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Time-optimal control of concentrations changes in the chemostat

with one single species∗

Terence Bayen†, Jérôme Harmand‡, Matthieu Sebbah§

May 10, 2016

Abstract

We consider the problem of driving in minimal time a system describing a chemostat model to a target
point. This problem finds applications typically in the case where the input substrate concentration changes
yielding in a new steady state. One essential feature is that the system takes into account a recirculation
of biomass effect. We depict an optimal synthesis and provide an optimal feedback control of the problem
by using Pontryagin’s Principle and geometric control theory for a large class of kinetics.

Keywords. Chemostat model, Optimal feedback, Pontryagin Maximum Principle, Singular control.

1 Introduction

The optimal control of bioprocesses has attracted a lot of attention over the last fifty years. The control
of fedbatch processes has been extensively studied due to the fact that such systems are used in industries
producing high value molecules for agro-food or pharmaceutical industries. In this functioning mode, the
output flow rate is equal to zero so that the volume of the reactor increases over the time until its maximum
working volume has been reached. The way the reactor is filled, using the input flow rate, can be seen as
a control. When the growth function is monotonic, the optimal control to minimize the time necessary to
reach a given substrate concentration consists in filling in the process as fast as possible until the maximum
working volume is reached and then wait until the concentration of substrate has reached the target. However,
when the growth rate is non-monotonic (for instance for growth functions as Haldane), there exists a singular
arc and the optimal input profile to stay on it has been proposed in a number of situations. For instance,
theoretical results have been obtained in [15] for single reaction systems and for a large class of growth rate
functions, and more recently in [2, 4, 9, 10]. In these papers dedicated to the optimal control of wastewater
treatment plants, the objective was to reach in minimal time a given target (the value of the output substrate
concentration should be typically below a prescribed value). This problem has been also investigated for
multi-species systems and partially solved in [10]. Many others papers - rather practical but not only - are
available on the optimal control of fed-batch systems for the maximization of products or of the biomass (see
for instance the survey [20] or [18, 25] and references herein).

Our interest in this paper is the optimal control of the chemostat which is an apparatus introduced in
the fifties to continuously cultivate microorganisms. As for a bioprocess operated in a fedbatch mode, using
the input flow rate allows the user to manipulate the growth rate of microbes (see [14, 17]). It presents the
advantage of not being necessary to stock the incoming flow and to treat it online. Today, it is widely used in
many domains at both laboratory or industrial scales and its optimization poses a number of both practical
as well as theoretical problems [21]. Classically, the model of the chemostat is written as:{

ẋ = µ(s)x−Dx,
ṡ = − 1

γµ(s)x+D(sin − s), (1.1)
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where x and s are the micro-organisms and substrate concentrations, respectively, µ is the growth function
of the species, sin > 0 is the input substrate concentration, γ > 0 is the biomass yield factor, and D is the
dilution rate.

For this system with monotonic growth function (i.e. for a Monod growth function), D’Ans et al. have
solved the problem of going from an arbitrary initial state to another one in minimal time (see [8]). Such
a problem finds application typically in the case where the input substrate concentration changes yielding
in a new steady state. Converging fast towards this new equilibrium may present some practical interest.
In this case, D’Ans et al. established that the control is necessary bang-bang. From their pioneering work,
many authors have investigated other optimization problems such as the maximization of biogas production
for anaerobic processes (see e.g. [12, 22, 11]). The problem of minimizing the time necessary to go from an
arbitrary initial point to a final one in minimal time for non-monotonic growth rates in a continuous bioreactor
has been partially investigated in [3]. However, in modern biotechnology, any continuous reactor is equipped
with a biomass retention system allowing the liquid fraction to leave the reactor while keeping an important
quantity of biomass in the system through the presence of either supports for microorganisms (that may be
fixed or mobile) or a separator followed by a recirculation loop for the biomass to return into the reactor
medium. In such a case, the substrate (liquid fraction) and the biomass (solid fraction) are not submitted
to the same dilution rate and it is said that ‘the hydraulic and the solid retention times are decoupled’. To
model simply such a decoupling, a term α > 0 can be introduced in the dynamic of x and the model becomes:{

ẋ = µ(s)x− αDx,
ṡ = − 1

γµ(s)x+D(sin − s), (1.2)

If α = 1, the model is exactly the chemostat model while if α = 0 no biomass is removed from the reactor.
Depending on the efficiency of the separator, one has 0 ≤ α ≤ 1.

In this paper, our aim if to address the minimal time control problem to go from one state to another
for this modified chemostat model (1.2) and for a large class of growth functions. In particular, except for
some specific results obtained in section 5 in considering Haldane functions, one originality of our approach is
that instead of considering models with analytical functions such as Monod or Haldane (see [14]), we establish
generic results for two general classes of functions that will be said to be ‘of Monod-type’ or ‘of Haldane-type’
depending on their qualitative properties (cf. Hypotheses (H1) and (H1’)). In addition, one essential feature
in the model considered in the present study (i.e. (1.2)) is that the presence of the ‘recirculation parameter α
leads to an asymmetry between x and s (when α = 1, the chemostat has a cascade structure by considering
M = x+ s in place of x, i.e. the equation for M depends only on M and D). We will first provide a complete
study of the problem when α = 1 extending the preliminary results in [3] to any initial condition of the
state space. In particular, we show that the optimal synthesis exhibits a switching curve whenever the total
mass of the system is greater than sin (see Theorem 4.2). In this case optimal trajectories can have three
switching times before reaching the target point. In the case where α < 1, we provide a description of optimal
trajectories for Monod- and Haldane-type functions.

The paper is organized as follows. In section 2, we state the optimal control problem, and we apply the
Pontryagin Maximum Principle on the optimal control problem to derive optimality conditions. We also give
properties of the switching function that are crucial in sections 4 and 5 to prove optimality results. Next, we
characterize in section 3 the controllability set i.e. the set of points that can reach the target in finite horizon
(see e.g. [23] in the fed-batch model). In section 4, we provide an optimal feedback control for Haldane-type
kinetics when α = 1 (Theorems 4.1 and 4.2 are our main results), and section 5 discusses the case α < 1 (see
Theorem 5.1 for Monod kinetics and Theorems 5.2 and 5.3 for Haldane kinetics). The article concludes with
an appendix containing the proof of technical results such as the existence of a switching curve for α = 1 and
a table with the parameter values that are used in the numerical simulations.

2 Preliminaries

2.1 Statement of the problem

We consider the system {
ẋ = µ(s)x− αux,
ṡ = −µ(s)x+ u(sin − s),

(2.1)
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describing a chemostat model with one species, one substrate and an adimensioned yield coefficient for x
(i.e. γ = 1). Here x, resp. s is the micro-organisms concentration, resp. substrate concentration, µ is the
growth function of the species, sin > 0 is the input substrate concentration, α ∈ [0, 1] is a coefficient for
separating the biomass (or recirculation parameter), and u(·) is the dilution rate which is the control variable.
For convenience and without loss of generality, it is supposed the substrate and the biomass are in the same
units. The admissible control set is defined as:

U := {u : [0,∞)→ [0, umax] ; u meas.}, (2.2)

where umax is the maximal value for the dilution rate. Given u ∈ U and an initial condition (x0, s0) ∈ R∗+×R+,
we denote by (xu(·), su(·)) the unique solution of (2.1) defined over [0,∞) such that xu(0) = x0 and su(0) = s0
at time 0. It is clear that the set E := R∗+×(0, sin) is invariant by the dynamics (2.1), therefore we can consider
initial conditions in this set.

Throughout this paper, we are interested in the following optimal control problem. Given a target point
(x̄, s̄) ∈ E, our aim is to steer (2.1) in minimal time from (x0, s0) ∈ E to (x̄, s̄), that is:

v(x0, s0) := inf
u∈U

t(u) s.t. xu(t(u)) = x̄ and su(t(u)) = s̄, (2.3)

where t(u) is the first time such that xu(t(u)) = x̄ and su(t(u)) = s̄. If the value function v(x0, s0) is infinite,
the problem has no solution, i.e. the target point is not reachable from (x0, s0). The determination of the
controllability set, i.e. the set of points that can reach the target in finite horizon, is part of the analysis and
will be discussed precisely in section 3. Without any loss of generality, we suppose that umax = 1 and we
consider the following hypotheses:

(H1) The function µ satisfies µ(0) = 0, is bounded, non-negative and of class C2.

(H2) For any s ∈ [0, sin], one has µ(s) < α.

Remark 2.1. Assumption (H2) amounts to saying that the washout is possible and that the dilution rate can
be chosen large enough in order to compete the growth of micro-organisms.

