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Abstract1

The aim of this paper is to propose a new event-based mesoscopic approach to model multi-class2

traffic flow on multi-lane road sections. The mesoscopic model was first proposed by Leclercq3

and Bécarie (2012) and turns out to be equivalent to the resolution of the seminal LWR model in4

lagrangian-space coordinates n − x. It is fully consistent at a macroscopic scale with the LWR5

model while keeping track of individual vehicles. Our model is built on Hamilton-Jacobi equa-6

tions which have been proven to provide an efficient framework in traffic flow modeling for exact7

numerical methods at a low computational cost. The paper revisits the multi-class problem with a8

continuous moving bottleneck approach (instead of a sequential one), introducing a capacity drop9

parameter for multi-lane sections. It also overhauls the Daganzo diverge model with a relaxed10

FIFO assumption.11

Keywords: mesoscopic; multiclass; multilane; Hamilton-Jacobi; FIFO; diverge.12



Costeseque, Duret 3

Table of symbols1

Symbol Meaning

x spatial location

t time

n vehicle label, Lagrangian coordinate

q flow

k density

v speed

κ maximal density for one lane

C maximal flow for one lane

−w wave speed (with w > 0)

u free flow velocity

k 7→ Q(k) flow-density fundamental diagram

r 7→ H(r) headway-pace fundamental diagram

h
(

= 1
q

)

headway

r
(

= 1
v

)

pace

s
(

= 1
k

)

spacing

vB speed of the moving bottleneck

hB residual capacity up to the moving bottleneck

δ capacity drop parameter

N number of lanes

I vehicle class

TABLE 1 Table of symbols used along the paper.
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1 Introduction1

Motivation and quick literature review2

Dynamic traffic flow models are an essential building block for many applications including traffic3

flow monitoring, estimation and control. Previous works have already shown that simulation of4

traffic flow on a large scale network thanks to such dynamic models can be cumbersome, despite5

a lot of research effort made in that direction in the past decades. Indeed, classical models embed6

microscopic and macroscopic models. Microscopic traffic models allow a detailed representation7

of traffic thanks to an individual tracking of vehicles but at a high computational cost and with8

obvious calibration difficulties, depending on the number of vehicles that are simulated. Macro-9

scopic models and in particular the celebrated first order LWR model ( 1, 2) provide a robust and10

easy way to compute traffic flow on networks but they generally fail to recapture some meaningful11

phenomenon like capacity drop, traffic hysteresis or stop-and-go waves, without being specifically12

adapted.13

As underlined in ( 3), there exists a third class of traffic flow models that are well adapted for14

network applications. These models are called mesoscopic because while being consistent with15

macroscopic traffic flow rules, they also allow a vehicular description. The mesoscopic version16

of the LWR model can be also interpreted in the Hamilton-Jacobi (HJ) framework as it was first17

properly established in ( 4). See also references therein about the three dimensions representation18

of traffic (eulerian for t − x framework, lagrangian for t − n one and lagrangian-space for n − x19

one) and the variational techniques that can be used to solve such models.20

To enrich the representation of macroscopic models, which basically use a one-lane aggregation,21

for real-world applications, it is necessary to consider the variety of road users and of their behav-22

iors. Some efforts have been made in that direction since the beginning of the 2000’s by introducing23

multiclass and multilane (MCML for short) features into classical models such as kinetic ones ( 5)24

or as the seminal LWR model in Eulerian ( 6) or Lagrangian coordinates ( 7). For an accurate25

overview of these MCML models, the reader is referred to ( 7).26

Another strategy to take into account the MCML features is to generalize the moving bottle-27

neck (MB) problem for which the users are classically divided into a fast class, say the “rabbits”,28

and a slower one, called the “slugs” (see ( 8) for the origin of these terms). The MB theory is now29

well structured since the pioneering works ( 9, 10). See for instance ( 4) for one description of the30

MB problem in both mesoscopic and HJ framework.31

The aim of this paper is precisely to revisit the MCML problem on a network by gathering the main32

advantages of all the techniques that have been developed separately up to now. As an application,33

we are concerned with a diverge for which we introduced a relaxation parameter of the First-In-34

First-Out (FIFO) rule which is in some cases violated or not really realistic as pointed out in the35

literature ( 11, 12) but which is still widely assumed in traffic engineering works for the sake of36

simplicity. Our guiding example is a diverge whenever at most one exit branch is congested.37
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Organization of the paper1

