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Abstract. Several multisite stochastic generators of zonal and meridional components of wind are

proposed in this paper. A regime-switching framework is introduced to account for the alternation of

intensity and variability that is observed on wind conditions due to the existence of different weather

types. This modeling blocks time series into periods in which the series is described by a single

model. The regime-switching is modeled by a discrete variable that can be introduced as a latent (or5

hidden) variable or as an observed variable. In the latter case a clustering algorithm is used before

fitting the model to extract the regime. Conditionally to the regimes, the observed wind conditions

are assumed to evolve as a linear Gaussian vector autoregressive (VAR) model. Various questions are

explored, such as the modeling of the regime in a multisite context, the extraction of relevant cluster-

ings from extra-variables or from the local wind data, and the link between weather types extracted10

from wind data and large-scale weather regimes derived from a descriptor of the atmospheric cir-

culation. We also discuss relative advantages of hidden and observed regime-switching models. For

artificial stochastic generation of wind sequences, we show that the proposed models reproduce the

average space-time motions of wind conditions; and we highlight the advantage of regime-switching

models in reproducing the alternation of intensity and variability in wind conditions.15

1 Introduction

In this section, we present the context of our work and then the data used to compare the proposed

Markov-switching autoregressive models.
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1.1 Introduction

Stochastic weather generators have been used to generate artificial sequences of small-scale me-20

teorological data with statistical properties similar to the dataset used for calibration. Various wind

condition generators at a single site have been proposed in the literature; see (Brown, Katz, and Mur-

phy, 1984; Flecher, Naveau, Allard, and Brisson, 2010; Ailliot and Monbet, 2012). However, few

models have been introduced in a multisite context (Haslett and Raftery, 1989; Bessac, Ailliot, and

Monbet, 2015). Artificial sequences of wind conditions provided by stochastic weather generators25

enable assessment risks in impact studies; see, for instance, (Hofmann and Sperstad, 2013). Here we

propose a multisite generator for Cartesian components of surface wind. As far as we know, only a

few models have been proposed to simulate time series of Cartesian coordinates of wind {ut,vt}
(Hering, Kazor, and Kleiber, 2015; Hering and Genton, 2010; Ailliot, Monbet, and Prevosto, 2006;

Wikle, Milliff, Nychka, and Berliner, 2001; Fuentes, Chen, Davis, and Lackmann, 2005). Except in30

(Hering, Kazor, and Kleiber, 2015), these models are designed for short-term wind prediction and

not for the generation of artificial conditions of {ut,vt}. Consequently they are not focused on re-

producing the same statistics we are interested in, namely, the marginal distribution of {ut,vt} and

its spatiotemporal dynamics. In (Hering, Kazor, and Kleiber, 2015) a stochastic generator for mul-

tiple temporal and spatial scales is proposed. The proposed Markov-switching vector autoregressive35

model enables reproduction of many spatial and temporal features; however complex dependencies

between intensity and direction remain hard to model.

In the Northeast Atlantic, the spatiotemporal dynamics of the wind field is complex. This area

is under the influence of an unstable atmospheric jet stream, whose large-scale fluctuations induce

local alternations between periods with high wind intensity and strong temporal variability, and less40

intense and variable periods. Scientists have proposed describing the North-Atlantic atmospheric

dynamics through a finite number of preferred states, namely, weather regimes or weather types

(Vautard, 1990). However, introducing regime-switching in the modeling of local wind, as we pro-

pose in this paper, enables us to better reproduce the spatiotemporal characteristics observed in the

wind data. In practice, describing a time series by regimes involves a partitioning into time periods45

in which the series is homogeneous and can be described by a single model. In this paper, we pro-

pose various vector autoregressive (VAR) models with regime-switching. One of the challenges is

to achieve a regime-switching that is physically consistent and that enables appropriately describing

the local observation by a VAR model. To this end, we introduce several frameworks of regime-

switching and compare them in terms of simulation of wind data.50

Depending on the availability of good descriptors of the current weather state, regime-switching

can be introduced with either observed or latent regimes. Regimes are said to be observed when they

are identified a priori, before the modeling of the local dynamics. In this case, clustering methods

are run on adequate variables to obtain relevant regimes: either the local variables or extra-variables

characterizing the large-scale weather situation, such as descriptors of the large-scale atmospheric55
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circulation (Bardossy and Plate, 1992; Wilson, Lettenmaier, and Skyllingstad, 1992) or variables

enabling the separation into dry and wet states (Richardson, 1981; Flecher, Naveau, Allard, and

Brisson, 2010). For wind models, the wind direction can be considered since it is a good descriptor of

synoptic conditions. In (Gneiting, Larson, Westrick, Genton, and Aldrich, 2006), the wind direction

is used both to extract regimes and to parameterize of the predictive distribution. In this paper, we60

propose a priori clusterings based on both large-scale and local variables.

When the regimes are said to be latent, they are introduced as a hidden variable in the model.

This framework is more complex from a statistical point of view and the conditional distribution of

wind given the regime has to be simple and tractable. Hidden Markov models (HMMs) have been

widely used for meteorological data (Zucchini and Guttorp, 1991; Hughes, Guttorp, and Charles,65

1999; Thompson, Thomson, and Zheng, 2007). Hidden Markov-switching autoregressive (MS-AR)

models are a generalization of HMMs allowing temporal dynamics within the regimes (Hamilton,

1989). Models with regime-switching improve the modeling of wind intensity time series with clas-

sical autoregressive–moving-average (ARMA) models; see (Ailliot and Monbet, 2012), where the

wind speed is modeled at one site. Here we propose a hidden MS-AR model and compare it with70

several models with observed regime-switching.

