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Abstract

Missions to rendezvous with or capture an asteroid present significant interest
both from a geophysical and safety point of view. They are key to the under-
standing of our solar system and are stepping stones for interplanetary human
flight. In this paper, we focus on a rendezvous mission with 2006 RH120, an
asteroid classified as a Temporarily Captured Orbiter (TCO). TCOs form a
new population of near Earth objects presenting many advantages toward
that goal. Prior to the mission, we consider the spacecraft hibernating on
a Halo orbit around the Earth-Moon’s L2 libration point. The objective is
to design a transfer for the spacecraft from the parking orbit to rendezvous
with 2006 RH120 while minimizing the fuel consumption. Our transfers use
indirect methods, based on the Pontryagin Maximum Principle, combined
with continuation techniques and a direct method to address the sensitivity
of the initialization. We demonstrate that a rendezvous mission with 2006
RH120 can be accomplished with low delta-v. This exploratory work can be
seen as a first step to identify good candidates for a rendezvous on a given
TCO trajectory.
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1. Introduction

In this paper we compute delta-v minimal spacecraft transfers from an
Earth-Moon (EM) L2 Halo orbit to rendezvous with temporarily captured
Earth orbiters (TCO). All computed transfers are for a 350kg spacecraft
with 22N maximum thrust and 230s specific impulse, and we impose that
the trajectory utilize three or less max thrust boosts.

The only documented Earth TCO, known as 2006 RH120 (or from now on
simply RH120 for brevity) serves as an important test target for our calcu-
lations. In addition, rendezvous missions are computed to several simulated
TCOs from [14].

All transfers are designed using one of two different gravitational models:

1. First, transfers are computed using the EM circular restricted three-
body problem (CR3BP) for the gravitational dynamics, which is justi-
fied since Earth TCOs are naturally evolving near the Earth and Moon.
For these calculations, the transfer time and precise Halo departure
point are treated as free variables to be optimized.

2. Second, the influence of the Sun is included in the dynamics using
the Sun-perturbed CR3BP, sometimes known as the Earth-Moon-Sun
circular restricted four-body problem (CR4BP). In this case an exact
location of the spacecraft is assumed at the moment of asteroid capture,
so that a choice of rendezvous location and transfer time determines
exactly the departure point from the Halo orbit (dubbed the synchro-
nization problem and discussed in detail within).

Many methodologies have been developed over the past decades to design
optimal transfers in various scenarios. Due to the complexity of the TCO
orbits and the nature of the mission, techniques based on analytical solu-
tions such as in [16] for circular Earth orbits are not suitable and we use a
numerical approach. A survey on numerical methods can be found in [8],
and for reasons related to the specifics of our problem we choose to use a
deterministic approach based on tools from geometric optimal control versus
an heuristic method such as in [2, 9] and [27, 29]. All computations are car-
ried out using classical indirect methods based on the Pontryagin Maximum
Principle, combined with sophisticated numeric methods and software. The
well-known sensitivity to initialization for this type of approach is addressed
via a combination of direct methods and continuation techniques.

Validation of our approach can be seen by comparing our work to [10],
in which the authors develop a low delta-v asteroid rendezvous mission that
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makes use of a Halo orbit around Earth-Moon L2. Their situation is dif-
ferent from ours in that they have carefully chosen a idealized asteroid for
rendezvous. With a one-year transfer time, the delta-v value they realize
is 432 m/s, which is comparable to the delta-v values presented here in a
less-ideal scenario.

Analysis of all computed transfers strongly suggests that the CR3BP
energy may play a role in predicting suitable departure and rendezvous points
for low delta-v TCO rendezvous missions. Moreover, we present evidence that
TCOs with more planar and more circular orbits tend to yield lower delta-v
transfers.

2. Temporarily Captured Orbiters (TCO), RH120

The motivation for our work is to study asteroid capture missions for
a specific population of near Earth objects. The targets, Temporarily Cap-
tured Orbiters (TCO), are small asteroids that become temporarily-captured
on geocentric orbits in the Earth-Moon system. They are characterized as
satisfying the following constraints:

• the geocentric Keplerian energy EEarth < 0;

• the geocentric distance is less than three Earth’s Hill radii (e.g., 3RH,⊕ ∼
0.03 AU);

• it makes at least one full revolution around the Earth in the Earth-Sun
co-rotating frame, while satisfying the first two constraints.

In regard to the design of a round trip mission, the main advantage of the
TCOs lies in the fact that those objects have been naturally redirected to
orbit the Earth. This contrasts with recently proposed scenarios to design,
for instance, a robotic capture mission for a small near-Earth asteroid and
redirect it to a stable orbit in the EM-system, to allow for astronaut visits
and exploration (e.g. the Asteroid Redirect Mission (ARM)).

RH120 is a few meter diameter near Earth asteroid, officially classified as a
TCO. RH120 was discovered by the Catalina Sky Survey on September 2006.
Its orbit from June 1st 2006 to July 31st 2007 can be seen on Figures 1 and 2,
generated using the Jet Propulsion Laboratory’s HORIZONS database which
gives ephemerides for solar-system bodies. The period June 2006 to July 2007
was chosen to include the portion of the orbit within the Earth’s Hill sphere
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with a margin of about one month. We can also observe that RH120 comes
as close as 0.72 lunar distance (LD) from Earth-Moon barycenter.
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Figure 1: Orbit of RH120 in the Earth-Moon CR3BP rotating reference frame.

