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Introduction

The optimal control of bioprocesses has attracted a lot of attention over the last fifty years. The control of fedbatch processes has been extensively studied due to the fact that such systems are used in industries producing high value molecules for agro-food or pharmaceutical industries. In this functioning mode, the output flow rate is equal to zero so that the volume of the reactor increases over the time until its maximum working volume has been reached. The way the reactor is filled, using the input flow rate, can be seen as a control. When the growth function is monotonic, the optimal control to minimize the time necessary to reach a given substrate concentration consists in filling in the process as fast as possible until the maximum working volume is reached and then wait until the concentration of substrate has reached the target. However, when the growth rate is non-monotonic (for instance for growth functions as Haldane), there exists a singular arc and the optimal input profile to stay on it has been proposed in a number of situations. For instance, theoretical results have been obtained in [START_REF] Moreno | Optimal time control of bioreactors for the wastewater treatment[END_REF] for single reaction systems and for a large class of growth rate functions, and more recently in [START_REF] Bayen | Optimal synthesis for the minimal time control problems of fedbatch processes for growth functions with two maxima[END_REF][START_REF] Bayen | Minimal time control of fed-batch bioreactor with product inhibition[END_REF][START_REF] Dochain | Minimal time control of fed-batch processes for growth functions with several maxima[END_REF][START_REF] Gajardo | Minimal time sequential batch reactors with bounded and impulse controls for one or more species[END_REF]. In these papers dedicated to the optimal control of wastewater treatment plants, the objective was to reach in minimal time a given target (the value of the output substrate concentration should be typically below a prescribed value). This problem has been also investigated for multi-species systems and partially solved in [START_REF] Gajardo | Minimal time sequential batch reactors with bounded and impulse controls for one or more species[END_REF]. Many others papers -rather practical but not only -are available on the optimal control of fed-batch systems for the maximization of products or of the biomass (see for instance the survey [START_REF] Smets | Optimal control of (bio-)chemical reactors: generic properties of time and space dependent optimization[END_REF] or [START_REF] Santerre | A fedbatch strategy for optimal red pigment production by monascus ruber[END_REF][START_REF] Woinaroschy | Optimal Control of Fedbatch Bioreactors by Iterative Dynamic Programming[END_REF] and references herein).

Our interest in this paper is the optimal control of the chemostat which is an apparatus introduced in the fifties to continuously cultivate microorganisms. As for a bioprocess operated in a fedbatch mode, using the input flow rate allows the user to manipulate the growth rate of microbes (see [START_REF] Monod | La technique de culture continue théorie et applications[END_REF][START_REF] Novick | Experiments with the chemostat on spontaneous mutations of bacteria[END_REF]). It presents the advantage of not being necessary to stock the incoming flow and to treat it online. Today, it is widely used in many domains at both laboratory or industrial scales and its optimization poses a number of both practical as well as theoretical problems [START_REF] Smith | The theory of the chemostat, Dynamics of microbial competition[END_REF]. Classically, the model of the chemostat is written as:

ẋ = µ(s)x -Dx, ṡ = -1 γ µ(s)x + D(s in -s), (1.1) 
where x and s are the micro-organisms and substrate concentrations, respectively, µ is the growth function of the species, s in > 0 is the input substrate concentration, γ > 0 is the biomass yield factor, and D is the dilution rate.

For this system with monotonic growth function (i.e. for a Monod growth function), D'Ans et al. have solved the problem of going from an arbitrary initial state to another one in minimal time (see [START_REF] D'ans | Time-Optimal Control for a Model of Bacterial Growth[END_REF]). Such a problem finds application typically in the case where the input substrate concentration changes yielding in a new steady state. Converging fast towards this new equilibrium may present some practical interest. In this case, D'Ans et al. established that the control is necessary bang-bang. From their pioneering work, many authors have investigated other optimization problems such as the maximization of biogas production for anaerobic processes (see e.g. [START_REF] Kravaris | Tracking the singular arc of a continuous bioreactor using sliding mode control[END_REF][START_REF] Stamatelatou | Optimal and suboptimal control of anaerobic digesters[END_REF][START_REF] Ghouali | Maximizing biogas production from the anaerobic digestion[END_REF]). The problem of minimizing the time necessary to go from an arbitrary initial point to a final one in minimal time for non-monotonic growth rates in a continuous bioreactor has been partially investigated in [START_REF] Bayen | Minimal time problem for a chemostat model with growth rate of Haldane Type[END_REF]. However, in modern biotechnology, any continuous reactor is equipped with a biomass retention system allowing the liquid fraction to leave the reactor while keeping an important quantity of biomass in the system through the presence of either supports for microorganisms (that may be fixed or mobile) or a separator followed by a recirculation loop for the biomass to return into the reactor medium. In such a case, the substrate (liquid fraction) and the biomass (solid fraction) are not submitted to the same dilution rate and it is said that 'the hydraulic and the solid retention times are decoupled'. To model simply such a decoupling, a term α > 0 can be introduced in the dynamic of x and the model becomes:

ẋ = µ(s)x -αDx, ṡ = -1 γ µ(s)x + D(s in -s), (1.2) 
If α = 1, the model is exactly the chemostat model while if α = 0 no biomass is removed from the reactor. Depending on the efficiency of the separator, one has 0 ≤ α ≤ 1.

In this paper, our aim if to address the minimal time control problem to go from one state to another for this modified chemostat model (1.2) and for a large class of growth functions. In particular, except for some specific results obtained in section 5 in considering Haldane functions, one originality of our approach is that instead of considering models with analytical functions such as Monod or Haldane (see [START_REF] Monod | La technique de culture continue théorie et applications[END_REF]), we establish generic results for two general classes of functions that will be said to be 'of Monod-type' or 'of Haldane-type' depending on their qualitative properties (cf. Hypotheses (H1) and (H1')). In addition, one essential feature in the model considered in the present study (i.e. (1.2)) is that the presence of the 'recirculation parameter α leads to an asymmetry between x and s (when α = 1, the chemostat has a cascade structure by considering M = x + s in place of x, i.e. the equation for M depends only on M and D). We will first provide a complete study of the problem when α = 1 extending the preliminary results in [START_REF] Bayen | Minimal time problem for a chemostat model with growth rate of Haldane Type[END_REF] to any initial condition of the state space. In particular, we show that the optimal synthesis exhibits a switching curve whenever the total mass of the system is greater than s in (see Theorem 4.2). In this case optimal trajectories can have three switching times before reaching the target point. In the case where α < 1, we provide a description of optimal trajectories for Monod-and Haldane-type functions.

The paper is organized as follows. In section 2, we state the optimal control problem, and we apply the Pontryagin Maximum Principle on the optimal control problem to derive optimality conditions. We also give properties of the switching function that are crucial in sections 4 and 5 to prove optimality results. Next, we characterize in section 3 the controllability set i.e. the set of points that can reach the target in finite horizon (see e.g. [START_REF] Szederkényi | Reachability of nonlinear fed-batch fermentation processes[END_REF] in the fed-batch model). In section 4, we provide an optimal feedback control for Haldane-type kinetics when α = 1 (Theorems 4.1 and 4.2 are our main results), and section 5 discusses the case α < 1 (see Theorem 5.1 for Monod kinetics and Theorems 5.2 and 5.3 for Haldane kinetics). The article concludes with an appendix containing the proof of technical results such as the existence of a switching curve for α = 1 and a table with the parameter values that are used in the numerical simulations.

Preliminaries

Statement of the problem

We consider the system ẋ = µ(s

)x -αux, ṡ = -µ(s)x + u(s in -s), (2.1) 
describing a chemostat model with one species, one substrate and an adimensioned yield coefficient for x (i.e. γ = 1). Here x, resp. s is the micro-organisms concentration, resp. substrate concentration, µ is the growth function of the species, s in > 0 is the input substrate concentration, α ∈ [0, 1] is a coefficient for separating the biomass (or recirculation parameter), and u(•) is the dilution rate which is the control variable.

For convenience and without loss of generality, it is supposed the substrate and the biomass are in the same units. The admissible control set is defined as:

U := {u : [0, ∞) → [0, u max ] ; u meas.}, (2.2) 
where u max is the maximal value for the dilution rate. Given u ∈ U and an initial condition (x 0 , s 0 ) ∈ R * + ×R + , we denote by (x u (•), s u (•)) the unique solution of (2.1) defined over [0, ∞) such that x u (0) = x 0 and s u (0) = s 0 at time 0. It is clear that the set E := R * + ×(0, s in ) is invariant by the dynamics (2.1), therefore we can consider initial conditions in this set.

