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KH2PO4 (KDP) belongs to the class of hydrogen-bonded ferroelectrics, whose paraelectric to
ferroelectric phase transition is driven by the ordering of the protons in the hydrogen bonds. We
demonstrate that forbidden reflections of KDP, when measured at an x-ray absorption edge, are
highly sensitive to the asymmetry of proton configurations. The change of average symmetry caused
by the ’freezing’ of the protons during the phase transition is clearly evidenced. In the paraelectric
phase, we identify in the resonant spectra of the forbidden reflections a contribution related to the
transient proton configurations in the hydrogen bonds, which violates the high average symmetry
of the sites of the resonant atoms. The analysis of the temperature dependence reveals a change of
relative probabilities of the different proton configurations. They follow the Arrhenius law and the
activation energies of polar and Slater configurations are 18.6 and 7.3 meV respectively.

PACS numbers: 61.05.cp,61.05.cj,78.70.Ck,78.70.Dm

I. INTRODUCTION

Although potassium dihydrogenphosphate (KH2PO4,
hereafter KDP) was one of the first discovered ferro-
electric materials1, the microscopic mechanism at play
during its ferroelectric phase transition has been one of
the most difficult to understand. The crystals of the
KDP family belong to the class of hydrogen-bonded fer-
roelectrics, in which protons play an important role: their
PO4 molecular units are linked by hydrogen bonds, and
ferroelectricity appears to be connected to the behaviour
of the protons in these bonds. The generic theoretical
framework describing the hydrogen-bonded ferroelectrics
was introduced by Slater2: the static and dynamic prop-
erties of these systems are described on the basis of
the configuration energy determined by proton config-
urations (Fig. 1). In Slater’s model, each proton oc-
cupies one of two possible crystallographic positions in
its bond. In the paraelectric phase, both positions are
equivalent and randomly occupied, while in the ferro-
electric phase one of the positions is favoured, accord-
ing to the local ferroelectric polarisation. The ferroelec-
tric transition appears thus as a classical order-disorder
phase transition2–4. Intensive experimental and theoret-
ical investigation has confirmed this model5. The pro-
ton ordering at the phase transition has been evidenced
and correlated with atomic displacements along the c-
axis at the origin of the electric polarisation6. To explain
the large effect of deuteration on the transition, Blinc
suggested that, instead of a static proton disorder, pro-
tons are in fact delocalised and tunnel back and forth be-
tween both sites of a double-well potential7. Since then,
the nature of the phase transition, either order-disorder
or confinement-deconfinement, has been much debated

(see, e.g., reviews by Schmidt8, Tokunaga & Matsubara9

and Lines & Glass10). Geometrical effects have been sug-
gested as an alternative to tunnelling to explain the modi-
fication of the phase transition of deuteration11,12. Nowa-
days there is growing evidence for a combination of both
effects13,14. Indeed, recent ab initio calculations15,16 con-
firm the interplay of geometrical and tunneling effects,
and provide a more accurate view of the tunneling mech-
anism, which involves not only protons but larger clusters
including heavy atoms. Experimentally, recent neutron
Compton scattering experiments have shown strong evi-
dence for the deconfinement of the protons in the para-
electric phase17. While the role of the protons during
the phase transition is now well established, not much
attention has been given to their behaviour in the para-
electric phase. In particular, a number of different proton
configurations have been proposed2,18 and are expected
to coexist with different probabilities, but a quantitative
experimental evaluation of their probabilities is still lack-
ing.

In the present paper, we report on a spectroscopic
study of the forbidden reflections of KDP with reso-
nant x rays. We recently demonstrated that such forbid-
den reflections show spectacular effects across the phase
transition19. Here we go further by carefully modeling
the spectra and their temperature dependence in the
paraelectric phase; we determine the relative probabil-
ities of various proton configurations and show that they
change with temperature. Recently, a similar effect has
been studied in rubidium dihydrogen phosphate (here-
after RDP), whose structure is isomorphic to that of
KDP20. Due to the limited number of data sets and
the limited temperature range, only one particular pro-
ton configuration (the so-called Slater configuration - see
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FIG. 1. Possible proton configurations in the four H bonds of a PO4 group. The central phosphorus atom is shown in yellow,
oxygen atoms are in red, and hydrogen atoms are in light blue. The potassium atoms, situated above and below the phosphorus
atoms, are omitted for clarity. The shading effect denotes a different height perpendicular to the plane of the figure. The average
configuration is fully symmetrical and does not allow E1E1 scattering at the forbidden reflections, but the real configurations
do.

below) was evidenced. Here, by studying two different
types of forbidden reflections (the 00l and hhh reflec-
tions) at two different azimuths and over a large tem-
perature range, we are able to extract the contributions
of all three main proton configurations. To this purpose,
we present a methodology to deal quantitatively with the
influence of defects in resonant elastic x-ray scattering
(REXS), the scope of which goes well beyond the partic-
ular case of KDP.

II. FORBIDDEN REFLECTIONS IN THE

PARA- AND FERROELECTRIC PHASES

A. General structure factor for the forbidden

reflections

The paraelectric-ferroelectric phase transition of KDP
occurs at the Curie temperature Tc = 123 K. The para-
electric and ferroelectric phases have, respectively, body-
centered tetragonal (I 4̄2d, Z = 4) and face-centered or-
thorhombic (Fdd2, Z = 8) systems, and ferroelectricity
appears along the c-axis. In the paraelectric (tetragonal)
phase of KDP, each proton tunnels back and forth be-
tween two sites of equal probabilities related by symme-
try. The disordered distribution of each proton between
two oxygen atoms of the hydrogen bond has been con-
firmed by neutron diffraction21. The description of the
paraelectric phase by the I 4̄2d group corresponds to the
structure averaged over the proton distribution.

