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Hydraulic-turbine start-up with ”S-shaped” characteristic

Hugo Mesnage1, Mazen Alamir2, Nicolas Perrissin-Fabert3, Quentin Alloin3, Seddik Bacha4

Abstract— Fast response of hydraulic turbines is a key
condition for the integration of renewable sources of energy.
In this paper, a new start-up strategy is proposed for hydraulic
turbines prone to ”S” instability. This method is based on a
complete nonlinear model of the turbine together with the
upstream water pipe. More precisely, the control strategy
is based on a gain scheduling approach that is computed
using finite horizon predictive control. This yields a state
feedback control law that tracks a time-optimal trajectory
that is computed based on the nonlinear model of the system.
Simulations are shown to assess the efficiency of the proposed
law and its robustness to model discrepancies.

Nomenclature
Symbol Definition Unit
H net head/pressure at the bounds of the tur-

bine
m

Q flow in the turbine m3/s
Ω rotational speed of the turbine rd/s
γ guide vanes’ opening %
T hydraulic torque on the runner N.m
te wave travel time in penstock s
tw water starting time in penstock s
ξ state space vector for the penstock
Hg gross head of the plant (constant) > 100m
xd desired steady state value of x
D diameter of the runner m

I. INTRODUCTION

The need for energy storage to support intermittent
renewable sources such as solar or wind is mandatory for
their successful integration. If Diesel engine-based solutions
[1] are excluded for straightforward environmental reasons,
batteries and super-capacitor storage are generally viewed as
power providers that are suitable for short and fast transients
but which are not convenient when high amount of energy
is needed. Hydro-electric conversion seems to be the unique
clean way to compensate the intermittent nature of wind
and solar energy. This is done by converting the potential
energy of the upstream water in rotational kinetic energy
in the turbine runner, and then converting it to electricity
via a generator. When used as a pump, the same runner
enables the storage of energy under its potential form, and
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can therefore support the integration of renewable sources.

Nevertheless, the use of hydraulic storage as a secondary
source induces some new paradigms:

- The first concerns the start-up response time of the
hydraulic turbine. This is the time necessary to drive the
turbine from rest towards the connection-to-grid rotational
speed. In our problem, the most spread, and studied,
topology consists in a synchronous machine working at
constant speed when linked to the grid. Thus, we need
to achieve a stabilized 0.2% response over speed before
connecting to grid [3]. Fast start-up operations that enable
a rapid voltage recovery is more crucial than ever.

- Then comes the will of power plant operator to
work in increasingly wide operation modes, namely the
so-called ”S” characteristics. The S-shaped characteristic
of the turbine depends mainly on the hydraulic design of
the runner. It involves power instability at the load-free
rotational speed when the upstream pressure is in its lower
range. This power instability leads to rotational speed
instabilities before linking the machine to the grid and as
we need a very tight stabilization of the speed (±0.2%), it
can prevent the start-up of a plant. This phenomenon can
be handled with the misalignment of guide vanes (MGV)
that changes and stabilizes over speed the characteristic
of the turbine [4]. The aim of this paper is to propose a
control law that can work in the ”S” without MGV that for
operational reasons is not always easy to implement. This
requires tighter control of the hydraulic system for every
operating mode unlike in standard operational [5] conditions
because of the inherent instability of the system in these
areas.

- A third point would be the aim of Alstom to always
provide better efficiency runners. Indeed, the sharper design
of turbine-pump runners in its main operation modes can
increase phenomenon such as the ”S”.

For all these reasons, a new control approach is needed
which is the aim of the present paper which addresses
the first above mentioned issue, namely, the design of
minimum-time start-up control and proposes an answer to
the stabilization in the ”S”. This methodology is based on
the tracking of a stabilizing trajectory computed using a
detailed nonlinear model of the plant.

The paper is organized as follow: First, the dynamic



model is given in section II. Section III clearly states the
start-up control problem. Section IV analyses the system
and proposes a trajectory that enables a full stabilization
for coupling. Section V proposes a predictive control-based
gain scheduling feedback and validates it through some
simulation in the nominal case and in the presence of model
discrepancy. Finally, section VI concludes the paper and
gives hints for further investigations.

II. MODELISATION

In this section, a detailed model of the plant is proposed by
connecting together a model for the penstock and a model for
the turbines. This is explained in the two following sections.