The remaining of the paper is structured as follows: in Section 2, some basic theoretical elements2

which serve us as building blocks for our model, are recalled. Then in Section 3, the full model3

is introduced and the adapted numerical scheme is presented in Section 4. In Section 5, some4

numerical examples are provided. Finally, in Section 6, the main results are wrapped up and some5

future directions of research are pointed out.6

2 Recap of some useful concepts7

2.1 Mesoscopic modeling8

The mesoscopic resolution of the well-known LWR model proposed in ( 3) allows to compute the9

passing times of vehicles at a certain number of specific points of the network (the intersections for10

instance): it is thus called an event-based model keeping track of vehicles. The name “mesoscopic”11

came from the fact that the approach combines vehicular description with macroscopic behavioral12

rules. This n − x representation is fully consistent with the macroscopic (Eulerian) framework,13

say the original LWR model, and with the microscopic (Lagrangian) framework, say microscopic14

car-following models. One advantage of the mesoscopic resolution is that the calculation time is15

very low and it only depends on the number of considered nodes of the network and it does not16

depend on the length of the network.17

Following ( 4), let us introduce the headway h (time gap between two successive vehicles), the

pace r (travel time per space unit) and the spacing s (spatial gap between two successive vehicles).

One has the following relations

q =
1

h
, v =

1

r
, k =

1

s
, q = kv, and h = rs

where q, v and k denote respectively the flow, the speed and the density.18

We now define the Lagrangian variable as

n = N(t, x) :=

∫

∞

x

k(t, ξ)dξ

where N(t, x) gives us the label of the vehicle located at position x at time t. We are now ready to

introduce T (n, x) the passing time of vehicle n at location x as follows

T (n, x) :=

∫

∞

x

r(n, ξ)dξ.

One can verify that

{

∂tN = q, (flow)

∂xN = −k, (density)
, and

{

∂nT = h, (headway)

∂xT = r, (pace)
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Thus, the first order LWR model ( 1, 2)

∂tk + ∂xQ(k) = 0

becomes in lagrangian-space coordinates

∂nr − ∂xh = 0 (1)

with h = H(r).1

The variational theory, say the Hamilton-Jacobi (HJ) formulation of traffic flow models, teaches

us that if r = ∂xT solves (1), then T satisfies the following Hamilton-Jacobi equation

∂nT −H (∂xT ) = 0. (2)

If moreover we consider a triangular Fundamental Diagram (also called Hamiltonian) H ,

H(r) =







1

κ
r +

1

wκ
, if r ≥

1

u
,

+∞, otherwise,

then the representation formula known as the Lax-Hopf formula, for the associated HJ equation (2)

for which T (n, 0) for any n (passing times of all vehicles at upstream position) and T (0, x) for any

x (passing times of the first vehicle) are known, simply boils down to a minimization problem

between two terms (see ( 4)):

T (n, x) = max
{

T (n, 0) +
x

u
, T (0, x+ nσ) + nτ

}

, (3)

with u denotes the free flow speed, σ :=
1

κ
the jam spacing (or minimal spacing) and τ :=

1

wκ
the2

wave trip time between two consecutive vehicles in congestion (recall that w > 0).3

See also ( 13) for explicit (generalized) Lax-Hopf formula to compute the solution of (2) with4

the assumption of a piecewise affine Hamiltonian and under piecewise affine internal boundary5

conditions.6

2.2 Moving bottleneck theory7

Following ( 9, 10, 4), a moving bottleneck is defined as a vehicle (or a platoon of vehicles), for8

instance trucks or buses, circulating with a lower speed than the maximal allowed one.9

A moving bottleneck is said to be active if and only if it generates queues at upstream positions10

with respect to the moving bottleneck and if the upstream state is different from the downstream11

state.12

We just recall the notations and the main steps for the computation of the passing rate (say the13

flow that can overtake the moving bottleneck). Let us denote by:14

• ξN(t) the trajectory of the moving bottleneck in time-space plane t− x,15
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• ξT (n) the location where the vehicle n crosses the bottleneck in Lagrangian-space plane1

n− x,2

• vB(t) := ξ̇N(t) the moving bottleneck speed,3

• kD the density downstream of the bottleneck,4

• qD := Q(kD) the flow downstream of the bottleneck,5

• R(vB, qD) the maximum bottleneck passing rate

R(vB, qD) := qD − kDvB.

Notice that

ξ̇T (n) =
vB

R(vB, qD)
.