In [14], the authors investigate a population statistic for TCOs. Their
work is centered on the integration of the trajectories for 10 million test-
particles in space, in order to classify which of those become temporarily-
captured by the Earth’s gravitational field – over eighteen-thousand of which
do so. This suggests that RH120 is not the only TCO and that it is rele-
vant to compute a rendezvous mission to this specific asteroid to get insight
whether TCOs can be regarded as possible targets for transfers with small
fuel consumption, and thus cost.

The choice of targets for our rendezvous mission sets us apart from the
existing literature where transfers are typically designed between elliptic or-
bits in the Earth-Moon or other systems [4, 19] and [20], or to a Libration
point [11, 25] and [24, 27]. Rendezvous missions to asteroids in the inner
solar system can be found in [10, 17] but they concern asteroids on elliptic
orbits which is not the case for us since TCOs are present complex orbits
and therefore require a different methodology.
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Figure 2: Orbit of RH120 in the Earth-Sun CR3BP rotating reference frame.

Our assumption on the hibernating location for the spacecraft, a Halo
orbit around the Earth-Moon unstable Libration points L2, is motivated
in part from the successful Artemis mission [22, 23] and in part from the
constraint on the duration of the mission, mostly impacted by the time of
detection of the asteroid. Indeed, the Artemis mission demonstrated low
delta-v station keeping on Halo orbits around L1 and L2.

3. Optimal Control Problem and Numerical Algorithm

3.1. Equations of motion

In this paper, we introduce two models, the circular restricted three-body
problem (CR3BP) [18] is first used to approximate the spacecraft dynamics
and then we refine our calculations with a Sun-perturbed model (CR4BP).
The first approximation is justified by the fact that a TCO can be assumed
of negligible mass, and that the spacecraft evolving in the TCO’s temporary
capture space is therefore attracted mainly by two primary bodies, the Earth
and the Moon.

The CR3BP model is well known, and we briefly recall some basic prop-
erties and notation which is useful for the remainder of the paper. We de-
note by (x(t), y(t), z(t)) the spatial position of the spacecraft at time t. In
the rotating coordinates system, and under proper normalization (see Table
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1), the primary planet identified here to the Earth, has mass m1 = 1 − µ
and is located at the point (−µ, 0, 0); while the second primary, identified
to the Moon, has a mass of m2 = µ and is located at (1 − µ, 0, 0). The
distances of the spacecraft with respect to the two primaries are given by
%1 =

√
(x+ µ)2 + y2 + z2 and %2 =

√
(x− 1 + µ)2 + y2 + z2 respectively.

The potential and kinetic energies, respectively V and K, of the system are
given by

V =
x2 + y2

2
+

1− µ
%1

+
µ

%2
+
µ(1− µ)

2
, K =

1

2
(ẋ2 + ẏ2 + ż2). (1)

We assume a propulsion system for the spacecraft is modeled by adding terms
to the equations of motion depending on the thrust magnitude and some
parameters related to the spacecraft design. The mass of the spacecraft
is denoted by m and the craft’s maximum thrust by Tmax. Under those
assumptions, we have the following equations of motion:

ẍ− 2ẏ =
∂V

∂x
+
Tmax

m
u1, ÿ + 2ẋ =

∂V

∂y
+
Tmax

m
u2, z̈ =

∂V

∂z
+
Tmax

m
u3 (2)

where u(·) = (u1(·), u2(·), u3(·)) is the control, and satisfies the constraint
‖u‖ =

√
u21 + u22 + u23 ≤ 1, and with Tmax/m normalized. A first integral of

the free motion is given by the energy of the system E = K − V . We will
later use this energy value to analyze the choice of the rendezvous point and
the parking orbit for the spacecraft. It is well known that the uncontrolled
motion of the dynamical system has five equilibrium points defined as the
critical points of the potential V . Three of them L1, L2 and L3 are aligned
with the Earth-Moon axis and have been shown to be unstable, while the
two others are stable and are positioned to form equilateral triangles in the
plane of orbit with the two primaries. Since our goal is to maximize the final
mass we must include the differential equation governing the variation of the
mass along the transfer:

ṁ = −βTmax‖u‖ (3)

where the parameter β, the thruster characteristic of our spacecraft, is given
by β = 1

Ispg0
(it is the inverse of the ejection velocity ve), with Isp the specific

impulse of the thruster and g0 the acceleration of gravity at Earth sea level.
As the TCO’s distance from the Earth-Moon L2 equilibrium point can go

as far a 12 lunar distance in our transfer computations, it becomes necessary
to take into account the potential force of the Sun. To this end, we will also

6



CR3BP parameters CR4BP parameters
µ 1.2153 · 10−1 µS 3.289 · 105

1 norm. dist. (LD) 384400 km rS 3.892 · 102

1 norm. time 104.379 h ωS −0.925 rad/norm. time

Table 1: Numerical values for the CR3BP and the CR4BP.