It will be more convenient to study (2.1) in the variables (s,M) where M := x + s is the total mass of the
system. By changing x into M , (2.1) can be equivalently written{

ṡ = −µ(s)(M − s) + u(sin − s),
Ṁ = u(sin − s− α(M − s)). (2.4)

As x > 0, we consider initial conditions for (2.4) in the set F defined by

F := {(s,M) ∈ R+ × R+ ; 0 ≤ s < M and s ≤ sin}, (2.5)

that is clearly invariant by (2.4). Similarly as above, we denote by (su(·),Mu(·)) the unique solution of (2.4)
defined over [0,∞) associated to a control u ∈ U such that su(0) = s0 and Mu(0) = x0 + s0 at time 0.
Moreover, we set M̄ := x̄+ s̄.

Next, we consider the solutions of (2.4) backward in time starting from (s̄, M̄) at time 0. More precisely,
let zi(·) := (si(·),M i(·)), i = 0, 1, the unique solution of (2.4) defined over [0, ti) backward in time with u = i
and such that zi(0) = (s̄, M̄). Without any loss of generality, we suppose that ti ∈ [0,∞) is the first exit time
of zi of the set F , i.e. zi(ti) ∈ ∂F (where ∂F is the boundary of F ). We call Γi, i = 0, 1 the graph of zi(·)
for t ∈ [0, ti) (in particular Γ0 is a line segment). We note that Γ0 ∪ Γ1 partitions F into two subsets F−α and
F+
α . More precisely, we take for F−α the unique component containing Γ0 ∪ Γ1 and also points in F below Γ0.

Finally, if B is any given non-empty subset of R2, we denote by Int(B) its interior.

2.2 Pontryagin’s Principle

In this section, we derive optimality conditions for problem (2.3) (in variables (s,M), see (2.4)). Notice that if
(H1) holds true and if (x0, s0) is in the controllability set, then the existence of an optimal control follows by
standard arguments (in fact, (2.4) is linear w.r.t. u and the admissible control set is compact). We are then
in position to apply Pontryagin’s Principle on (2.4) which provides necessary conditions on optimal strategies
(see e.g. [13, 16]).
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Let H : R2 × R2 × R× R→ R the Hamiltonian associated to (2.4) and defined by:

H = H(s,M, λs, λM , λ0, u) := −λsµ(s)(M − s) + λ0 + u[(λs + λM )(sin − s)− αλM (M − s)].

Let u ∈ U an optimal control for (2.3) such that the associated trajectory steers (2.4) from (s0,M0) to (s̄, M̄)
in minimal time. For convenience, we write this trajectory z(·) := (s(·),M(·)). According to Pontryagin’s
Principle, the following conditions hold true :

• There exists tf ≥ 0, λ0 ≤ 0 and an absolutely continuous function λ = (λs, λM ) : [0, tf ]→ R2 satisfying

a.e. the adjoint equation λ̇(t) = −∂H∂z (z(t), λ(t), λ0, u(t)), that is:{
λ̇s = λs(µ

′(s)(M − s)− µ(s) + u) + (1− α)λMu,

λ̇M = λsµ(s) + αλMu.
(2.6)

• The pair (λ0, λ(·)) is non-trivial i.e. (λ0, λ(·)) 6= 0.

• The following maximization condition holds true :

u(t) ∈ argmaxw∈[0,1]H(s(t),M(t), λs(t), λM (t), λ0, w) a.e. t ∈ [0, tf ]. (2.7)

We call extremal trajectory a triple (z(·), λ(·), u(·)) satisfying (2.4)-(2.6)-(2.7). If λ0 = 0, then we say that
the extremal is abnormal whereas if λ0 < 0, then we say that the extremal is normal. In the latter, we may
suppose that λ0 = −1. Along any extremal trajectory, one has H = 0 (using that (2.4) is autonomous and
that the terminal time is free). The switching function φ is defined by

φ := (λs + λM )(sin − s)− αλM (M − s). (2.8)

If we differentiate φ w.r.t. t, we find using (2.6) that a.e.:

φ̇ = (M − s)[λsµ′(s)(sin − s) + (1− α)(λM + λs)µ(s)]. (2.9)

Now, the maximization condition (2.7) can be then expressed as follows: φ(t) > 0 ⇒ u(t) = +1,
φ(t) < 0 ⇒ u(t) = 0,
φ(t) = 0 ⇒ u(t) ∈ [0, 1].

(2.10)

A switching time (or switching point) is a time t0 such that the control u(·) is non-constant in any neighborhood
of t0. At a switching time t0, we necessarily have φ(t0) = 0. We say that an admissible control u(·) ∈ U is
bang-bang over a time interval [t1, t2] if u(t) ∈ {0, 1} for a.e. t ∈ [t1, t2]. It is convenient to introduce the
following notation: a Bang arc u = 1, resp. u = 0 will be denoted by B+, resp. by B−.

2.3 Frame curves and frame points

An important feature in the study of (2.3) is the presence of particular curves in the state space that are
called frame curves. These curves play an important role for obtaining an optimal feedback control. In our
context, they are of three types:

• The collinearity curve ∆α
0 is defined as the set of points where the dimension of the vector space spanned

by (2.4) is equal to 1.

• A singular arc (denoted by S) is a time interval I = [t1, t2] where the switching function vanishes. In
the two-dimensional setting, the corresponding trajectory necessarily belongs to the so-called singular
locus1 ∆α

SA which is a subset of codimension 1 (see e.g. [19, 24] for more details on the definition).

• A switching curve C is a locus in the state space where the control u has a switching point from 1 to 0
or from 0 to 1 (the corresponding instant of switching is called switching time).

1If (2.4) is written ż = f(z)+ug(z) with f, g : R2 → R2, then ∆α
SA is the set of points z ∈ F where g(z) is collinear to [f, g](z),

the Lie bracket of f and g, see e.g. [6, 7].
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An important property of ∆α
0 is that any switching point of an abnormal trajectory necessarily occurs on ∆α

0

(see [7, 6]). In our setting, we can show that ∆α
0 and ∆α

SA are non-empty, and we can provide an explicit
expression of these two sets whereas switching curves are in general more delicate to characterize by an implicit
equation (in particular these curves are usually target dependent). If fα0 : R2 → R and fαSA : R2 → R are the
functions defined by:

fα0 (s,M) := −µ(s)(M − s)(sin − s− α(M − s)),
fαSA(s,M) := (M − s)[α(M − s)((1− α)µ(s) + µ′(s)(sin − s))− (sin − s)2µ′(s)],

(2.11)

then, a straightforward computation shows that:

∆α
0 = {(s,M) ∈ F ; fα0 (s,M) = 0} and ∆α

SA = {(s,M) ∈ F ; fαSA(s,M) = 0}. (2.12)

The next proposition provides a linear ODE (ordinary differential equation) satisfied by the switching function
φ and will be crucial in the optimal synthesis of the problem (see sections 4 and 5).

Proposition 2.1. Let (z(·), λ(·), u(·)) a normal extremal trajectory. Then, the following properties hold true.

(i) There exists a function gα : R× (F\∆α
0 )→ R, (u, s,M) 7−→ gα(u, s,M) such that one has:

φ̇(t) = gα(u(t), s(t),M(t))φ(t)− fαSA(s(t),M(t))

fα0 (s(t),M(t))
a.e. t ∈ [0, T ], (2.13)

provided that (s(t),M(t)) /∈ ∆α
0 .

(ii) Let S+ :=
{

(s,M) ∈ F ;
fαSA(s,M)
fα0 (s,M) > 0

}
, resp. S− :=

{
(s,M) ∈ F ;

fαSA(s,M)
fα0 (s,M) < 0

}
. Then, if the extremal

(z(·), λ(·), u(·)) is optimal, any switching point tc such that (s(tc),M(tc)) ∈ S+, resp. (s(tc),M(tc)) ∈ S−
is from u = 1 to u = 0, resp. from u = 0 to u = 1.

Proof. To prove (i), notice that λs = uφ−1
µ(s)(M−s) using that H = 0. From the expression of φ, we get:

λM =
φ− λs(sin − s)

sin − s− α(M − s)
. (2.14)

If we replace λs into (2.14), we obtain λM = µ(s)(M−s)φ−(uφ−1)(sin−s)
µ(s)(M−s)(sin−s−α(M−s)) . Now, if we substitute the values of λM

and λs in (2.9), we obtain (2.13) with:

gα(u, s,M) :=
µ′(s)(sin − s)

µ(s)
u+

(1− α)(M − s)(µ(s)− αu)

sin − s− α(M − s)
.