In Eulerian framework, the mathematical problem reads as a coupled ODE-PDE problem for which

existence and uniqueness results hold ( 14)



































∂tk + ∂x (Q(k)) = 0, for any t > 0, x ∈ R,

k(0, x) = k0, on R,

Q(k(t, ξN(t)))− ξ̇N(t)k(t, ξN(t)) ≤ Q∗(vB(t)), for any t > 0,

ξ̇N(t) = min

{

vb,
Q(k(t, ξN(t)

+))

k(t, ξN(t)+)

}

, for any t > 0,

ξN(0) = ξ0.

(4)

The upper bound on the passing rate is defined as a function of the moving bottleneck speed

ξ̇N(t) 7→ Q∗(ξ̇N(t)) and it matches the Legendre-Fenchel transform of the flow-density FD

Q∗(v) := sup
ρ∈Dom(Q)

{Q(ρ)− vρ} .

The Eulerian model (4) can be easily extended to the Lagrangian-space framework. It would6

be presented in the next sections, for our MCML application. The full solution details for the7

mesoscopic LWR model are given in Section 5.2 of ( 4). However, it is noteworthy that in any8

case (say if the vehicle is constrained by the downstream traffic conditions –the moving bottleneck9

is inactive– or if the vehicle is constrained by the moving bottleneck –the moving bottleneck is10

active–), the passing time of a vehicle n at position x of the network is determined as the maximum11

between the passing time of vehicle n at upstream position (x−∆x) plus the travel time obtained12

at free flow speed on the section [x − ∆x, x] (or eventually reduced due to the active moving13

bottleneck) and the passing time of the leader vehicle (n − 1) at downstream position (x + ∆x)14

translated by the jam speed.15
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3 Mesoscopic formulation of multiclass multilane models1

3.1 Choice of the modeling2

For tackling the multi-class and multi-lane modeling (whatever the network is), we can consider3

either the Generic Second Order Model (GSOM) family ( 15) with an attribute defined as the class4

of the considered vehicle or consider a coupled system of conservation laws (or equivalently of5

Hamilton-Jacobi equations) as previously done in the literature (see Section 1 for more references).6

In the first case, we cannot use the strength of the mesoscopic formulation since we have to define7

once for all the indexes of the vehicles and it is not straightforward to deal with the re-labeling of8

the vehicles once we consider overtaking maneuvers between each class.9

In the second case, each class has its own labeling and by assuming that inside a class the vehicles10

respect the FIFO rule, they stay ordered at any time. Apart from this fundamental difference,11

both approaches are quite close since we consider a fundamental diagram (or Hamiltonian) which12

depends on an “attribute” denoted by I and defined as the vehicle class (which is the case in the13

remaining of the paper) or the Origin-Destination pattern or a combination of both.14

3.2 Modeling assumptions15

Consider a stretch of road composed by N separate lanes with traffic stream composed of fast and16

slow vehicles defining two classes of users called respectively “rabbits” (I = I1 = 1) and “slugs”17

(I = I2 = 2). In all that follows, notice that we will use indifferently the terms rabbits or fast18

vehicles and slugs or slow vehicles.19

It is assumed that one vehicle cannot belong simultaneously to more than one class but its class20

can evolve with respect to time (according to the traffic state or to the mental stress of the driver21

or to its path on the network for instance). In the remaining, the class attribute is assumed to not22

depend on time.23

Slugs cannot go to the passing lane(s) and are limited to the shoulder lane, while the fastest vehicles24

can use the passing lane(s) and the shoulder lane.25

Let us introduce the class-dependent headway-pace FD (or Hamiltonian)

H : (r, I) 7→ H(r, I)

for a given class attribute I ∈ {1, 2}.26

3.3 Capacity drop parameter27

One of the main drawback of the LWR model (whatever the chosen resolution is) is that the ca-28

pacity drop phenomenon is not represented. Capacity drop can be characterized as a reduction29

in discharge flow after queue formation that is observed at the downstream of an active (moving)30
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bottleneck location. Basically this difference of flow is interpreted as a recovery flow from low1

speeds (vehicles stuck in a congestion) to free flow (vehicles accelerating). Below, we describe a2

strategy to take into account this well-known feature of traffic flows.3

3.3.1 Capacity drop and moving bottleneck4

Consider a parameter δ ∈ [0, 1] that tells us how much the traffic flow complies to the First-In-5

First-Out (FIFO) rule, with the two extreme cases:6

• If δ = 0, the traffic is strictly non-FIFO, say all the vehicles can overtake each other without7

any restriction, say they can use the entire residual headway hB of the passing lane(s).8

• If δ = 1, the traffic is strictly FIFO, say the vehicles keep ordered at all time, independently9

of their origin and/or destination and even if there are some available passing lane(s). The10

vehicles behave as if the residual headway is equal to zero.11

An intermediate value δ ∈]0, 1[ can be interpreted as a penalty for overtaking maneuvers by reduc-

ing the residual headway of the passing lane(s) to a modified residual headway

h̃B :=
1

1− δ
hB.