To the best of our knowledge, no comparison between observed and latent regime-switching has

been proposed in the field of stochastic generators of wind conditions. In (Pinson, Christensen, Mad-

sen, Sorensen, Donovan, and Jensen, 2008), a comparison is presented in terms of wind prediction

between models with hidden regimes and models driven by observed regimes. In this work, we75

compare both kinds of models in a simulation framework.

In the multisite context, the regime can be either common to all sites (i.e., scalar; see (Ailliot,

Thompson, and Thomson, 2009)) or introduced as a site-specific regime (Wilks, 1998; Kleiber, Katz,

and Rajagopalan, 2012; Khalili, Leconte, and Brissette, 2007; Thompson, Thomson, and Zheng,

2007), which enables one to account for a wide range of space-time dependencies. However, a site-80

specific regime appears to be computationally challenging (Wilks, 1998). We will show that the

choice of a regional regime is reasonable when a homogeneous area is selected.

The paper is organized as follows. MS-AR models are introduced in Section 2, and their inference

is described in cases of both observed and latent regime-switching. The question of a regional regime

is addressed in Section 3. In Section 4, we introduce and discuss different sets of a priori regimes85

obtained by clustering. In Sections 6 and 7, respectively we discuss the advantages of the proposed

models and highlight the differences between observed and latent regime-switching models.

1.2 Wind data

The data under study are zonal (west-east) and meridional (north-south) surface wind components

{ut,vt} at 10 meters above sea level extracted from the ERA-Interim dataset produced by the Eu-90
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Figure 1. Left: Spatial hierarchical clustering of the moving variance associated with wind speed with four

clusters (symbols). Right: Joint and marginal distribution of {ut,vt} at the central location 10; contour lines of

the estimated joint density.

ropean Center of Medium-range Weather Forecast (ECMWF). It can be freely downloaded from the

URL http://data.ecmwf.int/data/ and used for scientific purposes.

We focus on gridded locations between latitudes 46.5◦N and 48◦N and longitudes 6.75◦W and

10.5◦W (15×7 grid points; see Figure 1). The dataset we have extracted consists of 32 December-

January blocks of wind data from December 1979 to January 2011 picked every 6 hours. Further,95

the statistical inference is based on the assumption that the 32 December-January blocks of wind

components are 32 independent realizations of the same stationary process, a reasonable assump-

tion given the strong interannual variability of the wintertime atmospheric dynamics at such a local

scale. The training dataset is then composed of 32 independent blocks and each block has 4× 62

observations. In order to study the relevance of using common regimes for all the locations, a spatial100

hierarchical clustering has been used to choose a homogeneous area (see Figure 1). The clustering

is run on the process of moving standard deviation of wind speed, which is described more precisely

in Section 6. This process is a good descriptor of the temporal characteristics of wind time series

(see Figure 4), and it is computed as the standard deviation of wind speed over nine consecutive time

steps (i.e., two days). The dendogram associated with the clustering suggests the use of four clusters105

that are depicted on Figure 1. These four clusters are likely to be divided into an inland cluster (+),

an intermediate cluster between ocean and land (4), a cluster corresponding to flows that propagate

into the Bay of Biscay (◦), and a cluster for flows that propagate toward northern Europe (×).

Components {ut} and {vt} admit a complex relationship, as partially reflected by the joint distri-

bution of {ut,vt} (Figure 1). The margin of {ut} reveals two separate modes, whereas that of {vt}110

does not exhibit a clear bimodality. The contour lines show that the density is low around the point

(0,0). It indicates that the transitions between the two modes of each component are not realized

through a vanishing of the field but rather through a rotation of the field. The following transfor-
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mation is used on both components {ut} and {vt}. This transformation with α > 1 facilitates the

modeling of the bimodality:115  ũt = Uαt cos(Φt)

ṽt = Uαt sin(Φt),
(1)

where {Ut} and {Φt} respectively denote wind speed and wind direction. In practice, α is chosen

empirically equal to 1.5. This transformation has proven helpful in modeling the distribution of

{ut,vt} in (Ailliot, Bessac, Monbet, and Pene, 2015).

2 Markov-switching vector autoregressive models120

In this section, we introduce the proposed models and discuss their parameter estimation in cases of

both observed and latent regimes.

2.1 The models

In this paper, we consider the following class of models. Let St be a discrete Markov chain with

values in {1, ...,M} describing the current weather type as a function of time t. Conditionally to the125

weather type, the observed wind conditions are modeled as a vector autoregressive model. Given the

current value of St, the observation Yt is written as

Yt =A
(St)
0 +A

(St)
1 Yt−1 +A

(St)
2 Yt−2 + ...+A(St)

p Yt−p + (Σ(St))−1/2εt. (2)

Y ∈ R2K represents the observed power-transformed wind components {ut,vt} at the K locations,

given by the system (1). For i ∈ {1, ...,M}, A(i)
0 is a 2K-dimensional vector, A(i)

1 , ...,A
(i)
p ,Σ(i)130

are 2K × 2K-matrices, and ε is a Gaussian white noise of dimension 2K. Conditional independen-

cies between S and Y are displayed on the following directed acyclic graph (DAG) for p= 1 (see

(Durand, 2003) for additional information about DAGs):

· · · //

��

St−1 //

��

St //

��

St+1
//

��

· · ·

��
· · · // Yt−1 // Yt // Yt+1

// · · ·

In this model, the regime S can be latent or observed; both cases are discussed, respectively, in135

Sections 3 and 4. The parameter estimation of the model can be performed by maximum likelihood

but in a different way in each framework.

For both kind of models, covariates can be included. The easiest way is to include them in the

intercept parameter A0 or in transitions between regimes. Transitions between regimes can be

parametrized with a covariate (when regimes are latent, a parameterization with an extra covari-140

ate is given in (Hughes and Guttorp, 1994) and with the studied variable in (Ailliot, Bessac, Monbet,
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and Pene, 2015) and in (Vrac, Stein, and Hayhoe, 2007) when regimes are defined a priori). In the

context of multisite models, the choice of the covariate of non-homogeneous transitions is delicate.

