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Time-optimal control of concentrations changes in the chemostat

with one single species

Terence Bayen∗, Jérôme Harmand†, Matthieu Sebbah‡

January 7, 2016

Abstract

Our aim in this work is to study the problem of driving in minimal time a system describing a chemostat
model to a target point. This problem finds applications typically in the case where the input substrate
concentration changes yielding in a new steady state. One essential feature is that the system takes into
account a recirculation of biomass effect. We depict an optimal synthesis and provide an optimal feedback
control of the problem by using the Pontryagin Maximum Principle and geometric control theory for both
Monod and Haldane kinetics.

Keywords. Chemostat Model, Optimal feedback, Geometric control, Pontryagin Maximum Principle.

1 Introduction

The optimal control of bioprocesses has attracted a lot of attention over the last fifty years. The control
of fedbatch processes has been extensively studied due to the fact that such systems are used in industries
producing high value molecules for agro-food or pharmaceutical industries. In this functioning mode, the
output flow rate is equal to zero so that the volume of the reactor increases over the time until its maximum
working volume has been reached. The way the reactor is filled, using the input flow rate, can be seen as a
control. When the growth function is monotonic, the optimal control to minimize the time necessary to reach
a given substrate concentration consists in filling in the process as fast as possible until the maximum working
volume is reached and then wait until the concentration of substrate has reached the target. However, when
the growth rate is non-monotonic (for instance for growth functions of Haldane type), there exists a singular
arc and the optimal input profile to stay on it has been proposed in a number of situations. For instance,
theoretical results have been obtained in [15] for single reaction systems and for a large class of growth rate
functions, and more recently in [2, 4, 10, 11]. In these papers dedicated to the optimal control of wastewater
treatment plants, the objective was to reach in minimal time a given target (the value of the output substrate
concentration should be typically below a prescribed value). This problem has been also investigated for
multi-species systems and partially solved in [11]. Many others papers - rather practical but not only - are
available on the optimal control of fed-batch systems for the maximization of products or of the biomass (see
for instance the survey [21] or [19, 25] and references herein).

Our interest in this paper is the chemostat which is an apparatus introduced in the fifties to continuously
cultivate microorganisms. As for a bioprocess operated in a fedbatch mode, using the input flow rate allows
the user to manipulate the growth rate of microbes (see [14, 17]). It presents the advantage of not being
necessary to stock the incoming flow and to treat it online. Today, it is widely used in many domains at both
laboratory or industrial scales and its optimization poses a number of both practical as well as theoretical
problems [22]. Classically, the model of the chemostat is written as:{

ẋ = µ(s)x−Dx,
ṡ = − 1

γµ(s)x+D(sin − s), (1.1)
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where x and s are the micro-organisms and substrate concentrations, respectively, µ is the growth function
of the species, sin > 0 is the input substrate concentration, γ > 0 is the biomass yield factor, and D is the
dilution rate.

For this system with monotonic growth function (i.e. for a growth function of Monod type), D’Ans et al.
have solved the problem of going from an arbitrary initial state to another one in minimal time (see [9]). Such
a problem finds application typically in the case where the input substrate concentration changes yielding in
a new steady state. Converging fast towards this new equilibrium may present some practical interest. In
this case, D’Ans et al. established that the control is necessary bang-bang. From their pioneering work, many
authors have investigated other optimization problems such as the maximization of biogas production for
anaerobic processes (see e.g. [12, 23]). The problem of minimizing the time necessary to go from an arbitrary
initial point to a final one in minimal time for non-monotonic growth rates in a continuous bioreactor has been
partially investigated in [3]. However, in modern biotechnology, any continuous reactor is equipped with a
biomass retention system allowing the liquid fraction to leave the reactor while keeping an important quantity
of biomass in the system through the presence of either supports for microorganisms (that may be fixed or
mobile) or a separator followed by a recirculation loop for the biomass to return into the reactor medium. In
such a case, the substrate (liquid fraction) and the biomass (solid fraction) are not submitted to the same
dilution rate and it is said that ‘the hydraulic and the solid retention times are decoupled’. To model simply
such a decoupling, a term α > 0 may be introduced in the dynamic of x and the model becomes:{

ẋ = µ(s)x− αDx,
ṡ = − 1

γµ(s)x+D(sin − s), (1.2)

If α = 1, the model is exactly the chemostat model while if α = 0 no biomass is removed from the reactor.
Depending on the efficiency of the separator, one has 0 ≤ α ≤ 1.

In this paper, our aim if to address the minimal time control problem to go from one state to another for
this modified chemostat model (1.2). One essential feature in (1.2) is that the recirculation parameter leads to
an asymmetry between x and s (when α = 1, the chemostat has a cascade structure by considering M = x+ s
in place of x). We will first provide a complete study of the problem when α = 1 extending [3] to any initial
condition of the state space. In particular, we show that the optimal synthesis exhibits a switching curve
whenever the total mass of the system is greater than sin (see Theorem 4.2). In this case optimal trajectories
can have three switching times before reaching the target point. In the case where α < 1, we provide a
description of optimal trajectories for Monod and Haldane kinetics under the additional assumption that the
singular arc is always admissible (see [20]).

The paper is organized as follows. In section 2, we state the optimal control problem, and we apply the
Pontryagin Maximum on the optimal control problem to derive optimality conditions. We also give properties
of the switching function that are crucial in sections 4 and 5 to prove optimality results. Next, we characterize
in section 3 the controllability set i.e. the set of points that can reach the target in finite horizon. In section
4, we provide an optimal feedback control for Haldane kinetics when α = 1 (Theorems 4.1 and 4.2 are our
main results), and section 5 discusses the case α < 1 (see Theorems 5.1 and 5.2). The article concludes with
an appendix containing the proof of the existence of the switching curve for α = 1 (see section 4).

2 Preliminaries

2.1 Statement of the problem

We consider the system {
ẋ = µ(s)x− αux,
ṡ = −µ(s)x+ u(sin − s),

(2.1)

describing a chemostat model with one species, one substrate and an adimensioned yield coefficient for x (i.e.
γ = 1). Here x, resp. s is the micro-organisms concentration, resp. substrate concentration, µ is the growth
function of the species, sin > 0 is the input substrate concentration, α ∈ [0, 1] is a coefficient for separating the
biomass (or recirculation parameter), and u is the dilution rate which is the control variable. The admissible
control set is defined as:

U := {u : [0,∞)→ [0, umax] ; u meas.}. (2.2)

2



Given u ∈ U and an initial condition (x0, s0) ∈ R∗+×R+, we denote by (xu(·), su(·)) the unique solution of (2.1)
defined over [0,∞) such that xu(0) = x0 and su(0) = s0 at time 0. It is clear that the set E := R∗+ × [0, sin]
is invariant by the dynamics (2.1), therefore we can consider initial conditions in E.