Throughout this paper, we are interested in the following optimal control problem. Given a target point (x, s) ∈ E, our aim is to steer (2.1) in minimal time from (x 0 , s 0 ) ∈ E to (x, s), that is:

v(x 0 , s 0 ) := inf u∈U t(u) s.t. x u (t(u)) = x and s u (t(u)) = s, (2.3) 
where t(u) is the first time such that x u (t(u)) = x and s u (t(u)) = s. If the value function v(x 0 , s 0 ) is infinite, the problem has no solution, i.e. the target point is not reachable from (x 0 , s 0 ). The determination of the controllability set, i.e. the set of points that can reach the target in finite horizon, is part of the analysis and will be discussed precisely in section 3. Without any loss of generality, we suppose that u max = 1 and we consider the following hypotheses:

(H1) The function µ satisfies µ(0) = 0, is bounded, non-negative and of class C 2 .

(H2) For any s ∈ [0, s in ], one has µ(s) < α.

Remark 2.1. Assumption (H2) amounts to saying that the washout is possible and that the dilution rate can be chosen large enough in order to compete the growth of micro-organisms.

It will be more convenient to study (2.1) in the variables (s, M ) where M := x + s is the total mass of the system. By changing x into M , (2.1) can be equivalently written ṡ = -µ(s)(M -s) + u(s in -s), Ṁ = u(s in -sα(Ms)).

(2.4)

As x > 0, we consider initial conditions for (2.4) in the set F defined by

F := {(s, M ) ∈ R + × R + ; 0 ≤ s < M and s ≤ s in }, (2.5) 
that is clearly invariant by (2.4). Similarly as above, we denote by (s u (•), M u (•)) the unique solution of (2.4) defined over [0, ∞) associated to a control u ∈ U such that s u (0) = s 0 and M u (0) = x 0 + s 0 at time 0. Moreover, we set M := x + s. Next, we consider the solutions of (2.4) backward in time starting from (s, M ) at time 0. More precisely, let z i (•) := (s i (•), M i (•)), i = 0, 1, the unique solution of (2.4) defined over [0, t i ) backward in time with u = i and such that z i (0) = (s, M ). Without any loss of generality, we suppose that t i ∈ [0, ∞) is the first exit time of z i of the set F , i.e. z i (t i ) ∈ ∂F (where ∂F is the boundary of F ). We call Γ i , i = 0, 1 the graph of z i (•) for t ∈ [0, t i ) (in particular Γ 0 is a line segment). We note that Γ 0 ∪ Γ 1 partitions F into two subsets F - α and F + α . More precisely, we take for F - α the unique component containing Γ 0 ∪ Γ 1 and also points in F below Γ 0 . Finally, if B is any given non-empty subset of R 2 , we denote by Int(B) its interior.

Pontryagin's Principle

In this section, we derive optimality conditions for problem (2.3) (in variables (s, M ), see (2.4)). Notice that if (H1) holds true and if (x 0 , s 0 ) is in the controllability set, then the existence of an optimal control follows by standard arguments (in fact, (2.4) is linear w.r.t. u and the admissible control set is compact). We are then in position to apply Pontryagin's Principle on (2.4) which provides necessary conditions on optimal strategies (see e.g. [START_REF] Hermes | Functional Analysis and Time Optimal Control[END_REF][START_REF] Pontryagin | Mathematical theory of optimal processes[END_REF]).

Let H : R2 × R 2 × R × R → R the Hamiltonian associated to (2.4) and defined by:

H = H(s, M, λ s , λ M , λ 0 , u) := -λ s µ(s)(M -s) + λ 0 + u[(λ s + λ M )(s in -s) -αλ M (M -s)].
Let u ∈ U an optimal control for (2.3) such that the associated trajectory steers (2.4) from (s 0 , M 0 ) to (s, M ) in minimal time. For convenience, we write this trajectory z(•) := (s(•), M (•)). According to Pontryagin's Principle, the following conditions hold true :

• There exists t f ≥ 0, λ 0 ≤ 0 and an absolutely continuous function λ = (λ s , λ M ) : [0, t f ] → R 2 satisfying a.e. the adjoint equation λ(t) = -∂H ∂z (z(t), λ(t), λ 0 , u(t)), that is:

λs = λ s (µ (s)(M -s) -µ(s) + u) + (1 -α)λ M u, λM = λ s µ(s) + αλ M u.
(2.6)

• The pair (λ 0 , λ(•)) is non-trivial i.e. (λ 0 , λ(•)) = 0.

• The following maximization condition holds true :

u(t) ∈ argmax w∈[0,1] H(s(t), M (t), λ s (t), λ M (t), λ 0 , w) a.e. t ∈ [0, t f ]. (2.7)
We call extremal trajectory a triple (z(•), λ(•), u(•)) satisfying (2.4)-(2.6)-(2.7). If λ 0 = 0, then we say that the extremal is abnormal whereas if λ 0 < 0, then we say that the extremal is normal. In the latter, we may suppose that λ 0 = -1. Along any extremal trajectory, one has H = 0 (using that (2.4) is autonomous and that the terminal time is free). The switching function φ is defined by

φ := (λ s + λ M )(s in -s) -αλ M (M -s). (2.8) 
If we differentiate φ w.r.t. t, we find using (2.6) that a.e.:

φ = (M -s)[λ s µ (s)(s in -s) + (1 -α)(λ M + λ s )µ(s)]. (2.9) 
Now, the maximization condition (2.7) can be then expressed as follows:

   φ(t) > 0 ⇒ u(t) = +1, φ(t) < 0 ⇒ u(t) = 0, φ(t) = 0 ⇒ u(t) ∈ [0, 1].
(2.10)

A switching time (or switching point) is a time t 0 such that the control u(•) is non-constant in any neighborhood of t 0 . At a switching time t 0 , we necessarily have φ(t 0 ) = 0. We say that an admissible control u( 

Frame curves and frame points

An important feature in the study of (2.3) is the presence of particular curves in the state space that are called frame curves. These curves play an important role for obtaining an optimal feedback control. In our context, they are of three types:

• The collinearity curve ∆ α 0 is defined as the set of points where the dimension of the vector space spanned by (2.4) is equal to 1.

• A singular arc (denoted by S) is a time interval I = [t 1 , t 2 ] where the switching function vanishes. In the two-dimensional setting, the corresponding trajectory necessarily belongs to the so-called singular locus1 ∆ α SA which is a subset of codimension 1 (see e.g. [START_REF] Schattler | Geometric Optimal Control[END_REF][START_REF] Trélat | Contrôle optimal et applications[END_REF] for more details on the definition).

• A switching curve C is a locus in the state space where the control u has a switching point from 1 to 0 or from 0 to 1 (the corresponding instant of switching is called switching time).

An important property of ∆ α 0 is that any switching point of an abnormal trajectory necessarily occurs on ∆ α 0 (see [START_REF] Boscain | Optimal Syntheses for Control Systems on 2-D Manifolds[END_REF][START_REF] Bonnard | Singular Trajectories and their role in Control Theory[END_REF]). In our setting, we can show that ∆ α 0 and ∆ α SA are non-empty, and we can provide an explicit expression of these two sets whereas switching curves are in general more delicate to characterize by an implicit equation (in particular these curves are usually target dependent). If f α 0 : R 2 → R and f α SA : R 2 → R are the functions defined by:

f α 0 (s, M ) := -µ(s)(M -s)(s in -s -α(M -s)), f α SA (s, M ) := (M -s)[α(M -s)((1 -α)µ(s) + µ (s)(s in -s)) -(s in -s) 2 µ (s)],
(2.11) then, a straightforward computation shows that:

∆ α 0 = {(s, M ) ∈ F ; f α 0 (s, M ) = 0} and ∆ α SA = {(s, M ) ∈ F ; f α SA (s, M ) = 0}.
(2.12)

The next proposition provides a linear ODE (ordinary differential equation) satisfied by the switching function φ and will be crucial in the optimal synthesis of the problem (see sections 4 and 5).

Proposition 2.1. Let (z(•), λ(•), u(•)
) a normal extremal trajectory. Then, the following properties hold true.