The usual settings used for the description of the
ferro- and paraelectric phases differ by a rotation of 45◦

around the c axis accompanying a doubling of the unit
cell. Below we shall use the settings which correspond
to the paraelectric (disordered) phase22. In these set-
tings, Bragg reflections with Miller indices hhl such that
2h + l = 4n + 2 are forbidden in conventional x-ray
diffraction in both phases, due to a glide-plane symme-
try. However they appear with significant intensity when
the energy of the incoming x rays is tuned close to an

absorption edge, due to the anisotropy of the tensor of
scattering23: indeed we recently reported the observa-
tion of the 002 and 222 reflections at the potassium K
edge19. We showed that the intensity and the energy
spectra of these reflections undergo huge changes across
the phase transition, because the electric dipole-dipole
(E1E1) resonant scattering vanishes in the higher sym-
metry (tetragonal) phase.

The general structure factor F of the Bragg reflections
with Miller indices hhl, 2h+ l = 4n+ 2, is equal to

F = 2
(

f (1) − f (2)
)

(1)

where f (1) and f (2) are the atomic scattering factors of
two potassium atoms related by a glide plane symme-
try, for instance those with coordinates (00 1

2 ) and (120
1
4 ).

Both atoms have essentially the same atomic scattering
factors off-resonance, but they become highly sensitive to
the local anisotropy when the incident x rays excite one
of their electronic transitions, providing a sizable differ-
ence of atomic scattering factors, which in turn allows for
the existence of these pure resonant forbidden reflections.

B. Resonant elastic x-ray scattering

REXS is usually described by a series of electric multi-
poles. In the following, Cartesian tensors will be used to
describe the x-ray polarisation dependence of the atomic
scattering factors and of their structure factors. The
atomic scattering factor, expanded up to the quadrupolar
terms, can be written24:

f = ǫ′∗α ǫβ

[

fdd
αβ +

i

2

(

kγf
dq
αβγ − k′γf

dq∗
βαγ

)

+
1

4
k′γkδf

qq
αγβδ

]

(2)
with the implicit sum over the indices α, β, γ, δ ∈
{x, y, z}. The tensors fdd, fdq, and fqq stand for the
electric dipole-dipole (E1E1), dipole-quadrupole (E1E2),
and quadrupole-quadrupole (E2E2) resonances, respec-
tively. k and k′, on one hand, and ǫ and ǫ′, on the other
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hand, are the incident and scattered wave vectors and
polarisation states. In the following we will use the usual
decomposition of the x-ray polarisation onto the basis
vectors σ and π, respectively perpendicular and parallel
to the scattering plane. We shall also use H = k′ − k

and L = k′ + k.
The E1E1 term, described by the second-rank tensor

fdd, is usually largely dominant. This is the case in the
ferroelectric phase, in which the twofold axial symme-
try of the resonant site allows for a non vanishing tensor
component (fdd

xy ) in the structure factor. But, in the
paraelectric phase, the twofold axis turns into a pseud-
ofourfold axis (symmetry 4̄), cancelling all off-diagonal
elements of symmetric second-rank tensors such as fdd:
the glide-plane extinction rule still applies19.

In the absence of E1E1 contribution, weaker terms be-
come important. The E1E2 and E2E2 terms, described
by the third-rank tensor fdq and the fourth-rank tensor
fqq respectively, are the most obvious candidates, and a
symmetry analysis shows that they actually do not vanish
at the forbidden reflections considered here. We will nev-
ertheless ignore the E2E2 term, which is believed to be
much weaker than the E1E2 term in this case, based on
spectroscopic calculations with the code FDMNES25,26,
and cannot account for the temperature dependence re-
ported below.

The E1E2 term (as well as the E2E2 term) is essentially
temperature-independent, despite the small variation of
the crystal structure in absence of phase transition27, and
cannot account for the temperature dependence of for-
bidden reflections in Ge, ZnO and GaN, in which the
E1E1 term also vanishes28–31: in these systems, the in-
tensity of forbidden reflections increases with tempera-
ture, despite the Debye-Waller effect, and the intensity
growth is accompanied by a change of spectrum that can
only be explained by interference with a second scattering
process30,31. The latter was ascribed to thermal-motion
induced (TMI) scattering32. This mechanism is also ex-
pected in KDP. Similarly to what has been done for Ge,
ZnO, and GaN, we will assume that the main contribu-
tion to the TMI term comes from the displacement of the
resonant ion. The TMI structure factor can be written32:

FTMI
αβ = iHδ

∂fαβ
∂uγ

〈uγuδ〉 ≡ iHγ

∂fαβ
∂uγ

〈u2γ〉 (3)

where u is the displacement of the resonant atom (potas-
sium in our case), and the implicit sum over indices γ and
δ is assumed. The right part of (3) is valid for (at least)
orthorhombic point symmetry, which is the case here.
The mean-square components 〈u2γ〉 provide the tempera-
ture dependence of this term. We define for the following
the TMI third-rank tensor fTMI

αβγ as:

fTMI
αβγ = i

∂fαβ
∂uγ

〈u2γ〉 (4)

such that fTMI
αβγ is intrinsic to the material and couples

with the beam according to FTMI
αβ = Hγf

TMI
αβγ .

