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We consider Grenander type estimators for monotone functions f in a very general setting, which includes estimation of monotone regression curves, monotone densities, and monotone failure rates. These estimators are defined as the left-hand slope of the least concave majorant Fn of a naive estimator Fn of the integrated curve F corresponding to f . We prove that the supremum distance between Fn and Fn is of the order Op(n -1 log n) 2/(4-τ ) , for some τ ∈ [0, 4) that characterizes the tail probabilities of an approximating process for Fn. In typical examples, the approximating process is Gaussian and τ = 1, in which case the convergence rate is n -2/3 (log n) 2/3 is in the same spirit as the one obtained by Kiefer and Wolfowitz [9] for the special case of estimating a decreasing density. We also obtain a similar result for the primitive of Fn, in which case τ = 2, leading to a faster rate n -1 log n, also found by Wang and Woodfroofe [22]. As an application in our general setup, we show that a smoothed Grenander type estimator and its derivative are asymptotically equivalent to the ordinary kernel estimator and its derivative in first order.

Introduction

Grenander [START_REF] Grenander | On the theory of mortality measurement[END_REF] proved that the maximum likelihood estimator of a distribution F that is concave on its support, is the least concave majorant F n of the empirical distribution function F n of the n independent observations. In the case where F is absolutely continuous with probability density function f , the concavity assumption on F simply means that f is non-increasing on its support, and the so-called Grenander estimator of f is the left-hand slope of F n . Kiefer and Wolfowitz [START_REF] Kiefer | Asymptotically minimax estimation of concave and convex distribution functions[END_REF] showed that F n and F n are close for large n and as a consequence, that F n enjoys similar optimality properties as F n , with the advantage of taking care of the shape constraint of being concave. Roughly speaking, Kiefer and 1 Wolfowitz [START_REF] Kiefer | Asymptotically minimax estimation of concave and convex distribution functions[END_REF] prove in their Theorem 1 that, if f is bounded away from zero with a continuous first derivative f that is bounded and bounded away from zero, then, with probability one, the supremum distance between F n and F n is of the order n -2/3 log n. Their main motivation was to prove the asymptotic minimax character of F n . Their result easily extends to the case of an increasing density function, replacing the least concave majorant with the greatest convex minorant.

In the setting of estimating an increasing failure rate, Wang [START_REF] Wang | Asymptotically minimax estimators for distributions with increasing failure rate[END_REF] proves that under appropriate assumptions, the supremum distance between the empirical cumulative hazard and its greatest convex minorant is of the order o p (n -1/2 ), again with the motivation of establishing asymptotic optimality of the constrained estimator. A similar result is proved in Kochar, Mukerjee and Samaniego [START_REF] Kochar | Estimation of a monotone mean residual life[END_REF] for a monotone mean residual life function. In the regression setting with a fixed design, Durot and Toquet [START_REF] Durot | On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF] consider the supremum distance between the partial sum process and its least concave majorant and prove that, if the regression function is decreasing with a continuous derivative that is bounded and bounded away from zero, then this supremum distance is of the order O p (n -2/3 (log n) 2/3 ). They also provide a lower bound, showing that n -2/3 (log n) 2/3 is the exact order of the supremum distance. A generalization to the case of a random design was developed by Pal and Woodroofe [START_REF] Pal | On the distance between cumulative sum diagram and its greatest convex minorant for unequally spaced design points[END_REF]. Similar results were proved for other shape-constrained estimators, see Balabdaoui and Wellner [START_REF] Balabdaoui | A Kiefer-Wolfowitz theorem for convex densities[END_REF] for convex densities and Dümbgen and Rufibach [START_REF] Duembgen | Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency[END_REF] for log-concave densities. Wang and Woodroofe [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF] obtained a similar result for Wicksell's problem. Their result compares to the supremum distance between the primitive of F n and its least concave majorant, which leads to a faster rate n -1 log n.

Although the first motivation for Kiefer-Wolfowitz type of results has been asymptotic optimality of shape constrained estimators, other important statistical applications are conceivable. For instance, the Kiefer-Wolfowitz result was a key argument in Sen, Banerjee and Woodroofe [START_REF] Sen | Inconsistency of bootstrap: The Grenander estimator[END_REF] to prove that, although bootstrapping from the empirical distribution function F n or from its least concave majorant F n does not work for the Grenander estimator of a decreasing density function at a fixed point, the m out of n bootstrap, with m n, from F n does work. Likewise, Durot, Groeneboom and Lopuhaä [START_REF] Durot | Testing equality of functions under monotonicity constraints[END_REF] use a Kiefer-Wolfowitz type of result to prove that a smoothed bootstrap from a Grenander-type estimator works for k-sample tests in a general statistical setting, which covers the monotone regression model and monotone density model among others. Mammen [START_REF] Mammen | Estimating a smooth monotone regression function[END_REF] suggests to use such a result to make an asymptotic comparison of two different estimators for a monotone regression function: one of them is obtained by smoothing a Grenander type estimator and the other one is obtained by "monotonizing" a kernel estimator. See also Wang and Woodroofe [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF] for a similar application of their Kiefer-Wolfowitz comparison theorem.

The aim of this paper is to establish a Kiefer-Wolfowitz type of result in a very general setting that covers the setting considered in [START_REF] Durot | Testing equality of functions under monotonicity constraints[END_REF]. We recover the aforementioned Kiefer-Wolfowitz type of results for F n -F n as special cases of our general result. Furthermore, in a similar general setting we consider the imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015 supremum distance between the primitive of F n and its least concave majorant, and obtain the same faster rate as found in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]. As an application of our results, we consider the problem of estimating a smooth monotone function and provide an asymptotic comparison between an ordinary kernel estimator and a smooth monotone estimator.

The paper is organized as follows. In Section 2, we define our general setting and state our Kiefer-Wolfowitz type inequality. Section 3 is devoted to specific settings to which our main theorem applies. Applications to estimating smooth monotone functions are described in Section 4. Proofs are deferred to Section 5.

A Kiefer-Wolfowitz type of inequality in a general setting

First, we define our general setting as well as the notation that will be used throughout the paper. Then we state our main result. The result will be illustrated for several classical settings, such as monotone density or monotone regression, in Section 3.

The setting

Suppose that based on n observations, we have at hand a cadlag step estimator F n for a concave function F : [a, b] → R, where a and b are know reals. In the sequel, we assume that F is continuously differentiable with F (a) = 0 and we denote by f the first derivative, which means that

F (t) = t a f (x) dx, (1) 
for t ∈ [a, b]. A typical example is the case where we have independent observations with a common density f on [a, b], and where the estimator for F is the empirical distribution function F n of the observations. Further details are given in Section 3, where some more examples are investigated. We will impose the following assumptions on f :

(A1) The function f : [a, b] → R is decreasing and continuously differentiable, such that 0 < inf t∈[a,b] |f (t)| ≤ sup t∈[a,b] |f (t)| < ∞.
Furthermore, we assume that the cadlag estimator F n can be approximated in the sense that

sup t∈[a,b] |F n (t) -F (t) -n -1/2 B n • L(t)| = O p (γ n ) , (2) 
where (A3) There are positive K 1 , K 2 such that for all x ∈ [L(a), L(b)], u ∈ (0, 1], and v > 0,

γ n → 0, L : [a, b] → R is non-decreasing,
P sup |x-y|≤u |B n (x) -B n (y)| > v ≤ K 1 exp(-K 2 v 2 u -τ
P sup z≥u B n (x -z) -B n (x) -vz 2 > 0 ≤ K 1 exp -K 2 v 2 u 4-τ .
Finally, we will impose the following smoothness condition on L.

(A4) The function L : [a, b] → R is increasing and continuously differentiable, such that 0 < inf t∈[a,b] L (t) ≤ sup t∈[a,b] L (t) < ∞.
A typical example is estimation of a monotone density f , in which case the empirical distribution function F n can be approximated by a sequence of Brownian bridges B n , L is equal to the cumulative distribution function F corresponding to f , and γ n = (log n)/n in (2), due to the Hungarian embedding (see [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw[END_REF]).

Other examples are the monotone regression model and the random censorship model with a monotone hazard, in which case B n is a Brownian motion and γ n relies on the integrability of the errors in the regression case, and γ n = (log n)/n in the random censorship model, see Sections 3.1.1 and 3.1.3 for more details.

Main results

Hereafter, F n denotes the least concave majorant of F n on [a, b]. We are interested in the supremum distance between F n and F n . Our main result is a Kiefer-Wolfowitz type of inequality for the supremum distance in our general setting. We will obtain such an inequality by decomposing F n -F n into two parts, the difference between the approximating process F B n = F + n -1/2 B n • L and its least concave majorant, and remainder terms that can be bounded by means of (2). We then first establish a Kiefer-Wolfowitz type of result for F B n by making use of assumptions (A2) and (A3). The reason is that in typical examples, the bound provided by the approximation in (2) is of smaller order than the bound on the difference between F B n and its least concave majorant, and hence, the latter difference determines the rate in the Kiefer-Wolfowitz result. Moreover, it has the advantage that it allows one to avoid the specific structure of the particular statistical model at hand, and it only requires assumptions (A2) and (A3) on the approximating process. Note however, that if the specific structure does provide suitable exponential bounds on tail probabilities for n 1/2 (F n -F ), one can just take the identity for L and [START_REF] Barlow | Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF]. As it may be of interest in its own right, we first state a Kiefer-Wolfowitz type of result for

B n = n 1/2 (F n -F ) in
F B n . Theorem 2.1. Let F B n = F +n -1/2 B n •L,
where F is defined by (1) for some f satisfying (A1), L satisfying (A4), and B n satisfying (A2) and (A3) for some τ ∈ [0, 4). Let F B n be the least concave majorant of

F B n on [a, b]. We then have sup x∈[a,b] | F B n (x) -F B n (x)| = O p log n n 2/(4-τ )
.
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The main ingredient to prove Theorem 2.1 is a localization result stated in Lemma 2.1 below. It shows that although the least concave majorant F B n depends on the whole process F B n , its value at a fixed point x mainly depends on F B n in a small neighborhood of x. Precisely, with probability tending to one, F B n (x) coincides with the least concave majorant of the restriction of F n to a shrinking interval with center x. This result generalizes Lemma 5.1 in [START_REF] Durot | On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF], where only the case of a Brownian motion B n with the specific variance function L(t) = t was considered.