(i) There exists a function

g α : R × (F \∆ α 0 ) → R, (u, s, M ) -→ g α (u, s, M
) such that one has:

φ(t) = g α (u(t), s(t), M (t))φ(t) - f α SA (s(t), M (t)) f α 0 (s(t), M (t)) a.e. t ∈ [0, T ], (2.13 
)

provided that (s(t), M (t)) / ∈ ∆ α 0 . (ii) Let S + := (s, M ) ∈ F ; f α SA (s,M ) f α 0 (s,M ) > 0 , resp. S -:= (s, M ) ∈ F ; f α SA (s,M ) f α 0 (s,M ) < 0 . Then, if the extremal (z(•), λ(•), u(•)) is optimal, any switching point t c such that (s(t c ), M (t c )) ∈ S + , resp. (s(t c ), M (t c )) ∈ S - is from u = 1 to u = 0, resp. from u = 0 to u = 1.
Proof. To prove (i), notice that λ s = uφ-1 µ(s)(M -s) using that H = 0. From the expression of φ, we get:

λ M = φ -λ s (s in -s) s in -s -α(M -s) . (2.14) 
If we replace λ s into (2.14), we obtain λ M = µ(s)(M -s)φ-(uφ-1)(sin-s) µ(s)(M -s)(sin-s-α(M -s)) . Now, if we substitute the values of λ M and λ s in (2.9), we obtain (2.13) with:

g α (u, s, M ) := µ (s)(s in -s) µ(s) u + (1 -α)(M -s)(µ(s) -αu) s in -s -α(M -s) .
To prove (ii), notice first that if the trajectory belongs to the set S + or S -, then the control u is necessarily bang-bang from (2.10). Consider now a switching time t c from u = 0 to u = 1 in S + . We thus have φ(t c ) = 0 and φ(t - c ) ≥ 0 (as φ is negative in a left neighborhood of t c ) and we obtain that -

f α SA (s(tc),M (tc)) f α 0 (s(tc),M (tc)) ≥ 0 whenever (s(t c ), M (t c )) / ∈ ∆ α 0 .
We thus get a contradiction as we have (s(t c ), M (t c )) ∈ S + . This shows that any switching point in S + is from u = 1 to u = 0. A similar reasoning shows the second part of (ii) in S -.

Frame points are the points at the intersection of two frame curves. The determination of such points is also crucial for the optimal synthesis. A frame point of type (C, S) is by definition a point at the intersection of a switching curve and the singular locus. More precisely, (C, S) points are of two types : either the singular arc emanates from such a point (in that case it is a (C, S) 1 point), or the singular arc stops to be optimal at this point (in that case it is a (C, S) 2 point). A steady state singular point is a frame point at the intersection of ∆ α 0 and ∆ α SA (see [START_REF] Bayen | Minimal time of the two tanks gradostat model under a cascade inputs constraint[END_REF]). From the expressions of f 0 and f SA , the points E 0 := (0, sin α ) and E 1 := (s in , s in ) belong to ∆ α 0 ∩ ∆ α SA and are two steady state singular points. Let us now turn to Legendre-Clebsch condition which is useful to test the optimality of a singular arc. Recall that if a singular arc is optimal (in this case, it is also called turnpike, see e.g. [START_REF] Boscain | Optimal Syntheses for Control Systems on 2-D Manifolds[END_REF]), then Legendre-Clebsch necessary optimality condition must hold true (see e.g. [START_REF] Schattler | Geometric Optimal Control[END_REF]), that is we must have

∂ ∂u d 2 dt 2 H u ≥ 0, (2.15) 
where H u := ∂H ∂u is computed along the singular extremal trajectory. A singular extremal trajectory that is not optimal over a time interval I = [t 1 , t 2 ] is called anti-turnpike [START_REF] Boscain | Optimal Syntheses for Control Systems on 2-D Manifolds[END_REF].

Controllability results

In this section, we characterize for each target point (s, M ) the controllability set i.e. the set of points that can reach (s, M ) in finite horizon. We have the following controllability result depending on the position of the target point (s, M ) with respect to the two steady state singular points E 0 and E 1 . Proposition 3.1. If (H1) and (H2) hold true and (s, M ) ∈ F is a given target point, then:

(i) If E 1 / ∈ F - α and E 0 / ∈ F - α , the controllability set is F - α . (ii) If E 1 ∈ F - α and E 0 / ∈ F - α , the controllability set is F . (iii) If E 1 ∈ F - α and E 0 ∈ F - α , the controllability set is F + α .
Proof. In view of (2.4), we have Ṁ|u=1 > 0, resp. Ṁ|u=1 < 0 at a given point (s, M ) ∈ F if and only if (s, M ) is below ∆ α 0 , resp. above ∆ α 0 . The proof of (i) and (iii) is similar by considering the extended velocity set

-µ(s)(M -s) + u(s in -s) u(s in -s -α(M -s)) ; u ∈ [0, 1] ,
either in F - α (case (i)) or in F + α (case (iii)), see Fig. 1. So we only prove (i). Consider an extremal trajectory starting in F \F - α . If the trajectory reaches Γ 0 at a time t 0 then there exists a left neighborhood of t 0 where the trajectory is below ∆ α 0 . Moreover we can assume that t 0 is the first time where the trajectory hits Γ 0 . In view of the extended velocity set in ∆ α 0 (see Fig. 1) we see that the only possibility is to have u = 0, but this would imply that the trajectory has already reached the curve Γ 0 at a time t < t 0 , and we thus have a contradiction with the definition of t 0 . A similar reasoning shows that an extremal trajectory starting in F \F - α cannot hit Γ 1 . To conclude this case, we see that any initial condition in F - α can reach the target point by taking the control law u = 1 until reaching Γ 0 and then u = 0 until reaching the target point. This proves (i).

Let us now prove (ii). Consider a solution of (2.4) with u = 1 starting in F \F - α . From (H2), this trajectory converges to the point (s in , s in ) which is a globally asymptotically stable2 steady-state for (2.4). As we have s in < M < sin α , the trajectory necessarily intersects Γ 0 at a time t 0 > 0. For t > t 0 , the control u = 0 steers (2.4) into the target point in finite time. This shows that the target is reachable from F \F - α . Let us now take an initial condition (s 0 , M 0 ) ∈ F - α . As E 0 / ∈ F - α , the curve Γ 1 exits F through s = 0 at a value for M such that M < sin α . The strategy that we now describe drives any initial condition (s 0 , M 0 ) ∈ F - α to the target point. Take the control u s0 = µ(s 0 ) M -s0 sin-s0 (that corresponds to ṡ = 0). From (H2) one has µ(s 0 ) M -s0 sin-s0 < α M -s0 sin-s0 , and as in this case we have M < M < sin α , we deduce that α M -s0 sin-s0 < 1 using that (s, M ) is below ∆ α 0 . Hence the control u s0 is admissible until reaching Γ 0 ∪ Γ 1 . Finally, take either u = 0 or u = 1 depending if the trajectory has reached Γ 0 or Γ 1 . The corresponding trajectory reaches the target point which ends the proof. Remark 3.1. (i) Let γ be the graph of the unique solution of (2.4) with u = 1 starting from E 0 . Then, case (iii) of the previous proposition occurs if and only if the target point (s, M ) is above γ (in fact Γ 1 and γ cannot intersect by Cauchy-Lipschitz's Theorem). (ii) In the case (ii) of the previous proposition, the controllability set is the state domain F , hence any initial condition in F can reach the target point (s, M ).