consider CR4BP, a Sun-perturbed Earth-Moon CR3BP, as in [21]. In this
model, we assume that the Sun follows a circular orbit around the Earth-
Moon barycenter and shares the same orbital plane as the Earth and the
Moon. Denoting by µS the normalized mass of the Sun and rS the normalized
constant distance from the Sun to the Earth-Moon CR3BP’s origin, the
potential energy of the spacecraft becomes V + VS, where VS is given by

VS(x, y, z, θ) =
µS
rS
− µS
%2S

(x cos θ + y sin θ). (4)

In (4), θ(t) = θ0 + tωS is the angular position of the Sun at a given time
t, with ωS the angular velocity of the Sun and θ0 the angular position of
the Sun at initial time 0. The distance from the spacecraft to the Sun is
%S(t) =

√
(x− rS cos θ(t))2 + (y − rS sin θ(t))2 + z2. The numerical values

are given in Table 1. The equations of motion of this Sun-perturbed model
take the same form as (2) but with V + VS replacing V .

3.2. Numeric Methods

We first introduce the necessary conditions for optimality in the Earth-
Moon CR3BP model and expand to the CR4BP.

Let q = (qs, qv)
T where qs = (x, y, z)T represents the position variables

and qv = (ẋ, ẏ, ż)T the velocity ones. From section 3.1, our dynamical system
without the Sun perturbation is an affine control system of the form:

q̇ = F0(q) +
Tmax

m

3∑
i=1

Fi(q)ui (5)

where the drift, in R6, is given by

F0(q) =


ẋ, ẏ, ż

2ẏ + x− (1−µ)(x+µ)
%31

− µ(x−1+µ)
%32

−2ẋ+ y − (1−µ)y
%31
− µy

%32

− (1−µ)z
%31
− µz

%32

 , (6)
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and the control vector fields are Fi(q) = ~e3+i with ~ei forming the orthonormal
basis of IR6. When considering the CR4BP, the main difference is that the
Sun’s position depends explicitly on the time due to the angular position of
the Sun and thus the dynamics is no longer autonomous, i.e. the fourth, fifth
and sixth components of the drift vector field F0 depend explicitly on t:

F S
0 (q, t) =


ẋ, ẏ, ż

2ẏ + x− (1−µ)(x+µ)
%31

− µ(x−1+µ)
%32

− (x−rS cos θ)µS
%3S(t)

− µS cos θ
r2S

−2ẋ+ y − (1−µ)y
%31
− µy

%32
− (y−rS sin θ)µS

%3S(t)
− µS sin θ

r2S

− (1−µ)z
%31
− µz

%32
− zµS

%3S(t)

 (7)

This implies that we need to take into account the angular position of the
Sun at the initial time, knowing that its angular position on June 1st 2006
is θ06−01−2014 = 1.10439 rad. Then, once we select a rendezvous point on
RH120 it imposes the time of rendezvous, that we denote by trdv and based
on the transfer duration tf we can compute the Sun’s angular position at the
initial time using θ(trdv − tf ) = θ(trdv) − ωStf . This allows us to overcome
the complexity of free final time when the Sun is included in the model.

Let us denote by qrdv(·) the rendezvous transfer trajectory, we consider the
rendezvous transfer from an initial point qrdv(t0) on a parking orbit O0 ∈ IR6

to a final position and velocity qrdv(tf ) on the RH120 orbit. Note that the
initial and final positions and velocities are variables of the global optimiza-
tion problem. The criterion to maximize is the final mass which is equivalent
to minimizing the fuel consumption or the delta-v=

∫ tf
t0

Tmax‖u(t)‖
m(t)

dt. Since
the mass evolves proportionally to the norm of the thrust, our criterion is
equivalent to the minimization of the L1-norm of the control:

min
u∈U

∫ tf

t0

‖u(t)‖dt, (8)

where U = {u(·); measurable bounded and ‖u(t)‖ ≤ 1 for almost all t}, t0
and tf are respectively the initial and final time.

Remark that since we choose O0 to be a Halo orbit around a libration
point, it is uniquely determined by a single point of the orbit using the
uncontrolled CR3BP dynamics. This fact will play an important role for one
of the necessary optimality conditions below. Notice, that even though the
Halo orbit is a periodic orbit in the CR3BP only and not in the CR4BP
we chose this orbit to be our hibernating location for the spacecraft in both
situations which is clearly justified by the results of the Artemis mission.
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The large number of variables in our problem adds complexity to the
search for a solution. In particular, in the case of free final time we expect
an infinite time horizon with a control structure that mimics impulsive ma-
neuvers. To simplify our optimal problem we have two options, either we fix
the transfer time or we fix the structure of the control. If we fix the final
time, the sensitivity of the shooting method can be addressed by using the
solution of a smoother criterion than the L1-norm, for instance the L2-norm,
and linking it to the target criterion by a continuation procedure, see [13]. In
this paper, however, we take a different approach that can be applied to both
our models and decide to fix the structure of the control. In the sequel we
focus on designing transfers associated to controls with a piecewise constant
norm with value in {0, 1} and four switchings. This choice is motivated by
two reasons. First, as mentioned above from a purely computational point
of view, leaving the control structure free adds up complexity to the opti-
mization problem that is difficult to address. Second, our desire is to mimic
impulse strategy justifies a piecewise constant control either at its maximum
or zero and preliminary calculations with a free number of switchings with
several rendezvous points demonstrated that statistically the optimal con-
trol naturally converges to one with at most three boosts. One to leave the
departing orbit, one to redirect the spacecraft in direction of the rendezvous
point and a final one to match the position and location of the asteroid at the
encounter. More precisely, we consider control functions that are piecewise
continuous such that there exists times t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ tf with

‖u(t)‖ =

{
1 if t ∈ (t0; t1) ∪ (t2; t3) ∪ (t4; tf )
0 if ∈ (t1; t2) ∪ (t3; t4).

