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ABSTRACT: The cell model is a ubiquitous, fast, and relatively easily implemented
model used to estimate the osmotic pressure of a colloidal dispersion. It has been
shown to yield accurate approximations of the pressure in dispersions with a low salt
content. It is generally accepted that it performs well when long-ranged interactions
are involved and the structure of the dispersion is solidlike. The aim of the present
work is to determine quantitatively the error committed by assuming the pressure
computed with the cell model is the real osmotic pressure of a dispersion. To this
end, cell model pressures are compared to a correct estimation of the actual pressures
obtained from Poisson−Boltzmann Brownian dynamics simulations including many-
body electrostatics and the thermal motion of the colloids. The comparison is
performed for various colloidal sizes and charges, salt contents, and volume fractions.
It is demonstrated that the accuracy of the cell model predictions is a function of only the average intercolloid distance scaled by
Debye’s length κd ̅ and the normalized colloidal charge. The cell model is accurate for κd ̅ < 1 and not reliable for κd̅ > 5
independently of the colloidal charge. In the 1 < κd ̅ < 5 range, covering a wide set of experimental conditions, the colloidal
surface charge has a large influence on the error associated with the cell approximation. The results presented in this article
should provide a useful reference to determine a priori if the cell model can be expected to predict accurately an equation of state
for a given set of physicochemical parameters.

1. INTRODUCTION

Osmotic pressure is a primary property of a colloidal
dispersion. It measures the resistance of a colloidal dispersion
to the extraction of the liquid phase in which particles are
dispersed. For stabilized colloidal particles, the osmotic
pressure increases with the volume fraction of the particles in
the dispersion. This equation of state results from many-body
interactions on the particle scale. Changes in the state of a
dispersion and more practically the crossover to a state where
particles start to form aggregates are associated with changes in
the equation of state. The prediction of these changes is
therefore a key for the practical use of salty colloidal dispersions
in many industrial contexts such as filtration, drying, and
coating processes. There are a number of experimental
methods available to determine the equation of state and the
changes of state of colloidal dispersions.1−4 Comparing
experimental data with the predictions of a model is an
excellent way to progress toward a better understanding of the
complex physics of such systems.5,6 From that perspective, one
still needs a clear idea about the accuracy of the retained model.
There are many approaches to predicting the osmotic

pressure of a dispersion with computational costs ranging from
seconds to thousands of hours. As always, precise methods
require daunting numerical efforts whereas fast methods are
obtained at the cost of hypotheses with respect to the physics.
Among the fast methods, some approaches are based on the
prescription of an intercolloid potential of mean force (e.g.,
Debye−Hückel (DH) or two Yukawa potentials7 for moderate

surface charges or renormalized DH potentials for higher
surface charges8−10) and invoke thermodynamic approaches
such as solving the Orstein−Zernike equation with a suitable
closure relation either analytically7 or numerically11 to obtain
the radial distribution function and then the pressure; other
well-established approaches such as the cell model or the
renormalized jellium model10,12,13 do not require the a priori
prescription of such a potential and directly yield the osmotic
pressure, although they may have other shortcomings. In the
cell model (CM; see refs 14 and15 for a review), the complexity
of the multibody electrostatics problem is reduced by assuming
that it can be replaced by a one-colloid problem. This
approximation stems from the observation that for not too
salty and not too dilute suspensions each colloid feels long-
ranged repulsions from its neighbors which induce a solidlike
structure in the dispersion. The dispersion is then split into
electroneutral cells, with each enclosing a single colloid and the
different cells being more or less similar in shape and volume.
For simplicity, the geometry of these Wigner−Seitz cells is
approximated by another shape matching the geometry of the
colloids. Consequently, the model can be solved virtually
instantaneously and has the advantage of yielding directly a
pressure as a function of the microion density at the cell
boundary.16,17 The drawback is the impossibility to include
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colloid−colloid interactions or to describe the structure of the
dispersion. The osmotic pressure computed with a cell model
ΠCM can thus be an estimation of only the microionic
contribution Πmicro to the real osmotic pressure.
In no-salt or low-salt suspensions, the cell model has been

