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Abstract This paper presents a comparative study of

six methods for the retrieval and classification of tex-

tured 3D models, which have been selected as represen-

tative of the state of the art. To better analyse and con-
trol how methods deal with specific classes of geometric

and texture deformations, we built a collection of 572

synthetic textured mesh models, in which each class in-
cludes multiple texture and geometric modifications of

a small set of null models. Results show a challenging,

yet lively, scenario and also reveal interesting insights
in how to deal with texture information according to

different approaches, possibly working in the CIELab

as well as in modifications of the RGB colour space.
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1 Introduction

Thanks to advances in geometric modelling techniques

and to the availability of cheaper, yet effective 3D ac-

quisition devices, we are witnessing a dramatic increase
in the number of available 3D data [1,36]. How to ac-

curately and efficiently retrieve and classify this data

has become an important problem in computer vision,
pattern recognition, computer graphics and many other

fields. Most methods proposed in the last years analyse

geometric and/or topological properties of 3D models
[4,22,73], that is, they focus on shape. Nevertheless,

most sensors are able to acquire not only the 3D shape

but also its texture; this is the case, for instance, of the

Microsoft Kinect device. Also, image-based modelling
and multiple-view stereo techniques enable the recov-

ery of geometric and colourimetric information directly

from images [66].

Characterizing 3D shapes based on both geometric
and colourimetric features can be of great help while

defining algorithms for the analysis and the comparison

of 3D data. Texture and colourimetric features contain
rich information about the visual appearance of real ob-

jects: perceptual studies demonstrated that colour plays

a significant role in low- and high-level vision [72]. Thus,
colourimetric information plays an important role in

many shape analysis applications, such as matching and

correspondence; it can also provide additional clues for

retrieval in case of partial or inaccurate shape scans
[28]. An example is given by face recognition, where the

combination of geometric and colourimetric properties

is a way to achieve better trust-worthiness under un-
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controlled environmental conditions (illumination, pose

changes, uncooperative subjects) [26].

The attention towards texture properties has grown
considerably over the last few years, as demonstrated by

the number of techniques for the analysis of geometric

shape and texture attributes that have been recently

proposed [33,46,54,64,75,80]. Since 2013, a retrieval
contest [9] has been launched under the umbrella of the

SHREC initiative [76] to evaluate the performances of

the existing methods for 3D shape retrieval when deal-
ing with textured models. The contest provided the first

opportunity to analyse a number of state-of-the-art al-

gorithms, their strengths as well as their weaknesses,
using a common test collection allowing for a direct

comparison of algorithms. In 2014 the contest ran over

a larger benchmark and was extended to include also a

classification task [3]. The two events obtained a posi-
tive outcome, indeed they saw the participation of six

groups in 2013 and eight groups in 2014.

In this context, we present here a comparative study

on the retrieval and classification performance of six

state-of-the-art methods in the field of textured 3D
shape analysis. The present contribution builds on the

dedicated SHREC’14 benchmark [3], and extends the

associated track in three main respects:

• Most of the algorithms tested in [3] have been re-

implemented with some modifications for performance
improvement. Additionally, a new method has been in-

cluded in the comparative study in order to have a suffi-

ciently detailed picture of the state-of-the-art scenario;

• To help the reader in comparing methods beyond

their algorithmic aspects, Section 4.7 presents a taxon-
omy of methods highlighting the emerging shape struc-

ture, the scale at which the shape description is cap-

tured, the colour space that is considered to analyse
texture shape properties, and how this information is

combined with the geometric one;

• The analysis of methods has been strengthened

by exploiting the peculiar composition of the dataset,

which has been populated by considering multiple mod-
ifications of a set of null shapes. This has made possible

to evaluate how algorithms cope with specific geometric

and colourimetric modifications.

The remainder of the paper is organized as follows:

In Section 2 we introduce the related literature. Sec-
tion 3 describes the collection of textured 3D models

and how the comparative study has been organized,

while in Section 4 we describe the methods implemented

and discuss their main characteristics. Experimental re-
sults are presented, analysed and discussed in Section 5,

while conclusive remarks and possible future develop-

ments are outlined in Section 6.

2 Related literature

While the combination of shape and colour information
is quite popular in image retrieval [24] and processing

[30,45], most of methods for 3D object retrieval and

classification do not take colourimetric information into
account [4,73].

The first attempts to devise 3D descriptors for tex-

tured objects adopt a 3D feature-vector description and

combine it with the colourimetric information, where

the colour is treated as a general property without con-
sidering its distribution over the shape. For example,

Suzuki et al. [71] complemented the geometry descrip-

tion with a colour representation in terms of the Phong’s
model parameters [57]. Similarly, Ruiz et al. [64] com-

bined geometric similarity based on Shape Distribu-

tions [53] with colour similarity computed through the
comparison of colour distribution histograms, while in

Starck and Hilton [69] the colourimetric and the 3D

shape information were concatenated into a histogram.

In the field of image recognition, a popular descrip-

tion strategy is to consider local image patches that
describe the behaviour of the texture around a group

of pixels. Examples of these descriptions are the Local

Binary Patterns (LPB) [52], the Scale Invariant Fea-
ture Transform (SIFT) [47], the Histogram of Oriented

Gradients (HoG) [13] and the Spin Images [27]. The

generalization of these descriptors to 3D textured mod-
els has been explored in several works, such as the VIP

description [79], the meshHOG [80] and the Textured

Spin-Images [12,54]. Further examples are the colour-

CHLAC features computed on 3D voxel data proposed
by Kanezaki et al. [28]; the sampling method introduced

by Liu et al. [46] to select points in regions of either

geometry-high variation or colour-high variation, and
define a signature based on feature vectors computed

at these points; the CSHOT descriptor [75], meant to

solve the surface matching problem based on local fea-
tures, i.e. by point-to-point correspondences obtained

by matching shape- and colour-based local invariant de-

scriptors of feature points.

Symmetry is another aspect used to characterize lo-

cal and global shape properties [51]. For instance Kazh-
dan et al. [29] introduced the Spherical Harmonic de-

scriptor to code the shape according to its rotational

symmetry around axes centred in the centre of mass.
In [3], the Spherical Harmonic descriptor has been pro-

posed in combination with colourimetric descriptors to

analyse textured 3D models. Giachetti and Lovato [25]

introduced the Multiscale Area Projection Transform
(MAPT) to couple the local degree of radial symme-

try (in a selected scale range) with a saliency notion

related to high shape symmetry, following an approach
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similar to the Fast Radial Symmetry [48] used in im-

age processing. Colour-weighted variations of MAPT,
merging geometric and texture information, have been

presented in [3,9].

In the last years, close attention has been paid to

non-rigid 3D shape matching and retrieval. To deal
with non-rigid deformations (bendings) it is necessary

to adopt shape descriptions that are invariant to iso-

metric shape deformations. A suitable metric for com-

paring non-rigid shapes is the geodesic one; indeed 3D
shape descriptions based on geodesics, such as geodesic

distance matrices [68] or geodesic skeleton paths [38],

have been successfully adopted for non-rigid shape com-
parison, see also [44]. In addition to geodesic, more so-

phisticated choices are possible, such as the diffusion

or the commute-time distance [77]. On the basis of the
fact that these distances are well-approximated by the

Laplace-Beltrami operator, several spectral descriptors

were proposed to characterize the geometric features

of non-rigid 3D shapes [37], such as the ShapeDNA
[62], the Heat Kernel Signature [23,70], the Wave Ker-

nel Signature [2], the Global Point Signature [65] and

the Spectral Graph Wavelet Signature [40]. In the con-
test of textured 3D meshes, the Photometric Heat Ker-

nel Signatures [31,32,33] fuse geometry and colour in

a local-global description. The underlying idea is us-
ing the diffusion framework to embed the shape into

a high-dimensional space where the embedding coordi-

nates represent the photometric information. Following

the same intuition, in [5] the authors generalized the
geodesic distance as a hybrid shape description able to

couple geometry and texture information.

Other invariance classes can be relevant in applica-

tions, possibly including non-isometric transformations

such as topological deformations or local and global
scaling. In this case, topological approaches [16,21] of-

fer a modular framework in which it is possible to plug

in multiple shape properties in the form of different real
functions, so as to describe shapes and measure their

(dis)similarity up to different notions of invariance. Ex-

amples of these descriptions are Reeb graphs [6,61], size
functions [7], persistence diagrams [42,11] and persis-

tence spaces [10]. Recently, topological descriptors have

been shown to be a viable option for comparing shapes

endowed with colourimetric information [5].

3 The benchmark

In this Section, we describe the benchmark adopted in
the proposed comparative analysis. The dataset and the

ground truth are available by following the instructions

at http://www.ge.imati.cnr.it/?q=shrec14.

3.1 The dataset

The dataset is made of 572 watertight mesh models, see

Figure 1, grouped in 16 geometric classes of 32 or 36

instances. Each geometric class represents a type of ge-
ometric shape (e.g., humans, birds, trees, etc). Besides

the geometric classification, models are also classified in

12 texture classes. Each texture class is characterized
by a precise pattern (e.g., marble, wood, mimetic, etc).

The collection is built on top of a set of null models,

that is, base meshes endowed with two or three different

textures. All the other elements in the dataset come as
the result of applying a shape transformation to one

of the null shapes, so that a geometric and a texture

deformation are randomly combined case by case.