Throughout this paper, we are interested in the following optimal control problem. Given a target point
(x̄, s̄) ∈ E, our aim is to steer (2.1) in minimal time from (x0, s0) ∈ E to (x̄, s̄), that is:

v(x0, s0) := inf
u∈U

t(u) s.t. xu(t(u)) = x̄ and su(t(u)) = s̄, (2.3)

where t(u) is the first time such that xu(t(u)) = x̄ and su(t(u)) = s̄. If the value function v(x0, s0) is infinite,
the problem has no solution, i.e. the target point is not reachable from (x0, s0). The determination of the
controllability set, i.e. the set of points that can reach the target in finite horizon, is part of the analysis and
will be discussed precisely in section 3. Without any loss of generality, we suppose that umax = 1 and we
consider the following hypotheses :

(H1) The function µ satisfies µ(0) = 0, is bounded, non-negative and of class C2.

(H2) For any s ∈ [0, sin], one has µ(s) < α.

Remark 2.1. Assumption (H2) amounts to saying that the washout is possible and that the dilution rate can
be chosen large enough in order to compete the growth of micro-organisms.

It will be more convenient to study (2.1) in the variables (s,M) where M := x + s is the total mass of the
system. By changing x into M , (2.1) can be equivalently written{

ṡ = −µ(s)(M − s) + u(sin − s),
Ṁ = u(sin − s− α(M − s)). (2.4)

As x > 0, we consider initial conditions for (2.4) in the set F defined by

F := {(s,M) ∈ R+ × R+ ; 0 ≤ s < M and s ≤ sin}, (2.5)

that is clearly invariant by (2.4). Similarly as above, we denote by (su(·),Mu(·)) the unique solution of (2.4)
defined over [0,∞) associated to a control u ∈ U such that su(0) = s0 and Mu(0) = x0 + s0 at time 0.
Moreover, we set M̄ := x̄+ s̄.

Next, we consider the solutions of (2.4) backward in time starting at (s̄, M̄) at time 0. More precisely, let
zi(·) := (si(·),M i(·)), i = 0, 1, the unique solution of (2.4) defined over [0, ti) backward in time with u = i
and such that zi(0) = (s̄, M̄). Without any loss of generality, we suppose that ti ∈ [0,∞) is the first exit time
of zi of the set F , i.e. zi(ti) ∈ ∂F (where ∂F is the boundary of F ). We call Γi, i = 0, 1 the graph of zi(·) for
t ∈ [0, ti) (in particular Γ0 is a line segment). We note that Γ0 ∪Γ1 partitions F into two subsets F−α and F+

α .
More precisely, we take for F−α the unique component containing Γ0 ∪ Γ1 and points in F below Γ0. Finally,
if B is any given non-empty subset of R2, we denote by Int(B) its interior.

2.2 Pontryagin’s Principle

In this section, we derive optimality conditions for problem (2.3) (in variables (s,M), see (2.4)). Notice that if
(H1) holds true and if (x0, s0) is in the controllability set, then the existence of an optimal control follows by
standard arguments (in fact, (2.4) is linear w.r.t. u and the admissible control set is compact). We are then
in position to apply Pontryagin’s Principle on (2.4) which provides necessary conditions on optimal strategies
(see e.g. [13, 16]).

Let H : R2 × R2 × R× R→ R the Hamiltonian associated to (2.4) and defined by:

H = H(s,M, λs, λM , λ0, u) := −λsµ(s)(M − s) + λ0 + u[(λs + λM )(sin − s)− αλM (M − s)].

Let u ∈ U an optimal control of (2.3) such that the associated trajectory steers (s0,M0) to (s̄, M̄) in minimal
time. For convenience, we write this trajectory z(·) := (s(·),M(·)). According to Pontryagin’s Principle, the
following conditions hold true :
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• There exists tf ≥ 0, λ0 ≤ 0 and an absolutely continuous function λ = (λs, λM ) : [0, tf ]→ R2 satisfying

a.e. the adjoint equation λ̇(t) = −∂H∂z (z(t), λ(t), λ0, u(t)), that is:{
λ̇s = λs(µ

′(s)(M − s)− µ(s) + u) + (1− α)λMu,

λ̇M = λsµ(s) + αλMu.
(2.6)

• The pair (λ0, λ(·)) is non-trivial i.e. (λ0, λ(·)) 6= 0.

• The following maximization condition holds true :

u(t) ∈ argmaxv∈[0,1]H(s(t),M(t), λs(t), λM (t), λ0, v) a.e. t ∈ [0, tf ]. (2.7)

We call extremal trajectory a triple (z(·), λ(·), u(·)) satisfying (2.4)-(2.6)-(2.7). If λ0 = 0, then we say that
the extremal is abnormal whereas if λ0 < 0, then we say that the extremal is normal. In the latter, we may
suppose that λ0 = −1. Along any extremal trajectory, one has H = 0 (using that (2.4) is autonomous and
that the terminal time is free). The switching function φ is defined by

φ := (λs + λM )(sin − s)− αλM (M − s). (2.8)

The maximization condition (2.7) can be then expressed as follows : φ(t) > 0 ⇒ u(t) = +1,
φ(t) < 0 ⇒ u(t) = −1,
φ(t) = 0 ⇒ u(t) ∈ [−1, 1].

(2.9)

Moreover, if we differentiate φ w.r.t. t, a straightforward computation shows that we have :

φ̇ = (M − s)[λsµ′(s)(sin − s) + (1− α)(λM + λs)µ(s)]. (2.10)

2.3 Frame curves and frame points

An important feature in the study of (2.3) is the presence of particular curves in the state space that are
called frame curves. These curves play an important role for obtaining an optimal feedback control. In our
context, they are of three types :

• The colinearity curve ∆α
0 is defined as the set of points where the dimension of the vector space spanned

by (2.4) is equal to 1.

• The singular locus ∆α
SA is the set of points where the switching function vanishes on a time interval (a

more precise definition can be found in [8]).

• A switching curve C is a locus in the state space where the control u has a switching point i.e. the
control switches from 1 to 0 or from 0 to 1 at this point (the corresponding instant of switching is called
switching time).