(iii) When α = 1, then if M < s in the controllability set for (2.3) is F - 1 whereas if M > s in the controllability set for (2.3) is F + 1 .
4 Optimal synthesis when α = 1

In this section, we study (2.3) in the particular case where α = 1 which corresponds to the case where no biomass filtration is considered in the chemostat model (2.1). The variable M then satisfies the ODE

Ṁ = u(s in -M ), (4.1) 
hence (2.4) has a cascade structure. In view of (4.1) we can assume that either M < s in or M > s in depending on the choice of M w.r.t. s in . Indeed, for M = s in , the optimal control problem is one-dimensional and is straightforward. We consider in this section the following hypothesis on µ:

(H'1) The function µ satisfies µ(0) = 0, is bounded, non-negative, of class C 2 and has a unique maximum s ∈ (0, s in ). Moreover µ is increasing, resp. decreasing over [0, s ], resp. [s , s in ]. with

k i > 0, k s > 0. It is straightforward to check that ∆ 1 0 = ({0}×R * + )∪{(s, s) ; s ∈ [0, s in ]}∪([0, s in ]×{s in }) thus ∆ 1 0 ∩Int(F ) = ∅,
and so the only possible abnormal trajectories are the solutions of (2.4) with u = 0 and u = 1 that reach the target point (s, M ) without any switching point. Hence, we can assume that λ 0 = -1, so (2.13) becomes

φ = (s in -s)µ (s) µ(s) uφ - (s in -s)µ (s) µ(s) , (4.2) 
which in particular implies that the singular locus is the line ∆ 1 SA = {s } × (s , +∞). The singular control is defined as the control u s such that (s us (t), M us (t)) ∈ ∆ 1 SA and it is given by:

u s (M ) := µ(s ) M -s s in -s for M > s . (4.3) Furthermore, M us (•) is solution of the ODE Ṁ = µ(s ) (M -s )(s in -M ) s in -s .
We can check that Legendre optimality condition (2.15) is satisfied along the singular arc ∆ 1 SA . Indeed, differentiating (4.2) w.r.t. t yields:

∂ ∂u d 2 dt 2 H u = -µ (s ) (s in -s ) 2 µ(s ) ≥ 0. Now, µ is non-negative and µ (s ) ≤ 0 as s is a maximum of µ, therefore ∂ ∂u d 2 dt 2 H u ≥ 0.

Study of the case M < s in

In that case, we can consider initial conditions (s, M ) ∈ F satisfying M < s in . The system under consideration satisfies the following properties:

• We have Ṁ ≥ 0 for any control u (see (4.1)).

• We have ṡ|u=1 > 0. In fact, M < s in and (H2) imply the inequality µ(s) < 1 < sin-s M -s . We obtain the result using (2.4).

• As M < s in , the singular locus becomes ∆ 1 SA = {s } × (s , s in ).

• The singular control u s is admissible, i.e. u s (M ) ∈ [0, 1] for any M ∈ (s , s in ) and Ṁ > 0 along ∆ 1 SA . The previous considerations show that for i = 0, 1 the trajectory z i (•) is the graph of a C 1 -mapping s -→ M := ϕ i (s) in the plane (s, M ). Therefore the controllability set F - 1 can be written as:

F - 1 = {(s, M ) ∈ F ; M ≤ min(ϕ 0 (s), ϕ 1 (s))}. (4.4)
We then have the following optimality result.

Theorem 4.1. If (H'1) and (H2) hold true and if the target point is such that M < s in , then an optimal feedback control in Int(F - 1 ) is given by :

   u [s, M ] = 0 if s > s , u [s, M ] = 1 if s < s , u [s, M ] = u s (M ) if s = s . (4.5)
Proof. The proof follows from Proposition 2.1 (ii). Suppose that (s 0 , M 0 ) ∈ F - 1 \(Γ 0 ∪Γ 1 ). Then, if s 0 < s , we must have u = 1 until reaching either s = s or Γ 0 . Otherwise, we would have u = 0 by Pontryagin's Principle, and the trajectory would necessarily have a switching point at a time t 0 > 0 (if not, then it cannot reach the target). At this time t 0 , we have φ(t 0 ) ≥ 0 in contradiction with φ(t 0 ) = -(sin-s(t0))µ (s(t0)) µ(s(t0)) < 0. Hence, we have u = 1 until reaching either the singular arc or Γ 0 . Similar arguments show that if s 0 is such that s 0 > s , then we have u = 0 until reaching either s = s or Γ 1 . We deduce that for any point (s 0 , M 0 ) ∈ F - 1 \(Γ 0 ∪ Γ 1 ), the optimal control satisfies u = 1 if s 0 < s and u = 0 if s 0 > s . Finally, the previous argumentation shows also that if s 0 = s and (s 0 , M 0 ) ∈ F - 1 \(Γ 0 ∪ Γ 1 ), then an optimal trajectory does not leave the singular arc with the control u = 0 or u = 1. Therefore singular trajectories are optimal until reaching Γ 0 ∪ Γ 1 .

The optimal synthesis provided by Theorem 4.1 is depicted on Fig 2 .   Remark 4.2. (i) If s < s , then a singular trajectory will reach M , and then we have u = 0 until reaching the target (see Fig. 2 left). If s > s , then a singular trajectory will reach Γ 1 , and then we have u = 1 until reaching the target (see Fig. 2 right). (ii)When s > s in , the previous considerations show that for Monod-type kinetic function the feedback

u m [s, M ] = 1 if (s, M ) ∈ F - 1 \Γ 0 , u m [s, M ] = 0 if (s, M ) ∈ Γ 0 , (4.6) 
is optimal (we retrieve the results of [START_REF] D'ans | Time-Optimal Control for a Model of Bacterial Growth[END_REF]). 

Study of the case M > s in

In that case, we can consider initial conditions (s, M ) ∈ F such that M > s in . The system under consideration satisfies the following properties:

• From (4.1), we have Ṁ ≤ 0 for any control u.

• The singular control u s is admissible provided that we have M ∈ (s in , M sat ] where M sat is uniquely defined by u s (M sat ) = 1, that is:

M sat := s + s in -s µ(s ) . (4.7) 
• For M > M sat one has u s (M ) > 1.

• As M > s in , the singular locus becomes ∆ 1 SA = {s } × (s in , M sat ). Notice that M sat > s in and that the unique solution of (2.4) passing through (s , M sat ) is vertical at this point (see Fig. 3). Observe also that ds dt |u=1 is not of constant sign along u = 1 as in the previous case (see also Fig. 3 for the plot of the flow of (2.4) for the constant control u = 1), but one has dM dt |u=1 < 0.

s ⋆ M sat s in s in 0
Figure 3: Flow of (2.4) with u = 1 (s in = 3). The black curve is the set of points where solutions of (2.4) with u = 1 are vertical.

The previous considerations show that the trajectory z 1 (•) is the graph of a C 1 -mapping M -→ s := ψ 1 (M ) defined over [ M , +∞) in the plane (s, M ) (indeed we have Ṁ < 0 along u = 1). Therefore, the set F + 1 can be written:

F + 1 = {(s, M ) ∈ F ; M ≥ M and max(0, ψ 1 (M )) ≤ s ≤ s in }.

Switching curve and optimal synthesis

Whereas in the case M < s in , the singular arc is always admissible, we have now a saturation phenomenon for the singular control, that is the singular arc is non-admissible when M > M sat (see (4.7)). This will imply the existence of a switching curve C emanating from the singular arc. In the next lemma, we provide a description of this locus. (2) For any M ∈ ( M , M e ), there exists exactly one point s c (M ) such that an optimal control u(•) steering (2.4) to the target satisfies u = 0 for s > s c (M ) and u = 1 for s < s < s c (M ).

For sake of clarity, we have postponed the proof of this lemma to the appendix. The switching curve C is then defined as We obtain the following optimality result.

C := {(s c (M ), M ) ; M ∈ [M , M e ]}.
Theorem 4.2. Suppose that (H'1) and (H2) hold true, that M > s in , and let h(M

) := max(s , s c (M )) for M ∈ [ M , M e ].
Then, an optimal feedback control in Int(F + 1 ) is given by :

   u [s, M ] = u s (M ) if s = s and M < M sat , u [s, M ] = 1 if s < h(M ) and M > M , u [s, M ] = 0 elsewhere. (4.8)
Proof. The proof is straightforward using the previous lemma and the same arguments as in the proof of Theorem 4.1 to exclude extremal trajectories that are not optimal.

The optimal synthesis provided by Theorem 4.2 is depicted on Fig. 4, Fig. 5, Fig. 6 and7 for different cases that are explained below.

Numerical simulations

We present here the numerical computation of the curve C defined by M -→ s c (M ). We consider the threedimensional system (2.4)-(4.2) with u = 1 backward in time, that is:

     ds dt = µ(s)(M -s) -s in -s, dM dt = -(s in -M ), dφ dt = -(sin-s)µ (s) µ(s) φ + (sin-s)µ (s) µ(s) , (4.9) 
with initial conditions (s 0 , M 0 , 0) such that (s 0 , M 0 ) ∈ Γ 0 ∪∆ 1 SA . We know that an optimal trajectory reaching either ∆ 1 SA or Γ 0 \{(s, M )} at a time t necessarily satisfies φ(t) = 0 (the instant t is a switching time). Hence, for a given point (s 0 , M 0 ) ∈ Γ 0 ∪ ∆ 1 SA , we integrate (4.9) from (s 0 , M 0 , 0) at time zero until the first time t c > 0 such that φ(t c ) = 0 and (s(t c ), M (t c )) ∈ F . Thanks to Lemma 4.1, we know that there exist points of Γ 0 ∪ ∆ 1 SA for which t c exists. We repeat this procedure for points (s 0 , M 0 ) ∈ Γ 0 ∪ ∆ 1 SA until finding completely M -→ s c (M ).