The geometric deformations include the addition
of Gaussian noise, mesh re-sampling, shape bending,

shape stretching and other non-isometric transforma-

tions that do not necessarily preserve the metric prop-
erties of shapes (e.g. the Riemannian metric).

As for texture deformations, they include topolog-

ical changing and scaling of texture patterns, as well

as affine transformations in the RGB colour channels,
resulting in, e.g., lighting and darkening effects, or in a

sort of pattern blending. While the topological texture

deformation has been applied manually, affine transfor-
mations admit an analytic formulation. A numerical pa-

rameter allows to tune each analytic formulation, thus

making possible to automatically generate a family of
texture deformations. In our dataset, texture transfor-

mations are grouped in five families, each family being

the result of three different parameter values.

Figure 2 illustrates some geometric and texture de-
formations in action. The added value in working with

a dataset built in this way is that particular weaknesses

and strengths of algorithms can be better detected and
analysed. Indeed, methods can be evaluated in specific

tasks, for example retrieval against (simulated) illumi-

nation changing or degradation of texture pattern. This

is actually part of the proposed comparative study, see
Section 5.1.1 for more details.

Together with the dataset, a training set made of

96 models classified according to both geometry (16
classes) and texture (12 classes) has been made avail-

able for methods requiring a parameter tuning phase.

3.2 The retrieval and classification tasks

In our analysis we distinguished two tasks: retrieval and
classification. For each task, at most three runs for each

method have been considered for evaluation, being the

result of either different parameter settings or more sub-

http://www.ge.imati.cnr.it/?q=shrec14
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Fig. 1 The collection of textured 3D models used in the comparative study.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (l)

Fig. 2 Two base models (a, f) together with some purely geometric (b− e) and purely texture (g − l) modifications.

stantial method variations.

Retrieval task. Each model is used as a query against

the rest of the dataset, with the goal of retrieving the

most relevant objects. For a given query, a retrieved

object is considered highly relevant if the two models
share both geometry and texture; marginally relevant

if they share only geometry; not relevant otherwise. For

this task, a dissimilarity 572×572 matrix was required,

each element (i, j) recording the dissimilarity value be-

tween models i and j in the whole dataset.

Classification task. The goal is to assign each query to

both its geometric and texture class. To this aim, a

nearest neighbour (1-NN) classifier has been derived
from the dissimilarity matrices used in the retrieval

task. For each run, the output consists of two classifica-

tion matrices, a 572× 16 one for the geometric classifi-
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cation and a 572× 12 one for the texture classification.

In these matrices, the element (i, j) is set to 1 if i is
classified in class j (that is, the nearest neighbour of

model i belongs to class j), and 0 otherwise.

3.3 The evaluation measures

The following measures have been used to evaluate the
retrieval and classification performances of each method.

3.3.1 Retrieval evaluation measures

3D retrieval evaluation has been carried out according

to standard measures, namely precision-recall curves,

mean average precision, Nearest Neighbour, First Tier,
Second Tier, Normalized Discounted Cumulated Gain

and Average Dynamic Recall [76].

Precision-recall curves and mean average precision.

Precision and recall are common measures to evaluate
information retrieval systems. Precision is the fraction

of retrieved items that are relevant to the query. Recall

is the fraction of the items relevant to the query that

are successfully retrieved. Being A the set of relevant
objects and B the set of retrieved object,

Precision =
|A ∩B|
|B| , Recall =

|A ∩B|
|A| .

Note that the two values always range from 0 to 1. For

a visual interpretation of these quantities it is useful
to plot a curve in the reference frame recall vs. preci-

sion. We can interpret the resul as follows: the larger the

area below such a curve, the better the performance un-
der examination. In particular, the precision-recall plot

of an ideal retrieval system would result in a constant

curve equal to 1. As a compact index of precision vs.
recall, we consider the mean average precision (mAP),

which is the portion of area under a precision recall-

curve: from the above considerations, it follows that

the maximum mAP value is equal to 1.

Nearest Neighbour, First Tier and Second Tier. These

evaluation measures aim at checking the fraction of
models in the query’s class also appearing within the

top k retrievals. Here, k can be 1, the size of the query’s

class, or the double size of the query’s class. Specifically,
for a class with |C| members, k = 1 for the nearest

neighbour (NN), k = |C|−1 for the first tier (FT), and

k = 2(|C| − 1) for the second tier (ST). Note that all

these values necessarily range from 0 to 1.

Average dynamic recall. The idea is to measure how

many of the items that should have appeared before or

at a given position in the result list actually have ap-

peared. The average dynamic recall (ADR) at a given
position averages this measure up to that position. Pre-

cisely, for a given query let A be the set of highly rel-

evant (HR) items, and let B be the set of marginally
relevant (MR) items. Obviously A ⊆ B. The ADR is

computed as:

ADR =
1

|B|

|B|
∑

i=1

ri,

where ri is defined as

ri =

{

|{HR items in the first i retrieved items}|
i

, if i ≤ |A|;
|{MR items in the first i retrieved items}|

i
, if i > |A|.

Normalized discounted cumulated gain. It is first conve-
nient to introduce the discounted cumulated gain (DCG).

Its definition is based on two assumptions. First, highly

relevant items are more useful if appearing earlier in a
search engine result list (have higher ranks); second,

highly relevant items are more useful than marginally

relevant items, which are in turn more useful than not

relevant items. Precisely, the DCG at a position p is
defined as:

DCGp = rel1 +

p
∑

i=2

reli
log2(i)

,

with reli the graded relevance of the result at position i.

Obviously, the DCG is query-dependent. To overcome
this problem, we normalize the DCG to get the normal-

ized discounted cumulated gain (NDCG). This is done

by sorting elements of a retrieval list by relevance, pro-

ducing the maximum possible DCG till position p, also
called ideal DCG (IDCG) till that position. For a query,

the NDCG is computed as

NDCGp =
DCGp

IDCGp

.

It follows that, for an ideal retrieval system, we would

have NDCGp = 1 for all p.

3.3.2 Classification performance measures.

We also consider a set of performance measures for clas-
sification, namely confusion matrix, sensitivity, speci-

ficity and the Mattews correlation coefficient [19,49].

Confusion matrix. Each classification performance can

be associated with a confusion matrix CM , that is, a
square matrix whose order is equal to the number of

classes (according to either the geometric or the tex-

ture classification) in the dataset. For a row i in CM ,
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the element CM(i, i) gives the number of items which

have been correctly classified as elements of class i; sim-
ilarly, elements CM(i, j), with j 6= i, count items which

have been misclassified, resulting as elements of class j

rather then elements of class i. Thus, the classification
matrix CM of an ideal classification system should be a

diagonal matrix, such that the element CM(i, i) equals

the number of items belonging to the class i.

Sensitivity, specificity and Matthews correlation coeffi-
cient. These statistical measures are classical tools for

the evaluation of classification performances. Sensitiv-

ity (also called the true positive rate) measures the pro-
portion of true positives which are correctly identified

as such (e.g. the percentage of cats correctly classified

as cats). Specificity (also known as true negative rate)

measures the proportion of true negatives which are cor-
rectly identified as such (e.g. the percentage of non-cats

correctly classified as non-cats). A perfect predictor is

100% sensitive and 100% specific.

The Matthews correlation coefficient takes into ac-
count true and false positives and negatives and is gen-

erally regarded as a balanced measure which can be

used even if the classes are of very different sizes. The

MCC is in essence a correlation coefficient between the
observed and predicted classifications; it returns a value

between -1 and 1. A coefficient of 1 represents a per-

fect classification, 0 no better than random classifica-
tion and -1 indicates total disagreement between clas-

sification and observation.

4 Description of the methods

Six methods for textured 3D shape retrieval and clas-

sification have been implemented. In this section we

describe them in detail, focusing also on their possible

variations and the choice of the parameters adopted to
implement the runs used in our comparative evaluation.

1. Histograms of Area Projection Transform and Colour
Data and Joint Histograms of MAPT and RGB data

(runs GG1,GG2,GG3), Section 4.1. These runs

are based on a multi-scale geometric description able
to capture local and global symmetries coupled with

histograms of the normalized RGB channels;

2. Spectral geometry based methods for textured 3D
shape retrieval (runs LBG1, LBG2, LBG3 and

LBGtxt), Section 4.2. These runs combine an in-

trinsic, spectral descriptor with the concatenated

histogram of the RGB values;
3. Colour + Shape descriptors (runs Ve1, Ve2, Ve3),

Section 4.3. These runs adopt combinations (with

different weights) of the histogram of the RGB val-

ues with a geometric descriptors represented by the

eigenvalues of the geodesic distance matrix;
4. Textured shape distribution, joint histograms and

persistence (runsGi1,Gi2,Gi3), Section 4.4. These

runs combine several geometric, colourimetric and
hybrid descriptors: namely, the spherical harmonics

descriptor, the shape distributions of the geodesic

distances weighted with the colourimetric attributes
and a persistence-based description based on the

CIELab space;

5. Multiresolution Representation Local Binary Pat-

tern Histograms (run TAS), Section 4.5. This run
captures the geometric information through the com-

bination of a multi-view approach with local binary

patterns and combines it with the concatenated his-
tograms of the CIELab colour channels;

6. PHOG: Photometric and geometric functions for

textured shape retrieval (runs BCGS1, BCGS2,
BCGS3), Section 4.6. These runs combine a shape

descriptor based on geometric functions; a persistence-

based descriptor built on a generalized notion of

geodesic distance that combines geometric and colouri-
metric information; a purely colourimetric descrip-

tor based on the CIELab colour space.