An important property of ∆α
0 is that any switching point of an abnormal trajectory necessarily occurs on

∆α
0 (see [8]). In our setting, we can show that ∆α

0 and ∆α
SA are non-empty, and we can provide an explicit

expression of these two sets whereas switching curves are in general more delicate to characterize by an implicit
equation (in particular these curves are usually target dependent). If fα0 : R2 → R and fαSA : R2 → R are the
functions defined by :

fα0 (s,M) := −µ(s)(M − s)(sin − s− α(M − s)),
fαSA(s,M) := (M − s)[α(M − s)((1− α)µ(s) + µ′(s)(sin − s))− (sin − s)2µ′(s)],

(2.11)

then, a straightforward computation shows that:

∆α
0 = {(s,M) ∈ F ; fα0 (s,M) = 0} and ∆α

SA = {(s,M) ∈ F ; fαSA(s,M) = 0}. (2.12)

The next proposition provides a linear ODE satisfied by the switching function φ and will be crucial in the
optimal synthesis of the problem (see sections 4 and 5).
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Proposition 2.1. Let (z(·), λ(·), u(·)) a normal extremal trajectory. Then, the following properties hold true.

(i) There exists a function gα : R× (F\∆α
0 )→ R, (u, s,M) 7−→ gα(u, s,M) such that one has:

φ̇(t) = gα(u(t), s(t),M(t))φ(t)− fαSA(s(t),M(t))

fα0 (s(t),M(t))
a.e. t ∈ [0, T ], (2.13)

provided that (s(t),M(t)) /∈ ∆α
0 .

(ii) If (z(·), λ(·), u(·)) is optimal, then it cannot have a switching point from u = 1 to u = 0, resp. from u = 0

to u = 1 at a time tc such that
fαSA(s(tc),M(tc))
fα0 (s(tc),M(tc))

< 0, resp.
fαSA(s(tc),M(tc))
fα0 (s(tc),M(tc))

> 0.

Proof. To prove (i), notice that λs = uφ−1
µ(s)(M−s) using that H = 0. From the expression of φ, we get:

λM =
φ− λs(sin − s)

sin − s− α(M − s)
. (2.14)

If we replace λs in (2.14), we obtain λM = µ(s)(M−s)φ−(uφ−1)(sin−s)
µ(s)(M−s)(sin−s−α(M−s)) . Now, if we substitute in (2.10) this

expression of λM and the one for λs, we obtain (2.13) with :

gα(u, s,M) :=
µ′(s)(sin − s)

µ(s)
u+

(1− α)(M − s)(µ(s)− αu)

sin − s− α(M − s)

To prove (ii), notice that at a switching time tc from u = +1 to u = −1, we have φ(tc) = 0 and φ̇(tc) ≤ 0.

Hence, we obtain that − f
α
SA(s(tc),M(tc))
fα0 (s(tc),M(tc))

≤ 0 whenever (s(tc),M(tc)) /∈ ∆α
0 . At a switching time tc from u = 0

to u = 1, a similar reasoning shows the second result of (ii).

Frame points are the points at the intersection of two frame curves. The determination of such points is
crucial for the optimal synthesis. A frame point of type (C, S) is by definition a point at the intersection of
a switching curve and the singular locus. More precisely, (C, S) points are of two types : either the singular
arc emanates from such a point (in that case it is a (C, S)1 point), or the singular arc stops to be optimal at
this point (in that case it is a (C, S)2 point). A steady state singular point is a frame point at the intersection
of ∆α

0 and ∆α
SA (see [5]). From the expressions of f0 and fSA, the points E0 := (0, sinα ) and E1 := (sin, sin)

belong to ∆α
0 ∩∆α

SA and are two steady state singular points.
Let us now turn to Legendre-Clebsch condition. Recall that if a singular arc is optimal (in this case, it is

also called turnpike, see e.g. [8]), then Legendre-Clebsch necessary optimality condition must hold true (see
e.g. [20]), that is we must have

∂

∂u

d2

dt2
Hu ≥ 0, (2.15)

where Hu := ∂H
∂u is computed along the singular extremal trajectory. A singular extremal trajectory that is is

not optimal over a time interval I = [t1, t2] is called anti-turnpike [8].

3 Controllability results

In this section, we characterize for each target point (s̄, M̄) the controllability set i.e. the set of points that
can reach (s̄, M̄) in finite horizon. We have the following controllability result depending on the position of
the target point (s̄, M̄) with respect to the two steady state singular points E0 and E1.

Proposition 3.1. If (H1) and (H2) hold true and (s̄, M̄) ∈ F is a given target point, then:

(i) If E1 /∈ F−α and E0 /∈ F−α , the controllability set is F−α .

(ii) If E1 ∈ F−α and E0 /∈ F−α , the controllability set is F .

(iii) If E1 ∈ F−α and E0 ∈ F−α , the controllability set is F+
α .
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u=0

u=1
u=0

u=1(s,M)

(s,M)

Figure 1: Extended velocity set of (2.4) at a given point (s,M) in F−α (picture left) and in F+
α (picture right).

Proof. In view of (2.4), we have Ṁ|u=1
> 0, resp. Ṁ|u=1

< 0 at a point (s,M) ∈ F if and only if (s,M) is
below ∆α

0 , resp. above ∆α
0 . The proof of (i) and (iii) is similar by considering the extended velocity set in F−α

(case (i)) or in F−α (case (iii)), see Fig. 3, so we only prove (i).
Consider an extremal trajectory starting in F\F−α . If the trajectory reaches Γ0 at a time t0 then there

exists a left neighborhood of t0 where the trajectory is below ∆α
0 . Moreover we can assume that t0 is the first

entry time of the trajectory into Γ0. In view of the extended velocity set in ∆α
0 (see Fig. 3) we see that the

only possibility is to have u = 0, but this would imply that the trajectory reaches Γ0 at a time t < t0, and we
have a contradiction with the definition of t0. A similar reasoning shows that an extremal trajectory starting
in F\F−α cannot hit Γ1. To conclude this case, we see that any initial condition in F−α can reach the target
point by taking the control law u = 1 until reaching Γ0 and then u = 0 until reaching the target point. This
proves (i).

Let us now prove (ii). Consider a solution of (2.4) with u = 1 starting in F\F−α . From (H2), this trajectory
converges to the point (sin, sin) which is a globally asymptotically stable steady-state for (2.4). As we have
in this case sin < M̄ < sin

α , the trajectory necessarily intersects Γ0 at a time t0 > 0. For t > t0, the control
u = 0 steers (2.4) into the target point in finite time. This shows that the target is reachable from F\F−α .
Let us now take an initial condition (s0,M0) ∈ F−α . As E0 /∈ F−α the curve Γ1 exits F trough s = 0 at a
value for M such that M < sin

α . The strategy that we now describe drives any initial condition (s0,M0) ∈ F−α
to the target point. Take the control us0 = µ(s0) M−s0sin−s0 (that corresponds to ṡ = 0). As M̄ < sin

α , we have

µ(s0)M−s0sin
− s0 << 1, hence the control us0 is admissible until reaching Γ0 ∪ Γ1. Thus, the corresponding

strategy reaches Γ0 ∪ Γ1 .