To prove (ii), notice first that if the trajectory belongs to the set S+ or S−, then the control u is necessarily
bang-bang from (2.10). Consider now a switching time tc from u = 0 to u = 1 in S+. We thus have φ(tc) = 0

and φ̇(t−c ) ≥ 0 (as φ is negative in a left neighborhood of tc) and we obtain that − f
α
SA(s(tc),M(tc))
fα0 (s(tc),M(tc))

≥ 0

whenever (s(tc),M(tc)) /∈ ∆α
0 . We thus get a contradiction as we have (s(tc),M(tc)) ∈ S+. This shows that

any switching point in S+ is from u = 1 to u = 0. A similar reasoning shows the second part of (ii) in S−.

Frame points are the points at the intersection of two frame curves. The determination of such points is
also crucial for the optimal synthesis. A frame point of type (C, S) is by definition a point at the intersection
of a switching curve and the singular locus. More precisely, (C, S) points are of two types : either the singular
arc emanates from such a point (in that case it is a (C, S)1 point), or the singular arc stops to be optimal at
this point (in that case it is a (C, S)2 point). A steady state singular point is a frame point at the intersection
of ∆α

0 and ∆α
SA (see [5]). From the expressions of f0 and fSA, the points E0 := (0, sinα ) and E1 := (sin, sin)

belong to ∆α
0 ∩∆α

SA and are two steady state singular points.
Let us now turn to Legendre-Clebsch condition which is useful to test the optimality of a singular arc. Recall

that if a singular arc is optimal (in this case, it is also called turnpike, see e.g. [7]), then Legendre-Clebsch
necessary optimality condition must hold true (see e.g. [19]), that is we must have

∂

∂u

d2

dt2
Hu ≥ 0, (2.15)

where Hu := ∂H
∂u is computed along the singular extremal trajectory. A singular extremal trajectory that is

not optimal over a time interval I = [t1, t2] is called anti-turnpike [7].
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3 Controllability results

In this section, we characterize for each target point (s̄, M̄) the controllability set i.e. the set of points that
can reach (s̄, M̄) in finite horizon. We have the following controllability result depending on the position of
the target point (s̄, M̄) with respect to the two steady state singular points E0 and E1.

Proposition 3.1. If (H1) and (H2) hold true and (s̄, M̄) ∈ F is a given target point, then:

(i) If E1 /∈ F−α and E0 /∈ F−α , the controllability set is F−α .

(ii) If E1 ∈ F−α and E0 /∈ F−α , the controllability set is F .

(iii) If E1 ∈ F−α and E0 ∈ F−α , the controllability set is F+
α .

Proof. In view of (2.4), we have Ṁ|u=1
> 0, resp. Ṁ|u=1

< 0 at a given point (s,M) ∈ F if and only if (s,M)
is below ∆α

0 , resp. above ∆α
0 . The proof of (i) and (iii) is similar by considering the extended velocity set{(

−µ(s)(M − s) + u(sin − s)
u(sin − s− α(M − s))

)
; u ∈ [0, 1]

}
,

either in F−α (case (i)) or in F+
α (case (iii)), see Fig. 1. So we only prove (i).

u=0

u=1
u=0

u=1(s,M)

(s,M)

Figure 1: Extended velocity set of (2.4) at a given point (s,M) in F−α (picture left) and in F+
α (picture right).

Consider an extremal trajectory starting in F\F−α . If the trajectory reaches Γ0 at a time t0 then there
exists a left neighborhood of t0 where the trajectory is below ∆α

0 . Moreover we can assume that t0 is the first
time where the trajectory hits Γ0. In view of the extended velocity set in ∆α

0 (see Fig. 1) we see that the
only possibility is to have u = 0, but this would imply that the trajectory has already reached the curve Γ0 at
a time t < t0, and we thus have a contradiction with the definition of t0. A similar reasoning shows that an
extremal trajectory starting in F\F−α cannot hit Γ1. To conclude this case, we see that any initial condition in
F−α can reach the target point by taking the control law u = 1 until reaching Γ0 and then u = 0 until reaching
the target point. This proves (i).

Let us now prove (ii). Consider a solution of (2.4) with u = 1 starting in F\F−α . From (H2), this trajectory
converges to the point (sin, sin) which is a globally asymptotically stable2 steady-state for (2.4). As we have
sin < M̄ < sin

α , the trajectory necessarily intersects Γ0 at a time t0 > 0. For t > t0, the control u = 0
steers (2.4) into the target point in finite time. This shows that the target is reachable from F\F−α . Let us
now take an initial condition (s0,M0) ∈ F−α . As E0 /∈ F−α , the curve Γ1 exits F through s = 0 at a value
for M such that M < sin

α . The strategy that we now describe drives any initial condition (s0,M0) ∈ F−α
to the target point. Take the control us0 = µ(s0) M−s0sin−s0 (that corresponds to ṡ = 0). From (H2) one has

µ(s0) M−s0sin−s0 < α M−s0
sin−s0 , and as in this case we have M < M̄ < sin

α , we deduce that α M−s0
sin−s0 < 1 using that

(s,M) is below ∆α
0 . Hence the control us0 is admissible until reaching Γ0 ∪ Γ1. Finally, take either u = 0 or

u = 1 depending if the trajectory has reached Γ0 or Γ1. The corresponding trajectory reaches the target point
which ends the proof.

Remark 3.1. (i) Let γ be the graph of the unique solution of (2.4) with u = 1 starting from E0. Then, case
(iii) of the previous proposition occurs if and only if the target point (s̄, M̄) is above γ (in fact Γ1 and γ cannot
intersect by Cauchy-Lipschitz’s Theorem).
(ii) In the case (ii) of the previous proposition, the controllability set is the state domain F , hence any initial
condition in F can reach the target point (s̄, M̄).
(iii) When α = 1, then if M̄ < sin the controllability set for (2.3) is F−1 whereas if M̄ > sin the controllability
set for (2.3) is F+

1 .

2This property is standard: as µ(s) < α for all s ∈ [0, sin], one has x(t) → 0 when t→ +∞ which implies the result.
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4 Optimal synthesis when α = 1

In this section, we study (2.3) in the particular case where α = 1 which corresponds to the case where no
biomass filtration is considered in the chemostat model (2.1). The variable M then satisfies the ODE

Ṁ = u(sin −M), (4.1)

hence (2.4) has a cascade structure. In view of (4.1) we can assume that either M < sin or M > sin depending
on the choice of M̄ w.r.t. sin. Indeed, for M = sin, the optimal control problem is one-dimensional and is
straightforward. We consider in this section the following hypothesis on µ:

(H’1) The function µ satisfies µ(0) = 0, is bounded, non-negative, of class C2 and has a unique maximum
s? ∈ (0, sin). Moreover µ is increasing, resp. decreasing over [0, s?], resp. [s?, sin].

Remark 4.1. (H’1) is verified in the case of Haldane kinetic function µ(s) = µmaxs

ks+s+
s2

ki

with ki > 0, ks > 0.

It is straightforward to check that ∆1
0 = ({0}×R∗+)∪{(s, s) ; s ∈ [0, sin]}∪([0, sin]×{sin}) thus ∆1

0∩Int(F ) = ∅,
and so the only possible abnormal trajectories are the solutions of (2.4) with u = 0 and u = 1 that reach the
target point (s̄, M̄) without any switching point. Hence, we can assume that λ0 = −1, so (2.13) becomes

φ̇ =
(sin − s)µ′(s)

µ(s)
uφ− (sin − s)µ′(s)

µ(s)
, (4.2)

which in particular implies that the singular locus is the line ∆1
SA = {s?} × (s?,+∞). The singular control is

defined as the control us such that (sus(t),Mus(t)) ∈ ∆1
SA and it is given by:

us(M) := µ(s?)
M − s?

sin − s?
for M > s?. (4.3)

Furthermore, Mus(·) is solution of the ODE

Ṁ = µ(s?)
(M − s?)(sin −M)

sin − s?
.

We can check that Legendre optimality condition (2.15) is satisfied along the singular arc ∆1
SA. Indeed,

differentiating (4.2) w.r.t. t yields:

∂

∂u

d2

dt2
Hu = −µ′′(s?) (sin − s?)2

µ(s?)
≥ 0.

Now, µ is non-negative and µ′′(s?) ≤ 0 as s? is a maximum of µ, therefore ∂
∂u

d2

dt2Hu ≥ 0.

4.1 Study of the case M̄ < sin

In that case, we can consider initial conditions (s,M) ∈ F satisfying M < sin. The system under consideration
satisfies the following properties:

• We have Ṁ ≥ 0 for any control u (see (4.1)).