Lemma 2.1. Assume the conditions of Theorem 2.1. Let

c n = c 0 log n n 1/(4-τ ) (3) 
for some c 0 > 0.

For x ∈ [a, b], let F (B,x)
n,cn be the least concave majorant of the process

F B n (η), η ∈ [x -2c n , x + 2c n ] ∩ [a, b] .
Then, there exist positive numbers K 1 , K 2 , C 0 independent of n, such that for c 0 ≥ C 0 we have

P sup x∈[a,b] F B n (x) -F (B,x) n,cn (x) = 0 ≤ K 1 n -c0K2 .
Theorem 2.1, together with (2), yields the following general Kiefer-Wolfowitz type of result for the cadlag estimator F n and its least concave majorant F n . Theorem 2.2. Assume (2), where F is defined by (1) for some f satisfying (A1), L satisfying (A4), and B n satisfying (A2) and (A3) for some τ ∈ [0, 4). We then have

sup x∈[a,b] | F n (x) -F n (x)| = O p (γ n ) + O p log n n 2/(4-τ )
.

Obviously, when the approximation in (2) is sufficiently strong, that is,

γ n = O(n -1 log n) 2/(4-τ ) then sup x∈[a,b] | F n (x) -F n (x)| = O p log n n 2/(4-τ ) . (4) 
For models where (A2) and (A3) hold with τ = 1 and γ n = O(n -1 log n) 2/3 in (2), we recover the traditional Kiefer-Wolfowitz inequality ( [START_REF] Kiefer | Asymptotically minimax estimation of concave and convex distribution functions[END_REF]). See Section 3 for examples. For models where (A2) and (A3) hold with τ = 2 and γ n = O(n -1 log n), we recover the faster rate found by Wang and Woodroofe (see Theorem 2.1 in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]). The reason for finding different values for τ , is that the case τ = 1 corresponds to a Kiefer-Wolfowitz inequality derived for a naive estimator F n for F in (1), whereas the result in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF] compares to an inequality for the integral of F n . See Section 3.2 for more details. Under slightly more restrictive assumptions, the results in Theorems 2.1 and 2.2 can be made more precise by considering moments of the supremum distance rather than the stochastic order. As before, we first obtain a result for moments corresponding to the process F B n .
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Theorem 2.3. Assume the conditions of Theorem 2.1. Moreover, assume that there are positive numbers K 1 , K 2 , such that for all v > 0 we have

P sup x∈[L(a),L(b)] |B n (x)| > v ≤ K 1 exp(-K 2 v 2 ). ( 5 
)
With r ≥ 1 arbitrary, we then have

E sup x∈[a,b] F B n (x) -F B n (x) r = O log n n 2r/(4-τ )
.

A similar result for the process F n is obtained from the previous theorem and the following condition

E sup x∈[a,b] |F n (x) -F (t) -n -1/2 B n • L(t)| r = O log n n 2r/(4-τ ) , ( 6 
)
where F is defined by (1) for some f satisfying (A1), L satisfying (A4), and B n satisfying (A2) and (A3). Note that the slightly more restrictive moment assumption (6) replaces condition [START_REF] Barlow | Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF], that was used before in Theorem 2.2.

Theorem 2.4. Assume the conditions of Theorem 2.1. Moreover, assume that (6) holds, for some r ≥ 1 and τ ∈ [0, 4), and assume that there are positive numbers K 1 , K 2 such that (5) holds for all v > 0. We then have

E sup x∈[a,b] F n (x) -F n (x) r = O log n n 2r/(4-τ )
.

Local version

We also investigate a local version of the Kiefer-Wolfowitz result. This means that instead of considering the supremum over the whole interval [a, b] as in Theorem 2.2, we consider the supremum over a shrinking neighborhood around a fixed point x 0 ∈ [a, b]. For the local supremum, we obtain a bound of smaller order than for the global supremum. This compares to Theorem 2.2 in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF], where a Kiefer-Wolfovitz type of result was established for Wicksell's problem. However, only one specific rate of shrinking was considered in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF], whereas we allow a range of possible rates. Moreover, we give a more precise bound than in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF].

Theorem 2.5. Fix x 0 ∈ [a, b]. Assume (2)
, where F is defined by (1) for some f satisfying (A1), L satisfying (A4), and B n satisfying (A2) and (A3) for some τ ∈ [0, 4). For any sequence ε n ≥ (n -1 log n) 1/(4-τ ) we then have

sup |x-x0|≤εn | F n (x) -F n (x)| = O p (γ n ) + O p (ε τ /2 n n -1/2 ) ∧ log n n 2/(4-τ )
.
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As in the case of Theorem 2.2, when the embedding in (2) is sufficiently strong, i.e., γ n = O(ε

τ /2 n n -1/2 ) and γ n = O(n -1 log n) 2/(4-τ ) , we obtain sup |x-x0|≤εn | F n (x) -F n (x)| = O p (ε τ /2 n n -1/2 ) ∧ log n n 2/(4-τ ) . (7) 
Clearly, the local rate in [START_REF] Durot | On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF] is at most (n -1 log n) 2/(4-τ ) and for any allowable sequence

ε n ≥ (n -1 log n) 1/(4-τ ) , it is at least (n -1 log n) 2/(4-τ ) (log n) -1/2 .
Thus, the local rate may vary depending on the rate ε n at which the neighborhood around x 0 shrinks, and it is of smaller order than the global rate obtained in Theorem 2.2 in all cases where

ε n = o (n -1 log n) 1/(4-τ ) (log n) 1/τ .
Remark 2.1. Note that for τ = 2, the boundary case

ε n = (n -1 log n) 1/2
coincides with the shrinking rate in Theorem 2.2 in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]. This leads to local rate O p (ε 2 n (log n) -1/2 ) in [START_REF] Durot | On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF], which is conform the the rate o p (ε 2 n ), as stated in Theorem 2.2 in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF].

We end this section by considering the rate of convergence at a fixed point. As stated in the following theorem, the resulting rate is n -2/(4-τ ) with no logarithmic term. Theorem 2.6. Fix x 0 ∈ [a, b] and suppose that γ n = O(n -2/(4-τ ) ) in [START_REF] Barlow | Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF]. Then under the assumptions of Theorem 2.5 we have

F n (x 0 ) -F n (x 0 ) = O p n -2/(4-τ ) . (8) 
For models where (A2) and (A3) hold with τ = 1, such as the monotone density model, the rate n -2/3 in Theorem 2.6 matches with the result in [START_REF] Wang | The limit distribution of the concave majorant of an empirical distribution function[END_REF]. See also [START_REF] Durot | On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF] and [START_REF] Kulikov | The limit process of the difference between the empirical distribution function and its concave majorant[END_REF].

Examples of specific settings

The section is devoted to specific settings to which Theorem 2.2 applies. We first discuss statistical models for which a Kiefer-Wolfowitz result is obtained for an estimator F n for the integral F of a decreasing curve f , and in which the approximation in ( 2) is by means of Brownian motion of Brownian bridge. In these cases the Kiefer-Wolfowitz result coincides with the traditional one in [START_REF] Kiefer | Asymptotically minimax estimation of concave and convex distribution functions[END_REF]. Next, we consider the situation for which a Kiefer-Wolfowitz result is obtained for the primitive of F n . This matches the setup for the Wicksell problem considered by [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF] and we obtain the same (faster) rate as found in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]. Finally, we discuss a few setups that are not covered by our general setting.

Decreasing functions

It turns out that in various usual settings (where the decreasing function f could be for instance a density, or a regression function), the embedding [START_REF] Barlow | Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF] imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015 holds with B n being either Brownian Bridge or Brownian motion. For such a process B n , it can be proved that (A2) and (A3) hold with τ = 1, leading to the usual rate (n -1 log n) 2/3 in the Kieffer-Wolfowitz inequality. This is made precise in the following corollary. Then, we discuss a number of specific settings that are covered by Corollary 3.1.

Corollary 3.1. Assume (2) with γ n = O(n -1 log n) 2/3
, where F is defined by (1) for some f that satisfies (A1), L satisfies (A4), and B n is either Brownian motion or Brownian Bridge. We then have

sup x∈[a,b] F n (x) -F n (x) = O p log n n 2/3 . (9) 
If, moreover, 0 ∈ [L(a), L(b)] and (6) holds with τ = 1 and some r ≥ 1, then we also have

E sup x∈[a,b] F n (x) -F n (x) r = O log n n 2r/3 . (10) 

Monotone regression function.