Remark 3.1. (i) In the case (ii) of the previous proposition, the controllability set is the state domain F ,
hence any initial condition in F can reach the target point (s̄, M̄).
(ii) When α = 1, then if M̄ < sin the controllability set for (2.3) is F−1 whereas if M̄ > sin the controllability
set for (2.3) is F+

1 .

4 Optimal synthesis when α = 1

In this section, we study (2.3) in the particular case where α = 1 which corresponds to the case where no
biomass filtration is considered in the chemostat model (2.1). The variable M then satisfies the ODE

Ṁ = u(sin −M), (4.1)

hence (2.4) has a cascade structure. In view of (2.4) we can assume that either M < sin (case I) or M > sin
(case II) depending on the choice of the M̄ w.r.t. sin. Indeed, for M = sin, the optimal control problem is
one-dimensional and is straightforward.

We suppose in this section that µ satisfies the following assumption :

(H’1) The function µ satisfies µ(0) = 0, is bounded, non-negative, of class C2 and has a unique maximum
s? ∈ (0, sin).

Remark 4.1. (H′1) is verified in the case of Haldane kinetic function µ(s) = µmaxs

ks+s+
s2

ki

with ki > 0, ks > 0.

It is straightforward to check that ∆1
0 ∩ Int(F ) = ∅, and so the only possible abnormal trajectories are the

solutions of (2.4) with u = 0 and u = 1 that reach the target point (s̄, M̄) without any switching point. Hence,
we can assume that λ0 = −1, so (2.13) becomes

φ̇ =
(sin − s)µ′(s)

µ(s)
uφ− (sin − s)µ′(s)

µ(s)
, (4.2)
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which in particular implies that the singular locus is the line ∆1
SA = {s?} × (s?,+∞). The singular control is

defined as the control us such that (sus(t),Mus(t)) ∈ ∆1
SA and is given by :

us(M) := µ(s?)
M − s?

sin − s?
for M > s?. (4.3)

Furthermore, Mus(·) is a solution of the following ODE along ∆1
SA :

Ṁ = µ(s?)
(M − s?)(sin −M)

sin − s?
.

We can check that Legendre optimality condition (2.15) is satisfied along the singular arc ∆1
SA as a simple

computation shows that
∂

∂u

d2

dt2
Hu = −µ′′(s?) (sin − s?)2

µ(s?)
≥ 0.

Indeed, µ is non-negative and µ′′(s?) ≤ 0 as s? is a maximum of µ, therefore ∂
∂u

d2

dt2Hu ≥ 0.

4.1 Study of case the case M̄ < sin

In that case, we can consider initial conditions (s,M) ∈ F satisfying M < sin. The system under consideration
satisfies the following properties :

• We have Ṁ ≥ 0 for any control u (see (4.1)).

• We have ṡ|u=1
> 0 (in fact, M < sin and (H2) implies the inequality µ(s) < 1 < sin−s

M−s ).

• The singular locus ∆1
SA is such that ∆1

SA = {s?} × (s?, sin).

• The singular control us is admissible, i.e. us(M) ∈ [0, 1] for any M ∈ (s?, sin) and Ṁ > 0 along ∆1
SA.

The previous considerations show that for i = 0, 1 the trajectory zi(·) is the graph of a C1-mapping s 7−→
M := ϕi(s) in the plane (s,M). Therefore the controllability set F−1 can be written as:

F−1 = {(s,M) ∈ F ; M ≤ min(ϕ0(s), ϕ1(s))}. (4.4)

We then have the following optimality result.

Theorem 4.1. If (H′1) and (H2) hold true and M̄ < sin, an optimal feedback control in Int(F−1 ) is given by : u?[s,M ] = 0 if s > s?,
u?[s,M ] = 1 if s < s?,
u?[s,M ] = us(M) if s = s?.

(4.5)

Proof. The proof follows from Proposition 2.1 (ii). Suppose that (s0,M0) ∈ F−1 \(Γ0∪Γ1). Then, if s0 < s?, we
must have u = 1 until reaching either s = s? or Γ0. Otherwise, we would have u = 0 by Pontryagin’s Principle,
and the trajectory would necessarily have a switching point at a time t0 > 0 (if not, then it cannot reach the

target). At this time t0, we have φ̇(t0) ≥ 0 in contradiction with φ̇(t0) = − (sin−s(t0))µ′(s(t0))
µ(s(t0))

< 0. Hence, we

have u = 1 until reaching either the singular arc or Γ0. Similar arguments show that if s0 is such that s0 > s?,
then we have u = 0 until reaching either s = s? or Γ1. We deduce that for any point (s0,M0) ∈ F−1 \(Γ0 ∪Γ1),
the optimal control satisfies u = 1 if s0 < s? and u = 0 if s0 > s?. Finally, the previous argumentation shows
also that if s0 = s? and (s0,M0) ∈ F−1 \(Γ0 ∪ Γ1), then an optimal trajectory does not leave the singular arc
either with u = 0 or u = 1. Therefore singular trajectories are optimal until reaching Γ0 ∪ Γ1.

The optimal synthesis provided by Theorem 4.1 is depicted on Fig 3.

Remark 4.2. (i) If s̄ < s?, then a singular trajectory will reach M̄ , and then will satisfy u = 0 until reaching
the target (see Fig. 3 left). If s̄ > s?, then a singular trajectory will reach Γ1, and then will satisfy u = 1 until
reaching the target (see Fig. 3 right).
(ii)When s? > sin, the previous considerations show that for Monod kinetic function the feedback in Int(F−1 ){

um[s,M ] = 1 if (s,M) ∈ F−1 \Γ0,
um[s,M ] = 0 if (s,M) ∈ Γ0,

(4.6)

is optimal (see [9]).

7



4.2 Study of the case M̄ > sin

In that case, we can consider initial conditions (s,M) ∈ F such that M > sin. The system under consideration
satisfies the following properties :

• From (4.1), we have Ṁ ≤ 0 for any control u.

• The singular control us is admissible provided that M ∈ (sin,Msat] where us(Msat) = 1, that is :

Msat := s? +
sin − s?

µ(s?)
. (4.7)

• The singular locus ∆1
SA then becomes ∆1

SA = {s?} × (sin,Msat).

Notice that ds
dt |u=1

is not of constant sign along u = 1 as in the previous case (see Fig. 2 for the plot of

solutions of (2.4) with u = 1) but one has dM
dt |u=1

< 0. The previous considerations show that the trajectory

0 0.5 1 1.5 2 2.5 3

4

6

8

10

12

14

16

18

Figure 2: Solutions of (2.4) for the control u = 1 and different initial conditions (s0,M0) with M0 > sin and
sin = 3. The black curve is the set of points where the tangent to this trajectory is vertical.

z1(·) is the graph of a C1-mapping M 7−→ s := ψ1(M) defined over [M̄,+∞) in the plane (s,M) (indeed we
have Ṁ < 0 along u = 1). Therefore, the set F+

1 can be written:

F+
1 = {(s,M) ∈ F ; M ≥ M̄ and max(0, ψ1(M)) ≤ s ≤ sin}.