We do not discuss this topic here and consider only homogeneous transition models.

To avoid overparameterization of the conditional models, we first work with a reduced dataset.145

In the following all the proposed models will be fitted on the subset of sites (1,6,10,13,18), the

extension to a wider region being left for future studies.

2.2 Estimation by maximum likelihood

First, let us suppose that the complete set of observations (y1, ...yT ,s1, ...sT ) is available, which is

the case in Section 4. Assume that s0, y−1 and y0 are observed. Then the complete log-likelihood,150

associated with an autoregressive order p= 2 (we choose p= 2 according to a previous work (Ail-

liot, Bessac, Monbet, and Pene, 2015)), is written as

log(L(θ;y1, ...yT ,s1, ...sT |y−1,y0,s0)) = log(L(θ(Y );yT1 |y−1,y0,sT0 ))

+log(L(θ(S);sT1 |y−1,y0,s0)), (3)

where θ = (θ(S),θ(Y )). θ(Y ) corresponds to the parameters of the VAR models, θ(S) = Π = (πi,j)i,j=1,··· ,M155

the transition matrix Π of the Markov chain S, and yT1 = (y1, ...,yT ). Let us denote ni,j the num-

ber of occurrences of the event {(St,St+1) = (i, j)} for t ∈ {1, ...,T − 1}, ni,. =
∑M
j=1ni,j and

ni = ni,.+δ{sT=i}, where δ is the Kronecker symbol, the total number of occurrences of the regime

i:

log(L(θ(Y );y1, ...,yT |y−1,y0,sT0 ))160

=

T∑
t=1

log(p(yt|yt−1,yt−2,st))

=

M∑
i=1

∑
t∈{t|st=i}

log(p(yt|yt−1,yt−2,st))

=

M∑
i=1

ni(−d2 log(2π)− 1
2 log(det(Σ(i)))−

∑
t∈{t|st=i}

1
2e

′

t(Σ
(i))−1et,

where et = (yt−A(i)
0 −A

(i)
1 yt−1−A

(i)
2 yt−2).

For each i ∈ {1, ...,M}, each function165

θ(Y ,i) → ni(−d2 log(2π)− 1
2 log(det(Σ(i)))−

∑
t∈{t|st=i}

1
2e

′

t(Σ
(i))−1et

can be maximized separately, where θ(Y ,i) = (A
(i)
0 ,A

(i)
1 ,A

(i)
2 ,Σ(i)). The optimal estimates ofA(i)

1

andA(i)
2 are computed by writing the VAR(2) model as a VAR(1): for all t ∈ {t|st = i}, Yt

Yt−1

=

 A
(i)
1 A

(i)
2

IdK 0

 Yt−1

Yt−2

+

 εt

0

 ,
6



where IdK is theK×K-identity matrix. Let us writeA(i) =

 A
(i)
1 A

(i)
2

IdK 0

 andZt =

 Yt

Yt−1

;

expressions of Â(i)
1 and Â(i)

2 are extracted from the estimate

ˆ
A(i) =

( ∑
t∈{t|st=i}

ZtZ
′

t−1

)( ∑
t∈{t|st=i}

Zt−1Z
′

t−1

)−1
. (4)

The other optimal estimates are170

Â
(i)
0 = (IdK − Â(i)

1 − Â
(i)
2 )µ̂(i), (5)

where µ̂(i) =
1

ni

∑
t∈{t|st=i}

yt is the empirical mean of Y in regime i and

Σ̂(i) =
1

ni

∑
t∈{t|st=i}

êtê
′

t, (6)

Σ̂(i) is the empirical variance of the empirical residuals defined as êt = (yt− Â(i)
0 − Â

(i)
1 yt−1−

Â
(i)
2 yt−2).175

Concerning the Markov chain S,

log(L(θ(S);s1, ...,sT |y−1,y0,s0)) =

M∑
i,j=1

ni,j log(πi,j),

the associated maximum likelihood estimator is

π̂i,j =
ni,j
ni,.

.

When observations only of the process Y are available and the realizations of S are not given a

priori, as in Section 3, one inference method is to use the expectation-maximization (EM) algorithm,

which is commonly run to estimate the parameters of models with latent variables by maximum

likelihood. Since S is not observed, the EM algorithm aims at maximizing the incomplete log-

likelihood function based on the observations Y :

θ→ Eθ(log(L(θ;Y1, ...,YT ,S1, ...,ST ))|Y T
−1 = yT−1,S0 = s0).

It is proven that through the iterations of the algorithm, a convergent sequence of approximation of

the maximum likelihood estimator of θ is computed.

EM algorithm cycles through two steps: the expectation step and the maximization step (Wu,

1983; Dempster, M., and Rubin, 1977). The E-step is performed through forward-backward recur-

sions (see (Hamilton, 1990) for hidden MS-AR models) that enable one to compute the smoothing

probabilities P (St|Y T
−1 = yT−1,S0 = s0). At the M-step, optimal expressions of parameters of θ(Y ),

given in (4), (5), and (6), are used. In each regime i, however, each observation yt is weighted by

the probability P (St = i|Y T
−1 = yT−1,S0 = s0), for instance,

µ̂(i) =
1∑T

t=1P (St = i|Y T
−1 = yT−1,S0 = s0)

T∑
t=1

P (St = i|Y T
−1 = yT−1,S0 = s0)yt.

7



The transition matrix is estimated from quantities P ({St = i,St+1 = j}|Y T
−1 = yT−1,S0 = s0) that180

are derived at the E-step.