We have observations

Y i , for i = 1, 2, . . . , n, satisfying Y i = f (t i ) + i , where E( i ) = 0 and max i |t i -(a + (b -a)i/n)| = O(n -2/3 ), (11) 
which means that the design points are close to uniformly spread on [a, b]. We assume that the i 's are independent having the same distribution. In this case, the estimator for F in (1) is

F n (t) = 1 n n i=1 Y i 1{t i ≤ t}, t ∈ [a, b]. (12) 
As a special case of Corollary 3.1 we obtain the following result.

Corollary 3.2. If E| i | 3 < ∞, E| i | 2 >
0 and (A1) holds, then we have [START_REF] Kiefer | Asymptotically minimax estimation of concave and convex distribution functions[END_REF] with F n taken from [START_REF] Kulikov | The limit process of the difference between the empirical distribution function and its concave majorant[END_REF] and F n the least concave majorant of F n .

Monotone density.

We have independent observations X i , for i = 1, 2, . . . , n, with common density f : [a, b] → R, where a and b are known real numbers. The estimator for the distribution function F in this case is the empirical distribution function We have right-censored observations (X i , ∆ i ), for i = 1, 2, . . . , n, where

F n (t) = 1 n n i=1 1{X i ≤ t}, t ∈ [a, b]. (13 
X i = min(T i , Y i ) and ∆ i = 1{T i ≤ Y i }.
The failure times T i are assumed to be nonnegative independent with distribution function G and are independent of the i.i.d. censoring times Y i that have distribution function

H. Define F = -log(1 -G) the cumulative hazard on [0, b].
Note that in this setting, we only consider the case a = 0, since this is more natural. The estimator for the cumulative hazard F is defined via the Nelson-Aalen estimator N n as follows: let

t 1 < • • • < t m denote the ordered distinct uncensored failure times in the sample and n k the number of i ∈ {1, 2, . . . , n} with X i ≥ t k , F n (t i ) = k≤i 1 n k , (14) 
and F n (t) = 0 for all t < t 1 and

F n (t) = N n (t m ) for all t ≥ t m . Corollary 3.4. Suppose (A1), inf t∈[0,b] f (t) > 0, G(b) < 1, and lim t↑b H(t) < 1.
Then we have (9) with F n taken from ( 14) and F n the least concave majorant of the restriction of

F n to [0, b].

Decreasing primitive of nonnegative functions

Wang and Woodroofe [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF] obtain a Kiefer-Wolfowitz result for the Wicksell problem and find n -1 log n as rate of convergence, which is faster than (n -1 log n) 2/3 from Corollary 3.1. The reason is that in their setup the Kiefer-Wolfowitz result is obtained for U # n , defined as the primitive of Ψ # n , which serves as an estimator for Ψ(y) = ∞ y π 2 ϕ(x) dx, for some nonnegative ϕ. We investigate a similar setup, where we establish a Kiefer-Wolfowitz result for the primitive of the cadlag estimator F n for F with f being positive. Precisely, in the sequel we assume

(A5) The function f : [a, b] → R is continuous, such that 0 < inf t∈[a,b] f (t) ≤ sup t∈[a,b] f (t) < ∞.
Let F be defined in [START_REF] Balabdaoui | A Kiefer-Wolfowitz theorem for convex densities[END_REF] with corresponding cadlag estimator F n . Define

S(y) = b y f (x) dx = F (b) -F (y); S n (y) = F n (b) -F n (y). ( 15 
)
If f satisfies (A5), then S is decreasing. We will investigate a Kiefer-Wolfowitz result for

H n (t) = t a S n (x) dx = t a (F n (b) -F n (x)) dx, (16) 
which serves as an estimator for

H(t) = t a S(x) dx = t a (F (b) -F (x)) dx. ( 17 
)
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In the case where (2) holds with γ n = O(n -1 log n) and B n is either Brownian motion or Brownian bridge, we find the same rate as in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]. Let H n denote the least concave majorant of

H n on [a, b]. Corollary 3.5. Assume (2) with γ n = O(n -1 log n),
where F is defined by (1) for some f that satisfies (A5), L is bounded, and B n is either Brownian motion or Brownian Bridge. Then, we have

sup x∈[a,b] | H n (x) -H n (x)| = O p log n n ,
Note that we recover the rate obtained in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF] for Wicksell's problem. Our result applies for instance to the regression setting of Subsection 3.1.1, where the ε i 's are i.i.d. Gaussian and, where instead of (A1), f is assumed to satisfy (A5).

Remark 3.1. The general setup of Corollary 3.5 does not cover the Wickell problem considered in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]. The reason is that the approximating process for their process U # n is more complicated than the one for H n , leading to extra logarithmic terms in (A2) and (A3), and to difficulties in obtaining bounds for a supremum in these assumptions. Nevertheless, by using the specific structure of the Wicksell problem, the authors do obtain the same rate n -1 log n, see Theorem 2.2 in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF].

Discussion

Although, the above Kiefer-Wolfowitz results have been obtained for two different general settings, there are still complex statistical models that are not covered by either setup. One such example is interval censoring, where one would expect the same result as in Theorem 2.2. The main difference with our general setting is that the estimator for f is the slope of the least concave majorant of a cumulative sum diagram (CSD), which has y-coordinates determined by a cadlag function, e.g., F n (t) in the case of monotone density or monotone regression, and an x-coordinate determined by the identity. In this case, the points are of the form (t, F n (t)) for specific values of t, e.g., t = X (1) , . . . , X (n) in the case of monotone density. This is essentially different from, for instance, interval censoring Case 1. In this model, the observations are (T i , ∆ i ), where ∆ i = {X i ≤ T i } indicates whether the event time X i is before or after the observed censoring time T i . The parameter of interest is the cdf F of the event times and the coordinates of the CSD are of the form

G n (s), {x ≤ t}{t ≤ s} dP n (x, t) , s = T (1) , . . . , T (n) ,
where G n is the empirical cdf of the T i and P n is the empirical measure of the tuples (X i , T i ). First of all, one would need to find an approximating process satisfying (A2)-(A3), for the process More importantly, our proof of the key Lemma 2.1 relies heavily on the fact that the points of the CSD are of the form (t, Y n (t)), for some process Y n , and it is not clear how this can be extended to a CSD with points of the form (G n (t), Y n (t)). Interval censoring case 2 is even more difficult, because the CSD is self-induced, i.e., the points of the diagram depend on the actual solution itself.

Y n (s) = {x ≤ t}{t ≤ s} dP n (x, t).

Estimating a smooth monotone function

In many applications, the parameter of interest f : [a, b] → R, e.g., a density function, a regression mean, or a failure rate, is known to be non-increasing (the non-decreasing case can be treated likewise) so it is natural to incorporate this shape constraint into the estimation procedure. Consider the setting of Section 3.1. A popular estimator for f under the constraint that f is nonincreasing is the Grenander-type estimator f n , defined on (a, b] as the left-hand slope of the least concave majorant F n of F n , with

f n (a) = lim s↓a f n (s).
This estimator is a step function and as a consequence it is not smooth. Moreover, the rate of convergence of f n is n 1/3 , if f has a first derivative f that is bounded away from zero, whereas competitive smooth estimators may have faster rates in cases where f is smooth. On the other hand, such estimators typically do not satisfy the monotonicity constraint.

In this section, we are interested in an estimator that is both non-increasing and smooth, and that achieves the optimal rate of convergence under certain smoothness conditions. The estimator is obtained by smoothing the Grenandertype estimator f n , and resembles the estimators m IS in [START_REF] Mammen | Estimating a smooth monotone regression function[END_REF] and m n in [START_REF] Mukerjee | Monotone nonparametric regression[END_REF], see also Ψn,s in [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]. In this way, one first applies an isotonization procedure followed by smoothing. A natural alternative would be to interchange the two steps, that is, first smooth and then isotonize, but this typically results in a non smooth estimator. It may happen that the two proposals are asymptotically equivalent in first order; see [START_REF] Mammen | Estimating a smooth monotone regression function[END_REF] for a precise statement in the smooth regression setting. See also [START_REF] Van Der Vaart | Smooth estimation of a monotone density[END_REF] for a comparison of the second proposal with an ordinary kernel estimator and with the Grenander estimator when estimating a monotone density with a single derivative.

Consider an ordinary kernel-type estimator f n , corrected at the boundaries in such a way that it converges to f , with a fast rate over the whole interval [a, b] (whereas the non-corrected kernel estimator may show difficulties at the boundaries):

for every t ∈ [a + h n , b -h n ], f n (t) = 1 h n R K t -x h n dF n (x), ( 18 
)
where h n > 0 and the kernel function K : R → [0, ∞) satisfies K(t) dt = 1. We are interested in f ns , the estimator defined in the same manner as f n , with F n replaced by the least concave majorant F n . At the boundaries [a, a + h n ) and 

f n (t) = f n (a + h n ) + f n (a + h n )(t -a -h n ), t ∈ [a, a + h n ]; f n (b -h n ) + f n (b -h n )(t -b + h n ), t ∈ [b -h n , b], (19) 
see, e.g. [START_REF] Wand | Kernel smoothing[END_REF]. Thus, f ns is a smoothed version of the Grenander-type estimator f n , linearly extended at the boundaries. According to the following lemma, it is monotone provided that K ≥ 0 is supported on [-1, 1]. A similar result was obtained by [START_REF] Mukerjee | Monotone nonparametric regression[END_REF], page 743, in the regression setting for a log-concave kernel K.

Moreover, since f n can easily be computed using the PAVA or a similar device, see e.g., [START_REF] Barlow | Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF], the monotone smooth estimator f ns (t) is easy to implement thanks to [START_REF] Wand | Kernel smoothing[END_REF] below. This was already pointed out in [START_REF] Durot | Testing equality of functions under monotonicity constraints[END_REF], Section 4.2.

