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ABSTRACT 

This communication intends to summarize the recent strides carried out by the study of original Very 

Large Mode Area fibers (VLMA) that offer remarkable beam qualities. This work also aims in pushing farther 

the threshold of appearance for non-linear processes as well as thermal induced beam degradation hindering the 

power scaling in optical fibers. So as to fulfil this objective, thorough investigations of fibers modal content has 

been performed, leading to the evidencing of primordial statements for exacerbation of the beam quality and its 

robustness. Theoretical principles driven toward the conception of aperiodic Large Pitch Fibers (LPFs) will be 

reported together with experimental validation into passive fiber designs. The relevance of these original 

structures will then been discussed in regard to the power scaling. 

Keywords: High power regime, Fiber laser and amplifiers, aperiodic Large Pitch Fiber, Singlemodedness, 

thermal induced refractive index changes.  

1. INTRODUCTION 

Microstructured optical fibers designs are undergoing an outstanding infatuation since two decades now owing 

to the versatility of the ‘stack and draw’ technique and recent progress in producing high quality glass. In 

particular, the development of high power singlemode laser sources has attracted much interest on them, 

resulting in no less than a tenth of novel microstructured fiber concepts competing to provide further power 

scaling of singlemode radiation toward the kW regime. Among them, one may have noticed three major 

categories: 1/ ‘Photonic Bandgap’ designs such as the Bragg or hetero-structured 2D PBG fibers [1,2], 

2/ resonantly coupling geometry like the Chirally Coupled Core fibers or Distributed Mode Filtering fibers [3,4] 

and leaky structures represented by the state-of-the-art air-silica Large Pitch Fibers (LPF) [5]. Although 

requiring to be used as rod-type owing to their critical bending sensitivity, Large Pitch Fibers are one of a kind 

geometry that already demonstrated singlemode operation into active fibers of Mode Field Area reaching up to 

10,000 µm² whereas most of their counterparts barely exceed 2,500 µm² [1-3]. This enabled a leap in 

power/energy attaining 26 mJ – sub 60 ns pulses from a Q-switched fiber laser sources [6] as well as 22 GW 

peak power in a chirped-pulse amplification configuration [7]. However, high power fiber lasers still suffer from 

two main issues: 1/ the photodarkening, resulting in a progressive increase of the background losses and 

2/ thermal induced modal instabilities that restrain the power scaling by implying a significant degradation of the 

beam quality over a certain power threshold [8].  

2. DESCRIPTION OF THE FIBER CONCEPT 

This work has thus been structured around principles aiming to bring simplicity during the fiber/laser realization 

and offer headways to mitigate the two-abovementioned key hurdles hampering the power scaling. To do so, we 

opted for the preparation of all-solid structures, facilitating the fiber splicing and cleaving, by resorting to an 

innovative manufacturing process named Repusil [9]. The latter allows for producing highly homogeneous and 

reproducible doped-glass with an accuracy of 2.10
-4

, being much precise than any conventional CVD techniques. 

Thus, authors strongly believe that this technique will permit the preparation of VLMA fibers having a perfect 

index matching between the actively doped region and the surrounding material. For now on, most of the fibers 

enumerated in the introduction must be based on an active glass index-matched with the pure silica, limiting the 

concentration in rare-earth and requiring the use of index depressive co-dopant as fluorine. By opposition, we 

decided to get freed from this constraint by using a passively doped silica cladding (in blue on Fig.1a) whose the 

refractive index matches that of the gain material (in red on Fig.1a). Thus, the active glass can exhibit a strong 

rare-earth concentration (and so on a higher single-pass gain) and be judiciously co-doped with Ce or P for 

photodarkening mitigation without restriction on its refractive index [10]. Then, an inner cladding 

microstructuration made of solid inclusions (in cyan on Fig.1a), the geometry of which will be discussed in 

section 3, is implemented to ensure a selective amplification of the fundamental mode (FM) while efficiently 

delocalizing the high-order-modes (HOM) out of the gain region. The extension of the passively doped silica is 



limited by a pure silica jacket (in navy blue on Fig.1a) so as to restrict the number of guided cladding modes. 

Finally, a third clad is employed for the propagation of the pump radiation, resulting thus in a triple clad design. 
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Figure 1. (a) Transverse refractive index profile of the proposed all-solid Large-Pitch Fibers in which the 

passively doped silica of the first cladding matches that of the active region. Numbers identify the index 

evolutions along the description of the section 2. (b) Cross section of an all-solid triple-clad Fully-Aperiodic 

Large-Pitch fiber overlaid by an artificial grid that schematically represents the stack. 

3. TAILORING THE INNER CLADDING MICROSTRUCTURATION 

The fiber design was initially inspired from that of LPFs as they can be considered as the current reference for 

HOM rejection. Hence, the concern was to evidence key geometrical principles essential to the confinement of 

the FM into the gain region along with those offering an exacerbation of the HOM delocalization out of the core. 

We have first demonstrated that only the first layer of inclusions surrounding the gain region (see Fig. 1b) is 

involved into the confinement of the FM [11]. Indeed, inclusions localized farther into the doped silica region act 

mostly in preventing the risk of ‘avoided crossing’, that is a coupling between the core FM and any cladding 

modes. This process can occur if the two modes exhibit a spatial intensity overlap and close index values. Thus, 

we have demonstrated that periodic inner cladding microstructuration are not desirable since they favour the 

energy transfer between modes of same symmetry class as current leaky fibers do. Thereby, the suppression of 

the cladding symmetry might minimize the potential of avoided crossing owing to limited modes overlap.    
   