To highlight Theorems 4.1 and 4.2, we have considered the following cases depending on the choice of the target point (s, M ) w.r.t. the singular arc and the value of M sat (see Table 1).

Remark 4.4. In Fig. 4, 5, 6 and 7, the switching curve C can be decomposed as C = ∆ 1 ∪ ∆ 2 . The curve ∆ 1 (in purple), resp. ∆ 2 (in green) corresponds to initial conditions (s 0 , M 0 ) for (4.9) on ∆ 1 SA , resp. on Γ 0 .

Additional properties of the switching curve C

In this section, we discuss additional properties of the switching curve C that are related to the curve Γ 1 . First, we suppose that Γ 1 exits F through s = s in . We can then show that C exits F at some point (s c (M e ), M e ) such that s c (M e ) = s in (see Fig. 4,5,6 picture left). Proof. Suppose that C stops at some point (s c (M e ), M e ) such that ψ 1 (M e ) < s c (M e ) < s in . We then consider the unique solution of (2.4) with u = 1 backward in time from (s c (M e ), M e ), and we call Γ the restriction of its graph in F . Now, take an initial condition (s 0 , M 0 ) ∈ F below Γ and such that s c (M e ) < s 0 < s in , M 0 > M e . Then, if we have u = 1 at time t = 0, we obtain a contradiction as the corresponding trajectory reaches Γ 0 at a point s > s (see Proposition 2.1 (ii)). Thus, we must have u = 0 until reaching s = s as no switching point occurs. We have again a contradiction by Proposition 2.1 (ii).

Similarly, C cannot intersect Γ 1 before reaching s = s in at some point (s , M ) as in that case an optimal trajectory starting from a point (s 0 , M 0 ) ∈ F + 1 with s 0 > s , M 0 > M would necessarily satisfy u = 1 until reaching Γ 0 at a point s > s . We obtain a contradiction using Proposition 2.1 (ii).

The previous arguments show that s c (M e ) = s in and that M e ≤ M out .

Remark 4.5. We can prove that the curve C is continuous by showing first the continuity of t c w.r.t. initial conditions (this point follows by considering t c as the first entry time into the target φ ≥ 0 and using regularity properties of the value function [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]). The continuity of C then follows from the continuity of solutions of an ODE w.r.t. initial conditions. For brevity, we have not detailed this point.

When Γ 1 exits F through s = 0, the controllability set A 2 is unbounded, therefore the proof of Proposition 4.1 no longer holds. Nevertheless, we conjecture that C exits F at some point M e < +∞ as numerical simulations indicate. However, properties of switching curve can be in general difficult to obtain. Notice that initial conditions such that M s in are not interesting for a practitioner. Observe also that the time of an arc u = 0 connecting s in to s is equal to sin s dσ µ(σ)(M -σ) . Clearly, this integral goes to zero if M goes to infinity. When M → +∞, the dominant term in the value function v(x 0 , s 0 ) (recall (2.3)) is the time of an arc u = 1 connecting (s, M ) to Γ 0 or ∆ 1 SA . Hence, if M s in , there is no evidence that optimal trajectories will benefit from a switching time (from u = 0 to u = 1) before reaching Γ 0 or ∆ 1 SA .

s ⋆ s M M sat s in s in Non controllable Γ1 Γ0 ∆1 u = 1 u = 0 s ⋆ s M M sat s in s in Non controllable Γ1 Γ0 ∆1 u = 1 u = 0
5 Optimal synthesis when α < 1

In this section, we study the optimal synthesis whenever α < 1. Unlike in the case α = 1, the system (2.4) has not a cascade structure, and thus finding an optimal synthesis in this framework is more delicate. In this case, the set ∆ α 0 is the line segment of equation:

δ α 0 (s) := s + s in -s α , s ∈ [0, s in ].
Whereas in the case α = 1 the subset of F defined by M = s in is invariant by (2.4) (see (4.1)), trajectories of (2.4) can cross the set ∆ α 0 for α < 1. Using (2.11), we find that the singular locus ∆ α SA is the graph of the function:

s -→ M = δ α SA (s) := s + ψ α (s), s ∈ [0, s in ]
, where

ψ α (s) := 1 α µ (s)(s in -s) 2 (s in -s)µ (s) + (1 -α)µ(s) . (5.1) 
Note that the functions ψ α and δ α SA are not well defined as (s in -s)µ (s) + (1 -α)µ(s) can be zero when s is such that µ (s) < 0. By differentiating Ms = ψ α (s) w.r.t. to time t supposing that the trajectory belongs to a singular arc, we find the expression of the singular control u α s as a function of s (whenever it is well defined):

u α s (s) := µ(s)ψ α (s)(1 + ψ α (s)) αψ α (s) + ψ α (s)(s in -s) . (5.2) 
In order to verify if (2.15) holds true along a singular extremal (see section 5.1) we have the following lemma.

Lemma 5.1. Along a singular arc

I = [t 1 , t 2 ] such that (s in -s(t))µ (s(t)) + (1 -α)µ(s(t)) is non-zero over [t 1 , t 2 ], one has ∂ ∂u d 2 dt 2 Hu = (1 -α)(sin -s(t)) 2 (2 -α)µ(s(t))µ (s(t)) + 2(sin -s(t))µ (s(t)) 2 -(sin -s(t))µ(s(t))µ (s(t)) µ(s(t))[sin -s(t) -α(M (t) -s(t))][(sin -s(t))µ (s(t)) + (1 -α)µ(s(t))] . (5.3) 
Proof. From the expressions of f SA and f 0 (see (2.11)) we obtain:

f SA (s, M ) f 0 (s, M ) = - α(M -s)((1 -α)µ(s) + µ (s)(s in -s) -(s in -s) 2 µ (s)) µ(s)(s in -s -α(M -s)) .
In order to compute ∂ ∂u d

dt 2 H u , we differentiate (2.13) w.r.t. t along the singular arc Ms = ψ α (s) keeping only the component in front of u (this computation can be also performed using Lie brackets, however we did not introduce this notation for brevity). We find that

d dt - fSA(s(t), M (t) f0s, M u = -α 2 (1 -α)xµ(s) + 2(sin -s)(sin -s -α 2 x)µ (s) + µ (s)(sin -s) 2 (αx -(sin -s)) µ(s)(sin -s -αx) ,
omitting the time dependency for brevity and writing x in place of Ms. By replacing x into the previous equality by ψ α (s) using (5.1), we find (5.3).

We now discuss the optimal synthesis of the problem for Monod-and Haldane-type kinetics. In particular, we will analyze if ψ α and u α s are well defined over [0, s in ] (see (5.1) and (5.2)).

Optimal synthesis for Monod-type kinetic function

We suppose in this section that the growth rate function is given by:

µ(s) := µ max s k + s , (5.4) 
where µ max > 0 and k > 0. Notice that µ > 0, µ > 0 and µ < 0 over the interval (0, s in ]. Therefore ψ α and δ α SA are well defined over [0, s in ]. From (5.1)-( 5.3), we can make the following observations:

• We have ∆ α 0 ∩ ∆ SA := {E 0 , E 1 }. Moreover, for any s ∈ (0, s in ) one has δ α SA (s) < δ α 0 (s).
• The singular control s -→ u α s (s) is positive, resp. negative on the interval (0, s m ), resp. (s m , s in ) where s m ∈ (0, s in ) is defined as the unique point such that (δ α SA ) (s m ) = 0.

• The steady state singular point E 0 , resp. E 1 is attractive, resp. repulsive for the dynamical system (2.4) with the feedback control u = u α s (s) (indeed one has Ṁ = αu α s (s)(δ α 0 (s) -δ α SA (s)) along ∆ α SA ).

• Using (5.3) and the fact that µ > 0, µ < 0 for Monod-type kinetics (see (5.4)), we find that Legendre-Clebsch optimality condition (2.15) is satisfied along ∆ α SA .