Lemma 4.1. Let p 1 , . . . , p m be the jump sizes of f n at the points of jump

τ 1 < • • • < τ m ∈ (a, b]. If K ≥ 0 is supported on [-1, 1], then f ns is non- increasing on [a, b] and for all t ∈ [a + h n , b -h n ], we have f ns (t) = m j=1 p j ∞ (t-τj )/hn K(u) du + f n (b). (20) 
As application of Corollary 3.1, we establish that f ns is uniformly close to f n , and similarly for their derivatives. This will ensure that the two estimators and their derivatives are asymptotically equivalent in first order. In [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF] a similar application of a Kiefer-Wolfowitz result is discussed. Their result is for t fixed and compares to our result for the derivatives of f ns and f n . 

f (l) ns (t) -f (l) n (t) = O p h -(1+l) n n -2/3 (log n) 2/3 , where f (l) 
ns and f

(l)
n denote l-th derivatives. Thanks to Lemma 4.2, we are able to derive the limit behavior of f ns from that of f n . To illustrate this, suppose that f belongs to a Hölder class H(L, α), for some L > 0 and α ∈ (1, 2], which means that f has a first derivative satisfying

|f (u) -f (v)| ≤ L|u -v| α-1 , for all u, v ∈ [a, b].
It is known that in typical settings (including the specific settings investigated in Subsection 3.1), the estimator defined by [START_REF] Sen | Inconsistency of bootstrap: The Grenander estimator[END_REF] with

h n = R n n -1/(2α+1) , (21) 
where 0 < R n + R -1 n = O P (1), and a kernel function K with uK(u) du = 0, satisfies for all fixed x ∈ (a, b) independent of n. Moreover, this rate of convergence is optimal in the minimax sense in typical settings, e.g., see Theorem 2.3 in [START_REF] Cybakov | Introduction à l'estimation non paramétrique[END_REF]. With h n defined as in [START_REF] Wang | Asymptotically minimax estimators for distributions with increasing failure rate[END_REF], Lemma 4.2 yields that

f n (x) -f (x) = O P n -α/(2α+1
f ns (x) -f (x) = f n (x) -f (x) + o P n -α/(2α+1) .
This means that f ns is asymptotically equivalent to f n in first order. In particular, f ns (x) has the same limit distribution and the same minimax rate of convergence as f n (x), provided that h n is chosen according to [START_REF] Wang | Asymptotically minimax estimators for distributions with increasing failure rate[END_REF]. Therefore, one can use any adaptive method for calibrating the bandwidth h n of the ordinary kernel estimator f n , e.g., see [START_REF] Lepski | Optimal pointwise adaptive methods in nonparametric estimation[END_REF], and use the same bandwidth in f ns (x), so that it achieves the minimax rate. Similar arguments enable us to derive the global limit behavior of f ns from that of f n , e.g., the limit distribution or the rate of convergence of the supremum distance between f ns and f . See [START_REF] Durot | Testing equality of functions under monotonicity constraints[END_REF] for further details.

Proofs

Note that it suffices to prove the results for the case In the remainder of the section, we assume that c 0 in (3) satisfies c 0 ≥ C 0 for a given C 0 . The letters K 1 , K 2 , . . . denote positive numbers that depend only on f , L and C 0 and that may change from line to line. Moreover, we denote ε = inf t |f (t)|.

Proofs for Subsection 2.2

Before establishing the key Lemma 2.1, we obtain the following result on the increments of B n , which will be used several times. Lemma 5.1. Let B n be a process that satisfies (A2) on an interval I. Then there exist positive K 1 , K 2 such that for all u ∈ (0, 1/2] and v > 0,

P sup x∈I sup |x-y|≤u |B n (x) -B n (y)| > v ≤ K 1 u -1 exp -K 2 v 2 u -τ .
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Proof. Denote I = [α, β], let k be the integer part of (β -α)u -1 and let t j = α + ju, for j = 0, 1, . . . , k + 1. We then have

P sup x∈[α,β] sup |x-y|≤u |B n (x) -B n (y)| > v ≤ k j=0 P sup x∈[tj ,tj+1] sup |x-y|≤u |B n (x) -B n (y)| > v .
Since t j+1 -t j = u, for all j = 0, . . . k we have

P sup x∈[tj ,tj+1] sup |x-y|≤u |B n (x) -B n (y)| > v ≤ P sup x∈[tj ,tj+1] |B n (x) -B n (t j )| > v 2 or sup |tj -y|≤2u |B n (t j ) -B n (y)| > v 2 ≤ P sup |tj -y|≤2u |B n (t j ) -B n (y)| > v 2 ≤ K 1 exp(-K 2 v 2 u -τ /2 2+τ ).
We used (A2) for the last inequality. We conclude that

P sup x∈[α,β] sup |x-y|≤u |B n (x) -B n (y)| > v ≤ K 1 (k + 1) exp - K 2 v 2 u -τ 2 2+τ ≤ K 1 u (β -α + 1) exp - K 2 v 2 u -τ 2 2+τ ,
since k ≤ (β -α)/u and u ∈ (0, 1]. This proves the lemma by renaming K 1 and K 2 .

Proof of Lemma 2.1. The proof is inspired by the proof of Lemma 5.1 in [START_REF] Durot | On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF].

Recall that without loss of generality,

[a, b] = [0, 1]. For all x ∈ [0, 1], let xi = inf u ≥ (x -2c n ) ∨ 0, such that F B n (u) = F (B,x) n,cn (u) ,
with the convention that the infimum of an empty set is (x + 2c n ) ∧ 1, and let

xs = sup u ≤ (x + 2c n ) ∧ 1, such that F B n (u) = F (B,x) n,cn (u) ,
with the convention that the supremum of an empty set is (x

-2c n ) ∨ 0. If F B n (u) = F (B,x)
n,cn (u) for some u ≤ x, and

F B n (v) = F (B,x)
n,cn (v) for some v ≥ x, then we must have Moreover, note that if xi > x ≥ 0, then we must have x -2c n > 0. Otherwise, we would have

F B n = F (B,
F (B,x) n,cn (0) = F B n (0) = F B n ( 
0), which would mean that xi = 0. Similarly, if xs < x ≤ 1, then we must have x + 2c n < 1. Therefore, it suffices to prove that there exist positive K 1 , K 2 such that

P (x i > x, for some x ∈ [2c n , 1]) ≤ K 1 n -K2c0 , (22) 
and

P (x s < x, for some x ∈ [0, 1 -2c n ]) ≤ K 1 n -K2c0 , (23) 
provided that c 0 ≥ C 0 for some sufficiently large C 0 . We will only prove [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF], since ( 23) can be proven with similar arguments.

If xi > x for some x ∈ [2c n , 1], then by definition,

F B n (u) = F (B,x) n,cn (u),
for all 0 ≤ u ≤ x. In that case, there exist 0 ≤ y ≤ x -2c n and x ≤ z ≤ (x + 2c n ) ∧ 1, such that the line segment joining (y, F B n (y)) and (z, F B n (z)) is above (t, F B n (t)) for all t ∈ (y, z). In particular, this line segment is above (x -c n , F B n (x -c n )), which implies that the slope of the line segment joining (y, F B n (y)) and (x -c n , F B n (x -c n )) is smaller than the slope of the line segment joining (z, F B n (z)) and (x -c n , F B n (x -c n )). This means that

F B n (y) -F B n (x -c n ) y -x + c n < F B n (z) -F B n (x -c n ) z -x + c n .
For any fixed α ∈ R, this implies that either

F B n (y) -F B n (x -c n ) y -x + c n < α or α < F B n (z) -F B n (x -c n ) z -x + c n .
In particular with α x = f (x) + c n |f (x)| we have

P (x i > x for some x ∈ [2c n , 1]) ≤ P 1 + P 2 , (24) 
where

P 1 = P ∃x ∈ [2c n , 1], ∃y ∈ [0, x -2c n ] : F B n (y) -F B n (x -c n ) > (y -x + c n )α x ,
and

P 2 = P ∃x ∈ [2c n , 1], ∃z ∈ [x, (x + 2c n ) ∧ 1] : F B n (z) -F B n (x -c n ) > (z -x + c n )α x .
Furthermore, with t x = c 2 n f (x)/4, we have P 1 ≤ P 1,1 + P 1,2 , where and

P 1,1 = P ∃x ∈ [2c n , 1] : F B n (x) -F B n (x -c n ) > c n α x +
P 1,2 = P ∃x ∈ [2c n , 1], ∃y ∈ [0, x -2c n ] : F B n (x) -F B n (y) < (x -y)α x + t x .
We first consider P 1,1 . From (A1), the derivative f (which is defined respectively as the right and the left derivative of f at the boundary points 0 and 1) is negative and uniformly continuous on the compact interval [0, 1]. Since c n tends to zero, by using Taylor's expansion, we obtain

F (x) -F (x -c n ) = c n f (x) + c 2 n 2 |f (x)| + o(1)
,

where the o(1) term is uniform in x ∈ [2c n , 1]. Therefore, with M B n = F B n -F , we obtain P 1,1 ≤ P ∃x ∈ [2c n , 1] : M B n (x) -M B n (x -c n ) > c 2 n 4 (|f (x)| + o(1)) ≤ P sup x∈[2cn,1] M B n (x) -M B n (x -c n ) > c 2 n 8 inf t∈[0,1] |f (t)| , provided n is sufficiently large. By definition, M B n = n -1/2 B n • L. Moreover, |L(x) -L(x -c n )| ≤ c n ||L || ∞ , where by assumption (A4), ||L || ∞ := sup t∈[0,1] L (t) < ∞.
Using Lemma 5.1, we conclude that with ε = inf t |f (t)| > 0 and I = [L(2c n ), L(1)],