4.2.1 Switching curve and optimal synthesis

Whereas in the case M < sin, the singular arc is always admissible, we have now a saturation phenomena for
the singular control, that is the singular arc is non-admissible when M > Msat (see (4.7)). This will imply
the existence of a switching curve C. We now provide a description of this locus.

Lemma 4.1. Let M̃ := max(M̄,Msat). Then, there exists Me ∈ (M̃,+∞] and a function sc : [M̃,Me]→ R+

M 7−→ sc(M) satisfying the following properties :

(1) If Me < +∞, then one has sc(Me) = sin. Moreover, one has sc(M̃) = s? and sc(M) ∈ (s?, sin) for any
M ∈ (M̃,Me).

(2) For any M ∈ (M̃,Me), there exists exactly one point sc(M) such that an optimal control u satisfies u = 0
for s > sc(M) and u = 1 for s? < s < sc(M).

Proof. For sake of clarity, we have postponed the proof of this lemma to the appendix.

The switching curve C is then defined as

C := {(sc(M),M) ; M ∈ [M?,Me]}.
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Remark 4.3. (i) If M̃ = Msat i.e. M̄ ≤ Msat, then the point (s?,Msat) is a frame point of type (CS)1 i.e.
at the intersection of C and ∆1

SA, see Fig. 4 and Fig. 5
(ii) If M̃ = M̄ i.e. if M̄ > Msat, then C ∩∆1

SA = ∅ and C intersect Γ0 at the point (s?, M̄), see Fig. 6.

We obtain the following optimality result.

Theorem 4.2. Suppose that (H′1) and (H2) hold true, that M̄ > sin, and let h(M) := max(s?, sc(M)) for
M ∈ [M̄,Me]. Then, an optimal feedback control in Int(F+

1 ) is given by : u?[s,M ] = us(M) if s = s? and M < Msat,
u?[s,M ] = 1 if s < h(M) and M > M̄,
u?[s,M ] = 0 elsewhere

(4.8)

Proof. The proof is straightforward using the previous lemma and following the proof of Theorem 4.1 to
exclude extremal trajectories that are not optimal.

The optimal synthesis provided by Theorem 4.2 is depicted on Fig. 4, Fig. 5, Fig. 6 and 7 for different
cases that are explained below.

4.2.2 Numerical simulations

First, we summarize the numerical compution of the curve C defined by M 7−→ sc(M). We consider the system
(2.4)-(4.2) with u = 1 backward in time :

ds
dt = µ(s)(M − s)− sin − s,
dM
dt = −(sin −M),
dφ
dt = − (sin−s)µ′(s)

µ(s) φ+ (sin−s)µ′(s)
µ(s) ,

(4.9)

with initial conditions (s0,M0, 0) such that (s0,M0) ∈ Γ0∪∆1
SA. We know that an optimal trajectory reaching

either ∆1
SA or Γ0\{(s̄, M̄)} at a time t is such that φ(t) = 0. Hence, for a given point (s0,M0) ∈ Γ0 ∪∆1

SA, we
integrate (4.9) from (s0,M0, 0) at t = 0 until the first time tc > 0 such that φ(tc) = 0 and (s(tc),M(tc)) ∈ F .
Thanks to Lemma 4.1, we know that there exist points of Γ0 ∪ ∆1

SA for which tc exists. We repeat this
procedure for points (s0,M0) ∈ Γ0 ∪∆1

SA until finding completely M 7−→ sc(M).
To highlight Theorems 4.1 and 4.2, we have considered the following cases depending on the choice of the

target point (s̄, M̄) w.r.t. the singular arc and the value of Msat.

Subcase a : s̄ < s? Subcase b : s̄ > s? Optimal synthesis

Case I : M̄ < sin Fig. 3 Fig. 3 Theorem 4.1

Case II : sin < M̄ < Msat Fig. 4 Fig. 5 Theorem 4.2

Case III : M̄ > Msat Fig. 6 Fig. 7 Theorem 4.2

Remark 4.4. In Fig. 4, 5, 6 and 7, the switching curve C can be decomposed as C = ∆1 ∪∆2. The curve ∆1

(in purple), resp. ∆2 (in green) corresponds to initial conditions for system (4.9) on ∆1
SA, resp. on Γ0.

4.2.3 Additional properties of the switching curve C

In this section, we discuss additional properties of the switching curve C that are related to the curve Γ1. First,
we suppose that Γ1 exits F through s = sin. We can then show that C exits F at some point (sc(Me),Me)
such that sc(Me) = sin as shown below.

Proposition 4.1. Suppose that Γ1 intersects the boundary of F at some point (sin,Mout) with Mout > M̃ .
Then, we have Me ≤Mout and sc(Me) = sin.

Proof. Clearly, C cannot intersect Γ1 before reaching s = sin as we would have a contradiction with the
controllability set F+

1 . Suppose now that C stops at some point (sc(Me),Me) such that ψ1(Me) < sc(Me) < sin.
Then, we consider the unique solution of (2.4) with u = 1 backward in time from (sc(Me),Me), and we call
Γ̃ the restriction of its graph in F . Now, take an initial condition (s0,M0) ∈ F below Γ̃ and such that
sc(Me) < s0 < sin, M0 > Me. Then, if we have u = 1 at time t = 0, we obtain a contradiction as the
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corresponding trajectory reaches Γ0 at a point s > s? (see Proposition 2.1 (ii)). Thus, we must have u = 0
until reaching s = s? as no switching point occurs. We have again a contradiction by Proposition 2.1 (ii).
This shows that sc(Me) = sin and that Me ≤Mout.

Remark 4.5. We can prove that C is continuous by showing first the continuity of tc w.r.t. initial conditions
(this point follows by considering tc as the first entry time into the target φ ≥ 0 and using regularity properties
of the value function [1]). The continuity of C then follows from the continuity of solutions of an ODE w.r.t.
initial conditions. For brevity, we have not detailed this point.