shown to provide very good estimates of the osmotic
pressure.18−20 This is due to the microion contribution to the
osmotic pressure being large compared to the pressure
contribution generated by the interactions between the
colloids.19 On the other hand, in salty suspensions the cell
model can fail dramatically to provide correct values of the
osmotic pressure (refs 11 and 20 and this work). Dobnikar et
al.11 discussed the consistency between compressibilities
computed from both (OCM) simulations based on effective
(renormalized) interactions and from the cell model in the
charge saturation limit. The renormalization method was based
on the cell model itself. They observed empirically that the
microionic contribution to the compressibility is consistent
with the OCM simulation results when the volume fraction is
larger than some function of the salt content and of the
saturated effective charge. However, they emphasized the idea
that “a better self-consistency is not necessarily synonymous
with the fact that Pmicro is in itself a better approximation for P”.
The question of the accuracy of the osmotic pressure Πmicro
approximated by the cell model as an ersatz of the actual
osmotic pressure Π thus remains open. Moreover, as they
chose to focus on the saturated effective charge limit in order to
remove one dimensionless parameter from the problem, the
influence of the colloidal charge on the accuracy of the cell
model approximation remains to be established. In his work,
Denton compared the pressure obtained from the cell model to
a pressure computed from an effective interactions (EI)
model.20 The main results confirmed those obtained by
Dobnikar et al.11 in the sense that for a fixed volume fraction
adding salt increases the discrepancy between the cell model
and the effective interactions model predictions. The
conclusion was that the cell model was “less reliable at
intermediate salt concentrations, roughly in the range 0.5 mM
< Cs < 50 mM”. This observation was reported for a fixed
colloidal charge and a fixed range of volume fractions.
Intuitive arguments can be proposed to determine

qualitatively if the cell model may be expected to produce an
accurate pressure for a given set of physicochemical conditions.
A solidlike structure in a dispersion of spherical colloids of
radius a can be obtained if long-ranged repulsive intercolloid
forces are involved, which requires the Debye length κ−1 to be
larger than some distance representative of half the average
intercolloid distance, typically d ̅ = a(ϕ−1/3 −1) where ϕ is the
volume fraction. This qualitative requirement of the interaction
range suggests that the cell model should be valid if κd ̅ is small
compared to some (1) constant. However, the electrostatics
problem depends on the three dimensionless parameters κa, ϕ,
and ZlB/a, where Z is the valence of the colloids and lB = e2/
(4πϵkT) is the Bjerrum length (ϵ denotes the dielectric
constant of the solvent and e is the elementary charge). Only
the first two parameters are involved in the aforementioned
discussion of the interaction range. It might be anticipated that
for a prescribed interaction range the solidlike structure
assumed by the cell model is more likely to be maintained
for a higher colloidal charge since it enhances the electrostatic
forces compared to the thermal forces.
This discussion relies on intuitive arguments, which remain

to be proven. Besides, a quantification of the error (denoted

E(κa, ϕ, ZlB/a) committed when invoking the spherical cell
approximation has never been attempted. The aim of this
article is to provide such a quantification by comparing the
values of the osmotic pressures yielded by both the cell model
and reference simulations. Since the aim of this work is to
establish quantitatively the error induced in the osmotic
pressure when invoking the cell assumption, no other source
of discrepancy should be introduced. Hence, the reference
simulations should include many colloids moving under the
influence of both the many-body electrostatic and thermal
forces. In particular, we choose not to introduce pairwise
additive forces between the colloids (even with the
renormalization procedure) in order to avoid any doubt
concerning the origin of discrepancies arising between the
cell model and simulation results. This can be achieved with the
Poisson−Boltzmann Brownian dynamics (PB-BD) method
employed in this work. Thermodynamic quantities will be
computed from the results of these simulations. The main
results presented hereafter permit us to determine a priori if the
Poisson−Boltzmann cell model is reliable for a given set of
physicochemical parameters, a feature that we hope will prove
useful for future experimental studies.
The Poisson−Boltzmann framework is employed throughout

this article although the cell approximation can be invoked with
more general theories not restricted to the weak coupling limit.
Other classical cell models are the modified Poisson−
Boltzmann (MPB) cell model,21 the DFT cell model,22,23 and
the HNC/MSA cell model.24 Since the results reported here
were obtained in the Poisson−Boltzmann framework, they are
strictly speaking relevant only in the weak coupling limit. A
comment on the applicability of the present results to the other
cell models is proposed in the Discussion section.
In section 2, the general framework of the Poisson−

Boltzmann theory is presented. The numerical PB-BD method
is described in section 3. The results are reported in section 4,
and the error induced by the spherical cell approximation is
finally discussed in section 5.

