Operating System (IOS)
of ONT [i] and those of the OLT. The node ONTConfMis
(ONT Configuration Mistake) denotes a configuration error
during ONT provisioning.

The OLT transmitted power TxOLT is regulated by the bias
current IOLT . This leads to the local dependency IOLT −→
TxOLT . The OLT received power RxOLT [i] from an ONTi
depends of the OLT voltage VOLT and the state of the transport
fiber FiberT .

The OLT received power of ONTi also depends of the state
of the branching fiber denoted by FiberDB[i] and the trans-
mitted power of this ONTi denoted by TxONT [i]. Note two
local dependencies (FiberT −→ RxOLT , VOLT −→ RxOLT )
and two distributed dependencies (FiberDB −→ RxOLT ,
TxONT −→ RxOLT ). Remark in Figure 9 that the distributed
dependencies are part of edges of the layer 1 OLT node which
is a DAG as designed in the generic model.

Fig. 9: Faults and alarms propagation raised by an OLT.

The Bit Interleaving Parity denoted by BIPus[i] is com-
puted from the Bit Error Rate BER of an upstream data
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transmission between an ONTi and OLT. A poor upstream
signal reception can cause bit errors leading to the local
dependency RxOLT −→ BIPus. Upstream transmission bit
errors impact the quality of signal received by OLT which may
raised some alarms related to signal quality like SD (Signal
Degraded), SF (Signal Fail), LCGD (Loss of GEM Channel
Delineation) and MEM (Message Error Message). See ITU-T
G984.3 [19] recommendation for more details.

B. Downstream modeling

The Figure 10 depicts the layer 1 ONT node and its layer
2 local dependencies. The root causes AltONT [i], T c

ONT [i]
and FiberDB[i] respectively denote the power supply, the
temperature and the branching fiber of ONT [i].

Fig. 10: Faults and alarms propagation raised by an ONT.

When the received power RxONT [i] of an ONTi is less
than a preconfigured minimum threshold, this ONT raises
the (Level Low) LLO[i] alarm. The (Level High) LHI[i]
alarm is raised by ONTi when RxONT [i] is greater than a
preconfigured maximum threshold. For simplicity and because
LLO and LHI alarms can not be observed simultaneously,
we have considered them as the states of the layer 2 node
called N2(LLO,LHi,+). The state denoted by + means
that there is no LLO or LHI alarm observed. The received
power RxONT [i] depends of the voltage VONT [i], the state
of the branching fiber FiberDB[i], the state of the transport
fiber FiberT of the PON and the transmitted power TxOLT

of OLT. Note the local dependencies VONT −→ RxONT ,
FiberDB −→ RxONT and the distributed dependencies
TxOLT −→ RxONT , FiberT −→ RxONT .

Now, suppose we need to extend this model by adding
another layer 1 node: a Residential Gateway RG node for
example (see Figure 8). A RG is a home network component
that provides services to customers. It is not a GPON-FTTH
network component, but adding it to the model will bring to the
model the ability to correlate faults and alarms of the GPON-
FTTH network with malfunctions of customer services. For
example, in Figure 10, we can make such correlation with

the distributed dependency N1, N2, LOFds, LCGDds −→
IPConnect, where IPConnect denotes the Internet access
service provided by a RG. To add the layer 1 RG node, we
will need only to specify and quantify uncertainties of its local
dependencies and distributed dependencies with the layer 1
ONT node, which already exists in the model.

VI. EXPERIMENTAL RESULTS OF THE GPON-FTTH
NETWORK SELF-DIAGNOSIS

We present and analyse in this section the network fault
diagnosis results carried out by our application and implemen-
tation of the generic model to perform active self-diagnosis of
GPON-FTTH access network. The experiments are performed
on a GPON-FTTH testbed on which we have considered a
PON with two ONTs named ONT1 and ONT2. This experi-
mental testbed allows us to emulate faults and to collect alarms
raised by the GPON-FTTH network components. We also
read, if availaible, the values of counters BIPus, BIPds and
scalar parameters RxOLT , RxONT , TxOLT , TxONT , volt-
ages VOLT , VONT , bias current IOLT , IONT , temperatures
T c
OLT , T

c
ONT of OLT and of the two ONTs connected to the

PON considered. Each table from Table I to Table VII shows
the beliefs of Layer 2 root cause nodes computed by our
Python implementation of the decision field of the generic
model based on evidences observed and decribed in the title
of each table.

We start the evaluation of the designed probabilistic fault
propagation model for GPON-FTTH self-diagnosis by ckeck-
ing if inference on this model returns no fault when no alarm is
observed on the PON and when counters and scalar parameters
of OLT and of the two ONTs are nominal. The Table I presents
the result of this test and shows that the positive state in bold,
i.e, the good working state of each layer 2 root cause node is
the most probable state.

TABLE I: No Fault: no observed alarm, counters and scalar
parameters are known and are nominal for both ONT1 and
ONT2.