It will be shown below that the E1E2 and TMI terms
alone cannot explain the experimental results in KDP.
We need to consider an additional contribution to the
resonant atomic factor, which is provided by transient
proton configurations20,33: protons occupy only half of
their crystallographic positions and, in the paraelectric
phase, each of them tunnels back and forth between both
sites of a double-well potential at a jump rate of the order
of 1012s−134. Because the waiting time between jumps
is larger by several orders of magnitude than the typi-
cal time of x-ray resonant scattering (∼ 10−15s), x-rays
"see" the crystal as a series of snapshots, producing an
effect similar to thermal motion and static disorder32.
Each transient proton configuration violates the crystal
symmetry, but the space symmetry restores after aver-
aging over all possible proton configurations. A given
proton configuration C induces a relaxation of the struc-
ture. The displacement u(C) of the resonant atom from
its high-symmetry site is accompanied by a correction
to the resonant scattering factor which is dominated by
the E1E1 contribution ∆fαβ(C). Similarly to the case of
TMI scattering32, it contributes to the resonant structure
factor with the partial contribution fC

αβγ :

fC
αβγ = ∆fαβ(C)uγ(C). (5)

We can consider the global contribution of transient pro-
ton configurations fPC as the coherent sum of the con-
figurations C with probabilities p(C),

fPC =
∑

C

p(C)fC (6)

Let us note that a given configuration C yields a nonzero
contribution fC only if it induces a local structure relax-
ation which displaces the resonant atom from its high-
symmetry site.

In the following, we will consider only three asymmet-
ric proton configurations, which were proposed by Slater2

and Takagi18: the polar (P), Slater (S), and Takagi (T )
configurations (Figure 1). In the polar and Slater con-
figurations, there are two protons near each PO4 group,
filling half of the four available sites. In the Takagi config-
urations, three protons are attached to one PO4 group
and only one proton is attached to a neighbour group.
In fact each of these three configurations may be decom-
posed into two similar and equiprobable configurations
(P1 and P2, S1 and S2, T1 and T2) whose sum entirely
fills the crystallographic sites of the protons. In the
following, we consider their contribution by pairs, i.e.,
fP = fP1 + fP2 , etc. Additionally, one should also con-
sider the case of fully symmetrical configurations, when
a PO4 group is surrounded by either 0 or 4 protons. Due
to their high symmetry, these configurations contribute
to the dipole-quadrupole term only, and not to any extra
term.

Altogether, the third-rank resonant atomic factor in
the paraelectric phase of KDP can thus be considered as
the sum of five terms:

f = fdq + fTMI + p(P)fP + p(S)fS + p(T )fT (7)
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C. Formalism of the structure factor in the

paraelectic phase

The formalism below applies only to the paraelectric
phase of KDP, when the resonant atoms occupy the crys-
tallographic sites with 4̄ symmetry, i.e., the potassium
(the experimental case presented here) or the phospho-
rus atoms.

Any third-rank tensor with 4̄ point group symmetry
admits six independent tensor components35, but only
three of them change sign under the glide-plane sym-
metry and contribute to the structure factor (1) of the
forbidden reflections of the type hhl with 2h+ l = 4n+2:
fxxz=-fyyz, fxzx=-fyzy, and fzxx = −fzyy. It has
been demonstrated33 that the structure factor (1) of the
dipole-quadrupole resonant scattering as well as those of
the other resonant contributions considered in this paper
can be written in the following matrix form:

F ≡ Fǫǫ′ = ǫ′.





fxxzHz 0 fsHx + faLx

0 −fxxzHz fsHy + faLy

fsHx − faLx fsHy − faLy 0



 .ǫ

(8)
where fs = 1

2 (fxzx + fzxx), fa = 1
2 (fxzx − fzxx).

Except for the dipole-quadrupole term, all terms of Eq.
7 are of E1E1 resonance origin and are thus symmetric
over permutation of the polarisation indices (αβ): thus
only the dipole-quadrupole term may contribute to the
antisymmetric part fa.

It follows from Eq. 8 that different forbidden reflec-
tions can have different energy spectra, since several in-
dependent tensor components are involved in the struc-
ture factor. In more detail, reflections 00l, l = 4n+2 are
provided by the fxxz component and the antisymmetric
component fa, while reflections hh0, h = 2n + 1 are de-
termined by the components fs and fa (i.e., fxzx and
fzxx). All three components contribute to the structure
factor of hhh, h = 4n+ 2 forbidden reflections.

III. EXPERIMENTAL

A single crystal of KDP was grown and cut with surface
normal 001 at the Institute of Crystallography (Moscow).
REXS was measured at beam line BM28 (XMaS) of the
European Synchrotron Radiation Facility, with prelimi-
nary measurements and fluorescence measurements per-
formed at beam line I16 of Diamond Light Source36. The
sample was enclosed in a closed-cycle cryofurnace and the
temperature varied between 15 and 320 K. The 002 and
222 forbidden reflections were measured at the potassium
K edge (∼3.608 keV). The measurements were performed
in vertical scattering geometry with the natural linear
(σ) polarisation of the incoming beam and without po-
larisation analysis of the scattered beam. The azimuthal
reference is the 100 axis and the azimuth ψ is zero when
the azimuthal reference is in the scattering plane. KDP is
known to suffer from radiation damage, and so great care

was taken to ensure the reproducibility of the results pre-
sented here. Indeed, we observed radiation damage dur-
ing the preliminary measurements at beamline I16 when
the incident beam was insufficiently attenuated.

Rocking curves were recorded at 3.6095 keV and
showed a Lorentzian shape with a varying width as a
function of the temperature19. Energy spectra were
recorded in the same temperature loop and were cor-
rected for the fluorescence background and for the vary-
ing ratio between integrated intensity and peak intensity
of the rocking curves. The corrected spectra Iexp(hkl, ψ)
are shown in Fig. 2.

As reported in19, a spectacular change of spectrum
and intensity can be seen across the phase transition
(Tc ≈ 123 K), due to the switching on/off of the pure
electric dipole (E1E1) component: the latter vanishes
in the tetragonal phase for symmetry reasons19,33. In
this paper we focus on the tetragonal phase, whose en-
ergy spectra show interesting features in their tempera-
ture dependence. Looking at the 002 reflection, we see
that (1) the spectrum changes with azimuth, meaning
that more than one independent component contributes
to the structure factor, in agreement with the symme-
try analysis presented in Sec. II; (2) the spectra at both
azimuths change with temperature, revealing the contri-
bution of more than one scattering process, with different
temperature dependences (presumably one of them is in-
dependent of the temperature); and (3) the change of
spectrum is stronger at ψ = −83◦ than at ψ = −48◦.
The case of the 222 reflection is less spectacular but es-
sentially shows the same features. We note that both
reflections have very different spectra, pointing at a very
different mix of the contributing amplitudes.