2. POISSON−BOLTZMANN THEORY

The most accurate method to obtaining the pressure in a
colloidal dispersion would be to use Monte Carlo simulations
with the primitive model. However, the numerical effort
involved to simulate salty suspensions may become very
important due to the number of added salt ions. It is now well
established that the Poisson−Boltzmann theory gives accurate
results in the weak electrostatic coupling limit Ξ = 2πz3lB

2σ/e <
1, where z is the valence of the microions and σ is the surface
charge density. (See refs 25 and 26 for a more detailed
discussion.) In the present work, we consider only the case of a
1:1 electrolyte to ensure that this constraint is satisfied for a
broad range of physicochemical conditions.
In the electrolyte, the electrostatic potential is the solution of

the Poisson−Boltzmann equation for a dispersion in Donnan
equilibrium with a salt reservoir

ψ ψΔ̃ ̃ = ̃sinh (1)

The tilde symbol denotes a dimensionless quantity throughout
the article. The scales involved in the normalization process are
summarized in Table 1. Inside the colloids, the electrostatic
potential obeys the Laplace equation

ψΔ̃ ̃ = 0 (2)



Equations 1 and 2 are coupled at the surface of the colloids by
the constant surface charge density condition

ψ ψ σ
ϵ
ϵ

∇̃ ̃ − ∇̃ ̃ · = ̃
⎡
⎣⎢

⎤
⎦⎥ np in out

(3)

where n denotes the outward unit vector normal to the colloid
surface. The in and out superscripts refer respectively to
quantities taken on the surface of the colloid on the solid side
and on solvent side.
In the mean-field Poisson−Boltzmann approximation and for

a 1:1 electrolyte, the electrostatic free energy for a constant
charge boundary condition can be written as27
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where S ̃ and Ṽ denote the surface of the colloids and the
volume available to the ions, respectively. (There are several
forms for the free energy. We have chosen this expression to
avoid the explicit appearance of the electric field since obtaining
the latter without numerical smearing in the vicinity of the
surface of the colloids is a delicate issue.) The osmotic pressure
is related to the free energy by8,28

Π = − ∂
∂

A
V N T,c (5)

where Nc is the number of colloids. This definition is consistent
with the pressure being defined as the negative derivative of the
grand potential functional of the nonlinear PB theory with
respect to the volume, evaluated at the equilibrium profile.17

The many-body forces exerted on each colloid are required
in the numerical method described hereafter. In the mean-field
approach, the force exerted on a colloid with surface S is29

∮ τ= SF n d
S (6)

where τ is the excess osmotic stress tensor defined throughout
the electrolyte by

τ ψ̃ = − ̃ − + ̃ ⊗ ̃ − ̃⎜ ⎟
⎛
⎝

⎞
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1
2

2

(7)

In this last definition, I is the unit tensor and E = −∇ψ is the
electric field.
For a spherical cell of radius R, the general relations recalled

in this section are reduced to
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The first line is the PB equation (eq 1) for a spherically
symmetrical problem. The second line stems from the constant
charge boundary condition supplemented by the solution of
Laplace’s equation in the colloid, ψ(r < a) = constant. The last
line is Gauss’s law applied to the electroneutral cell. This
boundary value problem is only one-dimensional but nonlinear.
It can be solved numerically quite fast and is rather
straightforward to implement. The osmotic pressure in the
cell model reads16,17

ψΠ = ̃ −n kT2 (cosh 1)CM 0 (9)

3. POISSON−BOLTZMANN BROWNIAN DYNAMICS:
NUMERICAL METHOD

The present numerical method (termed PB-BD) is based on a
Brownian dynamics approach coupled to a full resolution of the
many-body Poisson−Boltzmann problem at each time step in
order to compute the forces exerted on the colloids. There have
been few attempts to perform such simulations. To our
knowledge, it was performed only by Fushiki,30 who termed it
particle-field molecular dynamics, and the Dobnikar and von
Grünberg team.11,31−35 Both groups used an overset grid
technique. In the present work, the coupled problem in eqs
1−3 is solved with the level-set/ghost-fluid method.36 This
approach has the advantage of being amenable to solve the
problem for nonspherical colloids without any further develop-
ment. The drawback is that without an adaptive mesh
technique the computational cost is higher than that of the
overset grid technique. The outlines of the numerical method
are presented hereafter.
Initially, Nc = 65 colloids are placed randomly in a cubic