Fig. 1. The hydraulic plant

A. Penstock

It is considered here a medium to high-head plant as shown
in figure 1. It has an upstream circuit made of one linear
and constant section penstock. The penstock is defined by
its water starting time tw and its wave travel time te.

te =
L
a

; tw =
L

g ·A
(1)

with, A section of the penstock
a wave speed in the penstock
L length of the pipe
g acceleration of gravity

The following assumptions are used in the derivation
of the penstock model: 1) the pipe is uniform and flow
is one-dimensional; for quasi-incompressible fluids, the
velocity and pressure distributions are uniform in each cross
section of the conduit. 2) pipe deformations are proportional
to the stresses (Hooke’s law) and the liquid compressibility
effects can be characterized by a constant bulk modulus. 3)
no vaporization of the liquid occurs during the hydraulic
transient. 4) the hydraulic friction losses are neglected. 5)
no distributed lateral flows are considered.

It is then shown in [6] that the transfer function between
the flow Q in the turbine and the head H at its boundaries
can be given by the following expression in the Laplace
domain:

∂H
∂Q

(s) =− tw
te
· tanh(s · te) (2)

Moreover, the transfer function giving the flow rate and
water pressure of upstream inlet in terms of the downstream
quantities is given by [6]:(

hU (s)
qU (s)

)
=

 cosh(s · te) − tw
te
· sinh(s · te)

− te
tw
· sinh(s · te) cosh(s · te)

 ·(hD(s)
qD(s)

)
Therefore, it is possible to write the transfer function for
a combination of linear and constant section penstocks in
series. For the rest of the paper, a linear, fixed step, high
order, representation of our penstock is considered that is
computed according to the series expansion of (2):

ξ+ = Aξ ·ξ +Bξ ·Q
H =Cξ ·ξ +Dξ ·Q+Hg

(3)

where the pressure H between the bounds of the runner
takes into account, a constant static gross head Hg relating
to the heights of water in the upstream and downstream
tank, and a dynamic evolution of pressure (Cξ · ξ +Dξ ·Q)
relating to the flow in the runner.

Figure 2 shows that the series expansion enables a
good representation of the penstock in the low frequencies.
The high frequencies would naturally not be excited by
a limited bandwidth actuator. Moreover, the neglected
hydraulic friction losses naturally attenuates those high
frequencies. Note also that the first resonance peak is
located at pulsation (aπ)/(2L) [a is the wave speed in the
penstock, L is the length of the pipe]. Therefore, the longer
the pipe is, the lower this first peak, and a higher truncation
order of representation of the pipe is needed to cover up the
bandwidth of the actuator.

B. Turbine

Unlike standard linear models of the hydro-turbine used
when connected to the grid [7], we will pay a special
attention to the dynamic of the turbine for start-up operations.
This is necessary because we need a precise idea of the
dynamic of this system on the whole range of operation
in order to achieve a good control. The hydraulic-turbine
dynamic is known through its hill-chart characteristic. This
nonlinear characteristic (figure 3) relates the pressure H, the
flow Q, the rotational speed Ω, the guide vanes opening γ

and the torque T . The runner comes in consideration on two
levels: on one hand it enables the computation of the torque T
and on the other hand, it gives us access to the flow Q in the
runner. The hill-charts characteristics of runner prone to ”S”
instabilities exhibit a possible undetermination: in the ”S”,
for one rotational speed, guide vanes opening and pressure,
there can be several associated flow rates. We choose thus
a suterian representation [8] of the hill-chart to remove this
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Fig. 2. Bode diagrams of the transfer function (2) and its approximation
by a truncated series (3).

undetermination. These two relations can be shortly written
as follows:

T := w1(H,Q,Ω,γ)
Q := w2(H,Q,Ω,γ)

(4)

Note that Q is defined through nonlinear algebraic equa-
tion Q := w2(H,Q,Ω,γ). In simulation, in order to avoid
resolving this equation at every step, we associate to Q the
following dynamic:

Q̇ =−λQ · (Q−w2(H,Q,Ω,γ)) (5)

with sufficiently high λQ. Finally, the dynamic of the rota-
tional speed Ω is given by:

Ω̇ =
1
J
· (T − f rott ·Ω) (6)

where J is the inertia of the runner while f rott is the friction
coefficient.