In this paper, we use AP-MS-VARC to denote the a priori regime-switching model associated with

the clustering C, and we use H-MS-VAR to denote the hidden regime-switching model.

3 Regime definition in a multisite context

When the current weather state is not estimated a priori, it is introduced as a latent variable. Hidden185

regime-switching models have been used in various fields; see (Zucchini and MacDonald, 2009) for

a wide range of applications of hidden Markov models. In a previous work (Ailliot, Bessac, Mon-

bet, and Pene, 2015) a single-site model for {ut,vt} was proposed, the proposed hidden Markov-

switching autoregressive model reveals good qualities to describe both marginal and joint distribu-

tions of {ut,vt} as well as the temporal dynamics of the wind at one location. In this paper we190

propose an extension of this model, when the process {ut,vt} is multi-site. In a multi-site context,

the regime can be site-specific or common to all stations.

Here, the assumption of a common regional regime is investigated, and we show that this assump-

tion is acceptable when the considered area is homogeneous. The homogeneous single-site MS-AR

model introduced in (Ailliot, Bessac, Monbet, and Pene, 2015) for {ut,vt} with M = 3 regimes and195

an autoregressive order p= 2 has been fitted at each site. The most likely regimes associated with

the data are extracted from the estimation procedure of H-MS-VAR models described in the pre-

vious section. At each time, the regime corresponds to argmax
j∈{1,··· ,M}

P (St = j|Y T
−1 = yT−1,S0 = s0),

see (Zucchini and MacDonald, 2009). In order to properly compare the regimes, they are ordered

according to the increasing value of the determinant of the matrix Σ(i). The intuition for sorting200

regimes according the determinant of Σ(i) is that we expect the innovations to be more volatile, and

consequently Σ(i) having greater eigenvalues, in cyclonic weather regimes. Conversely, we expect to

observe innovations more persistent in time in calm weather regimes, this is associated with smaller

eigenvalues of Σ(i). The spatiotemporal coherence of the regimes of each of the 18 sites is checked

and reveals a strong homogeneity that motivates using a regional regime in this area.205

The sequences of regimes are compared in Figure 2, time series of a posteriori regimes and wind

speed are depicted. The last two regimes are less coherent from one site to another. This effect is

partly explained by the fact that these regimes are less persistent in time, especially the third one

(see Table 1). Moreover, we can notice an eastward propagation in wind events, the darkest regimes

being often observed at western stations (station 1) prior to eastern sites (10 and 18). The bottom210

panel of the Figure 2, which depicts the sequences of regimes associated with the model fitted on

the set of all locations with a common regime to all locations, reveals that this regional regime is

coherent with the local ones, although it is less persistent. Indeed, when fitting the model to several

8



Figure 2. Time series of wind speed in January 2012 and a posteriori regimes from the fitting of a H-MS-VAR.

The lighter is the grey; the smaller is the determinant of Σ(i). From top to bottom: sites 1, 10, and 18 when the

model is fitted at a single location, fourth panel from the top: extracted regimes when the model is fitted at the

5 locations (1,6,10,13,18). Bottom panel: wind direction and regimes at site 10.
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Figure 3. Most left panel: matrix with the number of the station is printed; then from left to right, conditional

probabilities of occurrence of regime i= 1,2,3 at all sites conditional to the simultaneous occurrence of the

same regime at site 10; on each pixel, the value of the conditional probability is plotted.

Table 1. Parameter values obtained when fitting a H-MS-VAR at the different sites: diagonal of the transition

matrix Π, coefficients of the autoregressive model in each regime, and logarithm of the determinant of Σ(i).

Diagonal of Π AR Coefficients (A(i)
1 (1,1),A

(i)
1 (2,2) ) log(det(Σ(i)))

Site \ Regime R1 R2 R3 R1 R2 R3 R1 R2 R3

Site 1 0.93 0.83 0.64 (1.27,1.16) (1.15,1.3) (0.62,0.63) 5.62 8.87 11.96

Site 6 0.92 0.83 0.71 (1.27,1.02) (1.2,1.28) (0.61,0.72) 5.55 8.59 11.79

Site 10 0.93 0.84 0.74 (1.25,1.19) (1.17,1.27) (0.74,0.71) 5.55 8.67 11.79

Site 13 0.93 0.81 0.64 (1.22,1.24) (1.17,1.25) (0.65,0.65) 5.77 9 11.96

Site 18 0.93 0.83 0.73 (1.26,1.12) (1.17,1.25) (0.67,0.68) 5.72 8.73 11.83

stations, the regime has to embed some spatial heterogeneity that is likely to decrease the temporal

persistence.215

In Figure 3, probabilities of occurrence of a given regime conditional to the simultaneous occur-

rence of the same regime at site 10 are depicted for all sites. In each picture, conditional probabilities

should be compared with the reference value given at location 10, which is 1 by construction. The

first regime has the best spatial coherence; and the third regime, which is the least persistent regime,

is less coherent spatially. The ranges of values of these probabilities indicate a satisfying consistency220

between the regimes across sites. At each site, the physical interpretation of each regime is similar.

Indeed, the first regime corresponds mainly to anticyclonic conditions with easterly winds and a

slowly varying intensity (the variance of the innovation of the AR model is lower than in the two

other regimes, and the first AR coefficient is larger; see Table 1). The two other regimes correspond

to cyclonic conditions with westerly winds and a higher temporal variability in the intensity (see225

Figure 4). These two regimes are discriminated mainly by the temporal variability, which is higher

in the third regime. Moreover the wind direction, not depicted here, slightly differs: from south-

westerlies in the second regime to northwesterlies in the third regime. In Figure 4, we can notice that

wind conditions with weak temporal variability observed in the first regime are associated with weak

values of the moving mean and variance processes, whereas more volatile periods in the second and230

third regimes are characterized by higher values of moving mean and variance. To the best of our

10
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Figure 4. Top panel: moving mean of wind speed computed on two days intervals (nine time steps) for each

regime of the H-MS-VAR model fitted at site 10. Bottom panel: same for moving standard deviation.

knowledge, few statistics enable us to characterize the alternation associated with regime-switching.