(9)

Here the final time tf is free in the CR3BP and fixed in the CR4BP, as
explained in the next paragraph. Note that our numerical method will be
able to select the best control strategy even if it has less than three boosts.

When dealing with the CR4BP, we decide to add some practical con-
straints to the rendezvous problem. First, we add a synchronization con-
straint stating that we know the position of the spacecraft on O0 at the cap-
ture time of the TCO, that is June 1st 2006 for RH120. This initial position
is denoted qHaloL2, and is given in the numerical results section. Moreover,
we impose that the departure date of the rendezvous transfer has to occur
once the trajectory of the TCO is known, that is after the date it is detected
to which we add 30 days to take into account the necessary computations to
predict accurately it’s trajectory. We call detection date this detection plus
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Figure 3: Control function modeling thrust impulses over time.

trajectory prediction date. This means that it is impossible for the transfer
to aim at a target point that the TCO visited before this detection date or
even a few days after this date. These two constraints are aimed at depicting
more realistic transfers. The considered departure dates will be fixed with a
discretization of 15 days. The rendezvous dates will also be fixed and use a
one day discretization from RH120’s detection to RH120’s escape date.

3.2.1. Necessary Conditions for Optimality

The maximum principle provides first order necessary conditions for a
trajectory to be optimal [26]. Details regarding the application of the maxi-
mum principle to orbital transfers can be found in many references, includ-
ing [4, 26]. We denote by X(t) = (q(t),m(t)) ∈ IR6+1 the state, where
q = (x, y, z, ẋ, ẏ, ż) is the position and velocity of the spacecraft and m its
mass. The conditions are mostly the same for both model, so we first give the
conditions for the Earth-Moon CR3BP and then give the modifications to
apply when dealing with the problem in the Sun-perturbed model. The max-
imum principle applied to our optimal control problem, in the Earth-Moon
CR3BP, states that if (q(·),m(·), u(·)) = (X(·), u(·)) is an optimal solution
defined on [t0, tf ], then there exists an absolutely continuous adjoint state
(p0, pX(·)) = (p0, pq(·), pm(·)), defined on [t0, tf ] such that:

• (p0, pX(·)) 6= 0, ∀t ∈ [t0, tf ], and p0 ≤ 0 is a constant.

• Let H, the Hamiltonian, be H(t,X(t), p0, pX(t), u(t)) = p0‖u(t)‖ +
〈pX(t), Ẋ(t)〉, then

Ẋ(t) =
∂H

∂pX
(t,X(t), p0, pX(t), u(t)), for a.e. t ∈ [t0, tf ], (10)
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ṗX(t) = −∂H
∂X

(t,X(t), p0, pX(t), u(t)), for a.e. t ∈ [t0, tf ], (11)

where 〈, 〉 denotes the inner product.

• H(t,X(t), p0, pX(t), u(t)) = max‖ν‖≤1H(t,X(t), p0, pX(t), ν), ∀t s.t. ‖u(t)‖ =
1 (maximization condition).

• Ψ(ti) = 0 for i = 1, · · · , 4.

• H(tf , X(tf ), p
0, pX(tf ), u(tf )) = 0, if tf is free.

• 〈pq(t0), F0(q(t0))〉 = 0 (initial transversality condition).

• pm(tf ) = 0.

The function Ψ(·) is the so-called switching function corresponding to the
problem with an unrestricted control strategy and we have Ψ(t) = p0 +

Tmax

(
‖pv(t)‖
m(t)

− pm(t)β
)

.

The maximization condition of the Hamiltonian H is used to compute
the control on [t0; t1] ∪ [t2; t3] ∪ [t4; tf ] and we have u(t) = pv(t)

‖pv(t)‖ for all t ∈
[t0; t1] ∪ [t2; t3] ∪ [t4; tf ]. The initial transversality condition reflects the fact
that the initial departing point is free on the Halo orbit O0. Remark that
since the data for the TCO’s trajectory are given as ephemerides, there are
no dynamics equations to describe those orbits in the CR3BP or the Sun-
perturbed model. Thus, we cannot compute the tangent space to a TCO
point and we cannot extract a transversality condition for pq(tf ) at the ren-
dezvous point. Since we expect numerous local extrema for this optimal
control problem, it is however preferable to solve the problem for fixed ren-
dezvous points on a discretization of the TCO orbit.