Figure 8: Plot of ∆ α 0 and ∆ α SA for α = 0.1, 0.5, 0.9 with µ(s) = s 5+s and s in = 10.

Figure 9: Plot of the singular control s -→ u α s (s) given by (5.2) with µ(s) = s 5+s and s in = 10 for α = 0.1, 0.5, 0.9.

Figures 8 depicts the singular locus ∆ α

SA and the collinearity set ∆ α 0 for different values of α. The corresponding singular control is plotted on Figure 9. We observe that if α is small, then the singular control u α s can be larger than 1 which corresponds to the maximal admissible value for the control. To simplify the study, we consider the following assumption on the admissibility of the singular arc:

(H3) The singular control satisfies u α s (s) ≤ 1 for any s ∈ [0, s m ).

Remark 5.1. When α goes to 1, then ψ α (s) ∼ s in -s, thus we find that u α s (s) ∼ µ(s), therefore using that µ(s) < α < 1 for any s ∈ [0, s in ] (see Hypothesis (H1)), we conclude that (H3) is satisfied when α is sufficiently close to 1.

If Hypothesis (H3) is satisfied, then the singular arc is admissible on [0, s m ]. The optimal synthesis will depend on the position of the target point (s, M ) w.r.t. the points E 0 and E 1 as in Proposition 3.1. When E 0 / ∈ F - α , we introduce the feedback control law:

u α m [s, M ] :=    1 if M < δ α SA (s), 0 if M > δ α SA (s) or (M = δ α SA (s) and s > s m ), u α s (s) if M = δ α SA (s) and s < s m , (5.5) 
The optimal synthesis then reads as follows (see Fig. 10).

Theorem 5.1. Suppose that µ is given by (5.4) and that (H2)-(H3) hold true. Then, one has the following optimality conditions.

(i) If E 1 / ∈ F - α and E 0 / ∈ F - α , then an optimal feedback control in Int(F - α ) is given by (5.5).

(ii) If E 1 ∈ F - α and E 0 / ∈ F - α , then an optimal feedback control in Int(F - α ) is given by (5.5) and an optimal feedback control satisfies u = 1 in Int(F + α ).

(iii) If E 1 ∈ F - α and E 0 ∈ F - α , then an optimal feedback control satisfies u = 1 in Int(F + α ).

Proof. Let us prove (i). From (2.13), we obtain that an optimal control cannot switch from u = 0 to u = 1, resp. from u = 1 to u = 0 at some point in F - α \(Γ 0 ∪ Γ 1 ) such that M < δ α SA (s), resp. M > δ α SA (s). Hence, optimal trajectories can only switch on the singular locus ∆ α SA . It follows that an optimal control satisfies u = 1 when M < δ α SA (s) and u = 0 when M > δ α SA (s). Moreover, we deduce that at some point (s, M ) ∈ ∆ α SA either we have s ≤ s m and u = u s (from (2.13), optimal trajectories cannot leave the singular arc before reaching Γ 0 ∪ Γ 1 ) or s > s m and then an optimal control necessarily satisfies u = 0.

To prove (ii), notice that the optimality result in F - α is similar to (i) except that there exists an abnormal extremal trajectory switching at the intersection between Γ 0 and ∆ α 0 . The cost t abn of this trajectory cannot be directly compared to the cost t min of the trajectory corresponding to the control (5.5) as Proposition 2.1 only holds for normal trajectories. However, we can construct a sequence of normal trajectories γ n converging to the abnormal one by considering trajectories with the control u = 1 until reaching Γ 0 . Now, the cost t γn of γ n satisfies t γn ≥ t min using the previous argumentation. We then obtain the result by letting n goes to infinity. Now, solutions of (2.4) with u = 1 starting above Γ 0 ∪ Γ 1 necessarily converge to the point E 1 (see Lemma 3.1 (ii)). Hence, trajectories with u = 1 starting in F + α necessarily intersect Γ 0 (as E 1 ∈ F - α ). To prove that an optimal control satisfies u = 1 in Int(F + α ), we use (2.13) and similar arguments as in the proof of (i). The proof of (iii) is similar to the proof of (ii) (by considering initial conditions above Γ 0 ∪ Γ 1 only).

Remark 5.2. (i) In Theorem 5.1, we point out that optimal trajectories can switch from u = 1 to u = 0 on the set ∆ α SA ∩ ([0, s m ] × [0, M ]) that corresponds to a switching curve. (ii) Whenever α = 1 and µ is of Monod-type, we know from (4.6) that no singular arc occurs. We see that when α < 1, then optimal strategies can take advantage of a singular arc depending on the position of the target point w.r.t. ∆ α SA . (iii) It is interesting to observe that when α → 1, then one has δ α 0 (s) → s in and δ α SA (s) → s in . Suppose that M < s in . We deduce that if α is sufficiently close to 1, then the feedback control law (5.5) coincides with (4.6). On the other hand, when M ≥ s in , then an optimal feedback in F + α is exactly the same as (4.6). This proves that the feedback control (4.6) (which does not depend on α) is optimal for any value of α sufficiently close to 1.

Optimality results for Haldane kinetic function

In this section, we discuss the optimal synthesis of the problem in the case where (H'1) holds true. Recall that this assumption implies µ (s) > 0 for s ∈ [0, s ) and µ (s) < 0 for s ∈ (s , s in ]. Thus, ψ α can be not well defined if its denominator vanishes on [0, s in ] which amounts to saying that there exist solutions of the equation (s in -s)µ (s) + (1 -α)µ(s) = 0, (

over [0, s in ]. To simplify the study, we suppose that µ is an Haldane function, i.e.

µ(s) := µ max s k s + s + s 2 ki with k s > 0 and k i > 0.

(5.7)

Recall that the maximum of µ is obtained for s

= √ k i k s ∈ [0, s in ].
We have the following technical lemma.

Lemma 5.2. Suppose that µ is given by (5.7). Then the following properties hold true: (i) The equation (5.6) is equivalent to the cubic equation: Proof. For sake of clarity, we have postponed the proof of this lemma to the appendix. This result shows that only two cases occur depending on the parameter values α and s in :

(2 -α)s 3 + [(1 -α)k i -s in ]s 2 -αk i k s s + k i k s s in = 0. ( 5 
• The function ψ α is well defined over [0, s in ] i.e. (5.6) has no solution in [0, s in ].

• The equation (5.6) has two positive solutions over [0, s in ] and thus ψ α has two poles on [0, s in ].

The optimal synthesis of the problem is discussed hereafter in section 5.2.1, resp. section 5.2.2 whenever (5.6) has no solution in [0, s in ], resp. two solutions over [0, s in ].

Optimality results with one connected singular arc component

The case where (5.6) has no solution over [0, s in ] is illustrated on Fig. 11. As for Monod-type kinetics, we observe that ∆ SA consists of one connected component in the set F . We introduce the following feedback control law:

u α h [s, M ] :=    1 if M < δ α SA (s), 0 if M > δ α SA (s), u α s (s) if M = δ α SA (s).
(5.9)

We obtain the following optimality result in the line of Theorem 5.1 except that in this case the singular arc is always admissible.

Theorem 5.2. Suppose that µ is given by (5.7), that (H2) holds true, and that the singular control is admissible in F , and that (5.6) has no solution over [0, s in ]. Then, one has the following optimality conditions. ∈ F - α and E 0 / ∈ F - α , an optimal feedback control in Int(F - α ) is given by (5.9). Proof. The proof utilizes similar arguments as the proof of Theorem 5.1 except that in this case the singular arc is always admissible in the set F i.e. u s (s) ∈ [0, 1] for any s ∈ [0, s in ] (see (H'3)).

The previous Theorem is illustrated on Fig. 14.

Remark 5.4. Notice that the feedback (5.9) corresponds to a most rapid approach to the singular arc ∆α SA as in Theorem 4.1. When α goes to 1, we have f α SA (s, M ) → f 1 SA (s, M ) = (Ms)(s in -s)(Ms in )µ (s) and we have seen that ∆ 1 SA is the line segment {s } × (s , s in ). Thus, the feedback control (5.9) obtained in Theorem 5.3 converges to (4.8) when α goes to 1 (see Fig. 14).