These two processes of moving mean and standard deviation enable to characterize the alternation of

variability associated with the observed regime-switching and will be used in the following sections.

Coefficients of the autoregressive process Y in each regime and the transition matrix at each235

site are comparable and spatially coherent (see Table 1). Other criteria such as the average field of

{ut,vt} in each regime and distribution of {Φt} in each regime were also explored and suggest

similarities between regimes at all locations.

The assumption of a regional regime seems appropriate in the considered area and is thus kept for

the modeling of the multisite wind in the following.240

4 Observed regime-switching autoregressive models

Conversely to the previous section, one may derive the regimes separately from the fitting of the

conditional model. For such a priori regime-switching models, the derivation of observed regimes

can be done with appropriate clustering methods. We seek weather states that are distinct one from

the other and in which the data are homogeneous. Clustering can be run either on the local variables245

under study or on extra-variables: the former leads to weather states that are more appropriate to the

local data, while the latter can provide more meteorologically consistent regimes for example with
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more information about the large-scale situation. In this subsection, we propose three clusterings,

which differ by the clustering method and/or by the variables used to derive the a priori regimes.

4.1 Derivation of observed regimes from extra-variables: CZ500250

As a first clustering, we use a classification into four large-scale weather regimes that is commonly

used in climate studies to characterize the wintertime atmospheric dynamics over the North Atlantic

/ European sector ((Michelangeli, Vautard, and Legras, 1995; Cassou, 2008; Najac, 2008)). These

regimes can be described as follows:

– The positive phase of the North-Atlantic Oscillation (hereafter NAO+), characterized by a255

strengthening of both the Azores High and the Islandic Low, which reinforces the westerlies

– The negative phase of the NAO (NAO−), its symmetrical counterpart

– The Scandinavian blocking (BL), characterized by a strong anticyclone over northern Europe

able to totally block the westerly flow over western Europe,

– The Atlantic Ridge (AR), characterized by a strong west-east pressure dipole bringing polar260

air masses over western Europe

At the local scale of our area of study, these regimes are respectively associated with strong south-

westerly flows (NAO+), weak westerly flows (NAO-), stable southerly or easterly flows (BL) and

northerly flows (AR).

To derive these regimes, we use the same methodology as in (Cattiaux, Douville, and Peings,265

2013). We perform a k-means clustering on the 3,607 daily-mean maps of 500 mb geopotential

height (Z500) anomalies (i.e., mean-corrected fields) over the North Atlantic / European sector

(90◦W-30◦E / 20-80◦N) corresponding to days of December, January, and February 1981–2010.

Daily Z500 data are downloaded from the ERA-Interim archive. In order to reduce the computa-

tional time, the k-means algorithm is performed on the first ten principal components (PCs) of the270

Z500 anomalies time series. These PCs are time series corresponding to the projections of the Z500

anomalies onto the empirical orthogonal functions (EOFs), which are eigenvectors of the spatial co-

variance matrix of the Z500 field. Such a decomposition enables extraction of the main modes of

variability of the spatiotemporal process; here, the first ten EOFs explain 90% of the total variance.

Eventually, the obtained daily classification is converted to a 4×daily classification by repeating the275

same regime for the four time steps of each day, a reasonable approach given the smoothness of the

Z500 both in time and space. In the following, we denote this clustering CZ500.

4.2 Derivation of observed regimes from the local variables: CEOF (u,v) and CDiff(u,v)

To derive observed regimes from local wind variables, one can first use a k-means clustering proce-

dure similar to the one used for CZ500. However, while CZ500 provides persistent regimes in which280
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the conditional model satisfyingly describes {ut,vt}, local regimes resulting from such a k-means

clustering are not persistent enough to reliably estimate the conditional VAR model. Consequently,

in this subsection, we perform the local clustering via a hidden Markov model with Gaussian prob-

ability of emission.

The hidden structure of the Markov chain provides more stable regimes than with a k-means clus-285

tering. It corresponds to an H-MS-VAR model with VAR models of order p= 0. The EM algorithm

is used to process the clustering, and the number of regimes is chosen at three. This number pro-

vides the most physically relevant local regimes; a greater number of regimes indeed leads to less

discriminative regimes in terms of local wind conditions (not shown).

Then two sets of descriptors of the data (i.e. local variables) are proposed. The first partition, de-290

noted CEOF (u,v), is obtained by clustering the time series associated with the first two EOFs of the

anomalies of {ut,vt}, which explain 94% of the total variance. The second partition involves de-

scriptors of the conditional distribution of p(Yt|Yt−1), in order to find a clustering that may be better

adapted to the description of the conditional distribution by an autoregressive model. A simplified

way to describe the dynamics is to consider the bivariate process {ut−ut−1,vt−vt−1}. This set295

of variables enables construction of regimes that discriminate well the temporal variability of the

process {ut,vt}. Let denote CDiff(u,v) this second local clustering.

5 Analysis of the proposed clusterings

The proposed clusterings are compared through various analyses. We seek a clustering that is phys-

ically meaningful and appropriate in terms of conditional autoregressive models. For a proper com-300

parison, for all clusterings, we decide to order regimes from the more persistent to the less persistent.

This is done according to the determinant of the matrice Σ(i).