triperiodic box. (To ensure that the results are not affected by
finite size effects, a few simulations were also carried out with
Nc = 28 and 217. The free energy per colloid was the same for
Nc = 65 and 217. Note that Linse and Lobaskin25 reported that
Nc ≥ 40 was sufficient in their simulations presented in refs 37
and 25, in line with the present verification.) Their positions are
evolved in time with the classical Ermak and McCammon
scheme.38 (More sophisticated BD schemes exist, in particular,
to take into account at least partially hydrodynamic interactions
between the colloids or electrokinetic effects.39 Although the
use of the present simple model might slightly alter the
pressures obtained in the PB-BD simulations for the highest
volume fractions investigated, it is not expected to change the
main results of this work significantly.) Possible collisions are
treated with the method proposed by Foss and Brady.40,41 The
external force involved in the BD displacement is the many-
body force (eq 6) whose computation requires the solution of
the coupled Poisson−Boltzmann (eq 1) and Laplace (eq 2)
equations throughout the numerical domain. This computation
is performed at every Brownian time step and is the most CPU-
expensive part of the algorithm: the numerical domain
containing the colloids and the continuous electrolyte is

Table 1. Scales Used to Nondimensionalize Quantitiesa

quantity scale

length κ−1 = [ϵkT/2n0e
2]1/2

electrostatic potential kT/e
surface charge density (2n0ϵkT)

1/2

stress 2n0kT
force ϵ(kT/e)2

ae is the elementary charge, k is Boltzmann’s constant, T is the
temperature, ϵ is the constant permittivity of the solvent, ϵp is the
permittivity constant of the colloids, and n0 is the salt ion number
density where the electrostatic potential vanishes.



discretized on a 2563 uniform Cartesian grid (the forces and the
free energy are thus obtained with a numerical error of less than
5% for the range of parameters investigated in this work). The
interface between the solid and liquid phases is represented by
the zero level of a signed distance function Φ whose absolute
value at any point on the grid is the distance to the closest
interface and whose sign is negative inside the colloids and
positive in the electrolyte (Figure 1). The PB and Laplace

equations are discretized on the grid with standard second-
order finite differences away from the surface of the colloids.
Near the interfaces, the discretization of the Laplacian operator
is modified to enforce implicitly the boundary condition (eq 3)
with the level set/ghost fluid method.36,42,43 The complete
scheme results in a 2563 × 2563 sparse, symmetric, and
nonlinear system. The latter was solved with an inexact Newton
iteration and a conjugate gradient technique with a Jacobi
preconditioner for the inner linear systems. This was
implemented thanks to the PETSc library.44−46

The electrostatic forces are evaluated numerically from
relation 6, in which the integration surface S is shifted from the
actual surface of the colloids by a small amount d to avoid
numerical inaccuracies. This is possible because the excess
osmotic stress tensor is divergence-free in the electrolyte.30,34,47

The shifted interface is simply defined by a level set function Φ′
= Φ − d (independently of the geometry of the colloids which
prescribes Φ). The numerical integration of relation 6 on the
surface defined by Φ′ is then performed using the discrete δ
function approach described in ref 48.
The free energy is computed from eq 4, where the surface

integral is evaluated with the aforementioned method based on
the actual surface of the colloids and the volume integral is
performed throughout the entire domain but with the integrand
multiplied by a discrete Heaviside function defined using the
level set function Φ.
The complete problem solved at each Brownian time step is

summarized in Figure 1.

4. RESULTS
The results discussed hereafter can be classified into three data
sets whose parameters are summarized in Table 2. The results
of data set A are presented on Figures 2(a−c) and 3(a−c).

They correspond to spherical colloids with a radius a = 7.5 nm
and a surface charge density σ = 0.036e/nm2. The Coulomb
coupling parameter is Ξ ≃ 0.12, so the PB framework can be
safely employed. The ionic strength was increased progressively
from 1.558 to 6.439 and 25.758 mM, with the salt contents
corresponding to κa = 1, 2 and 4, respectively. Data set B
corresponds to the parameters of Figure 5(b) in ref 20, i.e., a =
50 nm, Z = 500, which yields Ξ ≃ 0.053. An example of a PB-
BD simulation result corresponding to these parameters is
presented in Figures 2(d) and 3(d). The results of data set C
will be discussed in the next section.
The nonideal part of the osmotic pressure ΠNI = Π − ρckT