In Figure 1, one can notice that with a strict non-FIFO behavior, whenever the moving bottleneck12

is active, the upstream traffic state is different from the downstream traffic state. Conversely, if one13

assumes a strict FIFO behavior, all the vehicles have to adopt the moving bottleneck speed vB .14

3.3.2 Relaxing the FIFO assumption at a diverge15

The parameter δ introduced in the previous subsection for road sections, can be extended to spatial16

discontinuities of the network. In this paper, we are particularly concerned with diverges. In such17

a case, introducing the parameter δ is equivalent to relax the FIFO assumption.18

Let us consider a diverge composed of one incoming road that divides into J outgoing branches19

(with J ≥ 2). The original model of Daganzo ( 16) (equivalent to the first diverge model used20

in ( 17) and also to the one in ( 18), see ( 19) for a detailed review of the literature on diverge21

models) relies on the FIFO assumption that is reasonable for the following traffic cases:22

• the traffic flow is fluid on all downstream branches,23

• the traffic flow is congested on all downstream branches.24

Nonetheless, as soon as at least one downstream branch is in free flow condition while another25

downstream branch is congested, the FIFO assumption is no longer realistic.26
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(MB)

(D)

(U)

(D)

Case FIFOCase non−FIFO

(U) (D)

Flow

vB
R(vB, qD)

vB

1

C
1

wκ

H

p

1

κ

1

u
rB =

1

vB

hB =
1

qD

1

R(vB, qD)

FIGURE 1 Moving bottleneck graphical solution in Lagrangian-space coordinates, for a

triangular Hamiltonian, and with different values of the capacity drop parameter δ.

The idea is then to introduce a relaxation parameter δ ∈ [0, 1] that represents the percentage of1

vehicles that can go through the diverge in direction of the exiting branch, even if the node is2

congested. This parameter allows to relax the FIFO assumption.3

Let us denote by4

• ∆0, the upstream demand,5

• ∆j , the demand on downstream branch j,

∆j = γj ∆0, for any j,

• Σj , the downstream supply on branch j,6

• Cj , the capacity of branch j, say the maximal flux that can be passed on the road,7

• γj , the proportion of the flow that goes in direction of branch j. Note that one has
∑

j

γj = 18

and without loss of generality, we assume that γj > 0 for any j.9

• q0, the flow on the unique upstream branch and qj the flow on downstream branch j. We
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have that for any j










qj = γj q0, (Flow distribution)

qj ≤ Σj ≤ Cj, (Supply constraint)

There are several cases to distinguish:1

1. If no upstream demand exceeds its downstream supply, say ∆j ≤ Σj for any j or equivalently

∆0 ≤ min
j

{

Σj

γj

}

, then the solution is provided by the classical Daganzo model

{

q0 = ∆0,

qj = ∆j = γj∆0 = γj q0, for any j.

2. If all upstream demands exceed the downstream supplies, say ∆j > Σj for any j or equiv-

alently ∆0 > max
j

{

Σj

γj

}

, then the solution is (also) provided by the classical Daganzo

model






q0 =
∑

j

Σj <
∑

j

∆j = ∆0,

qj = Σj < ∆j , for any j.

3. If at least one upstream demand exceeds its downstream supply, but one of the downstream

branch is in free flow condition, say min
j

{

Σj

γj

}

< ∆0 < max
j

{

Σj

γj

}

, we denote by J∗ the

set of all downstream branches that are in free flow condition and we set

q̄ := min
k

{

Σk

γk

}

.

Then the solution is provided by the modified model (with the parameter δ ∈ [0, 1])



























q0 = δq̄ + (1− δ)





∑

j /∈J∗

Σj +
∑

j∈J∗

∆j



 ,

qj = δγj q̄ + (1− δ)Σj , for any j /∈ J∗,

qj = δγj q̄ + (1− δ)∆j , for any j ∈ J∗.

For a full-non FIFO model (δ = 0), we get



















q0 =
∑

j /∈J∗

Σj +
∑

j∈J∗

∆j <
∑

j

∆j = ∆0,

qj = Σj , for any j /∈ J∗,

qj = ∆j, for any j ∈ J∗,
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while taking δ = 1 gives us the classical FIFO model







q0 = q̄ <
∑

j

∆j = ∆0,

qj = γj q̄ < ∆j, for any j.