5.1 First visual comparison

Sequences of regimes from the proposed clusterings are shown in Figure 5. The top panel shows

that CZ500 has very persistent regimes. This result is expected because it describes the alternation305

between the preferred states of the large-scale atmospheric dynamics, whose typical time scale is

a few days. One can see that the less volatile wind conditions are associated with the BL and AR

phases, whereas the most variable wind conditions occur during the two NAO phases; see Figure

10. The three bottom panels correspond to local clusterings. For all of them, the first regime is

associated with the less volatile conditions with weakest intensity, whereas the second and third310

regimes are generally associated with moderate and high intensity of wind. However, the behavior

of the regime-switching differs from one clustering to another, probably because of the different

choice of descriptors ({ut,vt} vs. {ut−ut−1,vt−vt−1}) and/or methods (observed vs. latent)

used in the clustering. The bottom panel of Figure 2 shows that the second regime is a precursor
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Figure 5. Time series of wind speed in January 2012 and a priori regimes extracted from the proposed methods

above. The darker is the grey; the smaller is the determinant of Σ(i). From top to bottom: CZ500, CEOF (u,v),

CDiff(u,v), and regimes from the fitting of the H-MS-VAR model.

to the third one (which is confirmed by the transition probabilities between regimes) and that this315

second regime is most of the time associated with rises in wind speed intensity.

In Figure 6, the average fields corresponding to each regime of the four clusterings are plotted. The

top row highlights the difficulty of discriminating local wind features when using regimes defined

from a large-scale circulation variable. While the AR and NAO+ regimes of CZ500 are associated

with strong local wind signatures (as described in Subsection 4.1), the BL and NAO− regimes have320

a weaker discriminatory power on the local wind data. This issue was also observed in (Najac, 2008).
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Since different descriptors are used, CDiff(u,v) and CEOF (u,v) lead to very different results.

CEOF (u,v) leads to the most physically consistent regimes: a northeasterly regime, a northwesterly

one, and a southwesterly one, which are flows corresponding to several of the large-scale weather

regimes. The last two regimes are associated with stronger intensities. From the derivation of this325

clustering, one naturally finds regimes that correspond to the main mean patterns of variability of

the fields.

The regimes of CDiff(u,v) have less persistence, which complicates their meteorological inter-

pretation. The first regime corresponds to periods of weak wind intensities. The last two regimes

are southwesterly regimes with different intensity from one to the other. The averaged fields of the330

regimes extracted from H-MS-VAR are similar to the ones of CDiff(u,v) despite some punctual dis-

crepancies in their time series (Figure 5). The first regime of these two clusterings seems associated

with blocking situations.

To compare the associations between the different classifications, a multiple correspondance anal-

ysis is made between the four categorical variables that represent each classification. This analysis335

can be viewed as an analog of a Principal Component Analysis for categorical variables where the

associations between the variables are measured with the Chi-squared distance. The regimes of each

classification are projected on the two first components and displayed in Figure 7. These two axes

enable to account for 44% of the variance, which is not low for such an analysis. The other axes are

not considered because they do not bring enough useful information. Notice that this analysis does340

not account for the temporal dependence in each classification. The overall structure tends to asso-

ciate the three classifications CEOF (u,v), CDiff(u,v) and H-MS-VAR, except for the third regime of

CEOF (u,v). The classifications CDiff(u,v) and H-MS-VAR are very close in this projection, which

means that their regimes mainly occur at the same time and this coincides with the Figure 5. The first

axe opposes time persistent regimes to less persistent ones. The regime BL is close to the regimes345

R1 of CEOF (u,v), CDiff(u,v) and H-MS-VAR, this is also seen in Table 3 and is in agreement with

the average fields of these regimes displayed on Figure 6. The second axe opposes the regimes R2

of H-MS-VAR and CDiff(u,v) from the regimes R3, which is also an opposition from persistent

to less persistent regimes. Most of these similarities between the regimes are also seen on Table 2

through the logarithm of the covariance of the innovations and the percentage of time spent in each350

regime. The regime AR from CZ500 seems more difficult to associate with other regimes. The regime

R3 from CEOF (u,v) is associated to the weather regime NAO+, which coincides with Table 3 and

Figure 6.

5.2 Quantitative analyzing

Quantitative criteria are considered in order to complete this analysis. The optimal value of the355

complete log-likelihood of the model is generally a good measure of the statistical relevance of a

model. The complete log-likelihood, given in (3), evaluated at the maximum likelihood estimator of
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Figure 6. Average fields of {ut,vt} in each regime of the clusterings, from top to bottom: CZ500, CEOF (u,v),

CDiff(u,v) and from the fitting of H-MS-VAR on the set of 5 locations.
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θ̂, is written in the case of observed regime-switching as the sum of the two following terms:

log(L(θ̂(Y );yT1 |sT1 )) = −Td log(2π)

2
− Td

2
−

M∑
i=1

ni log(det(Σ̂(i)))

and360

log(L(θ̂(S);s1, ...,sT )) =

M∑
i,j=1

ni,j log
(ni,j
ni,.

)
.

Note that the first term is a function of the total time spent in each regime and the associated

determinant of covariance matrix of innovation (notice that the one-step-ahead error of the fore-

cast is linked to this quantity). The longer the time spent in a regime with a weak determinant of365

covariance of innovation, the greater the log-likelihood (see Table 2). The maximal log-likelihood

of θ(S) is equal to the opposite of the conditional entropy of St given St−1. The conditional en-

tropy is classically used as a quality measure of clustering. In prediction, the weaker the entropy,

the stronger the predictability of St given St−1. More generally one tends to minimize this measure.

Because of the range of values of the log-likelihood of θ(Y ), the value of that of θ(S) has a low370

contribution to the complete log-likelihood. If the complete log-likelihood is used to select models,

the persistence of the Markov chain has a low impact. BIC indexes are also given in Table 2, where

BIC =−2logL + Np log(Nobs) with L the likelihood of the model, Np the number of parameters

and Nobs the number of observations. The BIC index enables one to consider a compromise between
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Table 2. Np the number of parameters. Values are computed from models fitted on {ut,vt} at the 5 locations

(1,6,10,13,18).