P 1,1 ≤ P sup x∈I sup |x-y|≤cn||L ||∞ (B n (x) -B n (y)) > c 2 n √ n 8 ε ≤ K 1 ||L || -1 ∞ c -1 n exp - K 2 ε 2 64||L || τ ∞ nc 4-τ n ≤ K 1 ||L || -1 ∞ n c 0 log n 1/(4-τ ) n -K2ε 2 c0/(64||L || τ ∞ ) .
Possibly enlarging K 1 , this proves that for c 0 sufficiently large and all n,

P 1,1 ≤ K 1 n -K2ε 2 c0/(65||L || τ ∞ ) .
Renaming K 2 , we conclude that there exist positive numbers K 1 and K 2 that depend only on f , L and C 0 such that

P 1,1 ≤ K 1 n -K2c0 , ( 25 
)
for all n, provided that c 0 ≥ C 0 for some sufficiently large C 0 . Next, consider P 1,2 . For all x ∈ [2c n , 1] and z ∈ [1, x/(2c n )], let Y n (x, z) be defined by 

Y n (x, z) = F B n (x -2c n z) -F B n (x) + 2c n α x z + t x , imsart-
F (x -2c n z) -F (x) + 2c n α x z ≤ -εc 2 n z 2 . ( 27 
) Define A n = {(x, z) : x ∈ [2c n , 1], z ∈ [a, x/(2c n )]}. From (27) we have P sup (x,z)∈An Y n (x, z) > 0 ≤ P sup (x,z)∈An M B n (x -2c n z) -M B n (x) -εc 2 n z 2 > c 2 n ε 4 
≤ P sup (x,z)∈An B n • L(x -2c n z) -B n • L(x) -εc 2 n √ nz 2 > c 2 n ε √ n 4 . Define A n = {(t, u) : t = L(x), u = (L(x) -L(x -2c n z))/(2c n ), (x, z) ∈ A n }. Then P sup (x,z)∈An Y n (x, z) > 0 ≤ P sup (t,u)∈A n B n (t -2c n u) -B n (t) - c 2 n ε √ nu 2 ||L || 2 ∞ > c 2 n ε √ n 4 .
Now, denote by k n the integer part of c -1 n and for all j = 0, 1, . . . , k n , let

t j = L(2c n ) + j(L(1) -L(2c n ))/k n . If for some (t, u) ∈ A n , one has B n (t -2c n u) -B n (t) - c 2 n ε √ nu 2 ||L || 2 ∞ > c 2 n ε √ n 4 ,
then, for j = 1, 2, . . . , k n , such that t ∈ [t j-1 , t j ], one either has

B n (t j -2c n u) -B n (t j ) - c 2 n ε √ nu 2 ||L || 2 ∞ > 0, or B n (t -2c n u) -B n (t j -2c n u) -B n (t) + B n (t j ) > c 2 n ε √ n 4 .
Note that

|B n (t) -B n (t j )| ≤ sup t∈[L(0),L(1)] sup |t-y|≤k -1 n |B n (t) -B n (y)|.
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Furthermore, for (t, u) ∈ A n we have t -

2c n u = L(x -2c n z) ∈ J = [L(0), L(1)], so that |B n (t -2c n u) -B n (t j -2c n u)| ≤ sup t∈J sup |t-y|≤k -1 n |B n (t) -B n (y)|.
Hence, from the triangle inequality it follows that sup

t∈[tj-1,tj ] sup u≥a inft L (t) B n (t -2c n u) -B n (t j -2c n u) -B n (t) + B n (t j ) ≤ 2 sup t∈J sup |t-y|≤k -1 n |B n (t) -B n (y)| .
We conclude that

P sup (x,z)∈An Y n (x, z) > 0 ≤ P 2 sup t∈J sup |t-y|≤k -1 n |B n (x) -B n (y)| > c 2 n ε √ n 4 + kn j=1 P sup u≥a infs L (s) B n (t j -2c n u) -B n (t j ) - c 2 n ε √ nu 2 ||L || 2 ∞ > 0 .
With Lemma 5.1, we have

P 2 sup t∈J sup |t-y|≤k -1 n |B n (t) -B n (y)| > c 2 n ε √ n 4 ≤ K 1 k n exp - K 2 ε 2 n 16 c 4 n k τ n ≤ K 1 n c 0 log n 1/(4-τ ) n -K2ε 2 2 -4-τ c0 , by definition of c n and k n , since k n ≤ c -1
n and k n ≥ c -1 n /2 for sufficiently large n. Hence, there exist positive numbers K 1 and K 2 that depend only on f , L and C 0 such that

P 2 sup t∈J sup |t-y|≤k -1 n |B n (t) -B n (y)| > c 2 n ε √ n 4 ≤ K 1 n -K2c0 ,
for all n, provided c 0 ≥ C 0 for some sufficiently large C 0 . Furthermore, with (A3) we have

kn j=1 P sup u≥a inft L (t) B n (t j -2c n u) -B n (t j ) - c 2 n ε √ nu 2 ||L || 2 ∞ > 0 ≤ kn j=1 P sup z≥2cna inft L (t) B n (t j -z) -B n (t j ) - ε √ nz 2 4||L || 2 ∞ > 0 ≤ kn j=1 K 1 exp - K 2 ε 2 n 16||L || 4 ∞ 2c n a inf t L (t) 4-τ ≤ K 1 n c 0 log n 1/(4-τ ) n -K2ε 2 c0(2a inft L (t)) 4-τ /(16||L || 4 ∞ ) ,
by definition of c n and k n . Renaming K 1 and K 2 , the right hand term in the previous display is bounded from above by K 1 n -K2c0 for all n, provided c 0 ≥ C 0 for some sufficiently large C 0 , where K 1 and K 2 depend only on f , L and C 0 . We conclude that there exist K 1 , K 2 such that

P sup (x,z)∈An Y n (x, z) > 0 ≤ K 1 n -K2c0 ,
for all n, provided c 0 is sufficiently large. Using (26), we conclude that

P 1,2 ≤ K 1 n -K2c0 + P sup x∈[2cn,1] sup z∈[1,a] Y n (x, z) > 0 . ( 28 
)
Next, we consider the case z ∈ [1, a] and establish an upper bound for the probability on the right hand side of (28). Since c n tends to zero as n → ∞ and f is uniformly continuous on [0, 1], we have

F (x -2c n z) -F (x) + 2c n α x z = 2c 2 n |f (x)|z(1 -z) + o(c 2 n ), where 2c 2 n |f (x)|z(1 -z) ≤ 0 and o(c 2 n ) is uniform in z ∈ [1, a] and x ∈ [2c n , 1]. Therefore, F (x -2c n z) -F (x) + 2c n α x z + t x ≤ -c 2 n |f (x)|/8, ( 29 
) for all z ∈ [1, a] and x ∈ [2c n , 1] provided that n is sufficiently large. With M B n = F B n -F , it follows from (28) that P 1,2 ≤ K 1 n -K2c0 + P sup x∈[2cn,1] sup z∈[1,a] M B n (x -2c n z) -M B n (x) > c 2 n 8 inf t∈[0,1] |f (t)| .
Repeating the same arguments as above yields P 1,2 ≤ K 1 n -K2c0 , for some positive K 1 , K 2 that depend only on f , L and C 0 , for all n, provided that c 0 ≥ C 0 for some sufficiently large C 0 .
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We have already proved that P 1 ≤ P 1,1 + P 1,2 , where P 1,1 satisfies (25), so from (24), we derive that for some positive K 1 and K 2 we have

P (x i > x for some x ∈ [2c n , 1]) ≤ P 2 + K 1 n -K2c0 .
To deal with P 2 , one can write P 2 ≤ P 2,1 + P 2,2 , where

P 2,1 = P ∃x ∈ [2c n , 1] : F B n (x -2c n ) -F B n (x -c n ) > -c n α x + t x and P 2,2 is the probability that there exist x ∈ [2c n , 1] and z ∈ [x, (x + 2c n ) ∧ 1], such that F B n (z) -F B n (x -2c n ) > (z -x + 2c n ) α x -t x , where we recall that α x = f (x) + c n |f (x)| and t x = c 2 n f (x)/4.
One can then conclude, using similar arguments as above, that there exist positive numbers K 1 and K 2 such that P 2 ≤ K 1 n -K2c0 , for all n, provided that c 0 is sufficiently large, whence [START_REF] Wang | A Kiefer-Wolfowitz comparison theorem for Wicksell's problem[END_REF]. This concludes the proof of Lemma 2.1.