When Γ1 exits F through s = 0, the controllability set A2 is unbounded, therefore the proof of Proposition
4.1 no longer holds. Nevertheless, we conjecture that C exits F at some point Me < +∞ as numerical
simulations indicate. However, properties of switching curve can be in general difficult to obtain. Notice that
initial conditions such that M � sin are not interesting for a practionner. Observe also that the time of an
arc u = 0 connecting sin to s? is equal to

∫ sin
s?

dσ
µ(σ)(M−σ) . Clearly, this integral goes to zero if M goes to

infinity. When M → +∞, the dominant term in the value function v(x0, s0) (recall (2.3)) is the time of an
arc u = 1 connecting (s̄, M̄) to Γ0 or ∆1

SA. Hence, if M̄ � sin, there is no evidence that optimal trajectories
will benefit from a switching time until reaching Γ0 or ∆1

SA.

s⋆s

M

sin

sin0
 

 

Non controllable target zone

Optimal singular arc

Γ1

Γ0

u = 1

u = 0

s⋆ s

M

M⋆

sin

sin0
 

 

Non controllable target zone

Optimal singular arc

Γ1

Γ0

u = 1

u = 0

Figure 3: Optimal synthesis for α = 1 and M̄ < sin (case I). Picture left : the target point is such that s̄ < s?

(the singular arc ∆1
SA intersects Γ0). Picture right : the target point is such that s̄ > s? (the singular arc ∆1

SA

intersects Γ1).

5 Optimal synthesis when α < 1

In this section, we study the optimal synthesis whenever α < 1. Unlike in the case α = 1, the system (2.4)
has not a cascade structure, and thus finding an optimal synthesis in this framework is more delicate. In this
case, the set ∆α

0 is the line segment of equation:

δα0 (s) := s+
sin − s
α

, s ∈ [0, sin].

Whereas in the case α = 1 the subset of F defined by M = sin is invariant by (2.4) (see (4.1)), trajectories of
(2.4) can cross the set ∆α

0 for α < 1. The singular locus ∆α
SA is the graph of the function:

s 7−→M = δαSA(s) := s+ ψα(s), s ∈ [0, sin],

where

ψα(s) :=
1

α

µ′(s)(sin − s)2

(sin − s)µ′(s) + (1− α)µ(s)
. (5.1)
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M
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Figure 4: Case II a. Optimal synthesis for α = 1, sin < M̄ < Msat and s̄ < s?. The dotted line represents
the switching curve M 7−→ sc(M) (in purple, resp. in green, it is obtained backward in time from ∆1

SA, resp.
from Γ0). The curve Γ1 exits F through s = sin (picture left) or through s = 0 (picture right).
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Γ1

Γ0
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u = 1

u = 0

s⋆ s
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Non controllable

Optimal singular arc

Γ1

Γ0

∆2

u = 1
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Figure 5: Case II b. Optimal synthesis for α = 1, sin < M̄ < Msat and s̄ > s?. The dotted line represents
the switching curve M 7−→ sc(M) (in purple, resp. in green, it is obtained backward in time from ∆1

SA, resp.
from Γ0). The curve Γ1 exits F through s = sin (picture left) or through s = 0 (picture right).

Note that the functions ψα and δαSA are not well defined as (sin − s)µ′(s) + (1− α)µ(s) can be zero when s is
such that µ′(s) < 0. By differentiating M − s = ψα(s) w.r.t. to time t supposing that the trajectory belongs
to a singular arc, we find the expression of the singular control uαs (that is parametrized by s):

uαs (s) :=
µ(s)ψα(s)(1 + ψ′α(s))

αψα(s) + ψ′α(s)(sin − s)
.

In order to verify if (2.15) holds true along a singular extremal (see section 5.1) we have the following lemma.

Lemma 5.1. Along a singular arc I = [t1, t2] one has

∂

∂u

d2

dt2
Hu = (1 − α)(sin − s2(t))

(2 − α)µ(s(t))µ′(s(t)) + 2(sin − s(t))µ′(s(t))2 − (sin − s(t))µ(s(t))µ′′(s(t))

µ(s(t))[sin − s(t) − α(M(t) − s(t))][(sin − s(t))µ′(s(t)) + (1 − α)µ(s(t))]
. (5.2)

Proof. From the expressions of fSA and f0 (see (2.11)) we obtain:

fSA(s,M)

f0(s,M)
= −α(M − s)((1− α)µ(s) + µ′(s)(sin − s)− (sin − s)2µ′(s))

µ(s)(sin − s− α(M − s))
.
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Figure 6: Case III a. Optimal synthesis for α = 1, M > Msat and s̄ < s?. The dotted line in green represents
the switching curve M 7−→ sc(M) (it is obtained backward in time from Γ0). The curve Γ1 exits F through
s = sin (picture left) or through s = 0 (picture right).
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Figure 7: Case III b. Optimal synthesis for α = 1, M > Msat and s̄ > s?. In this case, the curve Γ1 exits F
through s = sin only.

In order to compute ∂
∂u

d2

dt2Hu, we differentiate (2.13) w.r.t. t along the singular arc M − s = ψα(s) keeping
the component in front of u (this computation can be also performed using Lie brackets, however we did not
introduce this notation for brevity). We find that

d

dt

(
−fSA(s(t),M(t)

f0s,M

) ∣∣∣
u

=
−α2(1 − α)xµ(s) + 2(sin − s)(sin − s− α2x)µ′(s) + µ′′(s)(sin − s)2(αx− (sin − s))

µ(s)(sin − s− αx)
,

omitting the time dependency for brevity and writing x in place of M − s. By replacing x into the previous
equality by ψα(s) using (5.1), we find (5.2).

5.1 Optimal synthesis for Monod kinetic function

We suppose in this section that the growth rate function is given by:

µ(s) :=
µms

k + s
, (5.3)

where µm > 0 and k > 0. Notice that µ > 0 and µ′ > 0 over (0, sin]. Therefore ψα and δαSA are well defined
over [0, sin]. From (5.1)-(5.2), we can make the following observations:
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• We have ∆α
0 ∩∆α

SA := {E0, E1}. Moreover, for any s ∈ (0, sin) one has δαSA(s) < δα0 (s).

• The singular control s 7−→ uαs (s) is negative on the interval (sm, sin) where sm ∈ (0, sin) is the unique
point such that (δαSA)′(sm) = 0.

• The steady state singular point E0, resp. E1 is attractive, resp. repulsive for the dynamical system (2.4)
with the feedback control u = uαs (s) (indeed one has Ṁ = αuαs (s)(δα0 (s) − δαSA(s)) along the singular
arc).

• Using (5.2) and the fact that µ′ > 0, µ′′ < 0 for Monod kinetics (see (5.3)), we find that Legendre-Clebsch
optimality condition (2.15) is satisfied along ∆α

SA.

Figures 8 depicts the singular locus ∆α
SA and the collinearity set ∆α

0 for different values of α. The corresponding
singular control is plotted on Figure 9. We observe that if α is small, then the singular control uαs can be

Figure 8: Plot of ∆α
0 and ∆α

SA for α = 0.1, 0.5, 0.9 with µ(s) = s
5+s and sin = 10.