When dealing with the problem in the CR4BP, the transfer duration is
determined by the rendezvous point on the TCO orbit and the initial time
of the transfer. Furthermore, as the position of the spacecraft at RH120’s
capture, on June 1st 2006, is fixed to qHaloL2, knowing the initial time gives
the initial position of the spacecraft on the Earth-Moon Halo orbit. Thus,
since the detection constraint leads us to consider a finite number of departure
dates, each problem in the CR4BP has a fixed initial and final time. Thus, the
necessary conditions of optimality of this problem do not include the initial
transversality condition and the final Hamiltonian cancellation. In addition
to these two changes, the Sun-perturbed model has a different expression of
Ẋ.
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3.2.2. Shooting Method

Our numerical method is based on the necessary conditions given in
section 3.2.1. Let Z(t) = (X(t), pX(t)), t ∈ [t0; tf ], and u(q, p) the feed-
back control expressed using the maximization condition. Then, we have
Ż(t) = Φ(Z(t)) where Φ comes from equations (10) and (11). The goal is to
find Z(t0), t1, t2, t3, t4 and tf (when we consider the free final time for the
CR3BP) such that the following conditions are fulfilled:

1. Ψ(ti) = 0 for i = 1, · · · 4;

2. X(tf ) is the prescribed rendezvous point;

3. X(t0) ∈ O0, and the initial transversality condition is verified (only for
the CR3BP);

4. H(tf ) = 0 in the CR3BP with free final time.

The problem has been transformed into solving a multiple points boundary
value problem. More specifically, we must find the solution of a nonlinear
equation S(Z(t0), t1, t2, t3, t4, tf ) = 0, respectively S(pX(0), t1, t2, t3, t4) = 0
in the CR4BP, where S is usually called the shooting function. When looking
for Z(t0), we are actually only looking for (t0, pX(0)) since X(t0) is completely
defined by one parameter.

The evaluation of the shooting function is performed using the high order
numerical integrator DOP853, see [15]. The search for a zero of the shoot-
ing function is done with the quasi-Newton solver HYBRD of the Fortran
minpack package. Since S(·) is nonlinear, the Newton-like method is very
sensitive to the initial guess. This leads us to consider heuristic initialization
procedures. We combine two types of techniques, a direct method and a con-
tinuation method. The discretization of the TCO’s orbit requires the study
of thousands of transfers, we use a direct method for a dozen rendezvous
and expand to other points on the orbit using a continuation scheme. The
motivation is that direct methods are very robust but time consuming while
continuation methods succeed for our problem in most cases very rapidly.
The direct method uses the modeling language Ampl, see [12], and the op-
timization solver IpOpt, see [28], with a second order explicit Runge-Kutta
scheme. Details on advanced continuation methods can be found in [13] and
[5], but we use a discrete continuation which is enough for our needs.

Moreover, note that in order to fulfill the initial transversality condition,
we first prescribe X(t0) on the parking orbit and find a zero of the shooting
function satisfying all the other conditions. Afterward, we do a continuation
on X(t0) along the departing parking orbit in the direction that increases the
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final mass. Once a framing of the best X(t0) with respect to the final mass is
found, we perform a final single shooting to satisfy the initial transversality
condition along with the other conditions. This decoupling in the search of
an extremal is motivated by the fact that we could very likely find a local
maximum on X(t0) rather than a local minimum because of the periodicity
of the initial parking orbit. We avoid this fact by first manually ensuring
that the X(t0) we find will be the one for the best final mass and not the
worst. However, our continuation procedure on X(t0) does not always suc-
ceed, mainly because of the high nonlinearity of the shooting function, as
the trajectories we find can be very long. Even if some of the extremals
we find do not satisfy the initial transversality condition with the aimed
accuracy (typically a zero of the shooting function is deemed acceptable if
‖S(Z(t0), t1,2,3,4,f )‖ ≤ 10−8), they are still rather close to satisfy it (of the
order of 10−4). For theCR4BP, we took a different approach to limit the
number of calculations and continuations. First as we mentioned previously,
we still assume that the spacecraft is parked on an Halo orbit around the
L2 equilibrium point of the CR3BP but we now impose its location at the
time of RH120 capture. Its departure position from its hibernating orbit is
then determined by the prescribed rendezvous point and the fixed duration
of the transfer in that case. This permits to ignore the initial transversality
condition and simplifies the algorithm.

4. Numerical Simulations and Results

This section is divided into subsections as follow. In section 4.1 we com-
pute the best rendezvous transfer from the hibernating Halo orbit to RH120

assuming a free final time. Since we assume a free final time the CR3BP
model is used for our calculations. The main goal is to determine a lowest
bound estimate for the delta-v with respect to the position of the rendezvous
point on RH120 orbit and the duration of the transfer, as well as to gain
insight on specific characteristics of this rendezvous point. Our calculations
are also expanded to four other TCOs to demonstrate the generality of our
algorithm. In section 4.2, by fixing the final time we produce a plausible sce-
nario with respect to detection time and transfer duration using the insights
found in 4.1 and the CR4BP model. Section 4.3 expands on the analysis of
the characteristics of the rendezvous points on RH120 that produce the most
efficient transfers, our observations are supplemented by a statistical study
on a larger pool of TCOs.
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For all our calculations the spacecraft is assumed to be a monopropellant
engine, and its characteristics are assumed to be an initial mass of 350 kg, a
specific impulse Isp of 230 s. and a maximum thrust Tmax of 22 N . This choice
is motivated by assuming a spacecraft with similar features than the Gravity
Recovery and Interior Laboratory (GRAIL) spacecrafts. The Halo orbit from
which the spacecraft is departing is chosen to have a z−excursion of 5,000
km around the EM libration point L2, see Figure 4. The point corresponding
to the positive z−excursion is qHaloL2 = (1.119, 0, 0.013, 0., 0.180, 0), and the
period of this particular Halo orbit is tHaloL2 = 3.413 in normalized time units
or approximatively 14.84 days.
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Figure 4: Halo orbit from which the spacecraft is departing, z−excursion of 5,000 km
around the EM libration point L2.