Proof of Theorem 2.1. Recall that we only need to prove the theorem for the case [a, b] = [0, 1]. In the sequel, for all intervals I ⊂ R, we denote by CM I the operator that maps a bounded function h : I → R into the least concave majorant of h on I. First note that for all x ∈ [0, 1], we have

F (B,x) n,cn (x) -F B n (x) = (CM In(x) T (B,x) n )(0),
where

I n (x) = -(c -1 n x) ∧ 2 , (c -1 n (1 -x)) ∧ 2 and
T (B,x) n (η) = F B n (x + c n η) -F B n (x)
for all η ∈ I n (x). With M B n = F B n -F , we can write

T (B,x) n (η) = M B n (x + c n η) -M B n (x) + F (x + c n η) -F (x). ( 30 
)
Since f is bounded and |η| ≤ 2, for all η ∈ I n (x), it follows from Taylor's expansion that

T (B,x) n (η) = M B n (x + c n η) -M B n (x) + Y (B,x) n (η) + O(c 2 n ), (31) where Y (B,x) n (η) 
= c n ηf (x), and where the big

O-term is uniform in η ∈ I n (x) and x ∈ [0, 1]. Because the process Y (B,x) n is linear, its least concave majorant on I n (x) is Y (B,x) n itself.
Using that the supremum distance between the least concave majorants of processes is less than or equal to the supremum distance between the processes themselves, we conclude from (31) that for all x ∈ [0, 1],

| F (B,x) n,cn (x) -F B n (x)| = |(CM In(x) T (B,x) n )(0)| ≤ |Y (B,x) n (0)| + |(CM In(x) T (B,x) n )(0) -Y (B,x) n (0)| ≤ sup η∈In(x) |T (B,x) n (η) -Y (B,x) n (η)| ≤ sup η∈In(x) M B n (x + c n η) -M B n (x) + O(c 2 n ).
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Hence, for A > 0 sufficiently large we have

P sup x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| > Ac 2 n ≤ P sup x∈[0,1] sup η∈In(x) M B n (x + c n η) -M B n (x) > Ac 2 n /2 ≤ P sup x∈[0,1] sup η∈In(x) |B n • L(x + c n η) -B n • L(x)| > Ac 2 n √ n/2 ≤ P sup x∈[L(0),L (1) 
]

sup |x-y|≤2cn||L ||∞ |B n (x) -B n (y)| > Ac 2 n √ n/2 ,
since |η| ≤ 2 for all η ∈ I n (x). We obtain from Lemma 5.1 that for A > 0 sufficiently large,

P sup x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| > Ac 2 n ≤ K 1 2c n ||L || ∞ exp -K 2 A 2 2 -2-τ ||L || -τ ∞ nc 4-τ n ≤ K 1 2||L || ∞ n c 0 log n 1/(4-τ ) n -K2A 2 2 -2-τ ||L || -τ ∞ c0 . (32) 
The upper bound tends to zero as n → ∞ provided that A is sufficiently large, whence sup

x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| = O p (c 2 n ).
This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Write

F n -F n = ( F n -F B n ) + (F B n -F n ) + ( F B n -F B n ).
Since the supremum distance between least concave majorant processes is less than or equal to the supremum distance between the processes themselves, the triangle inequality yields

sup x∈[a,b] | F n (x)-F n (x)| ≤ 2 sup x∈[a,b] |F n (x)-F B n (x)|+ sup x∈[a,b] | F B n (x)-F B n (x)|. ( 33 
)
Theorem 2.2 now follows from assumption (2) and Theorem 2.1.

Proof of Theorem 2. and consider an arbitrary r ≥ 1. It follows from Fubini's Theorem that for any A 0 > 0 we have

E sup x∈[0,1] | F B n (x) -F B n (x)| r = ∞ 0 P sup x∈[0,1] | F B n (x) -F B n (x)| r > u du ≤ A 0 c 2 n r + ∞ A0c 2 n P sup x∈[0,1] | F B n (x) -F B n (x)| > v rv r-1 dv,
where we used the fact that a probability is smaller than or equal to one, and we performed a change of variable v = u 1/r . From the triangle inequality, it follows that

E sup x∈[0,1] | F B n (x) -F B n (x)| r ≤ A 0 c 2 n r + I n1 + I n2 , (34) 
where

I n1 = ∞ 0 P sup x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| > v 2 rv r-1 dv
and

I n2 = ∞ A0c 2 n P sup x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| > v 2 rv r-1 dv.
First, consider I n1 . It follows from Lemma 2.1 that there exist positive K 1 and K 2 such that for all v > 0,

P sup x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| > v 2 ≤ K 1 n -K2c0 . (35) 
Moreover, similar to (33), the triangle inequality yields sup

x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| ≤ sup x∈[0,1] | F (B,x) n,cn (x) -F (x)| + sup x∈[0,1] |F (x) -F B n (x)| ≤ 2 sup x∈[0,1] |F B n (x) -F (x)|.
By definition, F B n -F = n -1/2 B n • L, so together with [START_REF] Durot | On the L p -error of monotonicity constrained estimators[END_REF] we derive that for all v > 0, Note that without loss of generality, possibly enlarging K 1 and diminishing K 2 , we can choose K 1 and K 2 to be the same in (35) and (36). Using the bound (35) for v ≤ n and the bound (36) for v > n, we obtain

P sup x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| > v 2 ≤ P sup x∈[L(0),L(1)] |B n (x)| > v √ n 4 ≤ K 1 exp(-K 2 nv 2 /16
I n1 ≤ n 0 K 1 n -K2c0 rv r-1 dv + ∞ n K 1 exp(-K 2 nv 2 /16)rv r-1 dv.
Consider a number q with r -3q < -2r/(4 -τ ) (37) and let K 3 = q q exp(-q), so that x q exp(-x) ≤ K 3 for all x ∈ [0, ∞). Then, we arrive at

I n1 ≤ K 1 n -K2c0+r + K 1 K 3 ∞ n (K 2 nv 2 /16) -q rv r-1 dv ≤ K 1 n -K2c0+r + K 1 K 3 (K 2 n/16) -q rn r-2q 2q -r , (38) 
since r -2q < 0 for all q that satisfy (37). Choose c 0 sufficiently large so that -K 2 c 0 + r < -2r/(4 -τ ). Then from (37) and (38), we conclude that

I n1 = o log n n 2r/(4-τ ) . (39) 
Next, consider I n2 . Using a change of variable, we have

I n2 = 2c 2 n r ∞ A0/2 P sup x∈[0,1] | F (B,x) n,cn (x) -F B n (x)| > c 2 n v rv r-1 dv.
Then we derive from (32), that for sufficiently large A 0 ,

I n2 ≤ 2c 2 n r K 1 2||L || ∞ ∞ A0/2 n c 0 log n 1/(4-τ ) n -K2v 2 2 -2-τ ||L || -τ ∞ c0 rv r-1 dv.
Let q > 0 with (37) and let K 3 = q q exp(-q). Then, similar to (38), the integral in the previous display is bounded from above by

K 3 ∞ A0/2 (c 0 log n) -1/(4-τ ) K 2 v 2 2 -2-τ ||L || -τ ∞ c 0 - 1 4 -τ log n -q rv r-1 dv.
Choosing A 0 sufficiently large, so that

K 2 (A 0 /2) 2 2 -2-τ ||L || -τ ∞ c 0 > 2 4 -τ ,
this is bounded from above by Hence, I n2 is bounded by

K 3 ∞ A0/2 (c 0 log n) -1/(4-τ ) K 2 v 2 2 -3-τ ||L || -τ ∞ c 0 log n -q rv r-1 dv.
2c 2 n r K 1 K 3 2||L || ∞ (c 0 log n) -1/(4-τ ) K 2 2 -3-τ ||L || -τ ∞ c 0 log n -q r(A 0 /2) r-2q 2q -r ,
since r -2q < 0 for all q with (37). We conclude that for A 0 sufficiently large, 

I n2 = o log n n 2r/(4-τ ) (40 
| F n (x) -F n (x)| r ≤ 2 2r-1 E sup x∈[a,b] |F B n (x) -F n (x)| r + 2 r-1 E sup x∈[a,b] | F B n (x) -F B n (x)| r .
Theorem 2.4 then follows from (6) combined with Theorem 2.3.

Proofs for Subsection 2.3

Proof of Theorem 2.5. In the sequel, we use the same notation as in Lemma 2.1. We first prove that

sup |x-x0|≤εn | F B n (x) -F B n (x)| = O p (ε τ /2 n n -1/2 ) ∧ log n n 2/(4-τ ) . (41) 
It follows from Lemma 2.1 that with c 0 sufficiently large,

sup |x-x0|≤εn | F B n (x) -F (B,x) n,cn (x)| = O p (ε τ /2 n n -1/2 ),
so the triangular inequality yields 

sup |x-x0|≤εn | F B n (x) -F B n (x)| ≤ sup |x-x0|≤εn | F (B,x) n,cn (x) -F B n (x 0 ) -F (x) + F (x 0 )| + sup |x-x0|≤εn |F B n (x) -F B n (x 0 ) -F (x) + F (x 0 )| + O p (ε τ /2 n n -1/2
| F (B,x) n,cn (η) -h(η)| ≤ sup η∈In(x) |F B n (η) -h(η)|
for all concave functions h : I n (x) → R. The function η → F B n (x 0 )+F (η)-F (x 0 ) is concave on its domain, so Marshall's lemma ensures that for all x ∈ [x 0 -

ε n , x 0 + ε n ], | F (B,x) n,cn (x) -F B n (x 0 ) -F (x) + F (x 0 )| ≤ sup η∈In(x) |F B n (η) -F B n (x 0 ) -F (η) + F (x 0 )|.
Setting δ n = 2c n + ε n , we conclude from (42) that with