computed with both the Poisson−Boltzmann Brownian
dynamics (PB-BD) and the cell model (CM) is reported on
Figure 2. Under low-salt conditions, here for κa = 1, the cell
model provides osmotic pressure values in excellent agreement
with the PB-BD simulations, as shown in Figure 2(a) and as
expected.11,18,20 When the salt content is augmented, the cell
model predictions increasingly underestimate the correct
osmotic pressure as depicted in Figure 2(b−d). The under-
estimation of the osmotic pressure by the cell model was
already observed for a dispersion of stiff-chain polyelectrolytes
modeled both by many-body MD simulations and cylindrical
cell models.49 This phenomenon is due to the absence of
interactions between the colloids in the cell model.11,19,20,49,50

Note that the maximum discrepancy between the cell model
and the PB-BD simulations is obtained for the conditions of
Figure 2(d), i.e., for the smallest salt concentration in the
reservoir! Although it might be obvious to some readers, the
term low salt frequently used in the literature to characterize
the conditions for which the cell model is accurate should
rather be understood as low κa values. Indeed, the conditions of
Figure 2(d) correspond to the data obtained for the highest κa
value investigated here.
Another interesting observation is the improvement of the

cell model predictions as the volume fraction is increased while
holding κa fixed. For example, under the conditions of Figure
2(c) the cell model prediction is only about 5% of the correct
value at ϕ = 0.10 while it is 40% of the correct value at ϕ =
0.22. For this reason, any criterion aiming to provide a domain
of validity of the cell model should involve at least both
dimensionless parameters κa and ϕ. As mentioned in the
Introduction, the colloidal charge is also expected to play a role,
which will be discussed in the next section.

5. DISCUSSION OF THE ERROR ASSOCIATED WITH
THE CELL APPROXIMATION

The pressure in a colloidal dispersion can be written in the
form

ρ= + +P kT P Pc ocm micro (10)

Figure 1. Sketch of the coupled resolution of eqs 1−3 on a Cartesian
grid with the level set/ghost fluid method.

Table 2. Physical Parameters Corresponding to the Different
Data Sets Discussed in This Article

data set a (nm) ZlB/a source

A 7.5 2.48 this work
B 50 7.3 ref 20 and this work
C 73.1 >1000a ref 11

aThe actual bare charge is very large, its precise value being irrelevant
since it corresponds to the saturated effective charge regime, with
Zeff
satlB/a ≈ 10. See ref 11 for more details.



where Pocm = 1/(3V)⟨∑i∈collriFi⟩c is the colloid−colloid virial
contribution and Pmicro arises from the coupling between
colloids and microions.19,51 By construction, the cell model can
capture only Pmicro. Therefore, a necessary condition for the cell
model to provide a good estimation of the total osmotic
pressure is Pmicro ≫ Pocm. This condition has been observed for
low-salt contents.11,19,50 As mentioned in the Introduction, if
the Debye length is large compared to the typical interparticle
distance (κd ̅≪ 1), then each colloid feels a net force resulting

from the electrostatic potential generated by several neighbors
which tends to be rather homogeneous (Figure 3(a)). Without
significant potential gradients around the colloid, the global
force exerted on it is bound to be small according to definitions
in eqs 6 and 7. Meanwhile, since the average interparticle
distance d ̅ is short compared to κ−1, the electrostatic potential
and thus the ion concentration are high at the location of
Wigner−Seitz cell boundaries (Figure 3(a)). The contribution
Pmicro is thus enhanced. On the other hand, under high-salt
conditions (for a prescribed volume fraction) Pocm is a good
estimation of the osmotic pressure.11 Indeed, when the d ̅≫ κ−1

the positions of the colloids are much more influenced by the
Brownian motion and the solidlike structure is lost. The local
potential field is thus generated by one or two interfaces only
and is not very homogeneous and isotropic (Figures 3(c,d)).
Hence the net force exerted on each colloid is significant while
the boundaries of Wigner−Seitz cells lie essentially where the
ion concentration and thus Pmicro are very low.
This qualitative discussion leads to the conclusion that the

cell model should provide reliable results when the average
intercolloid distance scaled by the Debye length κd ̅ = κa(ϕ−1/3

− 1) is small compared to some (1) constant. To the best of
our knowledge, this criterion has never been expressly provided
in the literature, and although it might seem intuitive, it remains
to be proven. We computed the error associated with the use of
the cell model pressure as an ersatz of the real osmotic pressure
as a function of parameters κa, ψ, and ZlB/a. When the
reference osmotic pressure is available from the nonlinear PB-
BD simulations, this error is directly computed as

=
Π − Π

Π
−

−
E PB BD CM

BD PB (11)

where ΠPB‑BD is the nonideal part of the pressure obtained from
the Poisson−Boltzmann Brownian dynamics simulations

Figure 2. Nonideal part of the osmotic pressure computed with the Poisson−Boltzmann Brownian dynamics simulations (PB-BD) and the cell
model.