4.1 Histograms of Area Projection Transform and

Colour Data and Joint Histograms of MAPT and

RGB data (runs GG1-3)

Computing the similarity between textured meshes is

achieved according to two different approaches based

on histograms of Multiscale Area Projection Transform
(MAPT) [25]. MAPT originates from the Area Projec-

tion Transform (APT), a spatial map that measures

the likelihood of the 3D points inside the shape of be-
ing centres of spherical or cylindrical symmetry. For a

shape S represented by a surface mesh S, the APT is

computed at a 3D point x for a radius of interest r:

APT(x,S, r, σ) = Area(T−1
r (kσ(x) ⊂ Tr(S,n))),

where Tr(S,n) is the surface parallel to S shifted along

the inward normal vector n for a distance r, and kσ(x)
is a sphere of radius σ centred in x. APT values at

different radii are normalized to have a scale-invariant

behaviour, creating the Multiscale APT (MAPT):

MAPT(x,S, r) = APT(x,S, r, σ(r))
4πr2

,

with σ(r) = c · r for 0 < c < 1.

A discrete version of the MAPT function is imple-

mented following [25]. Roughly, the map is estimated

on a grid of voxels with side length s and for a set of
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corresponding sampled radius values r1, ..., rt. This grid

partitions the mesh’s bounding box, but only the voxels
belonging to the inner region of the mesh are considered

when creating the histogram.

Histograms of MAPT are very good global shape

descriptors, performing state of the art results on the

SHREC 2011 non-rigid watertight contest dataset [43].
For that retrieval task, the MAPT function was com-

puted using 8 different scales (radius values) and the

map values were quantized in 12 bins; finally the 8 his-
tograms were concatenated creating an unique descrip-

tor of length 96. The voxel size and the radius values

were chosen differently for each model, proportionally

to the cube root of the object volume, in order to have
the same descriptor for scaled versions of the same ge-

ometry. The value of c was always set to 0.5.

To deal with textured meshes, the MAPT approach

has been modified in two different ways, so to exploit

also the colour information.

4.1.1 Histograms of MAPT and Colour Data

MAPT histograms are computed with the same radii

and sampling grid values as in [25]: the isotropic sam-

pling grid is proportional to the cube root of the volume
V of each model, that is, of side length s = 3

√
V /30),

and the sampled radii are integer multiples of s (10

values from 2s to 11s). The radius σ is taken, as in the

original paper, equal to ri/2 for all the sampled ri. Fur-
thermore, for each mesh the histogram of colour com-

ponents is computed. With this procedure each mesh is

described by two histograms, the first one representing
the geometric information and the second one repre-

senting the texture information. The total dissimilarity

between two shapes S1, S2 is then assessed using a con-
vex combination of the two histogram distances:

D(S1,S2) = γ dgeo(S1,S2) + (1− γ) dclr(S1,S2), (1)

where 0 ≤ γ ≤ 1 , dgeo(S1,S2) is the normalized Jeffrey
divergence between the two MAPT histograms of S1

and S2, and dclr(S1,S2) corresponds to the normalized

χ2-distance of the two colour histograms. The choice of
γ in (1) allows the user to decide the relevance of colour

information in the retrieval process.

Results shown in Section 5 are obtained by applying

two different pre-processing steps to the RGB values,

both adopted to have a colour representation that is

invariant to illumination changes.

The first method, resulting in run GG1, is a simple

contrast stretching for each RGB channel, mapping the
min-max range of each channel to [0, 1]. In this case the

colour quantization is set to 4 bins for each normalized

RGB channels and γ is set to 0.6.

The second model, corresponding to run GG2, is

the greyworld representation [20] in which each RGB
value is divided by its corresponding channel mean value:

(Rg = R/Ravg, Gg = G/Gavg, Bg = B/Bavg). Here,

γ = 0.6 and the 4 histogram bins are centred in the
mean value and are linearly distributed within a range

of [0, 2] for each greyworld RGB channel.

4.1.2 Joint Histograms of MAPT and greyworld RGB
data

To get runGG3, a new descriptor has been designed by

concatenating the original APT histogram with those
obtained from the 3 components of the selected (nor-

malized) colour space. For each voxel, the APT is evalu-

ated at a certain radius; the procedure is then repeated

for all the radius values (r1, ..., rt), and the t histograms
are finally linearized and concatenated. In the present

paper, a sampling grid with side length s = 3
√
V /18

has been used for each model, together with 9 sampled
radii that are integer multiples of s (t = 9 values from

2s to 10s). The APT target set has been divided into

8 bins. As for the colour components, the above grey-
world RGB representation has been adopted, and each

channel has been quantized in 4 bins in the range [0, 2].

The dissimilarity between two meshes is obtained with

the normalized Jeffrey divergence [15] between the two
corresponding linearized and concatenated sets of joint

histograms.

4.2 Spectral geometry – based methods for textured

3D shape retrieval (runs LBG1-3, LBGtxt)

This method is build on the spectral geometry-based
framework proposed in [37], suitably adapted for tex-

tured 3D shape representation and retrieval.

The spectral geometry approach, which is based on

the eigendecomposition of the Laplace-Beltrami opera-
tor (LBO), provides a rich set of eigenbases invariant to

isometric transformations. Also, these eigenbases serve

as ingredients for two further steps: feature extraction,
detailed in Section 4.2.1, and spatial sensitive shape

comparison via intrinsic spatial pyramid matching [39],

discussed in Section 4.2.2. The cotangent weight scheme

[14] was used to discretize LBO. The eigenvalues λi and
associated eigenfunctions ϕi can be computed by solv-

ing the generalized problem

Cϕi = λiAϕi, i = 1, 2, . . . ,m,

where A is a positive-definite diagonal area matrix and

C is a sparse symmetric weight matrix. In the proposed

implementation, m is set to 200.
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4.2.1 Feature extraction

The first step consists in the computation of an infor-

mative descriptor at each vertex of a triangle mesh rep-

resenting a shape. The spectral graph wavelet signa-
ture [40] is used to capture geometry information and

colour histogram to encode texture information.

Geometry information. In general, any of the spectral

descriptors with the eigenfunction-squared form reviewed

in [41] can be considered in this framework for isomet-
ric invariant representation. Here, the spectral graph

wavelet signature (SGWS) is adopted as local descrip-

tor. SGWS provides a general and flexible interpreta-

tion for the analysis and design of spectral descriptors.
For a vertex x of a triangle mesh, it is defined as

SGWSt(x) =

m
∑

i=1

g(t, λi)ϕ
2
i (x).

In a bid to capture both global and local geometry,
a multi-resolution shape descriptor is derived by set-

ting g(t, λi) as a cubic spline wavelet generating kernel

and considering the scaling function (see [40, Eq. (20)]

for a precise formulation of g). This leads to the multi-
scale descriptor defined as SGWS(x) = {SGWSt(x), t =

1, . . . , T}, with T the chosen resolution and SGWSt(x)

the shape signature at the resolution level t. In the pro-
posed implementation T is set to 2.

Texture information. Colour histograms (CH) are used
to characterize texture information on the surface. Each

channel is discretized into 5 bins.

4.2.2 Shape comparison via intrinsic spatial pyramid

matching

To incorporate the spatial information, the Intrinsic

Spatial Pyramid Matching (ISPM) [39] is considered.

ISPM can provably imitate the popular spatial pyra-

mid matching (SPM) [35] to partition a mesh in a con-
sistent and easy way. Then, Bag-of-Feature (BoF) and

Locality-constrained Linear Coding (LLC) [78] can be

used to characterize the partitioned regions.
The isocontours of the second eigenfunction (Fig-

ure 3) are considered to partition the shape into R re-

gions, with R = 2l−1 for the partition at a resolu-
tion level l. Indeed, the second eigenfunction is the

smoothest mapping from the manifold to the real line,

making this intrinsic partition quite stable. Thus, the

shape description is given by the concatenation of R

sub-histograms of SGWS and CH along eigenfunction

values in the real line. To consider the two-sign pos-

sibilities in the concatenation, the histogram order is

inverted, and the scheme with the minimum cost is con-

sidered as a better matching. Therefore, the descriptive
power of SGWS and CH is enhanced by incorporating

this spatial information.

Fig. 3 The isocontours of the second eigenfunction.

Given a SGWS+CH descriptor densely computed

on each vertex on a mesh, quantization via the code-

book model approach is adopted to obtain a compact
histogram shape representation. The classical k-means

method is used to learn a dictionary Q = {q1, . . . , qK},
where words are obtained as the K centroids of the k-

means clusters. In the proposed implementation, K =
100. In order to assign the descriptor to a word in the

vocabulary, approximated LLC is performed for fast en-

coding, then max-pooling is applied to each region. Fi-
nally, ISPM induced histograms for shape representa-

tion are derived.

The dissimilarity between two shapes is given by

L2 distance between the associated ISPM induced his-
tograms. Geometry and texture information are han-

dled separately, and the final dissimilarity score is a

combination of the geometric and the texture distance.

4.2.3 The runs

The proposed approach has been implemented to derive
three different runs for the retrieval task:

– LBG1 represents LCC strategy with partition level
l = 1 for geometric information;

– LBG2 represents LCC strategy with partition level

l = 3 for geometric information;

– LBG3 is a weighted combination of geometric and
texture information, namely LCC strategy with par-

tition level 3 for SGWS and partition level l = 5 for

colour histograms, with coefficients 0.8 and 0.2, re-
spectively.