III. THE ”S” START-UP PROBLEM

This paper focuses on the start-up of turbines prone to ”S”
instability. This instability appears for low head, no-torque
for the connection-to-grid rotational speed. As illustrated on
the hill-chart shown in figure 3, this instability is character-
ized by the following inequality:

∂ Ω̇

∂Ω

∣∣∣∣
γ,Q,H

> 0 (7)

The oscillations in the pipe naturally powers this instability
and this instability powers the oscillations in the pipe in a
way that makes difficult with a limited bandwidth actuator
to recover a steady state in the ”S” for some level of initial
tracking error. The idea for resolving the start-up with the
”S” unstability comes in two parts :
• find a ”steering admissible trajectory” that brings the

whole state of the system at time t f to a suitable steady
state for the pipe and the runner while meeting the
actuator limitations.
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Fig. 3. example of a hill-chart- characteristic prone to ”S” instability at
connection-to-grid rotational speed

• track the processed trajectory and stabilize the global
system around steady state.

IV. ADMISSIBLE TRAJECTORY FOR START-UP IN ”S”

In this section, it is shown that the steering trajectory
mentioned in the preceding section can be obtained through
a polynomial parametrization of the trajectory of the head
H(·) since all the other state variables can be induced from
this trajectory as it is shown in the sequel. These steps are
successfully described in the following sections.

A. Head trajectory H(t)

We are looking here for a trajectory that brings the initial
pipe state ξ (t0) to the desired ξ (t f ) = ξ d ∈ RN in a finite
time t f , such that ξ̇ d = Aξ · ξ d + Bξ · Qd = 0 [see (3)].
The trajectory H(t) is then constrained at t0 and at t f
together with its N−1-first derivatives. Note that beside these
constraints that are intended to deliver a smooth trajectory
that does not excite the unstable modes, this trajectory must
be such that the resulting final speed and the resulting final
flow rate are compatible with the unique open-loop unstable
steady state (in the S) that is the reason why additional
degrees of freedom must be added. This is done by defining
a tuning vector at tC =

t0 + t f

2
such that the r.h.s of the

following equation can be used as tuning parameters to
achieve these objectives:

H(tC)
Ḣ(tC)

...
H(tC)(NC−1)

=


c0
c1
...

cNC−1

 (8)

where H(i)(t) the ith derivative of H at time t.



H(t) can then be parametrized by a polynomial of order
(2 ·N+NC). In what follows, the value NC = 2 is considered
and the corresponding degrees of freedom c0 and c1 are used
to enforce the final values of the flow Qd and final value of
the rotational speed Ωd .
We note here that the ◦d variables are used to designate the
targeted steady state participating in the balance-point of
our system for start-up.

B. Flow rate trajectory Q(t)

Thanks to the linear equation (3) that links H(t) and Q(t),
one can link the trajectories of these two variables through
the equation

Hk
Hk+1

...
Hk+M−1

= ΦM ·ξk +ΨM ·


Qk

Qk+1
...

Qk+M−1


where

ΦM =


Cξ

Cξ Aξ

...
Cξ AM−1

ξ



ΨM =


Dξ 0 . . . 0 0

Cξ Bξ Dξ . . . 0 0
Cξ Aξ Bξ Cξ Bξ . . . 0 0

...
... . . . Dξ 0

Cξ AM−2
ξ

Bξ Cξ AM−3
ξ

Bξ . . . Cξ Bξ Dξ


therefore

Qk
Qk+1

...
Qk+M−1

= Ψ
−1
M ·




Hk
Hk+1

...
Hk+M−1

−ΦM ·ξk

 (9)

This relation shows that for any given trajectory of H, the
trajectory of Q can be computed. Using this, the final values
of Q(t f ) = Qd can be enforced by appropriately choosing
the coefficient c0 involved in (8). By doing so, c0 becomes
dependent on the only remaining free parameter c1.

C. Rotational speed trajectory Ω(t)

Recall that Q is solution of the algebraic equation Q =
w2(H,Q,Ω,γ). This means that for any chosen candidate
trajectory of H(·) [and hence of Q through (9)], the corre-
sponding trajectory of the valve opening γ is only function
of t and Ω, namely:

γ(Ω, t)← Solve[Q(t)−w2(H(t),Q(t),Ω,γ) = 0]

Injecting this in the dynamic equation of the speed (6) gives
an autonomous equation in Ω [once H(·) is chosen]:

Ω̇ =
1
J
· [w1 (H(t),Q(t),Ω,γ(Ω, t))− f rott ·Ω] (10)

Integrating this equation gives the final value of the speed
Ω(t f ) which depends on the only remaining parameter c1

involved in (8). The latter can then be tuned in order to
obtain the desired final speed Ω(t f ) = Ωd .