• We have ṡ|u=1
> 0. In fact, M < sin and (H2) imply the inequality µ(s) < 1 < sin−s

M−s . We obtain the
result using (2.4).

• As M̄ < sin, the singular locus becomes ∆1
SA = {s?} × (s?, sin).

• The singular control us is admissible, i.e. us(M) ∈ [0, 1] for any M ∈ (s?, sin) and Ṁ > 0 along ∆1
SA.

The previous considerations show that for i = 0, 1 the trajectory zi(·) is the graph of a C1-mapping s 7−→
M := ϕi(s) in the plane (s,M). Therefore the controllability set F−1 can be written as:

F−1 = {(s,M) ∈ F ; M ≤ min(ϕ0(s), ϕ1(s))}. (4.4)

We then have the following optimality result.

7



Theorem 4.1. If (H’1) and (H2) hold true and if the target point is such that M̄ < sin, then an optimal
feedback control in Int(F−1 ) is given by : u?[s,M ] = 0 if s > s?,

u?[s,M ] = 1 if s < s?,
u?[s,M ] = us(M) if s = s?.

(4.5)

Proof. The proof follows from Proposition 2.1 (ii). Suppose that (s0,M0) ∈ F−1 \(Γ0∪Γ1). Then, if s0 < s?, we
must have u = 1 until reaching either s = s? or Γ0. Otherwise, we would have u = 0 by Pontryagin’s Principle,
and the trajectory would necessarily have a switching point at a time t0 > 0 (if not, then it cannot reach the

target). At this time t0, we have φ̇(t0) ≥ 0 in contradiction with φ̇(t0) = − (sin−s(t0))µ′(s(t0))
µ(s(t0))

< 0. Hence, we

have u = 1 until reaching either the singular arc or Γ0. Similar arguments show that if s0 is such that s0 > s?,
then we have u = 0 until reaching either s = s? or Γ1. We deduce that for any point (s0,M0) ∈ F−1 \(Γ0 ∪Γ1),
the optimal control satisfies u = 1 if s0 < s? and u = 0 if s0 > s?. Finally, the previous argumentation shows
also that if s0 = s? and (s0,M0) ∈ F−1 \(Γ0 ∪ Γ1), then an optimal trajectory does not leave the singular arc
with the control u = 0 or u = 1. Therefore singular trajectories are optimal until reaching Γ0 ∪ Γ1.

The optimal synthesis provided by Theorem 4.1 is depicted on Fig 2.

Remark 4.2. (i) If s̄ < s?, then a singular trajectory will reach M̄ , and then we have u = 0 until reaching
the target (see Fig. 2 left). If s̄ > s?, then a singular trajectory will reach Γ1, and then we have u = 1 until
reaching the target (see Fig. 2 right).
(ii)When s? > sin, the previous considerations show that for Monod-type kinetic function the feedback{

um[s,M ] = 1 if (s,M) ∈ F−1 \Γ0,
um[s,M ] = 0 if (s,M) ∈ Γ0,

(4.6)

is optimal (we retrieve the results of [8]).

s⋆s

M

sin

sin0
 

 

Non controllable target zone

Optimal singular arc

Γ1

Γ0

u = 1

u = 0

s⋆ s

M

M⋆

sin

sin0
 

 

Non controllable target zone

Optimal singular arc

Γ1

Γ0

u = 1

u = 0

Figure 2: Optimal synthesis for α = 1 and M̄ < sin (case I). Picture left: the target point is such that s̄ < s?

(the singular arc ∆1
SA intersects Γ0). Picture right: the target point is such that s̄ > s? (the singular arc ∆1

SA

intersects Γ1).

4.2 Study of the case M̄ > sin

In that case, we can consider initial conditions (s,M) ∈ F such that M > sin. The system under consideration
satisfies the following properties:

• From (4.1), we have Ṁ ≤ 0 for any control u.
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• The singular control us is admissible provided that we have M ∈ (sin,Msat] where Msat is uniquely
defined by us(Msat) = 1, that is:

Msat := s? +
sin − s?

µ(s?)
. (4.7)

• For M > Msat one has us(M) > 1.

• As M̄ > sin, the singular locus becomes ∆1
SA = {s?} × (sin,Msat).

Notice that Msat > sin and that the unique solution of (2.4) passing through (s?,Msat) is vertical at this
point (see Fig. 3). Observe also that ds

dt |u=1
is not of constant sign along u = 1 as in the previous case (see

also Fig. 3 for the plot of the flow of (2.4) for the constant control u = 1), but one has dM
dt |u=1

< 0.

s⋆

Msat

sin

sin0

Figure 3: Flow of (2.4) with u = 1 (sin = 3). The black curve is the set of points where solutions of (2.4)
with u = 1 are vertical.

The previous considerations show that the trajectory z1(·) is the graph of a C1-mapping M 7−→ s := ψ1(M)
defined over [M̄,+∞) in the plane (s,M) (indeed we have Ṁ < 0 along u = 1). Therefore, the set F+

1 can be
written:

F+
1 = {(s,M) ∈ F ; M ≥ M̄ and max(0, ψ1(M)) ≤ s ≤ sin}.

4.2.1 Switching curve and optimal synthesis

Whereas in the case M < sin, the singular arc is always admissible, we have now a saturation phenomenon for
the singular control, that is the singular arc is non-admissible when M > Msat (see (4.7)). This will imply the
existence of a switching curve C emanating from the singular arc. In the next lemma, we provide a description
of this locus.

Lemma 4.1. Let M̃ := max(M̄,Msat). There exists Me ∈ (M̃,+∞] and a function sc : [M̃,Me] → R+

M 7−→ sc(M) satisfying the following properties:

(1) One has sc(M̃) = s? and sc(M) ∈ (s?, sin) for any M ∈ (M̃,Me). Moreover, if Me < +∞, then one has
sc(Me) = sin.

(2) For any M ∈ (M̃,Me), there exists exactly one point sc(M) such that an optimal control u(·) steering
(2.4) to the target satisfies u = 0 for s > sc(M) and u = 1 for s? < s < sc(M).

For sake of clarity, we have postponed the proof of this lemma to the appendix. The switching curve C is
then defined as

C := {(sc(M),M) ; M ∈ [M?,Me]}.

Remark 4.3. (i) If M̃ = Msat i.e. M̄ ≤ Msat, then the point (s?,Msat) is a frame point of type (CS)1 i.e.
at the intersection of C and ∆1

SA, see Fig. 4 and Fig. 5
(ii) If M̃ = M̄ i.e. if M̄ > Msat, then C ∩∆1

SA = ∅ and C intersect Γ0 at the point (s?, M̄), see Fig. 6.
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Subcase a: s̄ < s? Subcase b: s̄ > s? Optimal synthesis
Case I: M̄ < sin Fig. 2 Fig. 2 Theorem 4.1
Case II: sin < M̄ < Msat Fig. 4 Fig. 5 Theorem 4.2
Case III: M̄ > Msat Fig. 6 Fig. 7 Theorem 4.2

Table 1: List of the cases illustrating Theorems 4.1 and 4.2.

We obtain the following optimality result.

Theorem 4.2. Suppose that (H’1) and (H2) hold true, that M̄ > sin, and let h(M) := max(s?, sc(M)) for
M ∈ [M̄,Me]. Then, an optimal feedback control in Int(F+

1 ) is given by : u?[s,M ] = us(M) if s = s? and M < Msat,
u?[s,M ] = 1 if s < h(M) and M > M̄,
u?[s,M ] = 0 elsewhere.

(4.8)

Proof. The proof is straightforward using the previous lemma and the same arguments as in the proof of
Theorem 4.1 to exclude extremal trajectories that are not optimal.

The optimal synthesis provided by Theorem 4.2 is depicted on Fig. 4, Fig. 5, Fig. 6 and 7 for different
cases that are explained below.