BIC log-L log-L Np log(det(Σ(i))) % of Time Spent

Model of S of Y R1 R2 R3 R4 R1 R2 R3 R4

Unconditional VAR 542640 - -269825 265 36.4 - - - - - - -

AP-MS-VARCZ500 542730 -1510 -263808 1072 29.8 30.3 39 38.1 0.27 0.18 0.2 0.34

AP-MS-VARCEOF (u,v)
545730 -2331 -266015 801 28.9 33.3 38.9 - 0.31 0.42 0.27 -

AP-MS-VARCDiff(u,v)
520759 -4762 -251099 801 20.2 34.1 48.1 - 0.44 0.41 0.15 -

H-MS-VAR 459458 - -229616 801 18.4 32.1 48.4 - 0.43 0.41 0.16 -

Table 3. Joint probability of occurrence of the three local regimes identified by the proposed models in rows

and the four large-scale regimes in columns

CEOF (u,v) CDiff(u,v) H-MS-VAR

BL AR NAO− NAO+ Total BL AR NAO− NAO+ Total BL AR NAO− NAO+ Total

R1 0.17 0.06 0.08 0.01 0.32 0.15 0.10 0.07 0.13 0.45 0.13 0.09 0.07 0.14 0.43

R2 0.04 0.10 0.05 0.08 0.27 0.09 0.06 0.09 0.16 0.40 0.10 0.06 0.09 0.15 0.41

R3 0.07 0.02 0.07 0.26 0.42 0.03 0.02 0.04 0.06 0.15 0.04 0.02 0.05 0.06 0.16

Total 0.28 0.18 0.20 0.35 1 0.27 0.18 0.20 0.35 1 0.27 0.17 0.21 0.35 1

a model with a high likelihood and its parsimony. Notice that one should not compare BIC indexes375

of a priori and of latent regime-switching models. However the BIC indexes of these two classes of

models can be compared with that of the unconditional VAR model, since it is a particular case.

The clustering CDiff(u,v) provides the greatest value of complete log-likelihood. The lower value

of log-likelihood of S, with shorter persistence in the different regimes compared with the other

models, is compensated by a larger value of log-likelihood of Y and thus a longer time spent in380

regimes with low variances of innovation. The three proposed AP-MS-VAR models lead to a sat-

isfying description of the marginal and joint distributions and space-time covariances (not shown).

The model AP-MS-VARCDiff(u,v)
, which exhibits the best likelihood, performs the most accurately

among the AP-MS-VAR models to reproduce the moving average and moving variance processes;

see Section 6. Besides in terms of BIC indexes, the smallest value among the AP-MS-VAR models is385

that of AP-MS-VARCDiff(u,v)
and it is also greater than that of the VAR model. In the following, the

VAR model with shifts defined by CDiff(u,v) is kept for further comparisons with the H-MS-VAR

model in simulation; see Section 6. We choose this model although it is not the most physically

meaningful because it leads to better results according to our criterion.

5.3 Link between large-scale weather regimes and local ones390

In this section we quantitatively compare the large-scale regimes described by CZ500 with the local

ones derived from the hidden MS-VAR. To this end, we compute the joint probability of occur-

rence of large-scale regimes (CZ500) and local regimes (successively CEOF (u,v), CDiff(u,v) and

H-MS-VAR, Table 3).
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For the three clusterings, the local regimes seem to appear in preferential large-scale weather395

regimes. The strongest link with CZ500 is found for CEOF (u,v): the first regime coincides mainly

with BL, the second one with AR, and the third one with NAO+. These results are not surprising

because regimes of CEOF (u,v) are also easier to interpret physically. However, the association is

not systematic: for instance, the second regime is observed not only during AR conditions but also

during NAO+ conditions. Note that NAO− conditions split rather equiprobably among the three400

local regimes.

The regimes of H-MS-VAR and of CDiff(u,v) are more difficult to link with large-scale regimes.

The fact that they are less persistent than the CEOF (u,v) ones may explain why their joint occur-

rences with CZ500 are weaker. As previously said, H-MS-VAR regimes are driven mainly by the

conditional autoregressive model in the sense of the likelihood, which results in a more difficult405

physical interpretation. Some links can nevertheless be made: for both H-MS-VAR and CDiff(u,v),

the second regime coincides mainly with NAO+, and to a lesser extent the first regime is connected

to BL.

6 Comparison in simulation of the multisite wind models

In this section, we compare models VAR(2), AP-MS-VARCDiff(u,v)
and H-MS-VAR in terms of410

reproducing the various scales of the spatiotemporal wind variability. We focus on the alternation

between periods with different temporal variability of wind conditions, and we highlight the benefit

of using appropriate regime-switching in reproducing such an alternation.N = 100 sequences of the

length of the data are generated with the fitted models and several statistics are computed on these

data.415

First, marginal statistics at the central site 10 are investigated (see Figure 8). Comparing Figures 1

and 8, one can notice that the distribution of {ut} is well reproduced by the model H-MS-VAR, while

the {vt} one is less accurately described. Results in (Ailliot, Bessac, Monbet, and Pene, 2015) are

slightly more satisfying because of non homogeneous transitions between regimes. The description

of this distribution by AP-MS-VARCDiff(u,v)
is also satisfying and not shown here. Concerning420

the temporal dependence, the regime-switching models are the most able to accurately reproduce

the autocorrelation functions of both {ut} and {vt}. All the models tend to behave similarly in

reproducing the correlation of {ut}. However, the VAR model tends to underestimate the dependence

of {vt} between 2 and 5 days, and the regime-switching models improve the description of this

dependence.425

The space-time correlation function of the multivariate process {ut,vt} and its simulated repli-

cates reveals that both models reproduce satisfyingly the general shape of this function and espe-

cially the non separable and anisotropic patterns; see Figure 9. The non separability is reflected in

the asymmetry around the vertical axis at lag 0 is captured by the proposed models.
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Figure 8. Left: joint and marginal distribution of simulated data at site 10 from the model H-MS-VAR. Central

and right panels: autocorrelation functions of {ut} and {vt} at site 10 for the reference data, simulated data

from the VAR(2), AP-MS-VARCDiff(u,v)
and H-MS-VAR models.