IV. DATA ANALYSIS

An analysis of the ferroelectric phase can be found
in Appendix B. Here we deal only with the paraelectric
phase.

The structure amplitude (8) of forbidden reflections
involves three independent complex tensor components:
they interfere in the intensity and it is thus impossible to
extract them directly from the four measurements (two
reflections at two azimuths). The analysis of the experi-
mental spectra is therefore based on modelling with the
FDMNES code25,26. The latter calculates resonant scat-
tering amplitudes based on an input crystallographic con-
figuration. One should thus be able to evaluate several
parameters of the crystallographic configuration, such as
thermal motion and the relative probabilities of the vari-
ous proton configurations, by trying to fit the experimen-
tal spectra.

In more details, we calculate the amplitudes Fσσ and
Fσπ , which are the values of the structure factor (8) for
incident polarisation σ and scattered polarisation σ and
π respectively. The calculations are performed with the
multiple scattering method of FDMNES37, using the con-
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FIG. 2. Temperature dependence of the spectra of the 002 and 222 forbidden reflections at two azimuths each. Intensities
were corrected for the fluorescent background, normalized by the incident beam intensity, and corrected for the varying ratio
between integrated intensity and peak intensity of the rocking curve. Colour bars show the temperature scale.

volution parameters obtained from the fits of the absorp-
tion spectra (see Appendix A).

A. Self-absorption correction

In the kinematical theory of diffraction, the integrated
intensity I measured in Bragg geometry from a thick
sample, with incident polarisation σ and no polarisation
analysis of the scattered beam, is proportional to

I =

[ | Fσσ |2
µσ + gµ′

σ

+
| Fσπ |2
µσ + gµ′

π

]

e−2M (9)

where µ and µ′ are the polarisation-dependent absorp-
tion coefficients of the incident and outgoing beams re-
spectively, g = sin η

sin η′
is a geometrical factor given by the

incident angle η and exit angle η′ with respect to the sam-
ple surface, and e−2M is the Debye-Waller factor. This
expression takes into account the anisotropic absorption
of the material, provided it is small enough so that the

polarisation of x-rays is not modified along the propa-
gation. In the following we will use a single absorption
coefficient µ̃ instead of three distinct ones, leading to the
simplified expression:

I ≈ | Fσσ |2 + | Fσπ |2
µ̃(1 + g)

e−2M (10)

The anisotropic character of the material is reflected by
the choice of µ̃, which is chosen differently for different
reflections and different azimuths. For instance, for the
002 reflection, which is parallel to the tetragonal axis,
µ̃ = µ⊥, where µ⊥ is the absorption coefficient for a beam
with polarisation perpendicular to the tetragonal axis,
is a good approximation (for all azimuths), since in this
particular case µσ = µ′

σ = µ⊥. On the other hand, for the
222 reflection at the azimuths reported here, it turns out
that µ̃ = µiso, where µiso is the isotropic part of the linear
absorption coefficient, is a reasonable approximation.

The experimental spectra Iexp(E) were fitted against
Eq. (10), where e−2M is taken from the literature38 and
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the spectra Fσσ(E) and Fσπ(E) are calculated according
to a procedure detailed below.

B. Model of the resonant scattering amplitudes

According to the model described in Sec. II, the
resonant scattering factor is the sum of the dipole-
quadrupole, TMI and various PC contributions [Eq.
(7)]. Methods to calculate the various contributions to
the atomic scattering factor were developed in previous
works20,39. It is, however, easier to work directly on the
structure amplitudes, which are a linear function of the
tensor components of the atomic scattering factor (equa-
tion 8). We can write:

Fǫǫ′(hkl, ψ,E, T ) =
∑

X

aX(T )FX
ǫǫ′(hkl, ψ,E) (11)

where the FX
ǫǫ′ (X ∈ {dq, TMI,P ,S, T }, (ǫ, ǫ′) ∈ {σ, π})

are the structure factors of the various contributions pro-
jected onto the polarisation states according to equation
8. We will justify below that the temperature dependence
can be fully accounted for in the aX coefficients, which
in turn are independent of the other parameters. In the
case of the contributions of the proton configurations, the
aX coefficients are proportional to the probability of the
corresponding configurations.

The dipole-quadrupole (E1E2) contribution can be cal-
culated directly from the average crystal structure with
FDMNES, while preliminary modelling is required for
the other terms. Ab initio calculations showed that
its spectrum in the wurtzites is essentially tempera-
ture independent27. In the case of KDP, we find the
same result, using the temperature-dependent structure
proposed in Ref. 21. Nevertheless, we allow for a
global temperature-dependent scaling factor adq, which
accounts for a small dependence of the E1E2 term on
atomic positions.

C. Model of TMI scattering

The TMI contribution to the resonant structure factor
was calculated with the same method as that developed
for Ge and the wurtzites39,40, which has been validated
by ab initio calculations27. We simulated a 2× 2× 2 su-
percell in which all atoms were randomly displaced from
their average positions. The displacement amplitudes
were chosen according to the data given in Ref. 21 for 125
K. This model neglects the correlations between the dis-
placements of the various atoms. Therefore it yields sim-
ilar results to a model taking into account the displace-
ments of the resonant atoms alone. In this approxima-
tion, the TMI contribution to the atomic factor depends
linearly on the displacements of the resonant atom, which
are supposed to be isotropic. Moreover the calculations
of the TMI spectrum show that its lineshape does not

change with temperature, so that the temperature plays
only as a global scalar on the spectrum. This point has
been demonstrated with ab initio calculations in the case
of ZnO and GaN27. We can thus consider the TMI con-
tribution as the product of a temperature-independent
spectrum FTMI

ǫǫ′ (E) and a temperature-dependent scalar
coefficient aTMI(T ).