For the classification task, two nearest neighbour
classifiers are derived, a geometric one from LBG2 and

a texture one from the texture contribution of LBG3.

In what follows, the latter is referred to as LBGtxt.
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4.3 Colour + Shape descriptors (runs Ve1-3)

This method is a modification of the “3D Shape +

colour” descriptor proposed in [9]. To describe a tex-

tured 3D shape S represented by a surface mesh S, two
main steps are considered:

1. Let G be a n × n geodesic distance matrix, where

n is the number of vertices in S and the element

G(i, j) denotes the geodesic distance from the ver-
tex i to vertex j on S. Building onG, the centralised

geodesic matrix [50] is defined as D = G − 1nG −
G1n+1nG1n, where 1n denotes a n×nmatrix hav-
ing each component equal to 1/n. Following [68], a

spectral representation of the geodesic distance is

finally adopted as shape descriptor, that is, a vector

of eigenvalues Eig(D) = (λ1(D), . . . , λn(D)), where
λi(D) is the ith largest eigenvalue. As in [9], the

first 40 eigenvalues are used as shape descriptor. The

vectors of eigenvalues Eig(D1), Eig(D2) associated
with two shapes S1,S2 are compared through the

mean normalized Manhattan distance, i.e.,

dgeo(S1,S2)) =

40
∑

k=1

2|λk(D1)− λk(D2)|
λk(D1) + λk(D2)

.

2. To incorporate texture information in the shape de-

scriptor, the RGB colour histograms are considered

as in [9]. Accordingly, the distance dclr(S1,S2)) be-
tween the texture shape descriptors associated with

S1, S2 is given by the Earth mover’s distance (EMD)

between the corresponding RGB colour histograms.
For two histograms p and q, the EMD measures the

minimum work that is required to move the region

lying under p to that under q. Mathematically, it

has been defined as the total flow that minimizes
the transport from p to q. We refer keen readers

to [63] for a comprehensive review of EMD formu-

lation, and to [58] for an application to shape re-
trieval. To concretely evaluate EMD, the fast im-

plementation introduced by [56] has been used with

a thresholded ground distance.

Last, the final distance between S1 and S2 is defined as
follows:

D(S1,S2) = (dgeo(S1,S2))
p + (dclr(S1,S2))

1−p,

where p is a parameter to control the trade-off between
colour and shape information. In the experiments, p =

0.75 (run Ve1), p = 0.85 (run Ve2), and p = 0.95 (run

Ve3), following the paradigm that geometric shape prop-

erties should be more important than colourimetric ones
in the way humans interpret similarity between shapes.

An illustration of the proposed description for a tex-

tured shape is given in Fig. 4.

Fig. 4 Proposed method includes a shape descriptor from
the geodesic distance matrix and a colour descriptor from the
histogram representation of RGB colour information. Details
are included in section 4.3

4.4 Textured shape distribution, joint histograms and
persistence (runs Gi1-3)

The CIELab colour space well represents how human

eyes perceive colours. Indeed, uniform changes of co-
ordinates in the CIELab space correspond to uniform

changes in the colour perceived by the human eye. This

does not happen with some other colour spaces, for ex-

ample the RGB space. In the CIELab colour space,
tones and colours are held separately: the L channel

is used to specify the luminosity or the black and white

tones, whereas the a channel specifies the colour as ei-
ther a green or a magenta hue and the b channel spec-

ifies the colour as either a blue or a yellow hue.

Run Gi1. The Textured Shape Distribution (TSD) de-
scriptor is a colour-aware variant on the classical Shape

Distributions (SD) descriptor [53]. Indeed, TSD con-

sists of the distribution of colour-aware geodesic dis-

tances, which are computed between a number of sam-
ple points scattered over the surface mesh representing

the 3D model.

The surface mesh is embedded in the 3-dimensional

CIELab colour space, so that each vertex has (L,a,b) co-
ordinates. Then, in order to get colour-aware geodesic

distances, a metric has to be defined in the embed-

ding space. To this end, the length of an edge is de-
fined as the distance between its endpoints, namely, the

CIE94 distance defined for CIELab coordinates [18].

This distance is used here instead of a classical Eu-

clidean distance as it was specifically defined for the
CIELab space, and employs specific weights to respect

perceptual uniformity [18]. The colour-aware geodesic

distances are computed in the embedding space with
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the metric induced by the CIE94 distance. The dis-

tances are computed between pairs of points sampled
over the surface mesh. A set of 1024 points was sampled

in the current implementation, following a farthest-point

criterion. The Dijkstra algorithm was used to compute
colourimetric geodesic distances between pairs of sam-

ples.

The final descriptor encodes the distribution of these

distances. In the current implementation, the distribu-

tion was discretized using a histogram of 64 bins. His-

tograms were compared using the L2 norm. Therefore,
the distance between two models is the distance be-

tween their descriptors, namely the L2 norm between

the corresponding histograms. TSD encodes the distri-
bution of colour distances, yet it also takes into account

the connectivity of the underlying model, as distances

are computed by walking on the surface model. In this
sense, TSD can be considered as a hybrid descriptor,

taking into account both colourimetric and geometric

information.

Run Gi2. Though TSD retains some information about

the shape of 3D models, in terms of the connectivity of
the mesh representing the object, it still loses most of

the geometric information about the object, as it does

not take into account the length of the edges in the
Euclidean space. This geometric information can be re-

covered by using a joint distribution, which takes into

account both colourimetric geodesic distances and clas-

sical geodesic distances computed on the surface em-
bedded in the Euclidean space. In this run, the joint

distribution has been discretized by computing a 16×16

bi-dimensional joint histogram (JH) for each 3D model.
The L2-norm is used for comparison. The distance ma-

trix is the sum of the distance matrix obtained using

the TSD descriptor and the distance matrix obtained
using the JH descriptor.

Run Gi3. In [5] the authors proposed a signature which
combines geometric, colourimetric, and hybrid descrip-

tors. In line with this idea, Run Gi3 combines TSD with

a geometric descriptor, namely the popular Spherical
Harmonic (SD) descriptor [29], and a colourimetric de-

scriptor, namely the persistence-based descriptor of the

PHOG signature in [5], using the CIELab colour space

coordinates. The distance matrix corresponding to this
run is the sum of the three distance matrices obtained

using the TSD descriptor, the SH descriptor, and the

persistence-based descriptor of PHOG, respectively.

4.5 Multi-resolution Representation Local Binary

Pattern Histograms (run TAS)

The Multi-resolution Representation Local Binary Pat-

tern Histograms (MRLBPH) is proposed here as a novel

3D model feature that captures textured features of

rendered images from 3D models by analysing multi-
resolution representations using Local Binary Pattern

(LBP) [52].

Figure 5 illustrates the generation of MRLBPH. A

3D model is normalized via Point SVD [74] to be con-

tained in a unit geodesic sphere. From each vertex of the
sphere, depth and colour buffer images with 256× 256

resolution are rendered; a total of 38 viewpoints are de-

fined. A depth channel and each CIELab colour channel
are then processed as detailed in what follows.

To obtain multi-resolution representations, a Gaus-
sian filter is applied to an image with varying standard

deviation parameters. The standard deviation param-

eter σl at level l is evaluated by using the following

equation involving the left factorial of l:

σl = σ0 + α·!l, l = 0, . . . , Λ

where σ0 is the initial value of the standard deviation

parameter, and α is the incremental parameter. This
equation has been derived from the optimal standard

deviation parameters obtained through preliminary ex-

periments. In the proposed implementation, σ0 = 0.8
and α = 0.6, while the number of levels Λ is set to 4.

For each scale image, a LBP histogram is evaluated.
To incorporate spatial location information, the image

is partitioned into 2× 2 blocks and the LBP histogram

at each block is computed. The LBP histogram of each

scale image is obtained by concatenating the histograms
of these blocks. Let gc denote the image value at arbi-

trary pixel (u, v), and let g1, . . . , g8 be the image values

of each of the eight neighbourhood pixels. The LBP
value is then calculated as

LBP(u, v) =
8

∑

i=1

s(t, gi − gc) · 2i−1,

where s(t, g) is a threshold function defined as 0 if g < t

and 1 otherwise. In the proposed implementation, the

threshold value t is set to 0, and the LBP values are

quantized into 64 bins.

An MRLBP histogram is generated by merging the

histograms of scale images through the selection of the
maximum value of each histogram bin. Let h

(l)
i be the

ith LBP histogram element of a scale image at level l.

The ith MRLBP histogram element hi is defined as

hi = max
l

h
(l)
i , l = 0, . . . , Λ.
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Fig. 5 Overview of our Multiresolution Representation Local
Binary Pattern Histograms (MRLBPH)

The MRLBP histogram is finally normalized using the

L1 norm.
The feature vector associated with a 3D model is

obtained by calculating the MRLBP histogram of the

depth and CIELab channel for each viewpoint.

To compare two shapes S1 and S2, the Hungarian
method [34] is applied to all dissimilarities between

the associated MRLBP histograms. In evaluating the

final dissimilarity score, the histograms of the depth
and CIELab channels are combined by calculating the

weighted sum of each dissimilarity. Let dd, dL, da, and

db denote the dissimilarity of each channel, and let wd,
wL, wa, and wb be the weight of each channel. The

dissimilarity D(S1,S2) is defined as the dissimilarity

between the corresponding MRLBP histograms:

D(S1,S2) = wddd(S1,S2) + wLdL(S1,S2)

+wada(S1,S2) + wbdb(S1,S2).