Figure 3. Color map of the dimensionless electrostatic potential ψ̃ in a
slice through the domain of PB-BD simulations for ϕ = 0.16.



encompassing both Pocm and Pmicro and ΠCM denotes the
osmotic pressure yielded by the cell model, an estimate of Pmicro
only. These quantities correspond to those reported on Figure
2. Note that with this definition E is a measure of the relative
weight of Pocm in the total nonideal part of the osmotic
pressure. If the reference pressure is obtained from a
renormalized one-component model (ROCM),11,20 ΠROCM
may contain an error associated with the renormalization
procedure. In this case, the thermodynamics of a real problem
{solve nonlinear electrostatics with real parameters (κa, ϕ, ZlB/
a)} are supposed to match those of an associated linear
problem {solve linearized electrostatics with renormalized
parameters (κeffa, ϕ, ZefflB/a)}. Comparing ΠROCM and ΠCM
would yield an error resulting from both the cell approximation
and the renormalization approximation. However, by compar-
ing the osmotic pressure from the associated linear problem
(ΠROCM) and the osmotic pressure of the linearized cell model
with renormalized parameters (RLCM), only the spherical cell
approximation is tested. Hence, when exploiting data from the
ROCM models of refs 20 and 11, the error is computed from

′ =
Π − Π

Π
E ROCM RLCM

ROCM (12)

where the colloid entropic contribution is also removed from
ΠROCM. Once again, with this definition the error results are
made independent of the details of any renormalization
procedure. When considering the data computed by Denton,20

E′ compares the pressure obtained from the variational
perturbation theory, based on an effective pair potential
computed from the LPB-EI model, to the linear cell model
pressure with the same effective parameters. (Therefore, it
cannot be used to compare the LPB-EI results to the PB-BD
results. This interesting question is beyond the scope of the
present article and is left for future work.) The error computed
from Dobnikar et al.’s results11 was obtained by first calculating
pressures from the compressibilities. The latter are issued from
the resolution the Ornstein−Zernike equation with the
Rogers−Young closure and an effective interaction potential
corresponding to a renormalization with the cell model.9

The relative error E that would be committed by assuming
the cell model pressure to be the actual osmotic pressure is
displayed in Figure 4 as a function of the normalized average
distance κd ̅ = κa(ϕ−1/3 − 1). The results obtained from the
comparison with the present PB-BD results appear as black
symbols (continuous lines for ZlB/a = 2.48 and dashed lines for
ZlB/a = 7.3). Those obtained by processing the pressure
yielded by the LPB-EI model of Denton20 for ZlB/a = 7.3 are
reported as open circles. The error evaluated from the
simulations of Dobnikar et al.11 for ZlB/a > 1000 are plotted
as gray symbols. The latter two data sets correspond to an error
defined as E′ and plotted against the variable κeffd ̅ for the
reasons detailed previously. There are three main comments to
be made about Figure 4.
First, every error curve has the same shape, showing small

errors for large interaction ranges (κd̅ < 1) and very important
errors for small interaction ranges corresponding to κd ̅ > 5,
independently of the colloidal charge. This confirms the general
qualitative criterion κ ̅ <d (1) for the validity of the cell
model. It is, however, enlightening to consider the results
displayed in Figure 4 in more detail. It appears that for very low
values of κd ̅ the error associated with the spherical cell
approximation increases again instead of staying small, as would