Figure 9: Plot of the singular control with µ(s) = s
5+s and sin = 10 for α = 0.1, 0.5, 0.9.

larger than 1 which corresponds to the maximal admissible value for the control. To simplify the study, we
consider the following assumption on the admissibility of the singular arc:

(H3) The singular control satisfies uαs (s) ≤ 1 for any s ∈ [0, sm).

If Hypothesis (H3) is satisfied, then the singular arc is admissible on [0, sm]. The optimal synthesis will depend
on the position of the target point (s̄, M̄) w.r.t. the points E0 and E1 as in Proposition 3.1. When E0 /∈ F−α ,
we introduce the feedback control law :

uαm[s,M ] :=

 1 if M < δαSA(s),
0 if M > δαSA(s) or (M = δαSA(s) and s > sm),
uαs (s) if M = δαSA(s) and s < sm,

(5.4)

The optimal synthesis then reads as follows (see Fig. 10).
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Theorem 5.1. Suppose that µ is given by (5.3) and that (H2)-(H3) hold true. Then, an optimal synthesis
reads as follows.

(i) If E1 /∈ F−α and E0 /∈ F−α , then an optimal feedback control in Int(F−α ) is given by (5.4).

(ii) If E1 ∈ F−α and E0 /∈ F−α , then an optimal feedback control in Int(F−α ) is given by (5.4) and an optimal
feedback control satisfies u = 1 in Int(F+

α ).

(iii) If E1 ∈ F−α and E0 ∈ F−α , then an optimal feedback control satisfies u = 1 in Int(F+
α ).

Proof. Let us prove (i). From (2.13), we obtain that an optimal control cannot switch from u = 0 to u = 1,
resp. from u = 1 to u = 0 at some point in F−α \(Γ0 ∪ Γ1) such that M < δαSA(s), resp. M > δαSA(s). Hence,
optimal trajectories can only switch on the singular locus ∆α

SA. It follows that an optimal control satisfies
u = 1 when M < δαSA(s) and u = 0 when M > δαSA(s). Moreover, we deduce that at some point (s,M) ∈ ∆α

SA

either we have s ≤ sm and u = us (from (2.13), optimal trajectories cannot leave the singular arc before
reaching Γ0 ∪ Γ1) or s > sm and then an optimal control necessarily satisfies u = 0.

To prove (ii), notice that the optimality result in F−α is similar to (i) except that there exists an abnormal
extremal trajectory switching at the intersection between Γ0 and ∆α

0 . The cost tabn of this trajectory cannot
be directly compared to the cost tmin of the trajectory corresponding to the control (5.4) as Proposition 2.1
only holds for normal trajectories. However, we can construct a sequence of normal trajectories γn converging
to the abnormal one and such that its cost tγn satisfies tγn ≥ tmin (this follows by the previous argumentation).
We then obtain the result by letting n goes to infinity.

Now, solutions of (2.4) with u = 1 starting above Γ0 ∪Γ1 necessarily converge to the point E1 (see Lemma
3.1 (ii)). Hence, trajectories with u = 1 starting in F+

α necessarily intersect Γ0 (as E1 ∈ F−α ). To prove that
an optimal control satisfies u = 1 in Int(F+

α ), we use (2.13) and similar arguments as in the proof of (i).
The proof of (iii) is similar to the proof of (ii) by considering F+

1 in place of F−1 .

Remark 5.1. (i) In Theorem 5.1, we point out that optimal trajectories switch from u = 1 to u = 0 on the
singular locus restricted to (sm, sin) which corresponds to a switching curve.
(ii) Whenever α = 1 and µ is of Monod type, we know from (4.6) that no singular arc occurs. We see that
when α < 1, then optimal strategies can take advantage of a singular arc depending on the position of the
target point w.r.t. ∆α

SA.
(iii) It is interesting to observe that when α → 1, then one has δα0 (s) → sin and δαSA(s) → sin. Suppose
M̄ < sin. We deduce that if α is sufficiently close to 1, then the feedback control law (5.4) coincides with (4.6)

5.2 Discussion for Haldane kinetic function

In this section, we discuss the optimal synthesis of the problem in the case where (H′1) holds true (this
corresponds typically to Haldane kinetics). Recall that µ′(s) > 0 for s ∈ [0, s?] and µ′(s) < 0 for s ∈ [s?, sin].
The singular locus ∆α

SA and the collinearity set ∆α
0 are represented for different values of the parameter α on

Fig. 11. From (5.1)-(5.2), we can make the following observations:

• There exists 0 < sα1 < s? < sα2 < sin such that s 7−→ s + ψα(s) is well-defined over [0, sα1 ) ∪ (sα1 , s
α
2 ) ∪

(sα2 , sin]. Moreover, lims→sα1 ,s>sα1 δ
α
SA(s) = lims→sα2 ,s<sα2 δ

α
SA(s) = +∞.

• For any s ∈ [0, sα1 ), one has δαSA(s) < δα0 (s) and for s ∈ (sα1 , s
α
2 ) one has δαSA(s) > δα0 (s). For s ∈ (sα2 , sin],

δαSA(s) /∈ F .

• By definition of ∆α
0 we have Ṁ > 0 if and only if M < δα0 (s). Along the singular arc ∆α

SA, we then have
Ṁ > 0, resp. Ṁ < 0 for s ∈ [0, sα1 ), resp. s ∈ (sα1 , s

α
2 ).

• Using (5.2), we can show that there exists a point sc ∈ (sα1 , s
α
2 ) such that Legendre-Clebsch optimality

condition (2.15) ∂
∂u

d2

dt2Hu ≥ 0 is satisfied only over the interval [0, sc]. Hence the singular locus restricted
to [sc, s

α
2 ) is not optimal (i.e. it is an anti-turnpike).

To simplify the study, we consider the following assumption on the admissibility of the singular arc:

(H’3) The singular control satisfies uαs (s) ∈ [0, 1] for any s ∈ [0, sc] such that (s, δαSA(s)) ∈ F .
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Figure 10: Optimal synthesis provided by Theorem 5.1 in case (i) (above left), case (ii) (above right) and case
(iii) (middle).

Remark 5.2. As the state domain is unbounded, Hypothesis (H′3) amounts to saying that M cannot take
arbitrarily large values.

The optimal synthesis will depend on the position of the target point (s̄, M̄) w.r.t. the points E0 and E1

as in Proposition 3.1. For technical reasons, we only consider the case where E1 /∈ F−α and E0 /∈ F−α .

Theorem 5.2. Suppose that (H′1), (H2) and (H′3) hold true. If E1 /∈ F−α and E0 /∈ F−α , then an optimal
feedback control in Int(F−α ) is given by

uαh [s,M ] :=

 1 if M < δαSA(s)
0 if M > δαSA(s)
uαs (s) if M = δαSA(s) and s ∈ [0, sα1 ); (s, δαSA(s)) ∈ F.