In this implementation, wd is set to 0.61, wL to 0.13, wa

to 0.13, and wb to 0.13. For the dissimilarity between
two histograms, the Jeffrey divergence is used [15].

4.6 PHOG: Photometric and geometric functions for

textured shape retrieval (runs BCGS1-3)

The combination of colourimetric properties and ge-

ometric properties represented in terms of scalar and

multi-variate functions has been explored in PHOG [5],
a shape signature consisting of three parts:

– A colourimetric descriptor. CIELab colour coordi-

nates (normalized L, a, b channels) are seen as ei-
ther scalar or multi-variate functions defined over

the shape. The CIELab colour space is considered

due the perceptual uniformity of this colour repre-
sentation;

– A hybrid descriptor. Shape and texture are jointly

analysed by opportunely weighting the colourimet-

ric information (L, a, b channels) with respect to the
underlying geometry and topology;

– A geometric description relying on a set of functions

representing as many geometric shape properties.

Functions are first clustered; then, a representative

function is chosen for each cluster. The goal here is
to select functions that are mutually independent,

thus complementing each other via the geometric

information they carry with them.

Figure 6 shows a pictorial representation for the gener-

ation of a PHOG signature.

Run BCGS1. Following the PHOG original setting,

the colourimetric description is included in the persis-
tence framework. Indeed, the a, b coordinates are used

to jointly define a bivariate function over a given shape,

whereas L is used as a scalar function. In this way,

colour and intensity are treated separately. Precisely,
for a shape S represented by a triangle mesh S, the two

functions fL : S → R and fa,b : S → R
2 are considered,

the former taking each point x ∈ S to the L-channel
value at x, the latter to the pair given by the a- and

the b-channel values at x, respectively. The values of

fL and fa,b are then normalized to range in the interval
[0,1]. Last, S is associated with the 0th persistence dia-

gram Dgm(fL) and the 0th persistence space Spc(fa,b):

these descriptors encode the evolution of the connectiv-

ity in the sublevel sets of fL and fa,b in terms of birth
and death (i.e. merging) of connected components, see

[5] for more details.

The hybrid description comes from a geodesic dis-

tance fgeod : S → R defined in a higher dimensional

embedding space, similarly to the approach proposed
in [31,33], and used as a real-valued function in the

persistence framework to associate S with the persis-

tence diagram Dgm(fgeod). The definition of the joint
geometric and colourimetric integral geodesic distance

is straightforward and implemented through the Dijk-

stra’s algorithm, which is based on edge length.

The geometric description is based on the DBSCAN

clustering technique [17]. Once a set of functions {fi :
S → R} (from an original set of 70 geometric func-
tions, see [5] for the complete list) is selected, a matrix

MDM(S) with entries

MDM(i, j) := 1− 1

Area(S)

∑

t∈S

∣

∣

∣

∣

<
∇tfi
‖∇tfi‖

,
∇tfj

‖∇tfj‖
>

∣

∣

∣

∣

is used to store the distances between all the possible

couple of functions, with ∇tfi, ∇tfj representing the

gradient of fi and fj over the triangle t of the mesh S.

To assess the similarity between two shapes S1 and

S2, the corresponding colourimetric, hybrid and geo-

metric descriptions are compared. In particular, the
colourimetric distance dclr(S1,S2) is the normalized sum

of the Hausdorff distance between the 0th persistence

diagrams of fL and that between the 0th persistence
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Fig. 6 Generating a PHOG signature. First row: A shape S
(left), the function fgeod (center) and the corresponding per-
sistence diagram Dgm(fgeod). Second row: the mutual dis-
tance matrix MDM(S), the function fL and the correspond-
ing persistence diagram Dgm(fL).

spaces of fa,b; the hybrid distance dhbd(S1,S2) is the

Hausdorff distance between the corresponding persis-
tence diagrams of fgeod; the geometric distance dgeo(S1,S2)

is computed as the Manhattan distance between the

matrices MDM(S1) and MDM(S2). The final dissim-
ilarity score between S1 and S2 is the normalized sum

dclr(S1,S2) + dhbd(S1,S2) + dgeo(S1,S2).

Variations. Several variations of the PHOG framework

are possible, for instance exploring the use of different

distances between feature vectors or dealing with vari-

ations of the three (colourimetric, hybrid, geometric)
shape descriptions. For the current implementation the

following changes have been proposed:

– run BCGS2. The original hybrid description is re-

placed by a histogram-based representation of the

geodesic distance. While getting rid of the addi-
tional geometric contribution provided by persis-

tence, the hybrid perspective is maintained as the

considered geodesic distance takes into account both

geometric and texture information.
– run BCGS3. The stability properties of persistence

diagrams and spaces imply robustness against small

variations in the L, a, b values. This also holds when
colour perturbations are widely spread over the sur-

face model, as in the case of slight illumination changes.

On the other hand, colour histograms behave well
against localized colourimetric noise, even if charac-

terized by large variations in the L, a, b values. In-

deed, in this case colour distribution is not altered

greatly. In this view, the idea is to replace the hy-
brid contribution with CIELab colour histograms,

so to improve the robustness properties of the the

persistence-based description. Histograms are ob-

tained as the concatenation of the L, a, b colour chan-

nels.

In RunsBCGS2-3, histograms are compared through
the Earth Mover’s distance (EMD). The DBSCAN clus-

tering technique for selecting representative geometric

functions is replaced by the one used in [8], which is
based on the replicator dynamics technique [55]. The

modified geometric descriptors are compared via the

EMD as well, after converting the MDM matrices into

feature vectors.

4.7 Taxonomy of the methods

The methods detailed above can be considered as repre-
sentatives of the variety of 3D shape retrieval and clas-

sification techniques overviewed in Section 2. Indeed,

they range from local feature vector descriptions coded
as histograms of geometric and/or colour properties, to

spectral and topological based descriptions, including

also a spatial pyramid matching framework. In what

follows, we group the properties of these methods on
the basis of the key characteristics they exhibit, e.g.,

the geometric and colourimetric structure they capture,

at which scale level the shape description is formalized,
or which colour space has been chosen for texture anal-

ysis. These characteristics are briefly described in the

following and summarized in Table 1.

Intrinsic vs. extrinsic. Studying the geometric shape of

a 3D model relies on the definition of a suitable metric
between its points. Among the possible options, two

particular choices appear quite natural.

The first one is to consider the Euclidean distance,
which in turn reflects the extrinsic geometry of a shape.

Extrinsic shape properties are related to how the shape

is laid out in an Euclidean space, and are therefore
invariant to rigid transformations, namely rotations,

translations an reflections.

A second choice is to measure the geodesic distance

between points, that is, to consider the intrinsic geom-

etry of a shape. Intrinsic shape properties are invariant

to those transformations preserving the intrinsic metric,
including rigid shape deformations but also non-rigid

ones such as shape bendings.

Methods associated with runs GG(1-3), TAS and

Gi3 are examples of extrinsic approaches; spectral meth-

ods (runs LBG(1-3)) and those based on geodesic dis-

tances (runs Ve(1-3) and Gi(1-2)) well represent in-
trinsic approaches. The PHOGmethod (runsBCGS(1-

3)) can be seen as a “mostly” intrinsic approach, be-

ing based on a collection of geometric functions which
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prevalently describe intrinsic shape properties.

Global vs. multi-scale. Shape descriptors generally en-

code information about local or global shape properties.

Local properties reflect the structure of a shape in the
vicinity of a point of interest, and are usually unaffected

by the geometry or the topology outside that neigh-

bourhood. Global properties, on the other hand, cap-
ture information about the whole structure of a shape.

Another option is to deal with shape properties at

different scales, thus providing a unifying interpretation
of local and global shape description. Such an approach

is usually referred to as multi-scale.

The methods presented in this contribution can be
classified as global and multi-scale ones, both for geo-

metric and texture information, see Table 1 for details.

RGB vs. non-RGB. The more natural colour space to

be used in the analysis of colourimetric shape prop-

erties appears to be the RGB one. This was actually
the choice carried on by methods associated with runs

LBGtxt and Ve(1-3). However, other options are pos-

sible. For instance, runs GG(1-3) are based on normal-

ized and averaged RGB channels, while methods related
to runs TAS, BCGS(1-3), Gi(1-3) study colourimet-

ric shape properties in the CIELab colour space.

Feature vectors vs. topology. Once geometric and tex-

ture shape properties have been analysed and captured,

they have to be properly represented through suitable
shape descriptors. The most popular approach is to

use feature vectors [73], and most of the methods im-

plemented in this paper actually adopt this descrip-
tion framework. Feature vectors generally encode shape

properties expressed by functions defined on the shape,

and are usually represented as histograms. While be-

ing very efficient to compute, histograms might forget
part of the structural information about the consid-

ered shape property. To overcome this limitation, it is

possible to consider the shape connectivity directly at
the function level, see for instance shape distributions

(runs Gi1 and Gi2). Alternatively, one can move to

more informative histogram variations: bi-dimensional
histograms, such as the geodesic distance matrix used in

runs Ve(1-3) and the mutual distance matrix adopted

in runs BCGS(1-3), or concatenated histograms ob-

tained at different resolution levels, as in the case of
runs GG(1-3), LBG(1-3,txt) and TAS.