D. Model for the contribution of the proton

configurations

A method to calculate the PC contributions has been
reported20: it consists of calculating the various tensor
components fC

αβγ for each configuration according to Eq.
(5) after relaxing the structure in the chosen configura-
tion. After the calculation of the fC

αβγ , phenomenological
expressions describing the azimuthal dependence of the
reflections are derived and used to fit the experimental
data. This approach gives satisfactory fits to the experi-
mental data.

In order to improve the spectra description we present
here another method to simulate the energy spectra,
which we believe is more reliable because all calculations
are made in the same FDMNES calculation and there
is no necessity to use phenomenological expressions. In-
stead of modelling the Cartesian components fC

αβγ , we
directly calculate the structure amplitudes Fǫǫ′ of the
forbidden reflections as a sum of several contributions.
Similarly to the method applied in Ref. 39 we suppose
that each contribution to the scattering amplitude may
be considered as a temperature-independent spectrum
FX
ǫǫ′(E) (X ∈ {P ,S, T }) multiplied by a temperature-

dependent coefficient aX(T ). To calculate the PC con-
tributions, we have constructed supercells, where all pro-
tons occupy the same configuration chosen among the P ,
S, and T configurations. Here we consider the proton
configurations as independent static defects. The ab ini-
tio code VASP41,42 was used to compute the relaxation of
the structure for the chosen proton configuration and ob-
tain new atomic coordinates. The resulting coordinates
are slightly different inside each pair of configurations.
Of particular interest is the displacement u(C) of the
resonant atom. These calculations were made for each
temperature, taking into account the change of lattice
parameters and of the spacing δ between the two pro-
ton sites of the H-bond, in correspondence with the data
given in Ref. 21. The variation of u(C) obtained in the
125-300 K range does not exceed 5% for the three types of
proton configurations considered here and provides simi-
larly weak variations of ∆fαβ(C). The variation is essen-
tially a global scaler of the spectrum with a linear depen-
dence in temperature. It supports our model, in which
each contribution FX

ǫǫ′(E) is assumed to be independent
of the temperature, provided the global dependence is in-
cluded in the coefficient aX(T ). Then the spectra FX

ǫǫ′(E)
corresponding to each configuration are calculated with
FDMNES, using the relaxed structures. The coefficients
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aX(T ) are obtained by fitting the experimental data at
each recorded temperature.

E. Spectral contributions and fits

For each temperature, we have four experimental en-
ergy spectra: two reflections at two different azimuths
each. The four scalar parameters of the model can
thus be reliably determined by fitting the experimen-
tal spectra. The task is simplified because all con-
tributions possess different energy dependences: it is
more or less obvious which contribution is responsible
for different parts of the energy spectra. This is shown
in Fig. 3, which presents the contributions IX(E) =
(

|FX
σπ(E)|2 + |FX

σσ(E)|2
)

/µ̃(E) for the 002 and 222 re-
flections each for two azimuthal angles at 300 K. We see
that the dipole-quadrupole, TMI, and Takagi configu-
rations contribute in the structure factor mainly in the
lower part of the energy spectra, while the higher-energy
side is mainly provided by the polar and Slater configura-
tions. Moreover, the dipole-quadrupole and TMI contri-
butions predominate in the 002 reflection, while the PC
contributions become more important in the 222 reflec-
tion.

Nevertheless, the intensity spectra of the forbidden re-
flections are not simple sums of these partial intensity
spectra, but are determined by the interference between
the complex amplitudes. By fitting the experimental
spectra against Eqs. (10) and (11), we obtained the co-
efficients aX .

In Ref. 20, only the Slater configurations were evi-
denced: the polar configurations were found to contribute
to the experimental spectra and the Takagi configura-
tions were neglected due to their higher energy. In the
case of KDP, it turns out that all three types of config-
urations are needed to explain the experimental spectra,
which are much more complex than those of RDP. How-
ever, the line shape of the Takagi configurations cannot
easily be disentangled from that of the TMI and polar
configurations. While they provide a sensible improve-
ment of the fits, their coefficient aT lacks reliability.

F. Results

The fits were performed at each measured tempera-
ture, providing the temperature dependence of the coef-
ficients aX(T ) (Fig. 4).

We see that the spectra are dominated by the TMI
amplitude at all temperatures. However, its thermal
growth is rather weak compared to previously reported
cases29–31. Nelmes et al. found a doubling of the ther-
mal parameters of the potassium atoms between the
phase transition and room temperature21, while the TMI
growth that we observed in the same temperature range
is much weaker. This can be explained by the fact
that only part of the optical vibration modes contributes

to the TMI effect. We fit the TMI growth with the
usual phonon statistics model, assuming a single optical
mode28:

aTMI(T ) = aTMI
0 coth

(

ETMI

kBT

)

(12)

We find ETMI = 32 meV ≡ 258 cm−1. This value does
not correspond to any reported vibration mode of KDP,
but there are several modes between 150 and 500 cm−143,
such that our single mode model is a too crude approxi-
mation in this case.

The dipole-quadrupole term also slightly grows with
temperature, like in Ge44.

It is more interesting to explain the temperature de-
pendence of the PC contributions. In accordance with
Eq. (6) we believe that aPC scales with the number of
defects, which presumably follows the Arrhenius law:

ln(aX(T )) = − EX

kBT
+ ln(aX0 ) (13)

where EX is the activation energy and aX0 is a constant.
This constant contains various scaling factors related to
the scattering measurements. Figure 4 shows that the
polar and Slater configurations indeed follow this law.
From the linear fits we extract their activation energies:
EP = 18.6 ± 0.5 meV and ES = 7.3 ± 0.2 meV. The
determination of the aT is not reliable enough to allow
further analysis of the Takagi configurations.