All the details are given for flows for the reader convenience because that the eulerian framework1

is the most well-known in the community up to now. However, notice that all the approach can be2

conversed to headway without any difficulty.3

3.4 Expression of the MCML model4

In this subsection, we finally summarize the previous contributions (old and new) into a unique5

multiclass and multilane mesoscopic model, expressed in Lagrangian-space coordinates.6

Assume that each class satisfies to a LWR model with a specific fundamental diagram that depends7

on the attribute I . Consider two headway-pace fundamental diagrams H(·, I1) and H(·, I2). We8

assume that the vehicles belonging to class 1 are faster than the ones of class 2. Thus, one has9

u1 > u2 (where we recall that ui is the top speed of class i).10

Moreover, we define the Legendre-Fenchel transform of the class-specific HamiltonianH(·, ·) with

respect to its first variable, as follows

H∗(s, I) := inf
r∈Dom(H(·,I))

{H(r, I)− sr} , for any (s, I) ∈ R× R.

Let (n0, x0) ∈ R× R be fixed. The complete model in HJ framework writes































∂nT1 −H (∂xT1, I1) = 0, for (n, x) ∈ [n0,+∞)× [x0,+∞),

∂nT2 −H (∂xT2, I2) = 0, for (n, x) ∈ [n0,+∞)× [x0,+∞),

H (∂xT1(n, ξ(n)), I1)− (1− δ)ξ̇ (n∗

2) ∂xT1(n, ξ(n))

≥ H∗

(

(1− δ)ξ̇ (n∗

2) , I1

)

for n ∈ [n0,+∞),

T2 (n, ξ(n)) ≥ T1(n
∗

1, ξ(n)) +H (∂xT1(n
∗

1, ξ(n)), I1) , for n ∈ [n0,+∞),
(5)

where
{

n∗

2 := argmax T2(·, ξ(n)) and ξ(n) = ξ(n∗

2), for n ∈ [n0,+∞),

n∗

1 := argmax T1(·, ξ(n)) for n ∈ [n0,+∞),

and with the following initial and boundary values (IBV)



















T1(n, x0) = g1(n), on [n0,+∞),

T2(n, x0) = g2(n), on [n0,+∞)

T1(n0, x) = G1(x), on [x0,+∞),

T2(n0, x) = G2(x), on [x0,+∞).

(6)



Costeseque, Duret 13

In (5), the first two equations traduce the conservation of vehicles in Lagrangian-space coordinates1

and inside each vehicle class (independently of the other one).2

Assume that n∗

i (i ∈ {1, 2}) denotes the nearest leader from class i for vehicle n of class j 6= i3

(j ∈ {1, 2}). It is computed as the last vehicle that has passed through the current location of4

vehicle n.5

The third equation is the coupling condition from the point of view of class 1, say the moving

bottleneck condition whenever a vehicle of class 1 catches a slower vehicle of class 2, whose label

is assumed to be n∗

2. This inequality gives a lower bound on the modified passing headway. Due to

the capacity drop parameter δ ∈ [0, 1[ (which also stands for the relaxation of the FIFO assumption

on a diverge), the modified passing headway H̃ is determined as follows

H̃ =
1

1− δ
hB −

ξ̇T (n∗

2)

u1

where hB =
1

(N − 1)C
is the residual headway available up to the moving bottleneck since there6

remains only (N − 1) passing lanes (see Figure 2). This bound is defined as the Legendre-Fenchel7

transform H∗ of the Hamiltonian H(·, I1) applied to ξ̇T (n∗

2) the spacing imposed by the current8

moving bottleneck.9

1

u
r

1

(N − 1)κ

ξ̇(n∗
2
) ξ̇(n∗

2
)

N lanes

(N − 1) lanes

1

Nκ

hB =
1

(N − 1)C

rB

1

NC

1

Nwκ

H∗
(

ξ̇(n∗
2
)
)

hB −
ξ̇(n∗

2)

u

H

FIGURE 2 Moving bottleneck treatment in Lagrangian-space coordinates for a triangular

Hamiltonian (for the sake of readability, the capacity drop is not represented here).