A different way to preserve the structure of geo-

metric information is provided by descriptors rooted
in topology (runs BCGS(1-3) and Gi3). Indeed, they

keep track of the spatial distribution of a considered

shape property, and possibly encode the mutual relation

among shape parts of interest, that is, regions that are

highly characterized by the considered property. The
reader is referred to Table 1 for details about the ap-

proaches adopted by methods under evaluation.

Hybrid vs. combined. Finally, methods can be distin-

guished by the way the geometric and texture informa-
tion are merged together. Typically, this can be done

either a priori or a posteriori. The first case results in

a hybrid shape descriptor, as for runs GG3 and par-
tially for runs BCGS(1-3) and Gi(1-3). In the second

case, a pure geometric and a pure texture descriptor

are obtained and compared separately, while the final
dissimilar score is a weighted combination of the two

distances.

5 Comparative analysis

The methods detailed in Section 4 have been evaluated

through a comparative study presented in what follows.

Each run has been processed in terms of the output
specified in Section 3.2 and according to the evaluation

measures described in Sections 3.3.1 and 3.3.2.

5.1 Retrieval performances.

Following [76], the retrieval performance of each run

has been evaluated according to the following relevance
scale: if a retrieved object shares both shape and tex-

ture with the query, then it is highly relevant; if it shares

only shape, it is considered marginally relevant; other-
wise, it is not relevant. Note that, because of the multi-

level relevance assessment of each query, most of the

evaluation measures have been split up as well. Highly

relevant evaluation measures relate to the highly rele-
vant items only, while relevant evaluation measures are

based on all the relevant items (highly relevant items

+ marginally relevant items).

5.1.1 Highly relevant evaluation.

In the highly relevant scenario, the main goal is to eval-

uate the performance of algorithms when models vary
by both geometric shape and texture.

Figure 7 shows the performances of the six methods
in terms of the average precision-recall curve, which is

obtained as the average of the precision-recall curves

computed over all the queries. To ease results visual-

ization, the plot in Figure 7 includes only the best run
for each method, that is, runs with the highestmean av-

erage precision (mAP) score. We remind that, for ideal

retrieval systems, the mAP score equals to 1.
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Fig. 7 Highly relevant precision-recall curves for the best
run of each method.

The runs of Figure 7 have been analysed also in
terms of the weighted average mAP score computed

over the 48 classes that represent the highly relevant

scenario, where weights are determined by the size of
the classes, see the second column of Table 2. Moreover,

we considered also the percentage of classes whose mAP

score is larger that some threshold values, namely 0.40,

0.55, 0.70, 0.85, see columns (3-6) in Table 2.

Table 2 Highly relevant analysis for the runs in Figure 7:
weighted average mAP score (first column), and how many
of the 48 highly relevant classes have a mAP score exceeding
values 0.40, 0.55, 0.70, 0.85 ((third - last column, respectively;
results are reported in percentage points). The best two re-

sults are in gold and silver text, respectively.

Runs mAP
> 0.40 > 0.55 > 0.70 > 0.85
(%) (%) (%) (%)

BCGS3 0.7225 100.00 79.17 52.08 27.08

GG1 0.6980 100.00 81.25 50.00 18.75
Gi3 0.5365 79.17 39.58 18.75 4.17
LBG3 0.5256 77.08 33.33 10.42 2.08
TAS 0.4380 64.58 12.50 2.08 0.00
Ve1 0.4671 68.75 29.17 4.17 0.00

To further analyse retrieval performances against
texture deformations, we restrict the mAP analysis to

each specific class of colourimetric transformations de-

scribed in Section 3. More precisely, we first let the
algorithms run exclusively on set of null models. Then,

we add only those elements that come as a result of one

of the five texture transformations used to generate the

entire dataset. Note that, according to the procedure
used to create the benchmark, each texture deforma-

tion is always applied together with a geometric one,

hence it still makes sense to apply the highly relevant

paradigm along the evaluation process. Table 3 sum-

marizes the results.

Looking at how the performances degrade across the

different families of transformations, it can be noted

that all methods appear to be not too sensitive against

transformations of type 2, while the worst results are
distributed among transformations of type 1 (runs Gi3,

LBG3,TAS andVe2), and 3 (runsBCGS3 andGG1).

Table 4 reports the best highly relevant performances

in terms of Nearest Neighbour, First Tier and Second
Tier evaluation measures. Additionally, the last column

of Table 4 records the ADR measures. All the scores,

which range from 0 (worst case) to 1 (ideal perfor-
mance), are averaged over all the models in the dataset.

Table 4 Best NN, FT, ST and ADR values for each method.
Numbers in parenthesis indicate the run achieving the corre-
sponding value. For each evaluation measure, the best two

results are in gold and silver text, respectively.

Runs NN FT ST ADR

BCGS 0.967(3) 0.620(3) 0.760(3) 0.496(3)

GG 0.930(3) 0.600(1) 0.740(1) 0.478(1)

Gi 0.894(2) 0.455(3) 0.590(3) 0.383(3)
LBG 0.686(3) 0.440(3) 0.592(3) 0.369(3)
TAS 0.558 0.375 0.527 0.318
Ve 0.735(1) 0.396(1) 0.539(1) 0.342(1)

Finally, Figure 8 shows the best run of each method

according to the NDCG measure as a function of the

rank p. In the present evaluation, the NDCG values

for all queries are averaged to obtain a measure of the
average performance for each submitted run. Remind

that, for an ideal run, it would be NDCG ≡ 1.
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Fig. 8 Performances of the best runs w.r.t. the NDCG mea-
sure (run GG1 is almost totally covered by runs Gi3, LBG3
and TAS).

The NDCG measure takes geometric retrieval per-

formances into larger account than texture ones. In-
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deed, geometric shape similarity is involved in the def-

inition of both relevant and highly relevant items. This
means that runs characterized by moderate geometric

retrieval performances will be more penalized than oth-

ers (see also Section 5.1.2). This is the case of runGG1,
which is indeed definitely tuned for the highly relevant

rather then the relevant scenario.

Discussion. Trying to interpret the outcome of the highly

relevant evaluation, we are led to the following consid-
erations:

• The algorithm design associated with runsBCGS3

and Gi3 proposes a similar combination of geometric
and texture information. Indeed, both methods rely

on a hybrid shape description, in which texture con-

tribution is in part based on a geometric–topological
analysis of colourimetric properties and carried out in

the CIELab colour space. In other words, a “struc-

tured” analysis of the colour channels is paired with the
choice of a colour space that better reflects, with respect

to the RGB one, human colour perception. Moreover,

the geometric–topological approach allows for keeping

track of the underlying connectivity of 3D models, thus
providing additional information about the spatial dis-

tribution of colourimetric shape properties;

• Run GG1 represents a combined shape descrip-

tor, whose texture contribution is based on considering

a normalized version of the RGB colour space. Such a
choice seems to imply a good robustness against texture

affine transformations. Incidentally, it should be noted

that, in spite of presenting only the best runs to ease

readability and visualization of results, runs GG2 and
GG3, which are based on the greyworld RGB chan-

nels normalization, exhibit results which are compara-

ble with those of run GG1;

• As for runs LBG and Ve, texture description

is accomplished through standard histograms of RGB
colour channels, although runs LBG incorporate some

additional information as the result of considering a

multi-resolution approach applied to shape sub-parts.
However, it seems that dealing with colourimetric in-

formation in other colour spaces, such as the CIELab

one or variations of the RGB colour space, allows for

a representation of colour that is more robust to the
texture deformations proposed in this benchmark.

5.1.2 Relevant evaluation.

In this Section we analyse the performances of methods

with respect to their capability of retrieving relevant
items; in this case shape (dis)similarity depends only on

geometric shape properties. In analogy to Section 5.1.1,

Figure 9 shows the best runs for all methods in terms of
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Fig. 9 Relevant precison-recall curves for the best run of
each method.

the average precision-recall curve. Table 5 reports the

mAP scores of those runs, which are now averaged over
the 16 geometric classes composing the dataset. Also

in this case, we report for how many classes the mAP

score exceeds values 0.40, 0.55, 0.70, 0.85.

Table 5 Relevant analysis for the runs in Figure 9: weighted
average mAP score (first column), and how many of the 16
relevant classes have a mAP score exceeding values 0.40, 0.55,
0.70, 0.85 (third - last column, respectively; results are re-
ported in percentage points). The best two results are in

gold and silver text, respectively.

Run mAP
> .40 > .55 > .70 > .85
(%) (%) (%) (%)

BCGS1 0.5181 81.25 37.50 6.25 0.00
GG2 0.3811 37.50 6.25 0.00 0.00
Gi3 0.4266 56.25 12.50 0.00 0.00

LBG2 0.5480 81.25 43.75 18.75 0.00

TAS 0.5158 81.25 37.50 12.50 0.00

Ve2 0.4479 56.25 25.00 12.50 0.00

Table 6 reports the best relevant retrieval perfor-

mances according to the Nearest Neighbour, First Tier

and Second Tier evaluation measures. All scores are av-
eraged over all the models in the dataset.

Discussion. Apart from the nearest neighbour scores

(Table 6, first column), it seems that the overall rele-
vant performance is still not ideal here. This is actu-

ally not surprising, since most of methods considered

for evaluation have been specifically tuned for dealing

with both texture and geometric shape modifications.
Nevertheless, the relevant evaluation can be used as a

lever for further comments about the benchmark and

the considered methods.
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Table 6 Best NN, FT and ST values of each method. Num-
bers in parenthesis indicate the run achieving the correspond-
ing value. For each evaluation measure, the best two results

are in gold and silver text, respectively.