When dealing with cases (ii) and (iii) of Proposition 3.1, several difficulties may appear. On the one hand there is a saturation phenomenon of the singular control as when α = 1 (typically when M becomes large); on the other hand, Legendre-Clebsch optimality condition will fail to hold for certain choices of the target point (in particular if (s, M ) is located between the two components of the singular locus). To simplify the study, we have considered only the case where the target point is such that Γ 0 ∩ ∆SA is non-empty. More precisely, we have the following optimality result in the same spirit as Theorem 4.2.

Proposition 5.1. Suppose that µ is given by (5.7), that (H2) holds true, and that E 0 ∈ F - α , E 1 ∈ F - α . Moreover, we suppose that the target point is such that M > δ α SA (s c ). Then, an optimal control u steering (2.4) from an initial condition (s 0 , M 0 ) ∈ F + α such that M 0 > δ α SA (s 0 ) is of type B -B + S (with at most two switching points) until reaching Γ 0 or Γ 1 .

Proof. As E 0 ∈ F - α and E 1 ∈ F - α , the controllability set F + α is above the set ∆ α 0 . We deduce that - optimal bang-bang control can switch only from u = 0 to u = 1 above ∆α SA . Moreover, an optimal control cannot switch from u = 1 to u = 0 below ∆α SA and before reaching Γ 0 . Otherwise, the trajectory would necessary switch from u = 0 to u = 1 below ∆α SA implying a contradiction with Proposition 2.1 (ii). Now, as M > δ α SA (s c ) any admissible singular arc (i.e. such that u α s (s) ∈ [0, 1]) is optimal until reaching Γ 0 or Γ 1 . Thus an optimal control is of type B -B + S until reaching Γ 0 ∪ Γ 1 .

Remark 5.5. As mentioned above, this case in not complete as certain target points below ∆ α SA may not satisfy the assumptions of Proposition 5.1. However, this assumption can be verified by choosing α sufficiently close to 1.

Conclusion, Discussion, Perspectives

In this paper, we have provided an optimal synthesis of a two-dimensional system describing a chemostat model including a retention system. The analysis has revealed the importance of turnpike singular arcs in the optimal synthesis. We have shown that optimal trajectories are based on a most rapid approach to a turnpike (in absence of saturation phenomenon) depending on the kinetics. For α = 1 and a growth function of Haldane-type, the singular strategy consists in maintaining the substrate concentration in the chemostat model equal to s which corresponds to the point where µ is maximal. When the singular control saturates (it attains the maximal admissible value), then the optimal synthesis exhibits a switching curve and frame points exist. Optimal controls have at most three switching points (in the latter case an optimal control is of type B -SB + B -). When α < 1, we also observe a splitting of the singular arc ∆ 1 SA into two components in the case of Haldane kinetics.

From a practical point of view, the analysis has raised the following points:

• We have pointed out that the optimal synthesis depends on the position of the target point w.r.t. characteristic elements of the system (such as steady state singular points). This information can be useful for a practitioner to drive optimally the system to a target point.

• The optimal feedback control laws that we have obtained are quite simple and may be implemented easily (see e.g. [START_REF] Bayen | Minimal time control of fed-batch bioreactor with product inhibition[END_REF][START_REF] Moreno | Optimal time control of bioreactors for the wastewater treatment[END_REF] for a practical implementation of a singular strategy in biotechnology).

• Whereas singular arcs usually appear for Haldane-type kinetics (see e.g. [START_REF] Bayen | Optimal synthesis for the minimal time control problems of fedbatch processes for growth functions with two maxima[END_REF][START_REF] Moreno | Optimal time control of bioreactors for the wastewater treatment[END_REF]), our results show that a singular arc appears for Monod-type kinetics as long as α = 1.

• Whenever α < 1, there exist target points that can be reached from any initial condition in the state space. The analysis of the problem has also revealed that for α = 1, this cannot happen (this is due to the existence of an invariant manifold for the system). Thus, a practitioner can take advantage of this remark to pilot adequately a chemostat with a recirculation loop to a desired starting from any initial condition in the state space. In some engineering systems, the value of α can be chosen as a control parameter when using reactors in recirculation mode.

• The optimal feedback control laws that we have obtained are robust in the following sense. For Monodtype kinetics, the optimal feedback (5.5) coincides with (4.6) if α is close to 1, and so it does not depend on α (see remark 5.2 (iii)). Hence, it drives optimally (2.4) to the target point for any value of α sufficiently close to 1.

• As shown in section 5.2, the optimal synthesis depends on the parameter α, nevertheless we can observe that when α goes to 1, the optimal synthesis slightly differs from the case α = 1 (see e.g. Remark 5.4). However, we are not aware of general results concerning the behavior of optimal syntheses or optimal feedback control laws w.r.t. parameters.

In general uncertainties can affect the system, hence our optimal feedback strategies can be used to drive the system optimally to a neighborhood of the target point and then a feedback control is designed to stabilize the system at the desired target. The combination of these two approaches could be the basis of future works.

Extensions include the synthesis of optimal control for more complex systems including biological schemes described by cascade of reactions or where different substrates are consumed at different rates by several groups of microorganisms.

Figure 1 :

 1 Figure 1: Extended velocity set of (2.4) at a given point (s, M ) in F - α (picture left) and in F + α (picture right).

Remark 4 . 1 .

 41 (H'1) is verified in the case of Haldane kinetic function µ(s) = µmaxs ks+s+ s 2 k i

Figure 2 :

 2 Figure 2: Optimal synthesis for α = 1 and M < s in (case I). Picture left: the target point is such that s < s (the singular arc ∆ 1 SA intersects Γ 0 ). Picture right: the target point is such that s > s (the singular arc ∆ 1 SA

Lemma 4 . 1 .( 1 )

 411 Let M := max( M , M sat ). There exists M e ∈ ( M , +∞] and a function s c : [ M , M e ] → R + M -→ s c (M ) satisfying the following properties: One has s c ( M ) = s and s c (M ) ∈ (s , s in ) for any M ∈ ( M , M e ). Moreover, if M e < +∞, then one has s c (M e ) = s in .

Remark 4 . 3 . 6 .

 436 (i) If M = M sat i.e. M ≤ M sat , then the point (s , M sat ) is a frame point of type (CS) 1 i.e. at the intersection of C and ∆ 1 SA , see Fig. 4 and Fig. 5 (ii) If M = M i.e. if M > M sat , then C ∩ ∆ 1 SA = ∅ and C intersect Γ 0 at the point (s , M ), see Fig.Subcase

Proposition 4 . 1 .

 41 Suppose that Γ 1 intersects the boundary of F at some point (s in , M out ) with M out > M . Then, we have M e ≤ M out and s c (M e ) = s in .

Figure 4 :

 4 Figure4: Case II a. Optimal synthesis for α = 1, s in < M < M sat and s < s . The dotted line represents the switching curve C (in purple, resp. in green, it is obtained by integrating (4.9) backward in time from ∆ 1 SA , resp. from Γ 0 ). The curve Γ 1 exits F through s = s in (picture left) or through s = 0 (picture right).

Figure 5 :

 5 Figure 5: Case II b.Optimal synthesis for α = 1, s in < M < M sat and s > s . The dotted line represents the switching curve C (in purple, resp. in green, it is obtained by integrating (4.9) backward in time from ∆ 1 SA , resp. from Γ 0 ). The curve Γ 1 exits F through s = s in (picture left) or through s = 0 (picture right).

Figure 6 :Figure 7 :

 67 Figure 6: Case III a. Optimal synthesis for α = 1, M > M sat and s < s . The dotted line in green represents the switching curve C (it is obtained by integrating (4.9) backward in time from Γ 0 ). The curve Γ 1 exits F through s = s in (picture left) or through s = 0 (picture right).

. 8 )

 8 (ii) The solutions of (5.8) satisfy one and only one of the three following properties: -The equation (5.8) has exactly three negative solutions.-The equation (5.8) has exactly one negative solution and two complex conjugate solutions. -The equation (5.8) has exactly one negative solution and two positive solutions.(iii) If α is sufficiently close to 1, then (5.6) has exactly two positive solutions over the interval [0, s in ].

Figure 10 :

 10 Figure 10: Optimal synthesis provided by Theorem 5.1 for α < 1 in case (i) (above left), case (ii) (above right) and case (iii) (middle).

Figure 12 :

 12 Figure 12: Plot of ∆ α 0 (in green) and ∆ α SA (in red) for α = 0.1 (picture left), α = 0.5 (picture in the middle), α = 0.9 (picture right) with µ(s) = s 5+s+s 2 and s in = 10.

