Intraband and intersubband many-body effects in the nonlinear optical response of single-wall carbon nanotubes - Archive ouverte HAL
Journal Articles Physical Review B: Condensed Matter and Materials Physics (1998-2015) Year : 2015

Intraband and intersubband many-body effects in the nonlinear optical response of single-wall carbon nanotubes

Romain Parret
Fabien Vialla
Yannick Chassagneux
Jean‐sébastien Lauret
Christophe Voisin

Abstract

We report on the nonlinear optical response of a mono-chiral sample of (6,5) single-wall carbon nanotubes by means of broad-band two-color pump-probe spectroscopy with selective excitation of the S11 excitons. By using a moment analysis of the transient spectra, we show that all the nonlinear features can be accurately accounted for by elementary deformations of the linear absorption spectrum. The photo-generation of S11 excitons induces a broadening and a blue shift of both the S11 and S22 excitonic transitions. In contrast, only the S11 transition shows a reduction of oscillator strength, ruling out population up-conversion. These nonlinear signatures result from many-body effects, including phase-space filling, wave-function renormalization and exciton collisions. This framework is sufficient to interpret the magnitude of the observed nonlinearities and stress the importance of intersubband exciton interactions. Remarkably, we show that these intersubband interactions have the same magnitude as the intraband ones and bring the major contribution to the photo-bleaching of the S22 excitonic transition upon S11 excitation through energy shift and broadening.
Fichier principal
Vignette du fichier
Langlois blueshift.pdf (722.83 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01250121 , version 1 (04-01-2016)

Identifiers

Cite

Benjamin Langlois, Romain Parret, Fabien Vialla, Yannick Chassagneux, Philippe Roussignol, et al.. Intraband and intersubband many-body effects in the nonlinear optical response of single-wall carbon nanotubes. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2015, 92, pp.155423. ⟨10.1103/PhysRevB.92.155423⟩. ⟨hal-01250121⟩
222 View
275 Download

Altmetric

Share

More