Runs NN FT ST

BCGS 0.972(2) 0.463(1) 0.601(1)

GG 0.938(3) 0.374(1) 0.374(2)
Gi 0.968(3) 0.383(3) 0.504(3)

LBG 0.939(2) 0.471(2) 0.626(3)

TAS 0.9768 0.4578 0.5847
Ve 0.918(2) 0.398(1) 0.499(1)

As an overall comment, it is worth mentioning that
a large part of geometric shape modifications are not

metric-preserving. Indeed, the geometric deformations

used to create the benchmark alter both the extrinsic

and the intrinsic properties of shapes. This suggests the
need for the development of more general techniques for

3D shape analysis and comparison. This is actually one

of the most recent trends in the field, see e.g. [60,59].

More in detail, we observe that:

• The good performance of run LBG2 relies on two
main motivations. First, this run is completely deter-

mined by a geometric contribution, and therefore it

is not affected by any other, possibly misleading, in-
formation about texture shape properties. Second, the

method represented by run LBG2 is spectral-based,

and therefore is able to capture intrinsic shape prop-

erties. As a consequence, it is invariant to rigid shape
transformations, as well as some non-rigid deformations

such as pose variations and bendings, which are all

present in the dataset. Finally, differently from runs
Gi3 and Ve2, whose geometric contribution is intrin-

sic as well, the descriptive power of the spectral-based

approach is improved by additional spatial information
provided by the intrinsic spatial pyramid matching (see

Section 4.2 for details);

• A similar reasoning about the invariance under
rigid and non-rigid deformations also holds for runBCGS1,

whose associated method can be considered as “mostly”

intrinsic. Indeed, the geometric contribution relies in

this case on a collection of descriptors which are mainly
intrinsic, considering either spectral-based functions or

geodesic distances or Gaussian curvature;

• The relatively good performance of run TAS can

be explained by the fact that it mixes an extrinsic ap-

proach with a “view-based” strategy that is widely ac-

knowledged as the most powerful and practical approach
for rigid 3D shape retrieval [67]. Even when a 3D model

is articulated, non-uniformly deformed or partially oc-

cluded, the number of views (38, actually) used in this

implementation should limit the noisy effect possibly

generated in the images captured around an object;
• Run GG2 mainly focuses on radial and spherical

local symmetries. While the approach appears to be

robust when the analysis is restricted to a single class
of geometric transformations, in the most general case

(i.e. the whole dataset) results are affected by a non

optimal trade-off between geometric and colourimetric
contribution. In this way, the relevant retrieval perfor-

mance is partially conditioned by the inter-class texture

variations.

5.2 Classification performances.

In the classification task, each run results in two classi-

fication matrices, one for geometry and one for texture,
which are derived from the 1-NN classifier associated

with the dissimilarity matrices used for the retrieval

task. Hence, for a classification matrix C, the element
C(i, j) is set to 1 if model i is assigned to class j, mean-

ing that j is the nearest neighbour of i, and 0 otherwise.

Figures 10 and 11 represent the confusion matrices
for the best runs of each method. For visual purposes,

we have normalized the matrices with respect to the

number of elements in each class, so that possible values

range from 0 to 1.
Tables 7 and 8 provide a quantitative interpreta-

tion of the visual information contained in the confu-

sion matrices. Indeed, the true positive rate (TPR), the
true negative rate (TNR) and the Matthews correlation

coefficient (MCC) can be directly computed from the

elements of a confusion matrix.

More precisely, given a confusion matrix CM and a
class ı̄, it is possible to derive the associated TPR, TNR

and MCC as follows. It is first convenient to introduce

the number of true positive TP, the number of false
negative FN, the number of false positive FP and the

number of true negative TN that are defined as TP =

CM (̄ı.̄ı), FN =
∑

j 6=ı̄ CM (̄ı, j), FP =
∑

j 6=ı̄ CM(j, ı̄),

TN =
∑

i,j CM(i, j)− (TP + TN + FP). Then, we get
TPR, TNR and MCC by the relations

TPR =
TP

TP + FN
, TNR =

TN

FP + TN
,

MCC =
TP× TN− FP× FN

√

(TP+ FP)(TP+ FN)(TN + FP)(TN+ FN)
.

In Tables 7 and 8, the reported values are averaged

over all the considered classes (16 geometric and 12 tex-

tured ones).

Discussions. Dealing with 1-NN classifiers, the classifi-
cation results resemble somehow the nearest neighbour

performances registered in Tables 4 and 6. Note how-

ever, that the dataset classifications considered in this
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Fig. 10 Geometric confusion matrices for the best runs of the considered methods.
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Fig. 11 Texture confusion matrices for the best runs of the considered methods.

Table 7 Averaged geometric TPR, TNR and MCC for the
best run of all considered methods. The best two results are
in gold and silver text, respectively.

Run TPR TNR MCC

BCGS2 0.9725 0.9988 0.9814
GG3 0.9371 0.9959 0.9341
Gi3 0.9685 0.9979 0.9668
LBG2 0.9388 0.9959 0.9355

TAS 0.9773 0.9985 0.9759
Ve2 0.9178 0.9945 0.9138

Table 8 Averaged texture TPR, TNR and MCC for the best
run of all considered methods. The best two results are in
gold and silver text, respectively.

Run TPR TNR NCC

BCGS3 0.9913 0.9992 0.9904

GG3 0.9860 0.9987 0.9847
Gi2 0.9161 0.9922 0.9093
LBGtxt 0.8811 0.9885 0.8714
TAS 0.5874 0.9621 0.5524
Ve1 0.8129 0.9820 0.7952

task are a purely geometric and a purely texture ones.
In particular, the latter does not coincide with the clas-

sification adopted in the highly relevant retrieval task,

since geometric similarity is not involved. Also, results
in Tables 7 and 8 are averaged on the dataset classes:

this explains the slight discrepancy between the geo-

metric TPR and the relevant NN measure that is aver-

aged over all the elements in the dataset.

As shown by Figure 10, geometric confusion ma-

trices reveal a good classification performance of the
methods. Indeed, all matrices appear almost diagonal,

meaning that almost all elements in the dataset should

be correctly classified. This qualitative intuition is con-

firmed by the TPR scores reported in Table 7. Fur-

thermore, TNR values are even higher, thus revealing
that all methods are close to the optimal performance

in detecting true negatives (e.g., “non-tables” correctly

identified as such). As much in the same way, the MCC
measure assigns scores very close to 1 for all methods.

Nevertheless, Figure 11 shows that, while the geo-

metric classification of the considered runs are roughly
comparable, in the texture scenario a sort of transition

occurs, in such a way that three methods (BCGS3,

GG3, Gi2) perform substantially better than the oth-

ers. The numerical details in Table 8 highlight that the
main differences are at the TPR and MCC level, reveal-

ing that the confusion highlighted in Figure 11 is essen-

tially in the localization of true positives (e.g., “tables”
correctly identified as tables).

Finally, it is worth noting how, in the texture clas-

sification task, best performances still come from those
methods dealing with texture information in colour spaces

which differ from the standard RGB one, that is, CIELab

and the greyworld normalized RGB colour space.

6 Discussion and conclusions

In this paper, we have provided a detailed analysis and
evaluation of state-of-the-art retrieval and classification

algorithms dealing with an emerging type of content,

namely textured 3D objects, which we believe deserve
attention from the research community. The increasing

availability of textured models in Computer Graphics,

the advances in 3D shape acquisition technology which

are able to acquire textured 3D shapes, the importance
of colour features in 3D Shape Analysis applications

together call for shape descriptors which take into con-

sideration also colourimetric information.
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Beyond the extensive analysis that has been carried

out throughout the paper, we hope that the experimen-
tal results presented here may offer interesting hints for

further investigation. We list a few as follows:

• On the one hand, the retrieval performances are

positive for all methods, in either the relevant or the
highly relevant scenario, or both. On the other hand,

the NDCG and ADR measures are specifically designed

for interpreting a multi-level dataset classification as in
this case, and thus offer a complementary evaluation to

the above ones. As can be seen by Figure 8 and Table 4,

results in this sense are quite far from being optimal:

indeed, the best possible value for the ADR score is
1, while the highest registered scores fluctuate around

0.5; similarly, the highest possible area under a NDCG

curve equals 1, while the best scores in this contribu-
tion are around 0.75. In other words, the benchmark

was challenging and call for further improvements and

new strategies able to deal with non-isometric geomet-
ric deformations, as well as affine texture deformations;

• Results achieved by some of the proposed runs
suggest that a structured colourimetric analysis could

be more informative that a purely histogram-bases one.