M B n = F B n -F , sup |x-x0|≤εn | F B n (x) -F B n (x)| ≤ 2 sup |x-x0|≤δn |M B n (x) -M B n (x 0 )| + O p (ε τ /2 n n -1/2 ). ( 43 
)
Consider the first term on the right hand side. With y 0 = L(x 0 ) write

n 1/2 sup |x-x0|≤δn |M B n (x) -M B n (x 0 )| = sup |x-x0|≤δn |B n (L(x)) -B n (L(x 0 ))| ≤ sup |y-y0|≤δn L ∞ |B n (y) -B n (y 0 )|, (44) 
using that the derivative L is bounded. It follows from (A2) that for all A > 0,

P sup |y-y0|≤δn L ∞ |B n (y) -B n (y 0 )| > Aδ τ /2 n ≤ K 1 exp(-K 2 A 2 L -τ ∞ ),
which tends to zero as A → ∞. Combining this with the assumption that

δ n = 2c n + ε n ≤ (2c 1/(4-τ ) 0 + 1)ε n yields sup |y-y0|≤δn L ∞ |B n (y) -B n (y 0 )| = O p (δ τ /2 n ) = O p (ε τ /2 n ). (45) 
Combining this with (44) and (43) then yields 

sup |x-x0|≤εn | F B n (x) -F B n (x)| = O p (ε τ /2 n n -1/2
| F n (x) -F n (x)| ≤ 2 sup x∈[a,b] |F n (x) -F B n (x)| + sup |x-x0|≤εn | F B n (x) -F B n (x)|. (46) 
Hence, the theorem follows from (2) and (41). than or equal to the supremum distance between the processes themselves, so with Y n (η) = c n ηf (x 0 ), we have

(CM In T (B,x0) n )(0) = O p (c 2 n ) + (CM In Y n )(0).
Since the process Y n is linear, we have CM In Y n = Y n and therefore, (CM In Y n )(0) = Y n (0) = 0. We then conclude from (50) that

F (B,x0) n,cn (x 0 ) -F B n (x 0 ) = O p (c 2 n ).
This completes the proof of (49) by definition of c n .

Proofs for Subsection 3.1.

Proof of Corollary 3.1. According to Theorems 2.2 and 2.4, it suffices to prove that B n satisfies (A2), (A3) and ( 5) with τ = 1. Note that we can write

B n (t) = W n (t) -ξ n t, for t ∈ [a, b], (51) 
where W n is Brownian motion and ξ n ≡ 0, if B n is Brownian motion, and ξ n ∼ N (0, 1) independent of B n , if B n is Brownian bridge. Therefore, for all fixed x and all u ∈ (0, 1] and v > 0 we have

P sup |x-y|≤u |B n (x) -B n (y)| > v ≤ P sup |x-y|≤u |W n (x) -W n (y)| > v/2 + P (u|ξ n | > v/2) .
Using change of origin and scaling properties of Brownian motion, since u ≤ 1 we obtain

P sup |x-y|≤u |B n (x) -B n (y)| > v ≤ P √ u sup |x|≤1 |W n (x)| > v/2 + P √ u|ξ n | > v/2 .
By Doob's inequality (see e.g. Proposition 1.8 in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]), the first probability on the right hand side is bounded by 4 exp(-v 2 /(8u)). Moreover, the second probability on the right hand side is bounded by exp(-v 2 /(8u)), whence

P sup |x-y|≤u |B n (x) -B n (y)| > v ≤ 5 exp(-v 2 /(8u)).
This proves that B n satisfies (A2) with K 1 = 5, K 2 = 1/8 and τ = 1. We obtain (5) from (A2) for the special case of y = 0 and u = L(b) -L(a), using that B n (0) = 0 almost surely. Now, consider (A3). For all u ∈ (0, 1], v > 0, and all x ∈ I we have

P sup z≥u B n (x -z) -B n (x) -vz 2 > 0 ≤ P sup z≥u W n (x -z) -W n (x) - vz 2 2 > 0 + P sup z≥u ξ n z - vz 2 2 > 0 ,
where W n and ξ n are taken from (51). Changing origin in the Brownian motion yields

P sup z≥u B n (x -z) -B n (x) -vz 2 > 0 ≤ P sup z≥u W n (z) - vz 2 2 > 0 + P sup z≥u ξ n z - vz 2 2 > 0 .
By (3.3) in [START_REF] Durot | On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF], the first probability on the right hand side is bounded by exp(-v 2 u 3 /8). Moreover,

P sup z≥u ξ n z - vz 2 2 > 0 ≤ P (|ξ n | > vu/2) ≤ e -(vu) 2 /8 ≤ e -v 2 u 3 /8 , since u ≤ 1. Therefore, P sup z≥u B n (x -z) -B n (x) -vz 2 > 0 ≤ 2 exp(-v 2 u 3 /8),
which proves that B n satisfies (A3) with K 1 = 2, K 2 = 1/8 and τ = 1. This concludes the proof of Corollary 3.1.

Proof of Corollary 3.2. Similar to Theorem 5(ii) in [START_REF] Durot | On the L p -error of monotonicity constrained estimators[END_REF], it can be proved that if

E| i | 3 < ∞, then P n 2/3 sup t∈[a,b] F n (t) -E(F n (t)) -n -1/2 B n • L n (t) > x ≤ Cx -3 , (52) 
for all x > 0, with B n a Brownian motion and 

L n (t) = E( i ) 2 n n i=1 1(t i ≤ t). This implies that sup t∈[a,b] |F n (t) -E(F n (t)) -n -1/2 B n • L n (t)| = O p (n -2/3
|F n (t) -F (t) -n -1/2 B n • L n (t)| = O p (n -2/3 ).
Moreover, with [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw[END_REF] and

L(t) = (t -a)E( i ) 2 /(b -a), we have sup t∈[a,b] |L n (t) -L(t)| ≤ M n -1/3 ,
for some M > 0. Since the Brownian motion B n satisfies (A2) with τ = 1, with Lemma 5.1 we have

P sup t∈[a,b] |B n • L n (t) -B n • L(t)| > v ≤ P sup x∈[L(a),L(b)] sup |x-y|≤M n -1/3 |B n (x) -B n (y)| > v ≤ K 1 n 1/3 M -1 exp -K 2 v 2 n 1/3 /M . It follows that n -1/2 sup t∈[a,b] |B n • L n (t) -B n • L(t)| = O p (n -2/3 (log n) 1/2 ).
Hence, (2) holds with γ n = O(n -2/3 (log n) 1/2 ) and L(t) = (t -a)E( 2 i )/(b -a), and Corollary 3.2 follows from Corollary 3.1.

Proof of Corollary 3.3. From the proof of Theorem 6 in [START_REF] Durot | On the L p -error of monotonicity constrained estimators[END_REF], it can be seen that, due to the Hungarian embedding, (2) holds with L = F , B n a Brownian bridge, and γ n = O(n -2/3 ). Therefore, Corollary 3.3 follows from Corollary 3.1.

Proof of Corollary 3.4. Similar to Theorem 3 in [START_REF] Durot | On the L p -error of monotonicity constrained estimators[END_REF], it can be proved that (2) holds with B n a Brownian motion,

L(t) = t 0 f (u) (1 -G(u))(1 -H(u)) du, t ∈ [0, 1]
and γ n = O(n -2/3 ). Therefore, Corollary 3.4 follows from Corollary 3.1.

Proof of Corollary 3.5.

Let 

F B n = F + n -1/2 B n • L, with L and B n taken from (2). Define S B n (t) = S(t) + n -1/2 B n • L(t) = F B n (b) -F B n ( 
f (l) ns (t) -f (l) n (t) = 1 h 1+l n ( F n (t -uh n ) -F n (t -uh n ))K (1+l) (u) du
f ns (t) -f n (t) ≤ | f ns (a + h n ) -f n (a + h n )| + h n | f ns (a + h n ) -f n (a + h n )| ≤ O p h -1
n n -2/3 (log n) 

  and B n is a process on [L(a), L(b)] that satisfies the following two conditions for a given τ ∈ [0, 4): (A2) There are positive K 1 , K 2 such that for all x ∈ [L(a), L(b)], u ∈ (0, 1],and v > 0,

) Corollary 3 . 3 .

 33 If (A1) holds and inf t∈[0,1] f (t) > 0, then we have (9) with F n taken from (13) and F n the least concave majorant of F n . imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015 3.1.3. Random censorship with monotone hazard.
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Lemma 4 . 2 .

 42 Assume the conditions of Corollary 3.1. If K is supported on [-1, 1] with integrable first and second derivatives, then for l = 0, 1, sup t∈[a,b]

  [a, b] = [0, 1]. Indeed, suppose that f (t), for t ∈ [a, b], satisfies conditions (A1), (2) and (A4) with corresponding F , L and F n on [a, b]. Then this case can be transformed to the case [0, 1] by considering (b-a)f (a+x(b-a)), for x ∈ [0, 1]. It is straightforward to see that these are functions on [0, 1] that satisfy (A1), (2) and (A4) with corresponding functions F (a + x(b -a)), L(a + x(b -a)) and F n (a + x(b -a)) for x ∈ [0, 1]. Moreover, note that the transformed estimator F n (a + x(b -a)) is the least concave majorant of the process {F n (a + u(b -a)), u ∈ [0, 1]} at the point u = x. Thus, we prove the results only for the case [a, b] = [0, 1].

3 .

 3 Recall that we only have to prove the theorem for the case [a, b] = [0, 1]. In the sequel, we use the same notation as in Lemma 2.1 imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015

. 3 .