.
Faults States Beliefs
FiberT [OK, AT,BR] [0.99, 6.e-03, 7.e-12]
AltOLT [OK, DF ] [0.99, 4.e-07]
FaultyONT1 [+fto, -fto] [0.007, 0.993]
FaultyONT2 [+fto, -fto] [0.014, 0.986]
IOS1 [OK, DF ] [0.980, 0.020]
IOS2 [OK, DF ] [0.980, 0.020]
ONTConfMis1 [+ocm, -ocm] [0.002, 0.998]
ONTConfMis2 [+ocm, -ocm] [0.002, 0.998]
FiberDB1 [OK, AT,BR] [0.91, 8.e-02, 9.e-07]
FiberDB2 [OK, AT,BR] [0.91, 8.2-02, 9.e-07]
AltONT1 [OK, DF ] [0.99, 1.e-07]
AltONT2 [OK, DF ] [0.99, 1.e-07]

The Table II shows that the ONT1 is diagnosed to be
faulty when it loses upstream and downstream communication
with OLT although the optical signal between them is not
degraded (no alarm related to signal quality is observed). Note
the missing values of counters and scalar parameters of ONT1
since the GPON-FTTH network management system has no
way to get these values from MIB (Management Information
Base) of ONT1. These missing values useful to compute
the most probable diagnosis are inferred by the probabilistic
model by using its conditional probability distributions. The
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loss of upstream and downstream communication between
OLT and ONT1 may also be due to the cut of the branching
fiber of ONT1. But this is a very rare event in reality since
infrastructures of telecommunication operators always protect
optical fibers from possible cuts. That is why the most probable
explanation of a bidirectional loss of communication is a faulty
ONT. However, other observations in addition to LOSus1 and
LOSds1 alarms may change this explanation.

TABLE II: Loss of communication between OLT and
ONT1 with no alarm related to signal quality: alarms
LOSds1, LOSus1 are observed, counters and scalars are
unknown for ONT1 but known and nominal for ONT2.

.
Faults States Beliefs
FiberT [OK,AT,BR] [0.99, 6.e-03, 1.e-11]
FaultyONT1 [+fto,−fto] [0.998, 0.002]
FaultyONT2 [+fto,−fto] [0.014, 0.986]
FiberDB1 [OK,AT,BR] [0.91, 8.e-02, 1.e-06]
FiberDB2 [OK,AT,BR] [0.91, 8.e-02, 9.e-07]

TABLE III: Loss of communication between OLT and
ONT1 with alarms related to signal quality: alarms
LOSds1, LOSus1, LCGDus1, LCGDds1, SDus1, SDds1
are observed, counters and scalars are unknown for ONT1
but known and nominal for ONT2.

.
Faults States Beliefs
FiberT [OK,AT,BR] [0.94, 5.e-02, 1.e-7]
FaultyONT1 [+fto,−fto] [0.422, 0.578]
FaultyONT2 [+fto,−fto] [0.014, 0.986]
FiberDB1 [OK, AT, BR] [0.409, 0.577, 0.014]
FiberDB2 [OK,AT,BR] [0.92, 7.e-02, 1.e-06]

TABLE IV: Attenuation of the branching fiber of ONT1 with
known counters and scalar parameters: alarms SDds1, SDus1
are observed, variation of counters BIPus1 upstream and
BIPds1 downstream, low level of upstream received power
RxOLT1 and downstream received power RxONT1. Counters
and scalar parameters of ONT2 are known and are nominal.

.
Faults States Beliefs
FiberT [OK,AT,BR] [0.91, 8.e-02, 1.e-11]
FaultyONT1 [+fto,−fto] [1.e-06, 0.999]
FaultyONT2 [+fto,−fto] [0.014, 0.986]
FiberDB1 [OK, AT, BR] [7.e-02, 0.92, 2.e-06]
FiberDB2 [OK,AT,BR] [0.92, 7.e-02, 1.e-06]

TABLE V: Attenuation of the branching fiber of ONT1 with
unknown counters and scalar parameters of ONT1: alarms
SDds1, SDus1 are observed, counters and scalar parameters
of ONT2 are known and nominal.

.
Faults States Beliefs
FiberT [OK,AT,BR] [0.93, 6.e-02, 1.e-09]
FaultyONT1 [+fto,−fto] [0.082, 0.918]
FaultyONT2 [+fto,−fto] [0.014, 0.986]
FiberDB1 [OK, AT, BR] [2.e-01, 0.76, 1.e-04]
FiberDB2 [OK,AT,BR] [0.92, 7.e-02, 1.e-06]

In Table III, the observation of alarms notifying optical sig-
nal degradation, brings additional information to the model and
changes the decision of the inference algorithm. The ONT1
is no longer diagnosed to be Faulty but its branching fiber

experiences important attenuation leading to communication
loss with OLT. Remark in Table III that, contrary to the
Table II, the belief that ONT1 is faulty decreases in favor
of increasing the belief that the branching fiber of ONT1
experiences important attenuation.