4.2.2 Numerical simulations

We present here the numerical computation of the curve C defined by M 7−→ sc(M). We consider the three-
dimensional system (2.4)-(4.2) with u = 1 backward in time, that is:

ds
dt = µ(s)(M − s)− sin − s,
dM
dt = −(sin −M),
dφ
dt = − (sin−s)µ′(s)

µ(s) φ+ (sin−s)µ′(s)
µ(s) ,

(4.9)

with initial conditions (s0,M0, 0) such that (s0,M0) ∈ Γ0∪∆1
SA. We know that an optimal trajectory reaching

either ∆1
SA or Γ0\{(s̄, M̄)} at a time t necessarily satisfies φ(t) = 0 (the instant t is a switching time). Hence,

for a given point (s0,M0) ∈ Γ0 ∪ ∆1
SA, we integrate (4.9) from (s0,M0, 0) at time zero until the first time

tc > 0 such that φ(tc) = 0 and (s(tc),M(tc)) ∈ F . Thanks to Lemma 4.1, we know that there exist points of
Γ0∪∆1

SA for which tc exists. We repeat this procedure for points (s0,M0) ∈ Γ0∪∆1
SA until finding completely

M 7−→ sc(M).
To highlight Theorems 4.1 and 4.2, we have considered the following cases depending on the choice of the

target point (s̄, M̄) w.r.t. the singular arc and the value of Msat (see Table 1).

Remark 4.4. In Fig. 4, 5, 6 and 7, the switching curve C can be decomposed as C = ∆1 ∪∆2. The curve ∆1

(in purple), resp. ∆2 (in green) corresponds to initial conditions (s0,M0) for (4.9) on ∆1
SA, resp. on Γ0.

4.2.3 Additional properties of the switching curve C

In this section, we discuss additional properties of the switching curve C that are related to the curve Γ1. First,
we suppose that Γ1 exits F through s = sin. We can then show that C exits F at some point (sc(Me),Me)
such that sc(Me) = sin (see Fig. 4,5,6 picture left).

Proposition 4.1. Suppose that Γ1 intersects the boundary of F at some point (sin,Mout) with Mout > M̃ .
Then, we have Me ≤Mout and sc(Me) = sin.

Proof. Suppose that C stops at some point (sc(Me),Me) such that ψ1(Me) < sc(Me) < sin. We then consider
the unique solution of (2.4) with u = 1 backward in time from (sc(Me),Me), and we call Γ̃ the restriction
of its graph in F . Now, take an initial condition (s0,M0) ∈ F below Γ̃ and such that sc(Me) < s0 < sin,
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s⋆s

M
Msat

sin sin 

 
Non controllable target zone

Optimal singular arc

Γ1

Γ0

∆1

∆2

u = 1

u = 0

s⋆s

M

Msat

sin sin 

 
Non controllable

Optimal singular arc

Γ1

Γ0

∆1

∆2

u = 1

u = 0

Figure 4: Case II a. Optimal synthesis for α = 1, sin < M̄ < Msat and s̄ < s?. The dotted line represents the
switching curve C (in purple, resp. in green, it is obtained by integrating (4.9) backward in time from ∆1

SA,
resp. from Γ0). The curve Γ1 exits F through s = sin (picture left) or through s = 0 (picture right).

s⋆ s

M

Msat

sin sin 

 
Non controllable

Optimal singular arc

Γ1

Γ0

∆2

u = 1

u = 0

s⋆ s

M

Msat

sin sin 

 

Non controllable

Optimal singular arc

Γ1

Γ0

∆2

u = 1

u = 0

Figure 5: Case II b. Optimal synthesis for α = 1, sin < M̄ < Msat and s̄ > s?. The dotted line represents the
switching curve C (in purple, resp. in green, it is obtained by integrating (4.9) backward in time from ∆1

SA,
resp. from Γ0). The curve Γ1 exits F through s = sin (picture left) or through s = 0 (picture right).

M0 > Me. Then, if we have u = 1 at time t = 0, we obtain a contradiction as the corresponding trajectory
reaches Γ0 at a point s > s? (see Proposition 2.1 (ii)). Thus, we must have u = 0 until reaching s = s? as no
switching point occurs. We have again a contradiction by Proposition 2.1 (ii).

Similarly, C cannot intersect Γ1 before reaching s = sin at some point (s′,M ′) as in that case an optimal
trajectory starting from a point (s0,M0) ∈ F+

1 with s0 > s′, M0 > M ′ would necessarily satisfy u = 1 until
reaching Γ0 at a point s > s?. We obtain a contradiction using Proposition 2.1 (ii).

The previous arguments show that sc(Me) = sin and that Me ≤Mout.

Remark 4.5. We can prove that the curve C is continuous by showing first the continuity of tc w.r.t. initial
conditions (this point follows by considering tc as the first entry time into the target φ ≥ 0 and using regularity
properties of the value function [1]). The continuity of C then follows from the continuity of solutions of an
ODE w.r.t. initial conditions. For brevity, we have not detailed this point.

When Γ1 exits F through s = 0, the controllability set A2 is unbounded, therefore the proof of Proposition
4.1 no longer holds. Nevertheless, we conjecture that C exits F at some point Me < +∞ as numerical
simulations indicate. However, properties of switching curve can be in general difficult to obtain. Notice that
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s⋆s

M

Msat

sin sin 

 

Non controllable

Γ1

Γ0

∆1

u = 1

u = 0

s⋆s

M

Msat

sin sin 

 

Non controllable

Γ1

Γ0

∆1

u = 1

u = 0

Figure 6: Case III a. Optimal synthesis for α = 1, M > Msat and s̄ < s?. The dotted line in green represents
the switching curve C (it is obtained by integrating (4.9) backward in time from Γ0). The curve Γ1 exits F
through s = sin (picture left) or through s = 0 (picture right).

s⋆ s

M
Msat

sin sin 

 

Non controllable

Γ1

Γ0

u = 1

u = 0

Figure 7: Case III b. Optimal synthesis for α = 1, M > Msat and s̄ > s?. In this case, the curve Γ1 exits F
through s = sin only.

initial conditions such that M � sin are not interesting for a practitioner. Observe also that the time of an
arc u = 0 connecting sin to s? is equal to

∫ sin
s?

dσ
µ(σ)(M−σ) . Clearly, this integral goes to zero if M goes to

infinity. When M → +∞, the dominant term in the value function v(x0, s0) (recall (2.3)) is the time of an
arc u = 1 connecting (s̄, M̄) to Γ0 or ∆1

SA. Hence, if M̄ � sin, there is no evidence that optimal trajectories
will benefit from a switching time (from u = 0 to u = 1) before reaching Γ0 or ∆1

SA.

5 Optimal synthesis when α < 1

In this section, we study the optimal synthesis whenever α < 1. Unlike in the case α = 1, the system (2.4)
has not a cascade structure, and thus finding an optimal synthesis in this framework is more delicate. In this
case, the set ∆α

0 is the line segment of equation:

δα0 (s) := s+
sin − s
α

, s ∈ [0, sin].

Whereas in the case α = 1 the subset of F defined by M = sin is invariant by (2.4) (see (4.1)), trajectories
of (2.4) can cross the set ∆α

0 for α < 1. Using (2.11), we find that the singular locus ∆α
SA is the graph of the
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function:
s 7−→M = δαSA(s) := s+ ψα(s), s ∈ [0, sin],

where

ψα(s) :=
1

α

µ′(s)(sin − s)2

(sin − s)µ′(s) + (1− α)µ(s)
. (5.1)

Note that the functions ψα and δαSA are not well defined as (sin − s)µ′(s) + (1 − α)µ(s) can be zero when
s is such that µ′(s) < 0. By differentiating M − s = ψα(s) w.r.t. to time t supposing that the trajectory
belongs to a singular arc, we find the expression of the singular control uαs as a function of s (whenever it is
well defined):

uαs (s) :=
µ(s)ψα(s)(1 + ψ′α(s))

αψα(s) + ψ′α(s)(sin − s)
. (5.2)

In order to verify if (2.15) holds true along a singular extremal (see section 5.1) we have the following lemma.

Lemma 5.1. Along a singular arc I = [t1, t2] such that (sin − s(t))µ′(s(t)) + (1− α)µ(s(t)) is non-zero over
[t1, t2], one has

∂

∂u

d2

dt2
Hu = (1 − α)(sin − s(t))2

(2 − α)µ(s(t))µ′(s(t)) + 2(sin − s(t))µ′(s(t))2 − (sin − s(t))µ(s(t))µ′′(s(t))

µ(s(t))[sin − s(t) − α(M(t) − s(t))][(sin − s(t))µ′(s(t)) + (1 − α)µ(s(t))]
. (5.3)

Proof. From the expressions of fSA and f0 (see (2.11)) we obtain:

fSA(s,M)

f0(s,M)
= −α(M − s)((1− α)µ(s) + µ′(s)(sin − s)− (sin − s)2µ′(s))

µ(s)(sin − s− α(M − s))
.