be expected from the intuitive interaction-range argument. This
is observed for every data set, precluding the possibility of a
numerical artifact. It must be kept in mind that the qualitative
discussion presented in the Introduction is relevant only to
determining if the pressure is dominated by the microion
contribution or by the macroion contribution. However, there
is another source of error in the spherical cell model: the
geometry of the cell itself. Indeed, even in the very low κd ̅ limit
in which the microionic contribution to the pressure Πmicro is
virtually equal to the exact pressure, the equality ΠCM = Πmicro is
bound to fail: the maximum packing fraction is 1 in the cell
model whereas the dispersion state will change dramatically
when the real maximum packing fraction is obtained for ϕ ≈
0.6. Even for more moderate volume fractions, the spherical
symmetry of the Wigner−Seitz cell might not permit us to
compute the electrostatic field correctly, as observed in some
preliminary comparisons between the cell model and a
numerical implementation of a cubic cell model with the
present 3D PB solver. The small increase in the CM error
presented oin Figure 4 at the lowest κd̅ values (highest volume
fractions) might be ascribed to this phenomenon.
The second striking observation is the collapse of all of the

error data for a given colloidal charge. The errors computed
from the PB-BD results for ZlB/a = 2.48 using either the
nonlinear or the linearized PB equation (black continuous
lines) superimpose almost perfectly, like those obtained in the
charge-saturation regime ZlB/a > 1000 (gray symbols). The
error curves yielded by the pressures obtained from the LPB-EI
model for ZlB/a = 7.3 (open symbols) collapse very well, and
the agreement with the PB-BD results for the same colloidal
charge is rather good. The shift in the error curves toward
higher κd ̅ values is thus due to the increase in the colloidal

Figure 4. Relative error in the osmotic pressure associated with the
spherical cell approximation. Black curves and symbols, by comparing
present PB-BD simulations and the cell model, with continuous lines
for ZlB/a = 2.5 and dashed lines for ZlB/a = 7.5 (■, κa = 4; ×, κa = 2;
●, κa = 2 and linearized PB equation; ▲, κa = 1; ◀, κa = 5.2; ▶, κa
= 2.8). Open symbols: by comparing the LPB-EI results from ref 20
and LCM results with effective parameters, for ZlB/a = 7.3 (the
different superimposed curves correspond to κa = 1.6, 2.3, 3.3, and
5.2). Gray symbols: by comparing renormalized OCM simulations
from ref 11 and the cell model for ZlB/a > 1000 (gray ■, κa = 1.5; gray
▼, κa = 0.5). For the open and gray symbols, the abscissa is κeffa(ϕ

−1/3

− 1).



charge and not to a modeling error. The apparition of a unique
master curve for each given surface charge, while data were
obtained for various κa and ϕ values, indicates that the error E
is actually a function of the two dimensionless groups
κa(ϕ−1/3−1) and ZlB/a instead of the three dimensionless
variables κa, ϕ, and ZlB/a. This conclusion is beyond the simple
idea that the error should be small (respectively large) for small
(respectively large) values of κd̅.
Up to this point, we have shown that the intuitive criterion

determining the domain of validity of the cell model
κ ϕ − <−a( 1) (1)1/3 is correct but that the value of the
constant depends on the surface charge of the colloids.
Assuming a 20% error in the pressure to be acceptable, the
constant is found to lie between 2 and 3 for the different values
of ZlB/a tested here (Figure 4). For the lowest charges of data
set A and for κa = 2 and 4, the linearized PB equation produced
osmotic pressures identical to those determined with the
nonlinear PB equation, indicating that the Debye−Hückel
(DH) approximation is valid without any renormalization
procedure. On the other hand, the results of data set C were
obtained by ensuring that the charge-saturation regime was
attained so that the osmotic pressure value becomes
independent of any further increase in the surface charge
density. In the DH limit, the analytical solution of the cell
model shows that Pmicro scales as Z2. The DH pairwise force
also scales as Z2 so that Pocm ≈ Z2. Hence, the error committed
by the cell model E defined as eq 11 is independent of Z in the
weak charge limit. In the high charge regime reached at
saturation of the effective charge, Pmicro becomes independent
of Z, and the Pocm contribution involves a DH force
renormalized with the effective charge at saturation Zeff

sat, a
quantity independent of Z. In other words, the error E also
becomes independent of Z in the high charge limit. To
conclude, it appears that the values 2 and 3 are actually bounds
for the constant in the relation κ ̅ <d (1) determining (partly)
the domain of validity of the cell model.
The third and last observation is the strong charge