To study patterns at an instantaneous time scale, we focus on the ability of the models to reproduce430

the alternation of temporal variability. Indeed the alternation of different weather states induces an

alternation in the intensity and temporal variability of wind. In Figure 10, the moving standard

deviation of wind speed around its moving mean at the central site 10 is depicted as a function of

its moving mean. Observations reveal a higher variability when the intensity is high, although a

high variability may also be associated with weaker values when the moving window overlaps the435

transition time. Models with regime-switching enable the reproduction of more temporal variability

associated with moderate and high intensity of wind, which is not captured by an unconditional

VAR model. For instance, the regime-switching models reproduce high variability around 5 and 10

m.s−1 which corresponds to transitions between weather states. This is ensured by the alternation,

driven by a Markov chain, of periods associated with different parameters of the conditional model.440

Similar diagnostics than in Figure 4 indicate that the distributions of the moving standard deviation

and the moving mean within each simulated regime of the CDiff(u,v) and of H-MS-VAR are clearly

distinct from one regime to the other, which indicates characteristic behaviors of these two simulated

processes within each regime (not shown). Moreover, the behavior in each simulated regime is close

to the observed one.445

7 Discussions and perspectives

In Section 3, we compare site-specific regimes to common regional regimes. We conclude accord-

ing to mainly qualitative criteria that for this dataset the use of a regime common to all locations

is reasonable. To go one step further, one would settle some likelihood-ratio test, to quantify more

precisely to which extent the assumption of a regional regime against a site-specific regime is ac-450

ceptable.
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Figure 9. Left: correlation of between {ut} at site 1 and {ut} at the other locations (sorted according increas-

ing distance) at various time-lag. Right: similar quantities for {vt}. From top panel to the bottom one: data,

simulation from VAR(2), from AP-MS-VARCDiff(u,v)
, and from H-MS-VAR.

5 10 15 20

5
1

0
1

5

Moving mean

M
o
v
in

g
 s

ta
n

d
a

rd
 d

e
v
ia

ti
o

n

 0.005 

 0.01 

 0.015 

 0
.0

2
 

5 10 15 20

5
1

0
1

5

Moving mean

 0.005 

 0.01 

 0.015 
 0.02 

 0.025 

 0
.0

3
 

5 10 15 20

5
1

0
1

5

Moving mean

 0.005 

 0.01 

 0.015 

 0.02 

5 10 15 20

5
1

0
1

5

Moving mean

 0.005 

 0.01 

 0.015 

 0.02 

Figure 10. Moving standard deviation against of the value {Ut} against its moving mean at location 10. From

left to right: data, simulation from the VAR(2), AP-MS-VARCDiff(u,v)
, and H-MS-VAR

21



In this paper we have introduced observed and latent regime-switching framework, and we have

showed that both types of regime-switching models have various advantages. Models with observed

switchings may account for relevant regimes that correspond to characteristic meteorological con-

ditions in Europe. The choice of the clustering method and of the descriptors of the data is crucial,455

as discussed in Subsection 4.2 where a k-means clustering led to irrelevant regimes in terms of

estimation of the associated conditional model.

The hidden regime-switching framework seems to overcome this insufficiency by providing regimes

that are driven by the conditional distribution and therefore adapted to the estimation. When consid-

ering hidden regime-switching models, however, the estimation procedure may become challenging460

when sophisticated marginal models are considered. The extracted regimes are driven mainly by the

local data and the proposed conditional distribution, and consequently they might have less physi-

cal interpretation than do regimes derived from other clusterings. Nevertheless, in this study we saw

that for the proposed model and studied dataset, the associated regimes were not physically inconsis-

tent. Moreover, the use of hidden regime-switching models saves efforts in choosing an appropriate465

observed a priori clustering.

Concerning the proposed observed regime-switching models, there seems to be a compromise be-

tween physically interpretable regimes and a good description of the conditional model by a VAR, as

highlighted in Section 4 when comparing AP-MS-VARCDiff(u,v)
and AP-MS-VARCEOF (u,v)

mod-

els. Indeed we have chosen AP-MS-VARCDiff(u,v)
because it provides the best BIC index despite the470

fact that CDiff(u,v) has less physical interpretation. This highlights the difficulty in finding relevant

regimes that are adapted to the description of the data by conditional vector autoregressive models.

The proposed hidden regime-switching model seems to respond to this compromise in providing

more interpretable regimes than the ones of CDiff(u,v) and similar description of temporal patterns.

The improvement of BIC from the AP-MS-VARCDiff(u,v)
with respect to the unconditional VAR is475

4% whereas the improvement from the H-MS-VAR is15.3%.

Future work may involve investigating reduced parameterizations of the autoregressive coeffi-

cients and of the matrices of covariance of innovations, thus helping to adapt the model to a larger

dataset. Indeed the number of parameters is already high with the small dataset under consideration,

and attempts to use parametric shapes for parameters reveal that a huge effort will be needed to480

extract consistent results. Furthermore, when looking at the autoregressive matrices, one sees gen-

erally privileged predictors according to the regimes, a situation that motivates the use of constraint

matrices in each regime.
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