In order to compute ∂
∂u

d2

dt2Hu, we differentiate (2.13) w.r.t. t along the singular arc M − s = ψα(s) keeping
only the component in front of u (this computation can be also performed using Lie brackets, however we did
not introduce this notation for brevity). We find that

d

dt

(
−fSA(s(t),M(t)

f0s,M

) ∣∣∣
u

=
−α2(1 − α)xµ(s) + 2(sin − s)(sin − s− α2x)µ′(s) + µ′′(s)(sin − s)2(αx− (sin − s))

µ(s)(sin − s− αx)
,

omitting the time dependency for brevity and writing x in place of M − s. By replacing x into the previous
equality by ψα(s) using (5.1), we find (5.3).

We now discuss the optimal synthesis of the problem for Monod- and Haldane-type kinetics. In particular,
we will analyze if ψα and uαs are well defined over [0, sin] (see (5.1) and (5.2)).

5.1 Optimal synthesis for Monod-type kinetic function

We suppose in this section that the growth rate function is given by:

µ(s) :=
µmaxs

k + s
, (5.4)

where µmax > 0 and k > 0. Notice that µ > 0, µ′ > 0 and µ′′ < 0 over the interval (0, sin]. Therefore ψα and
δαSA are well defined over [0, sin]. From (5.1)-(5.3), we can make the following observations:

• We have ∆α
0 ∩∆α

SA := {E0, E1}. Moreover, for any s ∈ (0, sin) one has δαSA(s) < δα0 (s).

• The singular control s 7−→ uαs (s) is positive, resp. negative on the interval (0, sm), resp. (sm, sin) where
sm ∈ (0, sin) is defined as the unique point such that (δαSA)′(sm) = 0.

• The steady state singular point E0, resp. E1 is attractive, resp. repulsive for the dynamical system (2.4)
with the feedback control u = uαs (s) (indeed one has Ṁ = αuαs (s)(δα0 (s)− δαSA(s)) along ∆α

SA).

• Using (5.3) and the fact that µ′ > 0, µ′′ < 0 for Monod-type kinetics (see (5.4)), we find that Legendre-
Clebsch optimality condition (2.15) is satisfied along ∆α

SA.
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Figure 8: Plot of ∆α
0 and ∆α

SA for α = 0.1, 0.5, 0.9 with µ(s) = s
5+s and sin = 10.

Figure 9: Plot of the singular control s 7−→ uαs (s) given by (5.2) with µ(s) = s
5+s and sin = 10 for α =

0.1, 0.5, 0.9.

Figures 8 depicts the singular locus ∆α
SA and the collinearity set ∆α

0 for different values of α. The corresponding
singular control is plotted on Figure 9. We observe that if α is small, then the singular control uαs can be
larger than 1 which corresponds to the maximal admissible value for the control. To simplify the study, we
consider the following assumption on the admissibility of the singular arc:

(H3) The singular control satisfies uαs (s) ≤ 1 for any s ∈ [0, sm).

Remark 5.1. When α goes to 1, then ψα(s) ∼ sin − s, thus we find that uαs (s) ∼ µ(s), therefore using that
µ(s) < α < 1 for any s ∈ [0, sin] (see Hypothesis (H1)), we conclude that (H3) is satisfied when α is sufficiently
close to 1.

If Hypothesis (H3) is satisfied, then the singular arc is admissible on [0, sm]. The optimal synthesis will depend
on the position of the target point (s̄, M̄) w.r.t. the points E0 and E1 as in Proposition 3.1. When E0 /∈ F−α ,
we introduce the feedback control law:

uαm[s,M ] :=

 1 if M < δαSA(s),
0 if M > δαSA(s) or (M = δαSA(s) and s > sm),
uαs (s) if M = δαSA(s) and s < sm,

(5.5)

The optimal synthesis then reads as follows (see Fig. 10).

Theorem 5.1. Suppose that µ is given by (5.4) and that (H2)-(H3) hold true. Then, one has the following
optimality conditions.

(i) If E1 /∈ F−α and E0 /∈ F−α , then an optimal feedback control in Int(F−α ) is given by (5.5).

(ii) If E1 ∈ F−α and E0 /∈ F−α , then an optimal feedback control in Int(F−α ) is given by (5.5) and an optimal
feedback control satisfies u = 1 in Int(F+

α ).

(iii) If E1 ∈ F−α and E0 ∈ F−α , then an optimal feedback control satisfies u = 1 in Int(F+
α ).
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Proof. Let us prove (i). From (2.13), we obtain that an optimal control cannot switch from u = 0 to u = 1,
resp. from u = 1 to u = 0 at some point in F−α \(Γ0 ∪ Γ1) such that M < δαSA(s), resp. M > δαSA(s). Hence,
optimal trajectories can only switch on the singular locus ∆α

SA. It follows that an optimal control satisfies
u = 1 when M < δαSA(s) and u = 0 when M > δαSA(s). Moreover, we deduce that at some point (s,M) ∈ ∆α

SA

either we have s ≤ sm and u = us (from (2.13), optimal trajectories cannot leave the singular arc before
reaching Γ0 ∪ Γ1) or s > sm and then an optimal control necessarily satisfies u = 0.

To prove (ii), notice that the optimality result in F−α is similar to (i) except that there exists an abnormal
extremal trajectory switching at the intersection between Γ0 and ∆α

0 . The cost tabn of this trajectory cannot
be directly compared to the cost tmin of the trajectory corresponding to the control (5.5) as Proposition 2.1
only holds for normal trajectories. However, we can construct a sequence of normal trajectories γn converging
to the abnormal one by considering trajectories with the control u = 1 until reaching Γ0. Now, the cost tγn
of γn satisfies tγn ≥ tmin using the previous argumentation. We then obtain the result by letting n goes to
infinity.

Now, solutions of (2.4) with u = 1 starting above Γ0 ∪Γ1 necessarily converge to the point E1 (see Lemma
3.1 (ii)). Hence, trajectories with u = 1 starting in F+

α necessarily intersect Γ0 (as E1 ∈ F−α ). To prove that
an optimal control satisfies u = 1 in Int(F+

α ), we use (2.13) and similar arguments as in the proof of (i).
The proof of (iii) is similar to the proof of (ii) (by considering initial conditions above Γ0 ∪ Γ1 only).

Remark 5.2. (i) In Theorem 5.1, we point out that optimal trajectories can switch from u = 1 to u = 0 on
the set ∆α

SA ∩ ([0, sm]× [0, M̄ ]) that corresponds to a switching curve.
(ii) Whenever α = 1 and µ is of Monod-type, we know from (4.6) that no singular arc occurs. We see that
when α < 1, then optimal strategies can take advantage of a singular arc depending on the position of the
target point w.r.t. ∆α

SA.
(iii) It is interesting to observe that when α → 1, then one has δα0 (s) → sin and δαSA(s) → sin. Suppose that
M̄ < sin. We deduce that if α is sufficiently close to 1, then the feedback control law (5.5) coincides with
(4.6). On the other hand, when M̄ ≥ sin, then an optimal feedback in F+

α is exactly the same as (4.6). This
proves that the feedback control (4.6) (which does not depend on α) is optimal for any value of α sufficiently
close to 1.

5.2 Optimality results for Haldane kinetic function

In this section, we discuss the optimal synthesis of the problem in the case where (H’1) holds true. Recall
that this assumption implies µ′(s) > 0 for s ∈ [0, s?) and µ′(s) < 0 for s ∈ (s?, sin]. Thus, ψα can be not
well defined if its denominator vanishes on [0, sin] which amounts to saying that there exist solutions of the
equation

(sin − s)µ′(s) + (1− α)µ(s) = 0, (5.6)

over [0, sin]. To simplify the study, we suppose that µ is an Haldane function, i.e.

µ(s) :=
µmaxs

ks + s+ s2

ki

with ks > 0 and ki > 0. (5.7)

Recall that the maximum of µ is obtained for s? =
√
kiks ∈ [0, sin]. We have the following technical lemma.

Lemma 5.2. Suppose that µ is given by (5.7). Then the following properties hold true:

(i) The equation (5.6) is equivalent to the cubic equation:

(2− α)s3 + [(1− α)ki − sin]s2 − αkikss+ kikssin = 0. (5.8)

(ii) The solutions of (5.8) satisfy one and only one of the three following properties:

- The equation (5.8) has exactly three negative solutions.
- The equation (5.8) has exactly one negative solution and two complex conjugate solutions.
- The equation (5.8) has exactly one negative solution and two positive solutions.

(iii) If α is sufficiently close to 1, then (5.6) has exactly two positive solutions over the interval [0, sin].

Proof. For sake of clarity, we have postponed the proof of this lemma to the appendix.
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Figure 10: Optimal synthesis provided by Theorem 5.1 for α < 1 in case (i) (above left), case (ii) (above right)
and case (iii) (middle).