In KDP, the polar configuration is usually considered
as the ground state because it corresponds to the low
temperature ferroelectric phase. The Slater and Takagi
configurations are considered as first and second excited
states respectively45,46. The situation is reversed, for
instance, in ammonium dihydrogen phosphate (ADP),
in which the antiferroelectric order is stabilized by the
Slater configurations47–49. Our results are therefore in-
consistent with the usual model. It is clear that this
result must be taken carefully since the best fits repro-
duce only roughly the measured spectra (Fig. 5) and that
some spectroscopic features are inaccurate. The quality
of the fits is nevertheless standard for REXS spectra.
The discrepancy is likely to originate from the evalua-
tion of the contributing spectra, for two main reasons.
First, the structural model of each proton configuration is
rather simple: each configuration is simulated as a crys-
tal of identical configurations, thus ignoring the possi-
ble interplay between different neighbour configurations.
Moreover, correlations are also ignored in the simulation
of the thermal effects. Second, the spectroscopic calcu-
lations of forbidden reflections are never very accurate,
even in simple cases, because they involve complicated
quantum calculations, such as the convolution with the
width of the excited state, which is unknown. For these
two reasons, it is not impossible that the contribution
of the polar configurations is not well evaluated. Nev-
ertheless, we found, maybe fortuitously, a value of the
activation energy of Slater configurations (7.3 meV) that
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is in fair agreement with the values reported in the litera-
ture. The activation energy of Slater configurations with
respect to the polar configurations has been evaluated to
5.2 meV by Fairall and Reese45, based on a phenomeno-
logical model and experimental polarisation curves. Re-
cent ab initio calculations yielded values of 16.9 meV for
uncorrelated Slater defects and 5.0 meV for Slater defects
correlated in chains46. The better agreement of the latter
with the value of Fairall and Reese suggests the occur-
rence of correlated Slater clusters. Our value (7.3 meV)
is also in better agreement with the correlated model,
although significantly different. Rakvin and Dalal50 and
Hukuda51 independently found a much higher activation
energy (190 meV) from electronic spin resonance mea-
surements, but their measurements cannot attribute it
to a particular configuration.

V. DISCUSSION AND CONCLUSION

The results presented above show very clearly that for-
bidden reflections are sensitive to proton configurations
in hydrogen bonds. We have presented above a method
to analyse quantitatively their spectra and extract the
relative probabilities of the configurations. We find that
the concentration of the polar and Slater configurations
in KDP has a strong temperature dependence which fol-
lows the Arrhenius law. The resulting activation energies
for polar and Slater configurations are in a reasonable
order of magnitude but are in reversed order compared
to the usually accepted model. This suggests that the
quantitative analysis of the spectra requires further de-
velopment.

By comparison with the results obtained from the 006
and 550 forbidden reflections of RDP20, whose crystal
symmetry is isomorphic to KDP, the temperature effects
are stronger in KDP. First, the phase transition from
the para- to ferroelectric phase provides a much stronger
intensity jump at the 002 reflection of KDP19 than at
the 006 reflection of RDP. Second, the energy spectra of
the forbidden reflections are more complicated in KDP
than in RDP and their variation with temperature is also
stronger. This spectroscopic difference is the result of a
structural difference: while both materials have the same
symmetry, Rb atoms are heavier than potassium atoms
and the lattice is possibly more rigid.

Moreover, we evidenced in KDP the contributions of
the polar proton configurations, while in RDP only the
presence of the Slater configurations had been observed
(in the 550 reflection). This could be achieved by collect-
ing a larger set of experimental data in KDP, i.e., two
reflections at two azimuths each, using the same simple
theoretical framework. Moreover, measuring the spectra
of the forbidden reflections at various azimuthal angles
over a large temperature range gives additional informa-
tion, which is very important for fitting the spectra. Nev-
ertheless, the method has a limited accuracy, which is il-
lustrated by the quality of the fits in Fig. 5. A number of

simplifying assumptions contribute to this discrepancy:
(a) In the calculation of the TMI term, we neglect the
correlation of atomic displacements, which is equivalent
to considering that only the resonant atoms vibrate; (b)
proton distributions in a double-well potential are consid-
ered as static configurations of defects and the structure
amplitude is considered to be a sum of coherent contribu-
tions from the supercells with different kinds of defects;
and (c) the various contributions to the resonant ampli-
tude were calculated using the multiple scattering ap-
proach (as opposed to the finite-difference method) with
a limited number of atoms involved in the multiple scat-
tering model. Nevertheless, this simple model provides a
description of the main features of the forbidden reflec-
tions, their energy spectra and temperature dependence.

As such, this study raises questions about the physics
of hydrogen-bonded materials, and provides a method to
investigate them. We should point out that while the
potassium K edge provides a convenient resonance edge
to apply the technique, the phosphorus K edge could be
even more sensitive. Indeed, the potassium atoms are not
directly related to the hydrogen bonds, while the phos-
phorus atoms are located at the centre of the hydrogen-
bonded oxygen tetrahedra. The phosphorus K edge could
possibly provide more accurate results and more detailed
information about the proton configuration. REXS at
this edge would nevertheless imply experimental compli-
cations, due to the low energy (2.1455 keV).

Finally, we point out that the mechanism contribut-
ing to forbidden resonant reflections presented here, i.e.,
the proton disorder, is a realisation of the point-defect-
induced scattering predicted in Ref. 32, which had not
been evidenced experimentally prior to the studies of
RDP and KDP. While it had been predicted as an ef-
fect of static disorder, here the protons are not static,
but they are seen as such during the resonant x-ray scat-
tering process.
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Appendix A: Absorption spectra

The spectra recorded in Bragg geometry are strongly
modified by self-absorption52. In order to properly anal-
yse these spectra, the absorption spectrum must first be
well characterized.