During the period represented in Figure 1, asteroid RH120 does 17 clock-
wise revolutions around the origin of the CR3BP frame, and 3.6 revolutions
in Earth inertial reference frame. The evolution of the energy of RH120 and
its distance to the Earth-Moon libration point L2 as the asteroid evolves on
its orbit are given in Figure 5.

4.1. Rendezvous to RH120 using CR3BP, free final time

The objective of this section is to determine the best rendezvous transfer
to RH120 assuming a free final time, and to present an analysis of the evolution
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point (right) for RH120. For energy, the horizontal line represents the energy of the Halo
periodic orbit around L2 which is about -1.58.

of the fuel consumption with respect to the location of the rendezvous point
on the RH120 orbit. As mentioned in section 3.2, we restrict the study to
transfers with at most three boosts.

To analyze the variations of the fuel consumption with respect to the
rendezvous point on the orbit, we discretize uniformly the orbit of RH120

using 6 hours steps. For each rendezvous point of this discretization, we
compute an extremal transfer (i.e. a solution of the maximum principle)
with free final time using the techniques explained in section 3.

4.1.1. Best Rendezvous Transfer

The best transfer is represented on Figure 6, and some relevant data
is presented in Table 2. This transfer has a delta-v of 203.6 m/s. The
rendezvous takes place on June 26th 2006 and lasts 415.5 days which would
require detection and launch about 14 months before June 1st 2006. On
Figure 7, we display the orbit of RH120 in both the rotating and inertial
frame with the rendezvous point for the best transfer. The best transfer
exhibits 14 revolutions around the origin (in the rotating frame) and has a
significant variation in the z−coordinate with respect to the EM plane. In
particular, the z−coordinate of the rendezvous point is −1.04 normalized
units, that is about 400,000 km, and the maximum z−coordinate along the
trajectory is 5.34 normalized units, that is about 2 million km. The departure
point on the parking orbit occurs 4.5 days after qHaloL2 . The control strategy
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Table 2: Best Transfer Data from Halo-L2

Parameter Symbol Value

Transfer Duration tf 415.8 days
Final Mass mf 319.8 kg
Delta-v ∆v 203.6 m/s
Final Position qrdvp (2.25, 3.21, -1.04)
Final Velocities qrdvv (2.92, -2.02, 0.46)
Max Distance from L2 dmax

L2
10.63 LD

Table 2: Data for the best transfer from qHaloL2
to asteroid RH120.

consists of a first boost of 19.7 s, a second boost starting after 154.7 days and
lasting 51.1 min , finally, the last boost starting 261.1 days after the second
boost and lasts 13.8 s, see Figure 8. The short initial boost could suggest
an initial jump on an unstable invariant manifold but the boost direction
does not match the eigenvector of the monodromy matrix associated to the
unstable invariant manifold, see [18]. However, this trajectory exploits the
fact that a small initial boost leads to a far location where the gravity field
of the two primaries is small and where the second boost can efficiently aim
at the rendezvous point. In particular, we expect the existence of other local
minima with a larger final time, going further away from the initial and final
positions and providing an even better final mass. Also note that this kind
of strategy could not have been obtained if we had restricted the control
structure to have two boosts rather than three.

4.1.2. Fuel consumption with respect to rendezvous point

Figure 9 shows the evolution of the final mass, the delta-v and of the
duration of the transfer with respect to the rendezvous point on the RH120

orbit for a spacecraft departing from the Halo L2 orbit and corresponding to
the three boost control strategy. As explained in section 3.2.2, some of the
departure points on the Halo orbit are not fully optimized – this is the case
for about two thirds of them. Also note that a departure point different from
qHaloL2 implies a drift phase whose duration is not included in the transfer
duration. It can be observed that the final mass has many local extrema and
that the variation of the duration of the mission is not continuous (contrary
to what we would expect). It is most likely due to local minima or to the
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fact that the value of the criterion (see Equation (8)) is discontinuous with
respect to the rendezvous point. Unfortunately it is not possible to show a
minimum is local without exhibiting a better minimum. As for the regularity
of the criterion, its study would lead to the analysis of an ad hoc Hamilton
Jacobi Bellmann equation that is out of scope of this paper as a numerical
study is not possible due to the dimension of the problem.

Figure 10 shows the evolution of the departure point on the hibernating
orbit for the spacecraft with respect to the rendezvous point on RH120 (top)
as well as the three most frequent departure points on the initial Halo orbit
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(bottom). More precisely, we represents the optimized argument of (y, z)(0)
(up to the quadrant: arctan(z(0)/y(0))). Note that the initial position on
the Halo orbit directly depends on the optimized initial drift time. Since
this initial drift phase has not always been successfully optimized, this figure
has to be interpreted with caution. However, we can see that the departure
position on the initial periodic orbit seems to always be close to a multiple
of π.