The fourth equation stands for the coupling condition from the point of view of class 2. We assume10

that it a vehicle of class 2 catches a vehicle of class 1, then it behaves according to a “follow-the-11

leader” rule. Indeed, class 2 is restricted to the shoulder lane and cannot go on the passing lane(s).12

Moreover, such a situation may happen if the nearest leader of class 1 is stuck in a congestion and it13

makes no sense that vehicle of class 2 can overtake. The coupling conditions are thus asymmetric14

between classes 1 and 2.15
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4 Numerical scheme1

4.1 Setting of the IBV Problem2

Assume that we consider a set of nmax vehicles which are divided into lmax platoons of ∆n vehicles3

(obviously nmax = n0 + lmax∆n). It is noteworthy that for the sake of clarity, we consider that the4

label step ∆n is the same whatever the vehicle class is. These vehicles are moving on a link [x0, L]5

divided into kmax sections which length is denoted by ∆x (obviously L = x0 + kmax∆x).6

Consider the IBV problem (5)-(6) on the computational domain [n0, nmax]× [x0, L]. Assume that

the class-specific Hamiltonians H are triangular, say for any i ∈ {1, 2},

H(r, Ii) =







1

κ
r +

1

wκ
, if r ≥

1

ui
,

+∞, otherwise,

Below, we make precise the definitions of the initial and boundary values gi, Gi for i ∈ {1, 2}.7

Definition 4.1 (PWA Eulerian boundary condition) Assume that one can measure the flow val-8

ues {qi,k}k∈[1,kmax]
for each group of ∆n vehicles of class i ∈ {1, 2}, at a fixed (and given) location9

x0 (thanks to a loop detector for instance).10

We define the piecewise affine (Eulerian) boundary condition for the Hamilton-Jacobi equation (5)

as follows

Ti(n, x0) = Ti(n0, x0) +
kmax
∑

k=1

hi,k∆n, for any i ∈ {1, 2}

with the headway values

hi,k =
1

qi,k
for any k ∈ [1, kmax] and i ∈ {1, 2} .

Definition 4.2 (PWA Lagrangian boundary condition) Assume that one can measure the speed11

values {vi,l}l∈[1,lmax]
for each discrete position distant of ∆x, for a given leader vehicle n0 of the12

class i ∈ {1, 2}.13

We define the piecewise affine (Lagrangian) boundary condition for the Hamilton-Jacobi equa-

tion (5) as follows

Ti(n0, x) = Ti(n0, x0) +
lmax
∑

l=1

ri,l∆x, for any i ∈ {1, 2}

with the pace values

ri,l =
1

vi,l
for any l ∈ [1, lmax] and i ∈ {1, 2} .
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4.2 Lax-Hopf formulæ for the MCML model1

Representation formulæ for PDEs ( 20) such as the Lax-Hopf formula for the Hamilton-Jacobi2

equation ( 21, 22), enable a fast and exact computation of solutions for the associated PDE.3

For instance, Lax-Hopf formula for the LWR model in traffic flow has been used in the Eulerian4

framework in ( 23, 24, 25), in the Lagrangian framework in ( 26) and in the Lagrangian-space5

framework in ( 13). For a synthetic review of these formulæ, the interested reader is referred6

to ( 4).7

Then for any (n, x) ∈ [n0, nmax] × [x0, L], consider the following Lax-Hopf like formulæ (so to

speak, here we use a Bellman dynamic programming principle)

T1(n, x) = max
{

T1(n, x−∆x) +
∆x

u1
, T1(n−∆n, x+∆x) +

∆x

wκ
,

T2(n
∗

2, x) +
1

1− δ
hB

}

with n∗

2 := argmax T2(·, x)

(7)

and

T2(n, x) = max

{

T2(n, x−∆x) +
∆x

u2
, T2(n−∆n, x+∆x) +

∆x

wκ
,

T1(n
∗

1, x) +H

(

T1(n
∗

1, x)− T1(n
∗

1, x−∆x)

∆x
, I1

)

}

with n∗

1 := argmax T1(·, x)

(8)

with the condition

∆x =
∆n

κ
.

We recall that w > 0 denotes the wave speed, n∗

i is the label of the last vehicle of type I = Ii8

which has passed through position x and hB is the residual headway available on the remaining9

lanes, when crossing the moving bottleneck.10

4.3 Some mathematical results11

By generalizing the methodology proposed in ( 27) for the moving bottleneck problem (4) in12