The above process is completely defined for a given
value of the final time t f . The effectively selected trajectory
is then obtained by dichotomy search over the final time
t f in order to respect the feasibility constraints. Indeed, by
monitoring t f , it is possible to slow down the dynamic or
speed it up. Therefore it will be easy to define a trajectory
that respects the predefined constraints of the system such as
actuator dynamic, maximum values of pressure, maximum
value for torque, etc. Moreover, the smoothness of such
start-up ensures low mechanic stress on the runner which
is an important requirement for the system life-time. Note
that by computing the appropriate t f , a sub-optimal solution
is quickly derived for the problem of constrained minimum
time path generation. The whole trajectory generation can
be computed in under 1sec when well initialized.

D. The need for feedback

Although the trajectory computed in the preceding section
is based on a nonlinear detailed model of the plant, the
unstable character of the system prevents its use in open-
loop even in start mode. In order to highlight this fact,
open-lop simulations are shown in Figure 4 with small
model discrepancies. More precisely, Figure 4 shows the
desired trajectory from t0 = 0 to t f = 30 sec and the open-
loop trajectory obtained by simulating the system (with the
computed γ(·)) for the perturbed model given by:

ξ̇

Q̇
Ω̇

=

Aξ 0 0
0 −λQ 0

0 0
− f rott

J
·Ω

(I+P) ·

ξ

Q
Ω



+

 0
p1 ·λQ ·w2(H,Q,Ω,γ)

p2 ·
1
J
·w1(H,Q,Ω,γ)

 (11)

with, P, p1 and p2 coming from a normal distribution with
mean 0 and standard deviation of 5%
Based on this observation, a feedback strategy is developed
in the next section in order to guarantee a robust tracking of
the pre-computed time optimal trajectory.

V. GAIN SCHEDULING

A. Computation of the gain

In this section the system is linearized along the precomputed
trajectory and an appropriate time-dependent gain is
computed using finite horizon model predictive control
strategy. The gain is therefore to be applied to the tracking
error on the state vector. Note that this implicitly assumes
that the state vector is measurable. The construction of
the dynamic observer is not analyzed here and will be
investigated later on.

Let us adopt the following notation:
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Fig. 4. The need for closed-loop start. Desired trajectory computed trough
process described in IV (solid line) and open-loop simulated trajectory using
the disturbed system (11) (dashed line)

• X =
(
ξ T Q Ω

)T ∈ Rn, it is the actual state of the
system.

• X̃ =
(
ξ̃ T Q̃ Ω̃

)T ∈ Rn, it is the desired state of the
system computed thanks to the algorithm described in
section IV.

• to simplify the notation, subscript k refers to the sam-
pling instant.

The dynamic system together with the ideal one can be
shortly given by:

Xk+1 = f (Xk,γk)
X̃k+1 = f (X̃k, γ̃k)

(12)

The error ek = X̃k−Xk shows the following linearized dy-
namic:

ek+1 = ∂ f
∂X (X̃k, γ̃k) · ek + ∂ f

∂γ
(X̃k, γ̃k) · vk

= Ak · ek + Bk · vk

where vk = γ̃k− γk, vk denotes the value of corrective feed-
back at instant k. In order to differentiate the weighting on the
different components of e, we introduce a square weighting
matrix W and define the regulated variable z by:

zk =W · ek

This induces the following dynamic on the regulated variable
z:

zk+1 = W ·Ak ·W−1 · zk + W ·Bk · vk
= Āk · zk + B̄k · vk

Moreover, if we choose prediction horizon L ∈ N then the
evolution of z can be given in term of the initial value zk and
the set of future controls according to:

zk
zk+1

...
zk+L−1

= Φk · zk +Ψk ·


vk

vk+1
...

vk+L−2

 (13)

where Φk and Ψk are given by:

Φk =


Id
Āk

Āk+1 · Āk
...