This result shows that only two cases occur depending on the parameter values α and sin:

• The function ψα is well defined over [0, sin] i.e. (5.6) has no solution in [0, sin].

• The equation (5.6) has two positive solutions over [0, sin] and thus ψα has two poles on [0, sin].

The optimal synthesis of the problem is discussed hereafter in section 5.2.1, resp. section 5.2.2 whenever (5.6)
has no solution in [0, sin], resp. two solutions over [0, sin].

5.2.1 Optimality results with one connected singular arc component

The case where (5.6) has no solution over [0, sin] is illustrated on Fig. 11. As for Monod-type kinetics, we
observe that ∆SA consists of one connected component in the set F . We introduce the following feedback
control law:

uαh [s,M ] :=

 1 if M < δαSA(s),
0 if M > δαSA(s),
uαs (s) if M = δαSA(s).

(5.9)

We obtain the following optimality result in the line of Theorem 5.1 except that in this case the singular arc
is always admissible.

Theorem 5.2. Suppose that µ is given by (5.7), that (H2) holds true, and that the singular control is admissible
in F , and that (5.6) has no solution over [0, sin]. Then, one has the following optimality conditions.

16



Figure 11: Picture Left: Plot of the singular arc ∆α
SA and of the collinearity set ∆α

0 for α = 0.9, sin = 4 and
µ(s) = s

5+s+s2 . Picture Right: plot of the corresponding singular control s 7−→ uαs (s).

(i) If E1 /∈ F−α and E0 /∈ F−α , then an optimal feedback control in Int(F−α ) is given by (5.9).

(ii) If E1 ∈ F−α and E0 /∈ F−α , then an optimal feedback control in Int(F−α ) is given by (5.9) ; an optimal
control in F+

α satisfies u = 1 until reaching Γ0.

(iii) If E1 ∈ F−α and E0 ∈ F−α , then an optimal control in F+
α satisfies u = 1 until reaching Γ0.

Proof. The proof is similar to the proof of Theorem 5.1 apart from the fact that the singular arc is supposed
to be always admissible in the set F i.e. us(s) ∈ [0, 1] for any s ∈ [0, sin].

Remark 5.3. As in Theorem 4.1, the optimal strategy in F−α is a most rapid approach to a singular arc.

5.2.2 Optimality results in the case of two connected singular arc components

In this case, we suppose that (5.6) has two positive solutions over [0, sin]. The optimal synthesis is more
intricate as in section 5.2.1 as the singular arc will consist of two connected components in the set F :

∆α
SA = ∆̂α

SA ∪ ∆̌α
SA,

with ∆̌α
SA, resp. ∆̂α

SA below, resp. above ∆α
0 . The singular locus ∆α

SA and the collinearity set ∆α
0 are

represented for different values of the parameter α on Fig. 12. From (5.1)-(5.3), we can make the following
observations:

• There exists 0 < sα1 < s? < sα2 < sin such that s 7−→ δSA(s) = s + ψα(s) is well-defined over [0, sα1 ) ∪
(sα1 , s

α
2 ) ∪ (sα2 , sin]. Moreover, lims→sα1 ,s>sα1 δ

α
SA(s) = lims→sα2 ,s<sα2 δ

α
SA(s) = +∞.

• For any s ∈ [0, sα1 ), one has δαSA(s) < δα0 (s) and for s ∈ (sα1 , s
α
2 ) one has δαSA(s) > δα0 (s). For s ∈ (sα2 , sin],

δαSA(s) /∈ F .

• By definition of ∆α
0 we have Ṁ > 0 at some point (s,M) ∈ F if and only if M < δα0 (s). Along the

singular arc ∆α
SA, we then have Ṁ > 0, resp. Ṁ < 0 for s ∈ [0, sα1 ), resp. s ∈ (sα1 , s

α
2 ).

• Using (5.3), we can show that there exists a point sc ∈ (sα1 , s
α
2 ) such that Legendre-Clebsch optimality

condition (2.15) ∂
∂u

d2

dt2Hu > 0 is satisfied only over the interval [0, sc). Hence the restriction to the
interval [sc, s

α
2 ) of the singular arc s 7−→ δαSA(s) is not optimal (i.e. it is an anti-turnpike).

To simplify the study, we consider the following assumption on the admissibility of the singular arc ∆̌α
SA.

(H’3) The singular control satisfies uαs (s) ∈ [0, 1] for any s ∈ [0, sα1 ) such that (s, δαSA(s)) ∈ F .

Numerical simulations indicate that this assumption is verified if α is sufficiently close to 1 (see Fig. 13).
However even for α close to 1, the singular control always exceeds the maximal admissible value in the interval
(sα1 , s

α
2 ) as the denominator of (5.2) vanishes. We obtain the following optimality result.
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Figure 12: Plot of ∆α
0 (in green) and ∆α

SA (in red) for α = 0.1 (picture left), α = 0.5 (picture in the middle),
α = 0.9 (picture right) with µ(s) = s

5+s+s2 and sin = 10.

Figure 13: Plot of the singular control for α = 0.1 (picture left), α = 0.5 (picture in the middle), α = 0.9
(picture right) with µ(s) = s

5+s+s2 and sin = 10.

Theorem 5.3. Suppose that µ is given by (5.7) and that (H2)-(H’3) hold true. Then, if E1 /∈ F−α and
E0 /∈ F−α , an optimal feedback control in Int(F−α ) is given by (5.9).

Proof. The proof utilizes similar arguments as the proof of Theorem 5.1 except that in this case the singular
arc is always admissible in the set F i.e. us(s) ∈ [0, 1] for any s ∈ [0, sin] (see (H’3)).

The previous Theorem is illustrated on Fig. 14.

Remark 5.4. Notice that the feedback (5.9) corresponds to a most rapid approach to the singular arc ∆̌α
SA

as in Theorem 4.1. When α goes to 1, we have fαSA(s,M) → f1SA(s,M) = (M − s)(sin − s)(M − sin)µ′(s)
and we have seen that ∆1

SA is the line segment {s?} × (s?, sin). Thus, the feedback control (5.9) obtained in
Theorem 5.3 converges to (4.8) when α goes to 1 (see Fig. 14).

When dealing with cases (ii) and (iii) of Proposition 3.1, several difficulties may appear. On the one hand
there is a saturation phenomenon of the singular control as when α = 1 (typically when M becomes large); on
the other hand, Legendre-Clebsch optimality condition will fail to hold for certain choices of the target point
(in particular if (s̄, M̄) is located between the two components of the singular locus). To simplify the study,
we have considered only the case where the target point is such that Γ0 ∩ ∆̌SA is non-empty. More precisely,
we have the following optimality result in the same spirit as Theorem 4.2.

Proposition 5.1. Suppose that µ is given by (5.7), that (H2) holds true, and that E0 ∈ F−α , E1 ∈ F−α .
Moreover, we suppose that the target point is such that M̄ > δαSA(sc). Then, an optimal control u steering
(2.4) from an initial condition (s0,M0) ∈ F+

α such that M0 > δαSA(s0) is of type B−B+S (with at most two
switching points) until reaching Γ0 or Γ1.

Proof. As E0 ∈ F−α and E1 ∈ F−α , the controllability set F+
α is above the set ∆α

0 . We deduce that − f
α
SA(s,M)
fα0 (s,M) <

0, resp. − f
α
SA(s,M)
fα0 (s,M) > 0 if (s,M) is below ∆̂α

SA, resp. above ∆̂α
SA. Now, Proposition 2.1 (ii) implies that an
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Figure 14: Optimal synthesis in F−α for Haldane kinetics, see Proposition 5.3 case (i).

optimal bang-bang control can switch only from u = 0 to u = 1 above ∆̂α
SA. Moreover, an optimal control

cannot switch from u = 1 to u = 0 below ∆̂α
SA and before reaching Γ0. Otherwise, the trajectory would

necessary switch from u = 0 to u = 1 below ∆̂α
SA implying a contradiction with Proposition 2.1 (ii). Now,

as M̄ > δαSA(sc) any admissible singular arc (i.e. such that uαs (s) ∈ [0, 1]) is optimal until reaching Γ0 or Γ1.
Thus an optimal control is of type B−B+S until reaching Γ0 ∪ Γ1.

Remark 5.5. As mentioned above, this case in not complete as certain target points below ∆α
SA may not

satisfy the assumptions of Proposition 5.1. However, this assumption can be verified by choosing α sufficiently
close to 1.