dependence of the error in the range 1 < κd ̅ < 5. As expected
from the qualitative arguments presented in the introduction,
the error is reduced if the colloidal charge is increased while
keeping the interaction range constant (fixed κd ̅ value).
Although the different error curves are relatively close, keeping
in mind that the surface charge density varies by several orders
of magnitude for the different data sets, this observation is
relatively satisfying only concerning the functional form of
E(κa(ϕ−1/3−1), ZlB/a). Unfortunately, Figure 4 also reveals
that the transition from the small error to large error regimes is
very steep. From a practical point of view, the criterion
κa(ϕ−1/3−1) < 2−3 is thus proven to be only qualitative,
whereas the plots in Figure 4 provide a quantitative assessment
of the accuracy of the calculated pressure. For example, this
figure shows that for κd ̅ = 3 (e.g., a dispersion with a volume
fraction of 6% colloids of radius 7.5 nm in contact with a
reservoir with 6 mM salt) the cell model error is 75% for a
surface charge density of σ = 0.036e/nm2, 40% for σ = 0.1e/
nm2, and only 10% in the charge-saturation limit. So in practice,
the trust one ought to put in the cell model is very dependent
on the colloidal charge in the range 1 < κd ̅ < 5, with the latter
being possibly determined by the pH or the dispersion
chemistry.
Since the results reported here were obtained in the

Poisson−Boltzmann framework, they are strictly speaking

relevant only for systems in the weak coupling limit. If strong
electrostatic coupling effects are important, for example, as
observed for multivalent counterions, then the interparticle
forces are reduced and can even become attractive, possibly
leading to a phase separation which cannot be predicted with
the PB theory.25 In this context, the qualitative idea that the cell
model is adequate for repulsive interactions with a range greater
than the average intercolloid distance still holds, but the
quantitative results of Figure 4 might not be relevant anymore.
The results of Figure 4 might thus not be directly extended to
the MPB-, DFT-, and HNC/MSA-cell models mentioned in
the Introduction. It is, however, expected that the present
conclusions can be enlarged to electrostatic couplings larger
than those imposed by the use of the PB framework for
physicochemical conditions in which the finite size of the ions
and the electrostatic correlations between them do not
significantly modify the microstructure of the system.

6. CONCLUSIONS

The aim of the present article was to determine quantitatively
to which extent a fast and rather easily implemented model,
namely, the Poisson−Boltzmann cell model, could provide
reliable estimations of the osmotic pressure in a colloidal
dispersion as a function of the three dimensionless parameters
driving the electrostatics problem: κa, ϕ, and ZlB/a. The error
intrinsic to the spherical cell approximation was computed by
comparing the associated osmotic pressure to its counterpart
obtained from nonlinear Poisson−Boltzmann Brownian
dynamics simulations. The latter numerical approach includes
all many-body interactions and is free of any modeling
hypothesis (in the weak coupling limit, conferring its validity
to the Poisson−Boltzmann theory).
Although the error in the cell model E depends a priori on

the three variables κa, ϕ, and ZlB/a, it was shown that E is
actually a function of the two dimensionless groups κd ̅ =
κa(ϕ−1/3−1) and ZlB/a only. Assuming that the osmotic
pressure can be replaced by its microionic contribution was
shown to be always valid for κd ̅ < 1 and false for κd ̅ > 5,
independently of the colloidal charge. This result confirms the
intuitive idea that the cell model should be valid for low values
of κd ̅. (It is worth mentioning that in the high (but not too
high) κd ̅ regime, a good alternative to the cell model is the
jellium model.10 The latter supposes a fluidlike structure of the
colloidal dispersion and is thus more adapted to the short-range
interactions regime52 while it is equally fast and easily
implemented.13) However, this work also demonstrates that
in the intermediate 1 < κd ̅ < 5 range, covering a wide set of
experimental conditions, the colloidal surface charge ZlB/a can
have a dramatic effect on the error committed by the cell
model. Hence, we believe that Figure 4 provides a useful
reference for determining a priori if an experimental set of data
may be modeled with the classical Poisson−Boltzmann cell
model.
It must nonetheless be stressed that these conclusions

determine conditions in which the real osmotic pressure is well
approximated by its microionic contribution. It does not
guarantee that the spherical cell model provides a perfect
estimation of this contribution since even for low κd̅ values the
cell geometry may have a significant effect on the osmotic
pressure. This issue is expected to happen only for volume
fractions as high as a few tenths of a percent, conditions in
which other sources of discrepancy between experiments and



purely electrostatics-based models may arise, such as hydro-
dynamic interactions.
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