Eulerian coordinates, one can show that the IBV problem (5)-(6) admits a unique solution. The13

proof is out of the scope here. We only assume that this result holds true.14

We are now interested in showing that our numerical solutions (7) and (8) converge towards the15

unique continuous solution of the IBV problem (5)-(6). For the sake of space, we only give the16

sketch of the proof.17

It is worth noticing that the first two terms in the maximum in (7) and (8) are strictly similar to the18

classical case, say the Lax-Hopf formula (3) for solving the Hamilton-Jacobi equation (2). Indeed,19

these two terms stand for the usual mesoscopic resolution of the LWR model. The convergence20
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of these two terms is of no concern for us, as the Lax-Hopf formula (3) has already been proved1

to give an explicit solution to the Hamilton-Jacobi equation (2). The interested reader is referred2

to ( 4).3

The novelty is the third term that appears in the max. In each case, we have to ensure that these

terms satisfy the coupling conditions between both mesoscopic LWR models. If the coupling

conditions are fulfilled, then the inf-morphism property (see for instance ( 23, 13) and references

therein) allows us to conclude. Indeed, for each class point of view, the coupling can be seen as

an external constraint. The global solution is thus given by the maximum between all the partial

solutions obtained for each condition (initial and boundary ones).

The result is straightforward for (8).

For (7), let us fix (n, x) and assume that

T1(n, x) = T2(n
∗

2, x) +
1

1− δ
hB.

Moreover, we assume that at a given location x there is no vehicle between the vehicle of class 1
denoted n1 and its nearest leader of class 2, say n∗

2. This means in particular that

T1(n1 −∆n, x) ≤ T2(n
∗

2, x).

Thus, we have that for any s < 0

H

(

T1(n1, x)− T1(n1 −∆n, x)

∆n
, I1

)

− (1− δ)s
T1(n1, x)− T1(n1 −∆n, x)

∆n

≥ H

(

T1(n1, x)− T2(n
∗

2, x)

∆n
, I1

)

− (1− δ)s
T1(n1, x)− T2(n

∗

2, x)

∆n

≥ hB − (1− δ)
s

u1

≥
N − 1

N
hB − (1− δ)

s

u1

≥ H∗ ((1− δ)s, I1) .

Taking the limit ∆n going to zero and setting s = ξ̇(n∗

2), we get the result. This ends the proof.4

5 Numerical examples5

5.1 Impact of a single “slow vehicle”6

The numerical scheme (7)-(8) has been applied to a link composed of two lanes located im-7

mediately upstream a diverge with two output branches. The incoming link length is set to8

L − x0 = 1000m. The demand at x = x0 is set to q = 1 vps for class 1. A single vehicle9

from class 2 drives through the link with a maximum speed u2 = 10m/s, while vehicles from10

class 1 have a maximum speed u1 = 25m/s. The congested parameters are set to w = 5m/s and11

kx = 0.14veh/m for both classes. The simulation duration is set to 200s with δ = 0.12
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In the remaining of the section, “fast vehicles” (resp. “slow vehicles”) designate vehicles from1

class 1 (resp. 2).2
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2
(n, x)

T
1
(n, x)

FIGURE 3 Impact of single slow vehicle (class 2) on fast vehicles (class 1)

Figure 3 depicts T (n, x) in the time-space plan, for vehicle from class 1 (black lines) and class 23

(red line). The consistency of the result with the well-established moving bottleneck theory is4

verified. The flow upstream the slow vehicle exceeds the maximum flow that can overtake. The5

MB is said to be active and separates two traffic states: (i) a free flow state downstream the MB6

with h = hB and (ii) a congested state upstream the MB.7

Here it has been assumed that no capacity drop occurs, δ = 0. Then four levels of capacity drop8

have been tested: δ = {0.2, 0.4, 0.6, 1}. The results are presented in Figure 4.9

Obviously the slow vehicle surrounding conditions highly depend on the capacity drop parameters,10

which drives the maximum flow that overtakes. Comparing Figures 4(a), 4(b), 4(c) and 4(d), it is11

worth noticing that δ can also be interpreted as a parameter that relaxes the FIFO rule. When12

δ = 1, fast vehicles cannot overtake slow vehicles and the traffic flow is FIFO. Vehicle upstream13

the diverge share the same delay independent of the destination (class). When δ 6= 0, the FIFO14

rule is relaxed and vehicles from “fast class” are more and more inclined to overtake vehicles from15

“slow class”.16

5.2 Simulation with a mixed traffic17

Finally, an advanced simulation scenario has been implemented with the same link characteristics,18

where the vehicle classes have the same characteristics as above. The demand at x = x0 is set to19

q = 1 vps with the following distribution per class: class 1 = 95% and class 2 = 5%. The simulation20

results are illustrated in Figure 5.21
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(a) δ = 1
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(b) δ = 0.6
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(c) δ = 0.4
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(d) δ = 0.2