Comparing the evolution of the final mass from Figure 9 and the evolution
of RH120 energy from Figure 5, we can see that the best final masses are
obtained on the first half of RH120 trajectory, that is for rendezvous points
with energies closer to the departing energy. For the best transfer, the energy
difference between the rendezvous point on RH120 and the departing point on
the Halo orbit is about 0.046. The rendezvous point with the closest energy
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to the initial orbit occurs only slightly before the optimal rendezvous point.
Its final mass is 319.3 kg which is only 0.5 kg worst than the best final mass.
This remark suggests strongly that a small difference in energy between the
rendezvous point on RH120 orbit and the departing point for the spacecraft
on the Halo orbit is advantageous.

4.1.3. Expansion to other TCOs

Further calculations on four synthetic TCOs obtained from the database
produced in [14] suggest that similar results can be expected on a large
sample of TCOs. Indeed, in Table 3 we display data regarding the best three
boost transfer for four other TCOs. These transfers have a duration of about
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one year each and produce delta-v values between 223.9 m/s and 344.2 m/s.
The best transfer is for TCO1 and occurs for an energy difference between
terminal configurations of about 0.13, for TCO16 the difference is about 0.6,
1.5 for TCO19 and 2.3 for TCO11. This reinforces the relationship between
the final mass of the transfer and the energy difference of the rendezvous
point with respect to the one from the Halo orbit, see section 4.3 for more
details. It can also be noted that the maximum distance of the spacecraft
from L2 during the transfer is similar for all four transfers which indicates
that the long drift is used to pull away from the two primaries attraction
fields to make the second boost more efficient.

Parameter Symbol TCO1 TCO11 TCO16 TCO19

Transfer Duration (days) tf 362.0 386.6 362.2 364.9
Final Mass (kg) mf 316.9 300.5 311.0 307.1
Delta-v (m/s) ∆v 223.9 344.2 266.1 294.6
Max Distance from L2 dmax

L2
12.7 11.5 11.5 12.8

Time to dmax
L2

(days) t(dmax
L2

) 232.9 196.6 197.3 232.3

Table 3: Best transfer data from qHaloL2
to selected TCOs.

4.2. Rendezvous to RH120 using CR4BP, fixed final time

In this section, we use the insights from the results obtained in section 4.1
to develop a more realistic scenario taking into account the Sun perturbation,
the detection time of the asteroid, the time required to compute an accurate
orbit and a transfer duration that will allow to reach RH120 within its capture
time. Asteroid RH120 was actually detected 105 days after its capture by
Earth gravity, on September 14th, 2006. Moreover if we add a window of
30 days to allow completion of the observations and calculations required to
predict RH120 orbit with enough precision, we obtain that the departure time
must take place on or after 135 days after its capture on June 1st 2006. For
these simulations, the spacecraft is assumed to be at qHaloL2 on June 1st 2006.

Based on the calculations from section 4.1, we analyze all possible trans-
fers departing from the Halo orbit 135 days after RH120 capture by discretiz-
ing the transfer duration over the interval [100, 290] where 290 represents
the constraint that the spacecraft must reach RH120 on or before it escapes
Earth’s gravity on July 31th 2007, 425 days after initial capture. We chose
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not to consider transfer durations that last less than 30 days since section
4.1 demonstrated that a shorter time implies a higher delta-v. We use a
discretization of 15 days of the departure dates over the predefined inter-
val [100, 290]. The best rendezvous transfer using the Sun-perturbed model
departing the Halo orbit exactly 30 days after RH120 was detected has a
duration of 255 days and the final mass is mf = 245.707kg, or equivalently
delta-v=797.991 m/s, see Figure 11.
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Figure 11: 3 boost rendezvous transfer to RH120 from a Halo orbit around L2 in inertial
frame, using the CR4BP. Departure 135 days after June 1st 2006, arrival 255 days later.

Additional simulations on different starting dates and durations show that
the best departure time that takes place at least 30 days after detection and
before it escapes capture is 180 days after RH120 capture. This scenario pro-
vides 75 days between the detection time and the departure of the spacecraft
for the rendezvous mission to determine RH120 orbit and design the transfer.
It produces a final mass of 267.037 kg, or equivalently delta-v=610.224 m/s,
and a rendezvous date 312 days after capture, that is April 9th 2007. Figure
12 shows the corresponding trajectory in an inertial frame and in the CR3BP
frame, while Table 4 summarizes the main features of this transfer.