11

3.59 3.6 3.61 3.62 3.63 3.64 3.65

50

100

150

200

250

300

350

400

450

500

energy (keV)

flu
or

es
ce

nc
e 

(a
rb

itr
ar

y 
un

its
)

ε & (001) coplanar

 

 
α=10°

α=30°

α=50°

α=70°

α=90°

3.59 3.6 3.61 3.62 3.63 3.64 3.65

50

100

150

200

250

300

350

400

450

energy (keV)

flu
or

es
ce

nc
e 

(a
rb

itr
ar

y 
un

its
)

ε perp. (001)

 

 
α=10°

α=30°

α=50°

α=70°

α=90°

FIG. 6. Fluorescence. Left: Tetragonal axis coplanar with the polarisation of the incident beam. Right: Tetragonal axis
perpendicular to the polarisation of the incident beam. The data are recorded for various incident angles α, with the detector
at 100◦ from the incident beam. In both panels, the dots show the data and the lines show the fits obtained with the absorption
spectra shown in Fig. 7.

The absorption cross section of noncubic crystals is
anisotropic. Tetragonal crystals, such as the paraelectric
phase of KDP, display linear dichroism (in the electric
dipole approximation)53 and the absorption cross sec-
tion can be decomposed into an isotropic part and an
anisotropic (dichroic) part. Though the polarisation vec-
tor is generally not an eigenstate of the optical system,
we can make this approximation if the anisotropy is not
too strong compared to the isotropic absorption. Within
this approximation, the linear absorption coefficient µ is
proportional to the absorption cross-section. According
to Brouder’s formalism53, µ can be written as

µ(E, η) = µiso(E) − 3 cos2 η − 1√
2

µdic(E) (A1)

where η is the angle between the beam polarisation and
the tetragonal axis, µiso is the isotropic part, and µdic is
the dichroic part.

Two sets of fluorescence spectra with various incidence
angles were recorded at beam line I16 of Diamond Light
Source, at room temperature, the first one with the po-
larisation parallel to the tetragonal axis and the second
one with the polarisation perpendicular to it. The flu-
orescence was measured in reflection geometry with the
detector at 100◦ from the incident beam from a crys-
tal with a (110) cut (Fig. 6). The isotropic part and
anisotropic parts of the absorption spectrum were ex-
tracted following a similar procedure to that detailed in
Ref. 52. The results are shown in Fig. 7 and reveal a
rather strong linear dichroism.

The experimental absorption spectra obtained with
this procedure were then modelled with FDMNES25,26.
The calculations were made with the finite difference
method with a cluster of 7.5 Å (145 atoms), and the
simulated spectra were convoluted with the width of the
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FIG. 7. Isotropic and dichroic parts of the absorption coef-
ficient, as determined from the fluorescence data (expt) and
FDMNES calculations (cal).

excited state, described by an arctangent model. Figure
7 shows the isotropic and anisotropic parts of the cal-
culated absorption in comparison with the experimental
results. The agreement between FDMNES calculations
and experimental spectra is rather good for both spectra.

Appendix B: Analysis of the ferroelectric phase

In the ferroelectric phase, the resonant scattering fac-
tor is largely dominated by the electric dipole-dipole
(E1E1) contribution, whose appearance explains the sud-
den changes of intensity and spectrum across the phase
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transition19. It has no strong temperature dependence as
long as it remains below the phase transition: the lattice
contraction has very little effect on the resonant scatter-
ing if we consider only the static perfect structure27. The
variation of the forbidden reflections intensity observed
below the phase transition in the experimental data is as-
cribed to the rotation of orthorhombic domains. A single
E1E1 component contributes to the forbidden reflections,
so that the 002 and 222 reflections show nearly identi-
cal spectra, independently of the azimuth19. Figure 8
shows the comparison of the calculated and experimen-
tal energy spectra of the 002 and 222 reflections (each
for two azimuthal angles). The calculated spectra are
in good agreement with the experimental data. A small
hkl and azimuthal dependence of the calculated energy
spectra can be noticed between 3.612 and 3.616 keV and
is ascribed to a minor contribution of the electric dipole-
quadrupole (E1E2) resonance.

∗ guillaume.beutier@simap.grenoble-inp.fr
1 F. Jona and G. Shirane, Ferroelectric Crystals (Dover, New

York, 1993).
2 J. C. Slater, J. Chem. Phys. 9, 16 (1941).
3 Y. Takagi, J. Phys. Soc. Jpn. 3, 271 (1948).
4 M. E. Senko, Phys. Rev. 121, 1599–1604 (1961).
5 B. A. Strukov, V. G. Vaks, A. Baddur, V. I. Zinenko, and

V. A. Koptsik, Ferroelectrics 7, 195 (1974).
6 R. J. Nelmes, W. F. Kuhs, C. J. Howard, J. E. Tibballs,

and T. W. Ryan, J. Phys. C: Solid State Phys. 18, L71
(1985).

7 R. Blinc, J. Phys. Chem. Solids 13, 204 (1960).
8 H. Schmidt, Ferroelectrics 72, 157 (1987).
9 M. Tokunaga and T. Matsubara, Ferrolectrics 72, 175

(1987).
10 M. Lines and A. Glass, Principles and Applications of Fer-

roelectrics and Related Materials (Oxford University Press,
Oxford, 2001).

11 M. Ichikawa, Chemical Physics Letters 79, 583 (1981).
12 M. Ichikawa, K. Motida, and N. Yamada, Phys. Rev. B

36, 874 (1987).
13 R. J. Nelmes, J. Phys. C: Solid State Phys. 21, L881

(1988).
14 A. Bussmann-Holder and K. H. Michel, Phys. Rev. Lett.