In Table IV, the most probable diagnosis is the atten-
uation of the branching fiber of ONT1 when SD (Signal
Degraded) alarms are raised for ONT1 with its counters
and scalar parameters known and non-nominal (upstream and
downstream BIP variation, low level upstream and downstream
receive power). If for some reasons, the management system of
GPON-FTTH network fails to get the values of counters and
scalars of ONT1, the model is always able to take the best
decision although in this case, the belief in the branching fiber
attenuation of ONT1 decreases slightly (from 0.92 to 0.76,
see Table V).

TABLE VI: Attenuation of the branching fiber of ONT1
and ONT2 with known counters and scalars of ONT1 and
ONT2: alarms SDus1, SDds1, SDus2, SDds2 are observed,
variation of BIPus,BIPds for both ONTs, low level of
upstream and downstream received power for both ONTs.

.
Faults States Beliefs
FiberT [OK, AT, BR] [0.41, 0.58, 1.e-09]
FaultyONT1 [+fto,−fto] [1.e-04, 0.999]
FaultyONT2 [+fto,−fto] [5.e-04, 0.999]
FiberDB1 [OK, AT, BR] [0.49, 0.50, 1.e-05]
FiberDB2 [OK, AT, BR] [0.49, 0.50, 1.e-05]

Now, if we observe signal degradation between OLT and
ONT1, and between OLT and ONT2 (see Table VI), the
probabilistic model more likely believes that it is the transport
fiber of the PON which experiences attenuation rather than
each of the two branching fibers. Remark in Table VI that
the probability of the transport fiber attenuation is 0.58. The
probability of attenuation of each branching fiber is 0.50.
The difference between these two probabilities is not very
significant. Therefore, we may tend to believe that the model
has trouble to take the best decision between the transport fiber
attenuation or branching fibers attenuation. But, if we compute
the joint probability of the two branching fibers attenuation
(0.5 × 0.5 = 0.25), we remark that the difference between
this joint probability and the probability of the transport fiber
attenuation is now very important. This result enforces the be-
lief that it is the transport fiber of the PON which experiences
attenuation. Note that the joint probability of the two branching
fibers is the product of the probabilities of the branching
fibers since they are independent. In fact the Markov Blanket
MB(FiberDBi) of the variable FiberDBi is defined by the
union of the following sets: the parent set PAi of FiberDBi,
the children set CHi of FiberDBi and the set OPi of other
parents of children of FiberDBi. MBi = PAi∪CHi∪OPi,
where PAi = ∅ (the empty set) since FiberDBi is a layer 2
root cause node. The set CHi = {RxOLTi

, RxONTi
} and the

set OPi = {TxONTi
, VONTi

, VOLT , TxOLT , F iberT }. The
branching fibers FiberDB1 and FiberDB2 are independent
each other because: FiberDB1 /∈ MB(FiberDB2) and
FiberDB2 /∈MB(FiberDB1).

The Table VII illustrates the case when a downstream loss
of communication between OLT and ONT1 is observed, i.e,
the alarm LOSds1 is raised and the GPON-FTTH network

www.conference.thesai.org 9 | P a g e



SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

TABLE VII: Loss downstream communication between OLT
and ONT1: LOSds1 alarm is observed, counters and scalar
parameters of ONT1 are unknown, but known and nominal
for ONT2.

.
Faults States Beliefs
FiberT [OK,AT,BR] [0.92, 7.e-02, 3.e-11]
FaultyONT1 [+fto,−fto] [0.094, 0.906]
FaultyONT2 [+fto,−fto] [0.014, 0.986]
FiberDB1 [OK, AT, BR] [8.e-02, 0.91, 4.e-06]
FiberDB2 [OK,AT,BR] [0.92, 7.e-02, 1.e-06]

management system does not read the values of counters
and scalar parameters of ONT1. Note that, this is a one
way loss of communication. Contrary to a bidirectional loss
of communication as illustrated in Table II, ONT1 is not
diagnosed to be faulty. The most probable diagnosis computed
by the model is the branching fiber downstream attenuation of
ONT1, i.e, only the downstream optical channel between OLT
and ONT1 experiences attenuation.

VII. CONCLUSION

We have presented in this paper a generic 3-layered
probabilistic model of fault diagnosis of telecommunication
networks. The generic model embeds two fields: a decision
field and an artificial learning field. The generic model has ca-
pabilities to compute diagnosis decisions and to automatically
learn changes in network topology and network behaviour.

We have shown how this generic model can be applied to
design a probabilistic model-based approach of fault diagnosis
of GPON-FTTH access network. We have presented and
analyzed some network fault diagnosis results carried out by
running a Python implementation of the decision field of the
generic model. The results obtained are very consistent with
experiments carried out on a GPON-FTTH network testbed.

We plan to transform this GPON-FTTH network faults
diagnosis model into an autonomous system by implementing
self-reconfiguration capabilities of the generic model. Another
perspective is to bring more intelligence to the reconfiguration
agent of layer 3 by designing a novel paradigm allowing it to
take into account new dependencies learned to the lower layers
without rebuilding all the layer 3. Doing so, scalability and
reconfiguration efficiency of the generic model will increase.
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