The three boosts of this transfer last respectively 4.1 mn, 0.89 h and 84.2
mn, while the two ballistic arcs durations are 70.6 and 61.3 days. Clearly
from our simulations the Sun has an impact on the rendezvous transfers, in
particular when considering the Sun the spacecraft does not drift as far from
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Table: Best Sun-perturbed Transfer Data from Halo-L2

Parameter Symbol Value

Transfer Duration tf 132 days
Final Mass mf 267 kg
Delta-v ∆v 610.2 m/s
Final Position qrdvp (2.27, 0.46, -0.37)
Final Velocities qrdvv (0.79, -2.22, -0.58)
Max Distance from L2 dmax

L2
4.81 LD

Table 4: Data for the best Sun-perturbed transfer from qHaloL2 to asteroid RH120, with
transfer departure after RH120 detection.

the Earth-Moon system since the Sun’s gravity is now unavoidable. Notice
also that for both CR4BP transfers the spacecraft shows a passage at close
proximity to the Earth to quickly modify its energy level. More precisely,
in Figure 11 the smallest distance between the spacecraft and the Earth is
105478 km (0.274397 LD) and in Figure 12 it is 35677.2 km (0.0928128 LD).
Both of these are acceptable in terms of practicality with the second one at
a distance about equivalent to the geostationary orbit.
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4.3. Regression analysis

The goal of this section is to determine factors that can predict which
location on a given TCO orbit is best suited for a fuel efficient rendezvous
transfer. In section 4.1.2, we observed that for RH120 a small energy difference
between the departing point for the spacecraft and the rendezvous point
provides a good candidate for an efficient transfer. Using rendezvous transfers
on a larger pool of TCOs and transfers calculated using the Sun-perturbed
model, we expand on this observation.

More precisely, we have that in the circular restricted three-body problem
the energy E3 is a first integral of motion, so any change in energy must be
generated from the spacecraft’s propulsion. Therefore, transfers between
orbits of significantly different energy necessarily require more delta-v which
is what we observed in section 4.1.2. In the circular restricted four-body
problem however, energy is no longer a first integral, and theoretically the
spacecraft can utilize the influence of the Sun to navigate between orbits of
different energy for cheaper delta-v. For 1,000 selected rendezvous points on
simulated TCOs from [14], we computed a rendezvous transfer departing from
the Earth-Moon libration point L2 in the circular restricted four-body model,
using the same features for the spacecraft as for our calculations on RH120,
i.e. a 22N maximum thrust and 230 second Isp and transfer duration between
10 and 180 days. We see in Figure 13 a characterization of those rendezvous
points based on the energy difference from departure |E3(rdvz)−E3(L2)| as
well as the z and ż coordinates, colored by delta-v. The figure shows clearly
that those rendezvous points with low absolute z and ż coordinates yield
the lowest delta-v values. Moreover, although there are some low delta-v
rendezvous with large energy difference, most of the low delta-v transfers
have low energy differences, indicating the energy is still an important factor
even in the four body model.

Further exploration to determine other predictors has been conducted as
follows. We started from a random pool of 91 TCOs and their corresponding
best rendezvous transfers. We discarded some extreme cases: transfers with
inordinate expected fuel cost (delta-v> 1000) and TCOs with average energy
vastly different from that of the departure point (absolute value of the differ-
ences greater than 4). Running a linear multiple regression using regstats in
Matlab on the remaining 79 trajectories, we found that three predictors were
statistically significant with 95% confidence. Listed below are the results.
These delta-v values ranged from 130 to 1600 m/s.
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Figure 13: Characterization of 1,000 simulated rendezvous transfers from L2.

Statistic Value

Adjusted R2 0.397
f -value 18.106
p-value 6.17× 10−9

Table 5: Selected statistics for the multiple linear regression on the three significant vari-
ables of interest. This indicates that the three selected predictors explain roughly 40% of
the variance in the data. The f -statistic and associated p-value indicate that this cannot
be explained by random chance.

The regression shows that these three predictors account for approxi-
mately 40% of the variance in the transfer cost (adj-R2 = 0.397), which
implies that they may be useful in predicting future transfer costs, but that
there may exist some other significant factors as well. Based on this data,
we hypothesize the following practical trends from these findings:

• TCOs with average energy similar to the spacecraft’s departure energy
tend to have lower delta-v transfers.
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Predictor Description p-value R2

Energy Difference
The difference in the energy of the TCO
and the spacecraft’s departure point (equal
in this case to the EM L2 energy)

0.0169 0.163

Lunar Planarity
The average distance of the TCO from
the plane in which the Moon orbits the Earth.

4.35× 10−6 0.216

Barycenter Variance

The variance in the distance of the TCO
from the Earth-Moon barycenter. This
is a rough indicator of how well the TCO
adheres to a circular path around the earth-
moon system.

3.10× 10−3 0.164

Table 6: Significant predictors of delta-v, the associated p-value from the multiple linear
regression t-tests, and the associated R2 value from the single linear regression. Subject
to the inherent difficulties of regression analysis, this implies that Lunar planarity has the
most impact on fuel costs while the other two predictors have roughly the same impact.

• TCOs which travel more aligned with the lunar plane tend to have
lower delta-v transfers.

• TCOs which have roughly circular paths, or have perhaps even large
sections of roughly circular paths, tend to have lower delta-v transfers.

It should be noted that these hypotheses come with fair caveat; we did not
vary the departure energy, the sample size of TCOs was fairly low, and the
pruning method for excluding extreme cases relies on calculating the transfer
cost initially. However, the TCOs excluded due to extreme transfer costs
alone (high delta-v and not high geocentric energy difference) were rare (3
out of 91), so we can probably safely ignore these as outliers.
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