 
 

Figure 2. Comparison of the fundamental and most confined high order modes intensity pattern into an 85 µm 

state-of-the-art air-silica LPF having a normalized holes size of 0.3 and a 85 µm core Fully-Aperiodic LPF. The 

overlap factors of each displayed modes are reported. 

 These statements have thus led to the realization of Fully-Aperiodic Large-Pitch-Fibers (FA-LPF). It is 

worth noticing that a great flexibility is offered by the stack-and-draw technique in developing such kind of 

original structures. Although several efficient FA-LPF has been conceived [12-13], only one specific geometry 

will be discussed thereafter to clarify the purpose (see Fig. 1b). This design is based on 5 inclusions forming an 

irregular pentagon in close vicinity to the gain region and 14 additional inclusions acting on the cladding mode 

content. The quality of the propagated beam was estimated by computing the overlap  of the first 300 guided 

modes with the gain region and then determining the difference in overlap between the FM core mode and the 

most competitive HOM. This parameter is called ‘Modal discrimination’ and referred to as . One must know 

that a singlemode operation is commonly stated when exceeds 80% while  is greater than 30%. As an 

example, air-silica LPFs satisfy these criteria over a wide range of core sizes and operating wavelengths with a 

discrimination of about 50%. In comparison, FA-LPFs improve the modal discrimination by up to 11.5% as can 

be seen on Fig.2 while conserving a strong confinement of the FM ( > 87 %). 



4. EVIDENCING OF ROBUST SINGLEMODE PROPAGATION INTO APERIODIC LARGE-PITCH 

FIBERS 

First fabrications of passive FA-LPFs have been then undertaken to corroborate the outstanding performances 

established numerically. The quality of the transmitted beam has been assessed from two ways: by achieving 

Optical Low Coherence Interferometry (OLCI) measurements, and by observing the near-field pattern over a 

wide range of core sizes and operating wavelengths (Fig.3b).  One can notice on Fig.3a that the sole FM has 

been identified at 1300 nm during the OLCI measurements achieved on 85 µm core FA-LPFs, confirming the 

high purity of the transmitted beam. Nevertheless, although a singlemode operation has been obtained for a core 

diameter reaching up to 140 µm at an operating wavelength of 2 µm, the singlemode range is not as wide as 

estimated numerically. Indeed, the performances were degraded by residual stress that led to the guidance of a 

supermode as can be seen on the top-left inset of Fig. 3b. New fabrications are on underway to improve this 

result. Additionally, the singlemode robustness will also be addressed at the conference time by showing that the 

near-field pattern remains unchanged when the launched beam is shifted across the fiber core, except for a 

variation in intensity. 
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Figure 3. (a) OLCI trace recorded at the output of an 85 µm core Ap. LPF using a 10 nm bandpass filter at 

1300 nm versus the difference in group refractive index and the position of the delay stage. Inset: Cross section 

of the manufactured simple clad FA-LPF. (b) Evolution of the measured near-field intensity pattern versus the 

operating wavelength and the core size. The green area stands for the range of robust singlemode propagation. 

5. PERFORMANCE OF FULLY APERIODIC LPF AT HIGH POWER REGIME 

So as to determine the benefit of FA-LPF for high power operation, it was primordial to discuss their 

performances in regard to the heat load ‘q’, which is directly related to the amount of absorbed power: 

Pabs= q/(1-), with  being the quantum efficiency of the gain medium. With the power scaling, the heat load 

progressively modifies progressively the refractive index profile of the waveguide, inducing a quadratic trend in 

the gain region and logarithmical decay elsewhere. Thus, it impacts directly the modal content of optical fibers. 

A novel optimization of the abovementioned FA-LPF appeared then beneficial so as to extend as much as 

possible the range of singlemodedness. The optimized FA-LPF design, reported on Fig.4a, displayed a 

modification of the irregular pentagon surrounding the gain region, yielding in an even higher mode leakage.  
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Figure 4. (a) Graphical representation of an all-solid triple-clad Fully-Aperiodic Large-Pitch fiber optimized for 

high power operation. (b) Evolution of the FM overlap factor versus the pitch  and the heat load ‘q’. The black 

dashed line represents the limit of singlemodeness ( =30%) into this fiber whereas the white one depict it for 

a state-of-the-art air-silica LPF. 



Fig 4b shows how the overlap of the FM evolves when tuning the core size and the heat load. An 

efficient amplification is experienced over the whole range of investigation since 01 exceeds 80%. Hence, the 

limit of effective singlemode operation – so the point at which the modal discrimination becomes lower than 

30% - is depicted for an air-silica LPF of 0.3 in normalized holes size (white dashed line on Fig.4a) and the 

optimized FA-LPF (Thick black dashed line on Fig.4a). It is worth noticing that the range of efficient 

singlemode amplification (dashed region) has been effectively extended, increasing by half the maximum heat 

load sustainable while keeping a singlemode emission. 

6. CONCLUSIONS 

We have reported on optical waveguides featured by an innovative aperiodic cladding design ensuring 

an emphasized High Order Modes (HOMs) rejection out of the gain region while preserving an efficient 

amplification of the Gaussian-like fundamental mode. Their outstanding beam purity was first demonstrated 

analytically and then corroborated by OLCI measurements on passive fibers. The potential of these design was 

finally discussed taking into account the thermal load related to the power scaling. This shows an improvement 

by half of the sustainable heat power before onset of beam degradation. 
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