Figure 13 :Theorem 5 . 3 .

 1353 Figure 13: Plot of the singular control for = 0.1 (picture left), α = 0.5 (picture in the middle), α = 0.9 (picture right) with µ(s) = s 5+s+s 2 and s in = 10.

Figure 14 :

 14 Figure 14: Optimal synthesis in F - α for Haldane kinetics, see Proposition 5.3 case (i).

Table 1 :

 1 List of the cases illustrating Theorems 4.1 and 4.2.

If (2.4) is written ż = f (z) + ug(z) with f, g : R

→ R 2 , then ∆ α SA is the set of points z ∈ F where g(z) is collinear to [f, g](z), the Lie bracket of f and g, see e.g.[START_REF] Bonnard | Singular Trajectories and their role in Control Theory[END_REF][START_REF] Boscain | Optimal Syntheses for Control Systems on 2-D Manifolds[END_REF].

This property is standard: as µ(s) < α for all s ∈ [0, s in ], one has x(t) → 0 when t → +∞ which implies the result.

(s,M ) > 0 if (s, M ) is below ∆α SA , resp. above ∆α SA . Now, Proposition 2.1 (ii) implies that an
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(i) If E 1 / ∈ F - α and E 0 / ∈ F - α , then an optimal feedback control in Int(F - α ) is given by (5.9).

(ii) If E 1 ∈ F - α and E 0 / ∈ F - α , then an optimal feedback control in Int(F - α ) is given by (5.9) ; an optimal control in F + α satisfies u = 1 until reaching Γ 0 .

(iii) If E 1 ∈ F - α and E 0 ∈ F - α , then an optimal control in F + α satisfies u = 1 until reaching Γ 0 .

Proof. The proof is similar to the proof of Theorem 5.1 from the fact that the singular arc is supposed to be always admissible the set F i.e. u s (s) ∈ [0, 1] for any s ∈ [0, s in ].

Remark 5.3. As in Theorem 4.1, the optimal strategy in F - α is a most rapid approach to a singular arc.

Optimality results in the case of two connected singular arc components

In this case, we suppose that (5.6) has two positive solutions over [0, s in ]. The optimal synthesis is more intricate as in section 5.2.1 as the singular arc will consist of two connected components in the set F :

with ∆α SA , resp. ∆α SA below, resp. above ∆ α 0 . The singular locus ∆ α SA and the collinearity set ∆ α 0 are represented for different values of the parameter α on Fig. 12. From (5.1)-(5.3), we can make the following observations:

• For any s ∈ [0, s α 1 ), one has δ α SA (s) < δ α 0 (s) and for s ∈ (s α 1 , s α 2 ) one has δ α SA (s) > δ α 0 (s). For s ∈ (s α 2 , s in ], δ α SA (s) / ∈ F .

• By definition of ∆ α 0 we have Ṁ > 0 at some point (s, M ) ∈ F if and only if M < δ α 0 (s). Along the singular arc ∆ α SA , we then have Ṁ > 0, resp. Ṁ < 0 for s ∈ [0, s α 1 ), resp. s ∈ (s α 1 , s α 2 ).

• Using (5.3), we can show that there exists a point

2 ) of the singular arc s -→ δ α SA (s) is not optimal (i.e. it is an anti-turnpike). To simplify the study, we consider the following assumption on the admissibility of the singular arc ∆α SA . (H'3) The singular control satisfies u α s (s) ∈ [0, 1] for any s ∈ [0, s α 1 ) such that (s, δ α SA (s)) ∈ F . Numerical simulations indicate that this assumption is verified if α is sufficiently close to 1 (see Fig. 13). However even for α close to 1, the singular control always exceeds the maximal admissible value in the interval (s α 1 , s α 2 ) as the denominator of (5.2) vanishes. We obtain the following optimality result.

Appendix

Proof of Lemma 4.1. The following claim is crucial and follows from (4.2) and Proposition 2.1 (ii).

Claim 7.1. Any extremal trajectory cannot switch from u = 1 to u = 0, resp. from u = 0 to u = 1 at a point (s(t), M (t)) such that s(t) > s , resp. s(t) < s .

Step 1. Let us first prove the existence of the switching curve

Consider an initial condition (s 0 , M 0 ) such that s 0 > s , M 0 > M and an optimal trajectory (s(•), M (•)) starting from this point. Suppose that we have u = 0 until reaching s = s at a time t 0 . We then have u = 0 for any time t > t 0 , and the trajectory cannot reach the target. Hence, we have two cases depending if the trajectory has a switching point from u = 0 to u = 1 or not. Either we have u = 1 at time 0 until reaching s = s with M < M sat or M = M . Or, there exists a unique switching point from u = 0 to u = 1 at a time t 0 such that s < s(t 0 ) < s 0 (the uniqueness follows from Claim 7.1).

Let us denote by M -→ s † (M ) the unique solution of (2.4) with u = 1 backward in time from (s , M ) satisfying the Cauchy problem:

When M = M sat we know that this curve is tangent to the singular arc at (s , M ). Therefore, it leaves F through s = s in i.e. there exists a unique point M out such that s † (M out ) = s in . By a monotonicity argument, we argue that it also leaves F through s = s in in the case where M is such that M = M . Finally, take an initial condition (s 0 , M 0 ) such that M < M 0 < M out and s 0 > s † (M 0 ). Suppose that we have u = 1 at time 0. Then, as s 0 > s † (M 0 ), the trajectory necessarily satisfies u = 1 until reaching Γ 0 (using claim 7.1), but we have again a contradiction on Γ 0 using claim 7.1. Thus, there exists a unique switching point 20 from u = 0 to u = 1 at a time t 0 such that s(t 0 ) > s . Hence, we have proved that for any M ∈ [ M , M out ], there exists exactly one switching point that we denote s c (M ). We then define M e ∈ [M out , +∞] as :

Step 2. Proof of Lemma 4.1 (1)- [START_REF] Bayen | Optimal synthesis for the minimal time control problems of fedbatch processes for growth functions with two maxima[END_REF]. First, we have s c (M ) → s when M ↓ M . Otherwise, we would have a contradiction by using Claim 7.1 and s † (•). Now, if M e < +∞, we necessarily have s c (M e ) = s in . Otherwise, we would have s c (M e ) ∈ (s , s in ). In that case, we consider the unique solution of (2.4) with u = 1 backward in time from (s c (M e ), M e ). Then, consider an initial condition (s 0 , M 0 ) below this trajectory and such that s 0 > s c (M e ) and M 0 > M e . We then have u = 1 until reaching M = M e at a substrate concentration greater than s . We necessarily have a contradiction by Claim 7.1 as the trajectory cannot switch to u = 0 at a time t 0 such that s(t 0 ) > s . Therefore, we have s c (M e ) = s in . Finally, we have seen by construction of s c that we have s c (M ) ∈ (s , s in ) for any point M ∈ (M , M e ). This proves part (1) of Lemma 4.1. The proof of ( 2) is a direct consequence of Claim 7.1.

Proof of Lemma 5.2. The proof of (i) follows by a direct computation replacing the expression of µ given by (5.7) into (5.6). To prove (ii), observe that if (5.8) has three solutions (s 1 , s 2 , s 3 ) in R, then s 1 s 2 s 3 = -sinkiks 2-α < 0 and s 1 + s 2 + s 3 = -(1-α)ki-sin 2-α < s in . In this case, we obtain that either (5.8) has three negative solutions or it has exactly one negative solution and two positive ones. Suppose now that (5.8) has only one real solution s 1 ∈ R. Then, there exist α ∈ R and β > 0 such that (5.8) is equivalent to (ss 1 )(s 2 + αs + β) = 0. It follows that -s 1 β = kikssin 2-α . Thus, we have s 1 < 0 which ends the proof of (ii). To prove (iii), observe that if α goes to one, then the implicit function Theorem implies that (5.6) has a positive solution in a neighborhood of s . We deduce from (ii) that there exist exactly two positive solutions of (5.6) for α ∈ [0, 1) close to 1. Moreover, if we substitute s = s in into ρ(s) := (s in -s)µ (s) + (1 -α)µ(s) and into ρ (s) = (s in -s)µ (s) -αµ (s), we obtain positive quantities. Thus, the positive solutions of (5.6) are in the interval [0, s in ].

The table below provides the parameter values used for the simulations of optimal trajectories (recall (5.4) and (5.7)).
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