(5.5)

Proof. The proof is the same as the proof of Theorem 5.1 case (i).

Notice that the feedback (5.5) corresponds to a most rapid approach to the singular arc ∆α
SA as in Theorem

4.1. When α goes to 1, we have fαSA(s,M)→ f1SA(s,M) = (M − s)(sin − s)(M − sin)µ′(s) and we have seen
that ∆1

SA is the line segment {s?} × (s?, sin). Thus, the feedback control (5.5) obtained in Theorem 5.2
converges to (4.8) when α goes to 1.

Remark 5.3. Suppose that E1 ∈ F−α and E0 /∈ F−α . Then, the optimal feedback control in F−α will be also
given by (5.5) (the reasoning is the same as in Theorem 5.2). However, an optimal feedback in F+

α no longer
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Figure 11: Plot of ∆α
0 (in green) and ∆α

SA (in red) for α = 0.1 (picture left), α = 0.5 (picture in the middle),
α = 0.9 (picture right) with µ(s) = s

5+s+s2 and sin = 10.

satisfies u = 1 as in Theorem 5.1. We can expect as in Theorem 4.2 that an optimal control will be of a
concatenation of three arcs u=0, u = us and u = 1 until reaching Γ0 and the optimal synthesis will involve a
switching curve emanating from the singular arc locus above ∆α

0 . The same situation will hold if the target
point is such that E1 ∈ F−α and E0 ∈ F−α . We have not detailed this case which is close to the case M̄ > sin,
see section 4.2.

6 Conclusion, Discussion, Perspectives

In this paper, we have provided an optimal synthesis of a two-dimensional system describing a chemostat
model including recirculation. The analysis has revealed the importance of turnpike singular arcs in the
optimal synthesis. We has shown that optimal trajectories are based on a most rapid approach to a turnpike
(in absence of saturation phenomenon) depending on the kinetics. When the singular control saturates the
maximal admissible value, then the optimal synthesis exhibits a switching curve and the existence of frame
points.

From a practical point of view, the analysis has raised the following points:

• Whereas singular arcs usually appear for Haldane kinetics (see e.g. [2, 15]), our results show that a
singular arc appears for Monod kinetics. This is due to the presence of the recirculation parameter α.

• We have pointed out that the optimal synthesis depends on the position of the target point w.r.t.
characteristic elements of the system (such as steady state singular points). This information can be
useful for a practitioner to drive optimally the system to a target point.

• Whenever α < 1, there exist target points that can be reached by any initial condition in the state
space. The analysis of the problem has also revealed that for α = 1, this cannot happen (this is due to
the existence of an invariant manifold by the system). Thus, a practitioner can take advantage of this
remark to pilot adequately a chemostat with a recirculation loop to a desired starting from any initial
condition in the state space.

• The optimal feedback (5.4) is robust in the sense that if α is close to one, then it coincides with the
optimal one for α = 1 (see remark 5.1 (iii)).

• The optimal synthesis highly depends on the parameter α, nevertheless we can observe that when α goes
to 1, the optimal synthesis slightly differs from the case α = 1. However, we are not aware of general
results concerning the behavior of optimal syntheses or feedback controls w.r.t. parameters.

In general uncertainties can affect the system, hence our optimal feedback strategies can be used to drive the
system optimally to a neighborhood of the target point and then a feedback control is designed to stabilize
the system at the desired target. The combination of these two approaches could be the basis of future works.
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7 Appendix

Proof of Lemma 4.1. The following claim is crucial and follows from (4.2) and Proposition 2.1 (ii).

Claim 7.1. Any extremal trajectory cannot switch from u = 1 to u = 0, resp. from u = 0 to u = 1 at a point
(s(t),M(t)) such that s(t) > s?, resp. s(t) < s? (t).

Step 1. Let us prove the existence of the switching curve sc : [M̃,Me]→ [s?, sin].

Consider an initial condition (s0,M0) such that s0 > s?, M0 > M̃ and an optimal trajectory starting from
this point. Suppose that we have u = 0 until reaching s? at a time t0. We then have u = 0 for any time
t > t0, and the trajectory cannot reach the target. Hence, we have two cases depending if the trajectory
has a switching point from u = 0 to u = 1 or not. Either we have u = 1 at time 0 until reaching s = s?

with M < Msat or M = M̄ . Or, there exists a unique point switching point to u = 1 at a time t0 such that
s? < s†(t0) < s0 (the uniqueness follows from Claim 7.1).

Let us now denote by M 7−→ s†(M) the unique solution of (2.4) with u = 1 backward in time from (s?, M̃)
satisfying the Cauchy problem:

dσ

dM
= −µ(σ)(M − s)− (sin − σ)

sin −M
, σ(M̃) = s?.

When M̃ = Msat we know that this curve is tangent to the singular arc at (s?,M?). Therefore, it leaves F
through s = sin i.e. there exists a unique point Mout such that s†(Mout) = sin. By a monotonicity argument,
we argue that it also leaves F through s = sin in the case where M̃ is such that M̃ = M̄ .

Finally, take an initial condition (s0,M0) such that M̃ < M0 < Mout and s0 > s†(M0). Suppose that we
have u = 1 at time 0. Then, as s0 > s†(M0), the trajectory necessarily satisfies u = 1 until reaching Γ0 (using
claim 7.1), and we obtain again a contradiction. Thus, there exists a unique switching point from u = 0 to
u = 1 at a time t0 such that s(t0) > s?. Hence, we have proved that for any M ∈ [M̃,Mout], there exists
exactly one switching point that we denote sc(M). We then define Me ∈ [Mout,+∞] as :

Me := sup{M > Mout ; sc(·) is defined over [Mout,M ]}.

Step 2. Proof of Lemma 4.1 (1)-(2). First, we have sc(M) goes to s? when M ↓ M̃ . Otherwise, we would have

a contradiction by using Claim 7.1 and s†(·). Now, if Me < +∞, we necessarily have sc(Me) = sin. Otherwise,
we would have sc(Me) ∈ (s?, sin). In that case, we consider the unique solution of (2.4) with u = 1 backward
in time from (sc(Me),Me). Then, consider an initial condition (s0,M0) below this trajectory and such that
s0 > sc(Me) and M0 > Me. We then have u = 1 until reaching M = Me at a substrate concentration greater
than s?. We necessarily have a contradiction by Claim 7.1 as the trajectory cannot switch to u = 0 at a time
t0 such that s(t0) > s?. Therefore, we have sc(Me) = sin. Finally, we have seen by construction of sc that we
have sc(M) ∈ (s?, sin) for any point M ∈ (M?,Me). This proves Lemma 4.1 (1). The proof of (2) is a direct
consequence of Claim 7.1.
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