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Towards Hierarchical Curiosity-Driven Exploration
of Sensorimotor Models

Sébastien Forestier, Pierre-Yves Oudeyer
Flowers Team — INRIA Bordeaux

Curiosity-driven exploration mechanisms have been proposed to allow robots to actively explore high di-
mensional sensorimotor spaces in an open-ended manner [1]. In such setups, intrinsic motivations based on
competence progress show good results - the learner explores its sensory space with a bias toward regions
which are predicted to yield a high competence progress. However, throughout its life, a developmental robot
has to incrementally explore skills that add up to the hierarchy of previously learned skills, with a constraint
being the cost of experimentation. We rely on the SAGG-RIAC series of architectures [2] and describe some
ways to extend those architectures to the exploration of a hierarchy of sensorimotor skills. We developed a
simulated robotic setup to evaluate the different architectures, where a robot has to push an object to
different locations.

Introduction

We use and extend the Explauto library [3] that aims at studying autonomous exploration. In the Explauto
framework, a sensorimotor model is learned together with an interest model that guides future exploration.
• Sensorimotor model

This model stores the experimented motor commands and their associated
sensory experience and builds a mapping between the motor space and the
sensory space. We use the fast nearest neighbor algorithm to build this
mapping but more powerful regression methods could be used instead.

• Interest model
The interest model estimates how interesting it is to explore given parts of
the sensory space. We use the SAGG-RIAC architecture (Self Adaptive Goal
Generation - Robust Intelligent Active Curiosity [2]) with an intrinsic moti-
vation that pushes the agent to explore regions where the progress of the
competence to reach self-generated goals in the sensory space is the higher.

• Exploration
The agent selects a goal in its sensory space according to the interest model and infers motor parameters
to get close to this point with the sensorimotor model. It adds some exploration noise to discover new
motor configurations, executes the command and observes the sensory experience. Finally, it updates the
sensorimotor model with the new association, and the interest model with the competence to reach the goal.

Curiosity-Driven Exploration

To study hierarchical exploration, we design a setup where the
agent learns two sensorimotor models, with the second one
that reuse the first one. In our setup, the first sensorimotor model
in the hierarchy is a relation between the 20 motor parameters of
a robotic arm and the 9 parameters of the 3D trajectory of the
robotic hand. The second sensorimotor model is a relation between
the trajectory of the hand and the 2D position of a block at the end
of the movement. Control architectures will have to learn directly
a relation between the motor parameters and the position of the
block.
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Hierarchical Exploration

• Motor Babbling Control
Exploration of a mapping between M and So with random motor actions.

• Goal Babbling Control
Exploration of a mapping between M and So with a competence-based intrinsic motivation (SAGG-RIAC).

• Simplest First
Exploration of a mapping between M and Sh for the first half of the trials and of a mapping between Sh
and So for the second half. Both explorations are made with SAGG-RIAC.

• Top-Down Guidance
Exploration of a mapping between Sh and So. When asking to explore a hand’s movement sh, this goal sh is
used to guide the exploration of a mapping between M and Sh which is given a certain amount of iterations
to try motor configurations to reach that goal (with a black-box optimization technique [4]).

Learning Architectures

• The robotic setup is the left arm of the Poppy
robot [5], with 4 degrees of freedom, simulated with
the V-REP simulator based on the Bullet physics en-
gine.

• We use Dynamical Movement Primitive [6] to con-
trol the arm’s movement as this framework allows the
production of a diversity of arm’s trajectories with few
parameters. Each arm’s motor is controlled by a DMP
with a starting and a goal position equal to the rest
position of the motor. Each DMP is parameterized by
one weight on each of 5 basis functions whose centers
are distributed homogeneously throughout the move-
ment of duration 4s. M is the 20D space of the motor
parameters.

• Sh is a 9D space representing the 3D trajectory of the hand. We also use the DMP framework to project
each of the X, Y and Z movements on a sensory DMP with 3 basis functions.

• A 3cm wide block is located near the robot’s hand and can be moved in different complex ways, e.g. with
the hand pushing on the top of the block or on a side. So is the 2D space representing the position of the
block at the end of the simulation. The initial position of the block is (X = 0.225m,Y = 0.135m), X axis
points in front of the robot, Y axis on its left.

Poppy Torso in the V-rep simulator

We ran different trials for each conditions (nMB = 13, nGB = 9, nSF = 16, nTDG = 18). Each trial is made of 5000 learning
iterations. Each iteration takes about 1s on 3, 06 GHz Xeon x5675 nodes. Exploration is evaluated each 500 iterations with 2
different measures. Statistical tests are performed after 5000 iterations to compare conditions.

Experiments

• Exploration Measure
This measures how diverse outcomes have been found by the agent in its goal space. It makes no assump-
tions about the interest of exploring different regions of the goal space from the viewpoint of the engineer.
To compute the quantity of exploration we consider the goal space as an unbounded grid where we count the
cells that have been reached during training.
Low Robustness
In our setup, the environment is highly stochastic in the sense that when the agent tries the same motor command
different times, the variability in the generated arm movement and the collisions between the arm and the block leads to
high variances in the end position of the block. Thus the agent might not succeed in reaching again a previously reached po-
sition, and in other words, a high exploration does not mean a high learning. We define the following measure to tackle this problem.

• Competent Exploration Measure
This measures how competent is the robot on the explored part of its goal space. We give the centers (black
dots) of explored cells as goals to the agent, and we count the cells where the agent manages to get close to
the goal (within 2cm).
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Left: Red square is the initial posi-
tion of the block, blue dots are reached
positions of the block at the end of
the movement, blue squares are reached
cells.

Right: In the competent exploration
measure, we plot a red cell if the agent
did not manage to get within 2cm of the
center, and a green cell if it did. In green
cells, black dots are goals and green dots
are corresponding reached points. X axis
points in front of the robot, Y axis on its
left, units are meters.
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Measures

Exploration measure Competent Exploration measure

Mann-Whitney U tests at the end of the experiments show
that the exploration measures in the Goal Babbling control
and Top-Down Guidance conditions are not significantly dif-
ferent but are significantly greater (p < 0.05) than in the
Simplest First condition, where it is significantly greater than
in the Motor Babbling control condition.

Mann-Whitney U tests at the end of the experiments show
that the competent exploration measure is significantly greater
in the Top-Down Guidance condition than in the Simplest First
condition where it is significantly greater than in the control
conditions.

Results

• Results show that exploration is better in the Top-Down Guidance condition than in the Simplest First condi-
tion, with both measures. This implies that the guidance from the top-level model is useful to drive
the exploration of the lower-level model on parts of the task space that are more interesting for the
exploration of the higher one.

• Results also show comparable exploration for the Top-Down Guidance and the Goal Babbling control con-
ditions, whereas the competent exploration measure shows that the architectures learning an intermediate
hand’s movement representation allow the agent to put again the object on much more diverse locations.
An intuition for this result is that when exploring around motor parameters that lead to a movement of the
block, the control architecture modifies directly joints’ trajectories leading to less accurate collisions with
the block than hierarchical architectures that try to modify hand’s Cartesian trajectory. For that reason,
hierarchical architectures would produce less diverse but more reproducible interactions than
control architectures.

• In this setup, the intermediate hand’s movement representation is reused by only one higher-level model,
but learning intermediate representations should be even more beneficial for exploration in
complex learning hierarchies where more than one models are reusing the learned representations.

• The next step is to integrate social interaction with a human peer that will give demonstrations on the
task space and the hierarchy of models to explore.

Discussion
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