Āk+L−2 · Āk+L−3 · . . . Āk

 ,

Ψk =



0 0 . . . 0
B̄k 0 . . . 0

Āk+1 · B̄k B̄k+1 . . . 0
Āk+2 · Āk+1 · B̄k Āk+2 · B̄k+1 . . . 0

...
... . . . 0

Āk+L−2 · . . . Āk+1 · B̄k Āk+L−2 · . . . Āk+2 · B̄k+1 . . . B̄k+L−1


,

Now equation (13) can be written in a more compact
form using straightforward notation [Zk and Vk denote the
trajectories of z and v over the prediction horizon [k,k+M]]:

Zk = Φk · zk +Ψk ·Vk (14)

This defines the linear system to which we adjoin the
following cost function to define a model predictive control
formulation:

min
Vk

(
ZT

k ·Zk +V T
k ·R ·Vk

)
(15)

The optimal sequence of actions is therefore obtained by the
solution of (15) which is given by:

V ∗k =−(ΨT
k ·Ψk +2 ·R)−1 ·ΨT

k ·Φk ·W · ek

which by the very definition of model predictive control to
the following time varying gain

Kk :=−G · (ΨT
k ·Ψk +2 ·R)−1 ·ΨT

k ·Φk ·W (16)

where G is the matrix that selects the first control in
the optimal sequence, namely G =

(
1 0 . . . 0

)
∈ R1×L.

Figure 5 shows the evolution of the components of Kk along
the start-up time for a prediction horizon of T = L×τ = 0.5
sec and a sampling time of τ = 10 ms (leading to a prediction
horizon length of L = 40). The weighting matrix W is given
by

W =

Id 0 0
0 3 0
0 0 5


while the control weighting R = 20× I is considered. Note
that the choice of the weighting matrix W imposes higher
penalty on the speed Ω (gain = 5) since it is the main
regulated variable. The second higher penalty is put on Q
(gain = 3) because its stabilization enforces the stabilization
of ξ [see (3)].

To summarize, during the start mode, the following
time varying feedback law is applied to the plant

γk = γ̃k +Kk · ek (17)
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Fig. 5. Evolution of the components of Kk along the start-up time for a
prediction horizon of T = 0.5 and a sampling period of τ = 10 ms (prediction
horizon length L = 50) used in the computation of the gain scheduling.

B. Closed-loop results

Figure 6 shows the closed-loop trajectory of the disturbed
system (11) under the proposed feedback given by (17). This
result shows that the feedback law enables the final desired
state to be reached despite of the model discrepancy that
have been introduced.

0 10 20 30 40 50 60

0

50

100

150

200

250

300

time (sec)

 

 

H(t)

Q(t)

Ω(t)

γ(t)

Fig. 6. desired trajectory computed trough process described in IV (solid
line) and close loop results of the disturbed system (11) (dashed line)

In order to ensure robustness of such process, we checked
the convergence of the system for the feedback law shown
on Figure 5, and several values of perturbation. The table I
sum-up the results of this analysis.

VI. CONCLUSIONS

In this paper a method is proposed to achieve fast start-up of
hydraulic turbines that are prone to ”S” instability without
misalignment of guide vanes. The method is based on a two
step procedure. In the first step a fast steering trajectory
that is compatible with the system constraints is generated
based on the full nonlinear model of the turbine with
its penstock. In the second step a gain-scheduling based
tracking of the generated trajectory is proposed in which the
computation of the gain profile is obtained through finite

Uncertainties (%) 1 2.5 5
# tests conducted 3691 3602 3309

convergence of the system (%) 100 96.5 75.85
±0.2% convergence mean time (s) 51.12 55.26 63.61

TABLE I
SUM-UP OF THE ROBUSTNESS ANALYSIS, THIS TABLE PROVIDES

PERFORMANCES OF DEVELOPED FEEDBACK FOR SEVERAL THROWS OF

THE UNCERTAIN SYSTEMS DESCRIBED AS IN (11) AND WITH DIFFERENT

LEVELS OF UNCERTAINTIES.

horizon predictive control that computes off-line the time
varying components of the feedback gain. The efficiency
of the proposed feedback is shown through simulations in
which the nonlinear model is randomly detuned around its
nominal behavior.

Undergoing work will address the reconstruction of the
error vector through dedicated observers and the validation
of the resulting closed-loop under noisy measurement. If
the results show sensitive to measurement noise, the same
approach will be specialized to the case of static output
feedback control where only the main measured variables
Ω, Q and H are involved in the correction term. To do
this, a sparse identification of the feedback gain will be
attempted in order to remove gains that affects unmeasured
variables.
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