FIGURE 4 Impact of δ on traffic states surrounding an active MB

Here again, slow vehicles act as active moving bottlenecks. The flow downstream slow vehicles is1

bounded and fast vehicles accumulate behind. It can also be seen from figure 5(b) that travel times2

experienced by fast vehicles oscillate around 60s. This mean travel time is a trade-off between3

40s (when no interaction occurs between classes) and 100s (when class 1 and 2 strictly respect the4

FIFO rule). It is directly related to the simulation parameters, and first of all δ which drives the5

level of relaxation of the FIFO rule. We conclude from this scenario that the proposed multiclass6

model:7

• provides a more realistic framework to simulate traffic condition upstream diverge. It allows8

for relaxing the FIFO rule while considering the interactions between vehicle classes.9

• the calibration of δ is of paramount importance for practical application. Further research is10

needed to propose accurate methodology to calibrate δ accurately and to identify factors that11

impact δ (lane ratio, class distribution, speed difference, etc.).12

6 Conclusion and perspectives13

We have introduced a new event-based mesoscopic model for multi-class traffic flow modeling on14

multi-lane sections. The basis model was first introduced by Leclercq and Bécarie ( 3) and deals15

with traffic flow on mono-pipe links, even if it can take into account simple junction models and16

two-flows representation thanks to the theory of moving bottlenecks. The model has been proven17



Costeseque, Duret 19

Time (s)
50 100 150 200 250 300 350 400 450 500 550

S
pa

ce
 (

m
)

0

100

200

300

400

500

600

700

800

900

1000

T
2
(n, x)

T
1
(n, x)

(a) trajectories

time (s)
0 100 200 300 400 500 600 700

tr
av

el
 ti

m
es

 (
s)

0

20

40

60

80

100

120 class 1
class 2

(b) travel times

FIGURE 5 Simulation results

to be very attractive to simulate traffic flow on wide networks since it only keeps track of individual1

passing times at the boundaries of the network.2

Among the perspectives, we would be interested in dealing with real traffic data to validate the3

continuous model, even if we are aware that these data need to be precise enough such that one can4

make the distinction between vehicle classes for example cars and trucks. A step further would5
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be data assimilation for real-time applications such as traffic state estimation and forecast. We are1

also looking forward coupling our approach with lane flow distribution as proposed for instance2

in ( 28) where the authors proposed a mechanism to show how variable speed limits help to delay3

the congestion onset.4

In a quite different fashion, another extension of this work would be to consider the mesoscopic5

formulation of the GSOM family (as discussed in Section 3.1) and to assume that the moving bot-6

tlenecks are (known) internal boundary conditions. A numerical solution could be obtained by ex-7

tending the algorithm described in ( 29), when assuming a triangular fundamental diagram H(·, I).8
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[25] Mazaré, P.-E., A. H. Dehwah, C. G. Claudel, and A. M. Bayen. Analytical and grid-free4

solutions to the Lighthill–Whitham–Richards traffic flow model. Transportation Research5

Part B: Methodological, Vol. 45, No. 10, Elsevier, 2011, pp. 1727–1748.6

[26] Han, K., T. Yao, and T. L. Friesz. Lagrangian-based hydrodynamic model: Freeway traffic7

estimation. arXiv preprint arXiv:1211.4619, 2012.8

[27] Delle Monache, M. L., J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, and A. M. Bayen.9

A PDE-ODE model for a junction with ramp buffer. SIAM Journal on Applied Mathematics,10

Vol. 74, No. 1, SIAM, 2014, pp. 22–39.11

[28] Duret, A., S. Ahn, and C. Buisson. Lane flow distribution on a three-lane freeway: General12

features and the effects of traffic controls. Transportation research part C: emerging tech-13

nologies, Vol. 24, Elsevier, 2012, pp. 157–167.14

[29] Costeseque, G. and J.-P. Lebacque. A variational formulation for higher order macroscopic15

traffic flow models: numerical investigation. Transp. Res. Part B: Methodological, 2014.16


	Introduction
	Recap of some useful concepts
	Mesoscopic modeling
	Moving bottleneck theory

	Mesoscopic formulation of multiclass multilane models
	Choice of the modeling
	Modeling assumptions
	Capacity drop parameter
	Capacity drop and moving bottleneck
	Relaxing the FIFO assumption at a diverge

	Expression of the MCML model

	Numerical scheme
	Setting of the IBV Problem
	Lax-Hopf formulæ for the MCML model
	Some mathematical results

	Numerical examples
	Impact of a single ``slow vehicle''
	Simulation with a mixed traffic

	Conclusion and perspectives
	Acknowledgement