80, 2173 (1998).
15 S. Koval, J. Kohanoff, R. L. Migoni, and E. Tosatti, Phys.

Rev. Lett. 89, 187602 (2002).
16 S. Koval, J. Kohanoff, J. Lasave, G. Colizzi, and R. L.

Migoni, Phys. Rev. B 71, 184102 (2005).
17 G. F. Reiter, J. Mayers, and P. Platzman, Phys. Rev. Lett.

89, 135505 (2002).
18 Y. Takagi, J. Phys. Soc. Jpn. 3, 273 (1948).
19 G. Beutier, S. P. Collins, E. N. Ovchinnikova, G. Nisbet,

and V. E. Dmitrienko, J. Phys.: Conf. Ser. 519, 012006
(2014).

20 C. Richter, D. V. Novikov, E. K. Mukhamedzhanov, M. M.
Borisov, K. A. Akimova, E. N. Ovchinnikova, A. P. Ore-

shko, J. Strempfer, M. Zschornak, E. Mehner, D. C. Meyer,
and V. E. Dmitrienko., Phys. Rev. B 89, 094110 (2014).

21 R. J. Nelmes, G. M. Meyer, and J. E. Tibballs, J. Phys.
C : Solid State Phys. 15, 59 (1982).

22 Unlike in Ref. 19.
23 V. E. Dmitrienko, Acta Cryst. A 39, 29 (1983).
24 M. Blume, “Resonant anomalous x-ray scattering,” (Else-

vier, New York, 1994) Chap. Magnetic Effects in Anoma-
lous Dispersion, p. 495.

25 O. Bunau and Y. Joly, J. Phys.: Condens. Matter. 21, 303
(2009).

26 www.neel.cnrs.fr/fdmnes.
27 A. P. Oreshko, E. N. Ovchinnikova, G. Beutier, S. P.

Collins, G. Nisbet, A. M. Kolchinskaya, and V. E.
Dmitrienko, J. Phys.: Condens. Matter. 24, 245403 (2012).

28 J. Kokubun, M. Kanazava, K. Ishida, and V. E.
Dmitrienko, Phys. Rev. B 64, 073203 (2001).

29 A. Kirfel, J. Grybos, and V. E. Dmitrienko, Phys. Rev. B
66, 165202 (2002).

30 S. P. Collins, D. Laundy, V. E. Dmitrienko, D. Mannix,
and P. Thompson, Phys. Rev. B 68, 064110 (2003).

31 G. Beutier, S. P. Collins, G. Nisbet, E. N. Ovchinnikova,
and V. E. Dmitrienko, Eur. Phys. J. Spec. Top. 208, 53
(2012).

32 V. E. Dmitrienko and E. N. Ovchinnikova, Acta Cryst. A
56, 340 (2000).

33 E. K. Mukhamedzhanov, M. V. Kovalchuk, M. M.
Borisov, E. N. Ovchinnikova, E. V. Troshkov, and V. E.
Dmitrienko, Crystallography Reports 55, 174 (2010).

34 H. Sugimoto and S. Ikeda, J. Phys.: Condens. Matter. 8,
603 (1996).

35 A. Authier, International Tables for Crystallography.,
edited by A. Authier, Vol. D (2003) Chap. 1.1.4.

36 S. Collins, A. Bombardi, A. Marshall, J. Williams, G. Bar-
low, A. Day, M. Pearson, R. Woolliscroft, R. Walton,
G. Beutier, and G. Nisbet, AIP Conf. Proc. 1234, 303
(2010).



13

37 Y. Joly, Phys. Rev. B 63, 125120 (2001).
38 T. Miyoshi, H. Mashiyama, T. Asahi, H. Kimura, and

Y. Noda, J. Phys. Soc. Jpn. 80, 044709 (2011).
39 E. N. Ovchinnikova, V. E. Dmitrienko, A. P. Oreshko,

G. Beutier, and S. P. Collins, J. Phys.: Condens. Mat-
ter. 22, 355404 (2010).

40 E. N. Ovchinnikova, A. P. Oreshko, Y. Joly, A. Kirfel, B. P.
Tolochko, and V. E. Dmitrienko, Physica Scripta 115, 252
(2005).

41 G. Kresse and Furthmuller, Phys. Rev. B 54, 11169 (1996).
42 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
43 C. Y. She, T. W. Broberg, and D. F. Edwards, Phys. Rev.

B 4, 1580 (1971).
44 A. P. Oreshko, V. E. Dmitrienko, and E. N. Ovchinnikova,

Journal of Mathematical Sciences 172, 859 (2011).
45 C. W. Fairall and W. Reese, Phys. Rev. B 11, 2066 (1975).

46 J. Lasave, S. Koval, N. S. Dalal, and R. Migoni, Phys.
Rev. B 72, 104104 (2005).

47 T. Nagamiya, Progress of Theoretical Physics 7, 275
(1952).

48 A. W. Hewat, Nature (London) 246, 90 (1973).
49 J. Lasave, S. Koval, N. S. Dalal, and R. L. Migoni, Phys.

Rev. Lett. 98, 267601 (2007).
50 B. Rakvin and N. S. Dalal, Phys. Rev. B 41, 608 (1990).
51 K. Hukuda, J. Phys. Soc. Jpn. 38, 150 (1975).
52 G. Beutier, E. Ovchinnikova, S. P. Collins, V. E.

Dmitrienko, J. E. Lorenzo, J.-L. Hodeau, A. Kirfel, Y. Joly,
A. A. Antonenko, V. A. Sarkisyan, and A. Bombardi, J.
Phys.: Condens. Matter. 21, 265402 (2009).

53 C. Brouder, J. Phys.: Condens. Matter. 2, 701 (1990).