6 Conclusion, Discussion, Perspectives

In this paper, we have provided an optimal synthesis of a two-dimensional system describing a chemostat
model including a retention system. The analysis has revealed the importance of turnpike singular arcs in
the optimal synthesis. We have shown that optimal trajectories are based on a most rapid approach to a
turnpike (in absence of saturation phenomenon) depending on the kinetics. For α = 1 and a growth function
of Haldane-type, the singular strategy consists in maintaining the substrate concentration in the chemostat
model equal to s? which corresponds to the point where µ is maximal. When the singular control saturates
(it attains the maximal admissible value), then the optimal synthesis exhibits a switching curve and frame
points exist. Optimal controls have at most three switching points (in the latter case an optimal control is of
type B−SB+B−). When α < 1, we also observe a splitting of the singular arc ∆1

SA into two components in
the case of Haldane kinetics.

From a practical point of view, the analysis has raised the following points:

• We have pointed out that the optimal synthesis depends on the position of the target point w.r.t.
characteristic elements of the system (such as steady state singular points). This information can be
useful for a practitioner to drive optimally the system to a target point.

• The optimal feedback control laws that we have obtained are quite simple and may be implemented
easily (see e.g. [4, 15] for a practical implementation of a singular strategy in biotechnology).

• Whereas singular arcs usually appear for Haldane-type kinetics (see e.g. [2, 15]), our results show that
a singular arc appears for Monod-type kinetics as long as α 6= 1.

• Whenever α < 1, there exist target points that can be reached from any initial condition in the state
space. The analysis of the problem has also revealed that for α = 1, this cannot happen (this is due to
the existence of an invariant manifold for the system). Thus, a practitioner can take advantage of this
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remark to pilot adequately a chemostat with a recirculation loop to a desired starting from any initial
condition in the state space. In some engineering systems, the value of α can be chosen as a control
parameter when using reactors in recirculation mode.

• The optimal feedback control laws that we have obtained are robust in the following sense. For Monod-
type kinetics, the optimal feedback (5.5) coincides with (4.6) if α is close to 1, and so it does not depend
on α (see remark 5.2 (iii)). Hence, it drives optimally (2.4) to the target point for any value of α
sufficiently close to 1.

• As shown in section 5.2, the optimal synthesis depends on the parameter α, nevertheless we can observe
that when α goes to 1, the optimal synthesis slightly differs from the case α = 1 (see e.g. Remark 5.4).
However, we are not aware of general results concerning the behavior of optimal syntheses or optimal
feedback control laws w.r.t. parameters.

In general uncertainties can affect the system, hence our optimal feedback strategies can be used to drive the
system optimally to a neighborhood of the target point and then a feedback control is designed to stabilize
the system at the desired target. The combination of these two approaches could be the basis of future works.
Extensions include the synthesis of optimal control for more complex systems including biological schemes
described by cascade of reactions or where different substrates are consumed at different rates by several
groups of microorganisms.
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7 Appendix

Proof of Lemma 4.1. The following claim is crucial and follows from (4.2) and Proposition 2.1 (ii).

Claim 7.1. Any extremal trajectory cannot switch from u = 1 to u = 0, resp. from u = 0 to u = 1 at a point
(s(t),M(t)) such that s(t) > s?, resp. s(t) < s?.

Step 1. Let us first prove the existence of the switching curve sc : [M̃,Me]→ [s?, sin].

Consider an initial condition (s0,M0) such that s0 > s?, M0 > M̃ and an optimal trajectory (s(·),M(·))
starting from this point. Suppose that we have u = 0 until reaching s = s? at a time t0. We then have u = 0
for any time t > t0, and the trajectory cannot reach the target. Hence, we have two cases depending if the
trajectory has a switching point from u = 0 to u = 1 or not. Either we have u = 1 at time 0 until reaching
s = s? with M < Msat or M = M̄ . Or, there exists a unique switching point from u = 0 to u = 1 at a time
t0 such that s? < s(t0) < s0 (the uniqueness follows from Claim 7.1).

Let us denote by M 7−→ s†(M) the unique solution of (2.4) with u = 1 backward in time from (s?, M̃)
satisfying the Cauchy problem:

dσ

dM
= −µ(σ)(M − s)− (sin − σ)

sin −M
, σ(M̃) = s?.

When M̃ = Msat we know that this curve is tangent to the singular arc at (s?,M?). Therefore, it leaves F
through s = sin i.e. there exists a unique point Mout such that s†(Mout) = sin. By a monotonicity argument,
we argue that it also leaves F through s = sin in the case where M̃ is such that M̃ = M̄ .

Finally, take an initial condition (s0,M0) such that M̃ < M0 < Mout and s0 > s†(M0). Suppose that we
have u = 1 at time 0. Then, as s0 > s†(M0), the trajectory necessarily satisfies u = 1 until reaching Γ0 (using
claim 7.1), but we have again a contradiction on Γ0 using claim 7.1. Thus, there exists a unique switching point
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from u = 0 to u = 1 at a time t0 such that s(t0) > s?. Hence, we have proved that for any M ∈ [M̃,Mout],
there exists exactly one switching point that we denote sc(M). We then define Me ∈ [Mout,+∞] as :

Me := sup{M > Mout ; sc(·) is defined over [Mout,M ]}.

Step 2. Proof of Lemma 4.1 (1)-(2). First, we have sc(M) → s? when M ↓ M̃ . Otherwise, we would have a

contradiction by using Claim 7.1 and s†(·). Now, if Me < +∞, we necessarily have sc(Me) = sin. Otherwise,
we would have sc(Me) ∈ (s?, sin). In that case, we consider the unique solution of (2.4) with u = 1 backward
in time from (sc(Me),Me). Then, consider an initial condition (s0,M0) below this trajectory and such that
s0 > sc(Me) and M0 > Me. We then have u = 1 until reaching M = Me at a substrate concentration greater
than s?. We necessarily have a contradiction by Claim 7.1 as the trajectory cannot switch to u = 0 at a time
t0 such that s(t0) > s?. Therefore, we have sc(Me) = sin. Finally, we have seen by construction of sc that we
have sc(M) ∈ (s?, sin) for any point M ∈ (M?,Me). This proves part (1) of Lemma 4.1. The proof of (2) is
a direct consequence of Claim 7.1. �

Proof of Lemma 5.2. The proof of (i) follows by a direct computation replacing the expression of µ given by (5.7)
into (5.6). To prove (ii), observe that if (5.8) has three solutions (s1, s2, s3) in R, then s1s2s3 = − sinkiks2−α < 0

and s1 + s2 + s3 = − (1−α)ki−sin
2−α < sin. In this case, we obtain that either (5.8) has three negative solutions or

it has exactly one negative solution and two positive ones. Suppose now that (5.8) has only one real solution
s1 ∈ R. Then, there exist α ∈ R and β > 0 such that (5.8) is equivalent to (s− s1)(s2 +αs+β) = 0. It follows
that −s1β = kikssin

2−α . Thus, we have s1 < 0 which ends the proof of (ii). To prove (iii), observe that if α goes
to one, then the implicit function Theorem implies that (5.6) has a positive solution in a neighborhood of s?.
We deduce from (ii) that there exist exactly two positive solutions of (5.6) for α ∈ [0, 1) close to 1. Moreover,
if we substitute s = sin into ρ(s) := (sin − s)µ′(s) + (1− α)µ(s) and into ρ′(s) = (sin − s)µ′′(s)− αµ′(s), we
obtain positive quantities. Thus, the positive solutions of (5.6) are in the interval [0, sin]. �

The table below provides the parameter values used for the simulations of optimal trajectories (recall (5.4)
and (5.7)).

Figure Case Growth function α µmax ks ki sin s M
2 left I Haldane 1 1 2 1 3 1 2.5

2 right I Haldane 1 1 2 1 3 2 2.5
4 left II a Haldane 1 1 2 1 3 1.1 6

4 right II a Haldane 1 1 2 1 3 0.5 6
5 left II b Haldane 1 1 2 1 3 1.6 4.5

5 right II b Haldane 1 1 2 1 3 1.7 4
6 left III a Haldane 1 1 2 1 3 0.7 10

6 right III a Haldane 1 1 2 1 3 0.5 10
7 III b Haldane 1 1 2 1 3 1.7 8.5

10 left (i) Monod 0.6 1 2 - 3 1 2.9
10 right (ii) Monod 0.6 1 2 - 3 1.55 3.5

10 bottom (iii) Monod 0.6 1 2 - 3 1.25 6
14 - Haldane 0.9 1 5 1 10 3 8

Figure 15: Parameter values used for the simulations of Fig. 2, 4, 5, 6, 7, 10, and 14.
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