 3 ) by definition of c n . Combining (34), (39) and (40) completes the proof of Theorem 2Proof of Theorem 2.4. By convexity, we have (a + b) r ≤ 2 r-1 (a r + b r ) for all positive numbers a, b and therefore, (33) yields E sup x∈[a,b]

Assumption ( 2 ) 4 ≤ 1 KK

 241 with γ n = O(n -1 log n) ensures that sup t∈[a,b] |H n (t) -H B n (t)| ≤ (b -a) sup t∈[a,b] |S n (t) -S B n (t)| ≤ (b -a) |F n (b) -F B n (b)| + sup t∈[a,b]|F n (t) -F B n (t)| ≤ 2(b -a) sup t∈[a,b] |F n (t) -F B n (t)| = O p log n n ,which means that Assumption (2) also holds with γ n = n -1 log n, and F n , F, B n replaced by H n , H, B H n , respectively, and L(t) = t. Clearly H(a) = 0 and, since f = -S satisfies (A5), H is twice continuously differentiable with a decreasing first derivative S that satisfies0 < inf t∈[a,b] |S (t)| ≤ sup t∈[a,b] |S (t)| < ∞.We prove below that both (A2) and (A3) hold with τ = 2, L(t)= t, and B n replaced by B H n . Then, Corollary 3.5 immediately follows from Theorem 2.2. By definition of B H n , for all u > 0, v > 0 and x ∈ [a, b] we have sup |x-y|≤u | B H n (x) -B H n (y)| ≤ sup |x-y|≤u x∨y x∧y|B n • L(b) -B n • L(t)| dt n (x) -B H n (y)| > v ≤ P u sup t∈[L(a),L(b)] |W n (t)| > v/4 + P (u L ∞ |ξ n | > v/4)imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015where W n and ξ n are taken from (51), and whereL ∞ = sup t∈[a,b] |L(t)| < ∞,by assumption. Therefore,P sup |x-y|≤u | B H n (x) -B H n (y)| > v ≤ P u sup t∈[L(a),L(b)] |W n (t)| > v/4 + exp(-v 2 u -2 L -2 ∞ /32).By symmetry and scaling properties of Brownian motion, the first probability on the right hand side satisfiesP u sup t∈[L(a),L(b)] |W n (t)| > v/4 ≤ 2P u L ∞ sup t∈[0,1] |W n (t)| > v/4P u L ∞ sup t∈[0,1] W n (t) > v/4 .By Doob's inequality (see e.g. Proposition 1.8 in[START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]), this is bounded by 4 exp(-v 2 u -2 L -1 ∞ /32), whenceP sup |x-y|≤u | B H n (x) -B H n (y)| > v ≤ 5 exp -v 2 u -2 ( L -2 ∞ ∧ 1)/32 .This proves that (A2) holds with B n replaced by B H n , τ = 2, K 1 = 5 andK 2 = ( L -2∞ ∧ 1)/32. Next, consider (A3). By definition of B H n , for all u > 0, v > 0 and x ∈ [a, b] we haveP sup z≥u B H n (x -z) -B H n (x) -vz 2 > 0 ≤ P sup z≥u 2z sup t∈[L(a),L(b)] |B n (t)| -vz 2 > 0 ≤ P sup t∈[L(a),L(b)] |B n (t)| > vu/2 .Similar arguments as above yield that (A3) holds true withB n replaced by B H n , τ = 2, K 1 = 5 and K 2 = ( L -2∞ ∧ 1)/32. This completes the proof of Corollary 3.5.5.5. Proofs for Section 4.Proof of Lemma 4.1. Let p 1 , . . . , p m be the jump sizes of f n at the points of jumpτ 1 < • • • < τ m ∈ (a, b]. Note that f n (x) = f n (b), for all x ∈ (τ m , b],and imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015that for i = 1, 2, . . . , m, f n (t) = f n (τ i ) = f n (b) + m j=i p j ,for all t ∈ (τ i-1 , τ i ], where τ 0 = a. Therefore, when we defineK hn (t) = h -1 n K(t/h n ), for t ∈ R, then for t ∈ [a + h n , b -h n ],we can writef ns (thn (t -x) dx + f n (b) b τm K hn (t -x) dx,This means that for all t ∈ [a + h n , b -h n ],f ns (t) = hn (t -x) dx + f n (b) b a K hn (t -x) dx = τj )/hn K(u) du + f n (b) (t-a)/hn (t-b)/hn K(u) du.Using that K is supported on [-1, 1], together with the fact that (t -a)/h n ≥ 1 and (t -b)/h n ≤ -1, for all t ∈ [a + h n , b -h n ], we obtain (20). Because K ≥ 0, we conclude that f ns is non-increasing on [a + h n , b -h n ]. In particular, we have f ns (a + h n ) ≤ 0 and f ns (b -h n ) ≤ 0, so it immediately follows from definition (19) that f ns is also non-increasing on the intervals [a, a + h n ] and [b -h n , b]. Since f ns is continuous, we conclude that f ns is non-increasing on the whole interval [a, b]. Proof of Lemma 4.2. Denoting f (0) ns = f ns and f (1) ns = f ns , for l = 0, 1 we have sup t∈[a+hn,b-hn]

|

  F n (s) -F n (s)| |K (1+l) |(u)| du = O p h -(1+l) n n -2/3 (log n) 2/3 ,(53) imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015 where we use Corollary 3.1 in the last equality. On [a, a + h n ] we have by definition (19), sup t∈[a,a+hn]

2 / 3 ,

 23 where we used (53) with l = 0, 1 in the last inequality. Combining this with a similar argument on [b -h n , b], together with an application of (53) for l = 0 on [a + h n , b -h n ], completes the proof of the lemma for l = 0. Similarly, for l = 1, sup t∈[a,a+hn]f ns (t) -f n (t) = f ns (a + h n ) -f n (a + h n ) = O p h -2 n n -2/3 (log n) 2/3 .Using a similar argument on [b -h n , b], together with applying (53) for l = 1 on [a + h n , b -h n ], completes the proof for l = 1.

  -h n , b], we consider the local linear bias correction defined as follows: with f n denoting either f n or f ns ,
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  Let ε = inf t∈[0,1] |f (t)| and let a be a real number with aε > 2 sup t∈[0,1] |f (t)| (which implies that a ≥ 2). Moreover, recall that α x = f (x) + c n |f (x)| and t x = c 2 n f (x)/4. Now, distinguish between z ∈ [1, a] and z ∈ [a, x/(2c n )]. For all z ∈ [a, x/(2c n )], it follows from Taylor's expansion and the definition of a that

	(26)

ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015 so that P 1,2 = P (∃x ∈ [2c n , 1], ∃z ∈ [1, x/(2c n )] : Y n (x, z) > 0) .
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	(36)
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  ).By definition, with n sufficiently large and x ∈ [x 0 -ε n , x 0 + ε n ], F

	(B,x) n,cn is the
	least concave majorant of the restriction of F B n to I n (x) = [x-2c n , x+2c n ]∩[0, 1]
	so by Marshall's lemma,
	sup
	η∈In(x)
	(42)
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  ).

	Equation (41) now follows from the previous display combined with Theo-
	rem 2.1. Similar to (33), we obtain
	sup
	|x-x0|≤εn

  ).

	and therefore,	
	sup	
	t∈[a,b]	
	With (11) and (A1) we have
	sup	|F (t) -E(F n (t))| = O(n -2/3 )
	t∈[a,b]	
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  H(t) + n -1/2 B H n (t), t ∈ [a, b].

		t
	B H n (t) =	B n • L(x) dx, t ∈ [a, b],
		a
	and define	
	t	
	H B n (t) =	S B n (x) dx =
	a	

t), imsart-ejs ver. 2013/03/06 file: KW_EJS_Final.tex date: July 2, 2015 where B n (t) = B n (L(b)) -B n (L(t)). Furthermore, let
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Proof of Theorem 2.6. Combining [START_REF] Barlow | Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF], with γ n = O(n -2/(4-τ ) ), and (46), with ε n replaced by 0, yields

Therefore, it suffices to show that

The proof of this is along the lines of the proof of Lemma 2.1, except that we now take

for some positive number c 0 . Without loss of generality we assume that

with the convention that the infimum of an empty set is (x 0 + 2c n ) ∧ 1, and

with the convention that the supremum of an empty set is (x 0 -2c n )∨0. Arguing as in the proof of Lemma 2.1, we obtain that

0), so that x 0i = 0 and hence, P(x 0i > x 0 ) = 0. Next, consider P(x 0i > x 0 ), for

Similar to the proof of Lemma 2.1, we have P (x 0i > x 0 ) ≤ P 1 + P 2 , where

Furthermore, P 1 ≤ P 1,1 + P 1,2 where, with ε = inf t |f (t)| and K 1 , K 2 as in Assumption (A2), we have for sufficiently large n 

Similar to the proof of Lemma 2.1, for z ∈ [1, x 0 /(2c n )], define 

for some positive K 1 , K 2 that depend only on f and L. For the last inequality, we used both assumptions (A2) and (A3). We used the definition (48) for the last equality. We conclude that P 1 tends to zero as c 0 → ∞. Similarly, one can obtain that P 2 and P(x 0s < x 0 ) converge to zero, as c 0 → ∞. Therefore, for all ε > 0 there exists C 0 > 0 such that

provided that c 0 ≥ C 0 . Hence, to prove (47), it now suffices to prove that

for arbitrary c 0 . To this end, first note that

where

) n is taken from (30), and for all intervals I ⊂ R, CM I denotes the operator that maps a bounded function h : I → R into the least concave majorant of h on I. Using (44) and (45) with δ n replaced by 2c n , we conclude that

where the big O p -term is uniform in η ∈ I n . Next, by Taylor expansion we have