However, there is probably still a long road ahead in this
sense. For example, an interesting question could be

how to generalize, in a reasonable colourimetric sense,

well-know extrinsic and intrinsic geometric properties,
for example as in the case of the colour-aware geodesic

distances, see Section 4.4 for details;

• An issue deserving further investigation is to un-

derstand which approach is preferable for textured shape

analysis, either a combined or a hybrid one. For in-
stance, the aforementioned colour-aware geodesic dis-

tances and the topological approach for the analysis of

colour information appear to be promising hybrid solu-
tions to extract useful information from texture shape

attributes. Nevertheless, it should be noted that such

approaches have been complemented with purely ge-
ometric and colourimetric contributions, in order to

achieve satisfactory retrieval and classification perfor-

mances. Another meaningful example is the one pro-

vided by MAPT-based algorithms, which obtained top-
rank results in the highly relevant scenario: however, a

combined approach generally performed better than a

hybrid one in a retrieval context, being the opposite
in the classification task. Based on the above remarks,

it seems that the overall picture is still quite unclear,

calling for a deeper understanding of how geometric and
colourimetric shape properties can be jointly analysed;

• Some of the best retrieval and classification re-
sults have been accomplished through the use of the

CIELab colour space, as well as variations of the more

classical RGB colour space. Indeed, the CIELab space

well represents human perception of colour, and hence

appears as a more natural choice. As for the considered
variations of the RGB colour space, it seems that they

allow to better cope with the affine colourimetric trans-

formations that have been included in the proposed
benchmark. Obviously, these are not the only possible

alternative to the RGB colour space. Also, the affine

colourimetric transformations considered here are just
a subset of all the possible texture modifications. There-

fore, it could be interesting to investigate how changing

the choice of colour representation might affect perfor-

mance results in retrieving and classifying textured 3D
models, as well as which particular choice in the colour

space is better suited to face with certain classes of tex-

ture deformations.
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52. Ojala, T., Pietikäinen, M., Harwood, D.: A compara-
tive study of texture measures with classification based
on featured distributions. Pattern Recogn. 29(1), 51–59
(1996)

53. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.:
Shape distributions. ACM T. Graphics 21(4), 807–832
(2002)

54. Pasqualotto, G., Zanuttigh, P., Cortelazzo, G.M.: Com-
bining color and shape descriptors for 3D model retrieval.
Signal Process-Image 28(6), 608 – 623 (2013)

55. Pavan, M., Pelillo, M.: Dominant sets and pairwise clus-
tering. IEEE T. Pattern Anal. 29(1), 167 –172 (2007)

56. Pele, O., Werman, M.: Fast and robust Earth Mover’s
Distances. In: Computer Vision (ICCV), 2009 IEEE In-
ternational Conference on, pp. 460–467 (2009)

57. Phong, B.T.: Illumination for computer generated pic-
tures. Commun. ACM 18(6), 311–317 (1975)

58. Rabin, J., Peyré, G., Cohen, L.D.: Geodesic shape re-
trieval via optimal mass transport. In: Proceedings of the
11th European Conference on Computer Vision: Part V,
ECCV’10, pp. 771–784. Springer-Verlag, Berlin, Heidel-
berg (2010)

59. Raviv, D., Bronstein, A., Bronstein, M., Waisman, D.,
Sochen, N., Kimmel, R.: Equi-affine invariant geometry
for shape analysis. J. Math. Imaging Vis. 50(1-2), 144–
163 (2014)

60. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel,
R., Sochen, N.: Affine-invariant geodesic geometry of de-
formable 3D shapes. Comput. Graph. 35(3), 692 – 697
(2011)

61. Reeb, G.: Sur les points singuliers d’une forme
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Table 1 Methods classification according to the taxonomy provided in Section 4.7. Geometric description: each run is charac-
terized by type of invariance (type of information); scale; type of descriptor. Texture description: each run is characterized by
scale; type of descriptor. Colour space: the space used for colour representation. Final descriptor : either hybrid or combined;
“hybrid/combined” means that a hybrid contribution is combined a posteriori with other shape descriptions.

Run
geometric texture colour final
description description space descriptor

BCGS1
mostly intrinsic (mixed);

multi-scale;
CIELab; hybrid/combined;global;

topological;
2D histogram;

BCGS2
mostly intrinsic (mixed);

multi-scale, global;
CIELab; hybrid/combined;global;

topological, histogram;
2D histogram;

BCGS3
mostly intrinsic (mixed);

multi-scale, global;
CIELab; hybrid/combined;global;

topological, histogram
2D histogram;

GG1
extrinsic (symmetry);

global;
normalized RGB; combined;multi-scale;

histogram;
concatenated histogram;

GG2
extrinsic (symmetry);

global;
averaged RGB; combined;multi-scale;

histogram;
concatenated histogram;

GG3
extrinsic (symmetry);

multi-scale;
averaged RGB; hybrid;multi-scale;

histogram;
concatenated histogram;

Gi1
intrinsic (geodesic);

global;
CIELab; hybrid;global;

histogram;
histogram;

Gi2
intrinsic (geodesic);

global;
CIELab; hybrid/combined;global;

histogram;
2D histograms;

Gi3
extrinsic (spherical harmonics);

global;
CIELab; hybrid/combined;global;

topological;
histogram;

LBG1
intrinsic (spectral);

– – – – – –multi-scale;
concatenated histogram;

LBG2
intrinsic (spectral);

– – – – – –multi-scale;
concatenated histogram;

LBG3
intrinsic (spectral);

multi-scale;
RGB; combined;multi-scale;

histogram;
concatenated histogram;

TAS
extrinsic (image-based);

multi-scale;
CIELab; combined;multi-scale;

histogram;
concatenated histogram;

Ve1
intrinsic (geodesic);

global;
RGB; combined;global;

histogram;
2D histogram;

Ve2
intrinsic (geodesic);

global;
RGB; combined;global;

histogram;
2D histogram;

Ve3
intrinsic (geodesic);

global;
RGB; combined;global;

histogram;
2D histogram;
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Table 3 Highly relevant analysis of the five families of affine texture deformations used to build the benchmark.

No transformations (only null models) Tran. ♯1

Run mAP
> 0.40 > 0.55 > 0.70 > 0.85
(%) (%) (%) (%)

BCGS3 72.41 100.00 97.92 64.58 6.25

GG1 71.91 100.00 91.67 66.67 6.25

Gi3 62.45 100.00 75.00 27.08 0.00

LBG3 61.84 100.00 66.67 25.00 6.25

TAS 60.30 100.00 66.67 18.75 2.08

Ve1 64.46 100.00 72.92 39.58 0.00

Run mAP
> 0.40 > 0.55 > 0.70 > 0.85
(%) (%) (%) (%)

BCGS3 0.6340 97.92 72.92 31.25 4.17

GG1 0.6057 95.83 72.92 20.83 2.08
Gi3 0.5162 93.75 33.33 10.42 0.00
LBG3 0.5030 85.42 22.92 10.42 0.00
TAS 0.4713 77.08 22.92 4.17 0.00
Ve1 0.5104 87.50 31.25 8.33 0.00

Table 3.0 Highly relevant analysis of the mAP score
associated with null models. The best two results are in
gold and silver text, respectively.

Table 3.1 Highly relevant analysis of the mAP score
associated with affine texture deformation ♯1. A visual
interpretation of this kind of transformation, and of the
considered strength levels, is given by the pictures above.

Tran. ♯2 Tran. ♯3

Run mAP
> 0.40 > 0.55 > 0.70 > 0.85
(%) (%) (%) (%)

BCGS3 0.6506 81.25 77.08 62.50 14.58

GG1 0.6261 81.25 70.83 52.08 18.75
Gi3 0.5609 79.17 58.33 37.50 10.42

LBG3 0.5611 81.25 56.25 35.42 12.50
TAS 0.5564 77.08 58.33 39.58 8.33

Ve1 0.5766 81.25 62.50 47.92 6.25

Run mAP
> 0.40 > 0.55 > 0.70 > 0.85
(%) (%) (%) (%)

BCGS3 0.6234 95.83 68.75 37.50 4.17

GG1 0.6072 95.83 64.58 25.00 4.17
Gi3 0.5227 93.75 41.67 6.25 2.08
LBG3 0.5172 87.50 39.58 8.33 0.00
TAS 0.4758 83.33 25.00 4.17 0.00
Ve1 0.5312 85.42 45.83 14.58 0.00

Table 3.2 Highly relevant analysis of the mAP score
associated with affine texture deformation ♯2. A visual
interpretation of this kind of transformation, and of the
considered strength levels, is given by the pictures above.

Table 3.3 Highly relevant analysis of the mAP score
associated with affine texture deformations ♯3. A visual
interpretation of this kind of transformation, and of the
considered strength levels, is given by the pictures above.

Tran. ♯4 Tran. ♯5

Run mAP
> 0.40 > 0.55 > 0.70 > 0.85
(%) (%) (%) (%)

BCGS3 0.6401 97.92 72.92 41.67 4.17

GG1 0.6247 97.92 66.67 31.25 8.33
Gi3 0.5498 93.75 45.83 10.42 0.00
LBG3 0.5197 87.50 33.33 10.42 0.00
TAS 0.4974 79.17 35.42 6.25 0.00
Ve1 0.5324 87.50 43.75 12.50 2.08

Run mAP
> 0.40 > 0.55 > 0.70 > 0.85
(%) (%) (%) (%)

BCGS3 0.6262 95.83 64.58 33.33 12.50

GG1 0.6021 97.92 62.50 35.42 4.17
Gi3 0.5442 87.50 50.00 16.67 2.08

LBG3 0.4964 81.25 25.00 10.42 4.17
TAS 0.5003 81.25 31.25 14.58 0.00
Ve1 0.5264 87.50 45.83 12.50 2.08

Table 3.4 Highly relevant analysis of the mAP score
associated with affine texture deformations ♯4. A visual
interpretation of this kind of transformation, and of the
considered strength levels, is given by the pictures above.

Table 3.5 Highly relevant analysis of the mAP score
associated with affine texture deformations ♯5. A visual
interpretation of this kind of transformation, and of the
considered strength levels, is given by the pictures above.
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